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The differentiability is of class C°° through this paper unless otherwise
stated. Let 5? be a foliation on a manifold M of codimension q with trivial
normal bundle denned by 1 -forms c^1? • • - , o)q. Assume that dco—^ cijko)j/\o)kj,k
where cijk are functions on M. Then £F is called a generalized Lie foliation,

Let En be the /7-dimensional Euclidean space and consider a differential
equation whose solutions are local mappings of Rm to En . In this paper we
shall deal with differential equations G whose automorphism pseudogroups
Jl(G) equal to the pseudogroup 2? of local isometrics of En and construct and
study foliations 3?(G) which are invariants of these differential equations G,
These foliations admit transversally conformal structures and if codim £?"((?}
>3, they are prolonged to generalized Lie foliations which are also invariants

ore.
In §1, we study a prolongation scheme of a principal bundle on M as-

sociated to a foliation £F on M. The method of the prolongation Is a generali-
zation of that of Singer-Steinberg ([5]). Principal bundles considered are
subbundles of the frame bundle associated to the normal bundle of £F satisfy-
ing a few invariant conditions with respect to 3 '. Theorem 4.3 or Corollary
4.4 is the main theorem in §1.

§2 is devoted to the presentation of a differential equation G with Jl(Q)

=$.
In §3, we construct a foliation £?(<?) on a manifold M(G) for a given differ-

ential equation G with Jl{8)=3? satisfying a regularity condition., This folia-
tion (3(G)* M(G)} is Riernannian and is an invariant of G i.e. if two such differ-
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ential equations 81 and 82 are locally Isomorphic at a point z0e£w,
M(SiJ) is conformally isomorphic to (EF(S2), M(S2J). Applying the result of
§ 1, we see that if codim£?(<?,-)> 33 £?(<?,-) is prolonged to a generalized Lie folia-
tion 3*'(Si) and any local isomorphism 0 of Si to <?2 with ^(ZQ)=ZQ Induces
an Isomorphism <j>' of 3'(S^) to ^£'(S^ as a generalized Lie foliation. Theorem
12.2 is the main theorem of this paper.

Theorem 8.1 and 12.2 are modified In forms of Corollaries 14.1 and 14.2
where foliations on subvarieties are introduced. These foliations are naturally
associated with analytic Involutive differential equations.

1. Let £F be a foliation of codimension q on a manifold M and let n'\
Q-^M be the normal bundle of £F. Let n\ F(Q)-*M be the frame bundle
associated to the vector bundle n'\ Q-*M. This frame bundle Is called the
normal frame bundle of £?. Denote by E the tangent bundle to 3 and by T(M)
the tangent bundle of M. We have then Q=T(M)/E. The following defini-
tion Is suggested by H. Imanishi. Let G be a Lie subgroup of GL(q, R).

1.1. Let P be a G-subbundle of F(Q) I.e. a G-bundleCF(0
with projection n=fc\P. If there exists an open covering {Ult}aeA of M
with ^(Uj^U^xG such that, for any leaf L of £F3 each transition function
g<*&'° U&r\U^~^G is constant on each connected component of U^ClU^CiL,
P is called a (G, 2>subbundle of F(0.

Example 1.1. Assume that a foliation £F is given by a collection {UtS9ftt}gteA

where {Ua}aeA is an open covering of M and fa: Uoli-^Rq is a submersion such
that f*(x)=<pap(x)ofp(x) for ^e U&r\ Up and for a local diffeomorphism ^>^(x)
where 9>a/3 is constant on each component in Uar\U^. Let P be any (j~sub-
bundle of F(Q) such that Tu^U^f^U^xG for any ®£iA and transition func-
tions are given by gap(x)=(<pap(xy)% for x^ Ua n J/p. Then gtfj3 Is constant on
each component in Uar\UpC\L. Therefore P is a (G, £F)-subbundle of

.02o Let p\ M—*N be a G-structure on N. Then p defines
a foliation £? on M as the pull back of the foliation on N with point-leaves.
Denote by P the induced bundle on M of the (/-bundle M on N by p. Then
P is a (G, SO-subbundle of

The following lemma has been obtained by a discussion with N. Shimada.

Lemma 1.1. If P is a (G5 3)-subbundle , 3 is naturally lifted to a foliation



FOLIATIONS AND DIFFERENTIAL EQUAFIONS 179

9 on P such that dim2r=dim2r and each leaf of 9 is mapped on a leaf of 3"

by the projection n : P—>M,

Proof, Let V be a cubic neighbourhood of the unit element of G. Then
U^xV dn~\ Ua) and { Ua X a « V} ̂ G is an open covering of TC~\ UJ, Therefore
{Us6XG°V}c6GAta.^G is an open covering of P, We may consider that VdRr,

r=dim<7. Define araap/-<r: U^=U*x<jo ¥->R«+r=RqxRr by C^x
(*, a -g) -*(/„(*), g)€=jR*x*r. If C/^n tfpT=t=0, we get the relation

/«* = f*P<rr°fpT Oil t/^n^r,

wheie ffl,p<rr(p)=(9«p(^(p)), °~lmg*p(n(p))**- Since P is a (G, £F)-subbundle9

gap is constant on each component in C/^ n Up r\L for any leaf L of 3". This
proves that the cocycle {U&<T, /**} *e=A,<r<=G defines a foliation on P. The con-

struction of £? asserts that £F is a foliation of codinaension g+r and that each

leaf L of 3 is a covering space of some leaf L of 3. This completes the proof
of Lemma 1.1.

1.2. The foliation 9 on a (G, 9>subbundle P is called the
lift of 9 to P.

2. In this section we shall make preparations for defining the structure
function C: P->Hom(F A F, F)/dHom(F, Q) for a (G, 9)-subbundle satisfying
some invariant condition, which will be a generalization of the structure func-
tion for a G-structure. The statements will be parallel to Singer-Sternberg
([5])-

Let 9 be a foliation of codimension q on M and let P be any G-bundie
dF(Q)9 GdGL(q,, R)9 with projection n=n\F. Let p be the projection of
the tangent bundle T(M) onto the normal bundle Q = T(M)/E. Denote by
F a g-dimensional real vector space. Then there exists a F-valued linear
differential form a> on P defined as follows:

(2.1) o)(X) = p-lpx*(X) for any

Since p is considered as an isomorphism of V with Q^(p} = T^(p^(M)IE^(p^ the
above equality makes sense. a> is called the basic form of P.

Let a^G and X^Tp(P). Since n=7coRa9 we have n*Rj(X)=-n*(X).
Thus CD (R.+(X)) = (paYlp7t*Ra*(X) = (pdf^pn* (X) = a~lp-lpn* (X) = a~lco (X),
Therefore Ra*a)=a~1a).

Let P be a (G, 2r)-subbundle of F(Q). Denote by £ the tangent bundle

to 3 on P and by p the projection of T(P) onto T(P)/£. Let /?eP and lei
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Hp be a ^-dimensional subspace of TP(P). Hp is called a transver sally horizontal

subspace at p if p7c^(Hp)=Qie(p^ Note that o)p restricted to Hp gives an
isomorphism of Hp with V. Let Mp be the set of transversally horizontal

subspaces at p and introduce an equivalence relation ~ in Mp by HP~~H'P
if and only if j5(Hp)=P(H'p). We set MP=MPI^. An element of J?^ is

called a normally horizontal subspace at p.

If Hp>^H'p, then we have o)p(X)=G>p(X') for JTeff,, X'eEJf; with p(X)

=p(Xf).

Let J?J and H2
P be two normally horizontal subspaces and let Hp be

any representative of ffp. Then for X^Hp and X2<=H2
P with ^(JO^K^)

=v, p^— JQ is independent of a choice of a representative //"£. There-

fore we can get a linear map S (=Sffl
pB*) of F into the Lie algebra S of G

defined by

(2.2) P&-XJ = P(«)

where S(y)* is the fundamental vector field on P corresponding to S(v)£=£.

Thus for veF, there corresponds a unique element S(v)&£. By this cor-

respondence, S^Hom(V, Q} is defined for normally horizontal subspaces

&p and H2
P.

<i
Let { 1̂5 • • • , ^} be a basis of Fand set o} =

*=i

Lemma 2.1. L^r P be a (G, 3)-subbundle. Then the basic form co of P

is locally expressed in terms of a basis for the integrals of £?, more precisely,

for any point p^P there exist a neighbourhood U of p and C°° -function GL{J
q

(i=l, "-,q andj=l, ~-,q) with q variables such that cy,-| U=^atj(yl9 •••9yq)dyj
y=i

(/=!, '"yq) where {_yl5 • • • , y%} is a fundamental system of l-st integrals of 3
on U.

Proof. Since P is a G-subbundle of the normal frame bundle F(Q) of

£?, it follows easily that there exists a neighbourhood U# of x(p)^M such

that UJ3 is a manifold and such that, if we set P-=7r"1(C/J, PJ3 is a G-
subbundle of the frame bundle over UJ3 and P* is the induced bundle by

the projection 7^ of C/tf onto UJ3. Let a^ be the projection of PJ3 onto

and denote by /^ the bundle map of P^ to PJS". Then we have n^p

on Fa and the basic form &„ of the G-subbundle PJ3? is defined by
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For Z^Tp(P), we have

<y(Z) = /rV*(Z) = p-l7t
= #*(pTl*«*vAZ) = (X*^*) (Z) .

This means that &> Is locally expressed in terms of a basis for the Integrals of

3.

Let P be a (G, £?)-sub bundle of F(Q) with the basic form co. The form
do> is an exterior 2-form with values In V. Let Hp^Mp and let ^ be a re-
presentative of J5j. The restriction of do>p to HpAf?p gives a map of Hp/\Hp

into F. By Lemma 2.1, we can easily see that dcop\Hp/\Hp Is Independent
of a choice of a representative Hp. Therefore, via the Identification of Hp

with Fby copy a map Cffp of F A V into F Is defined by CHP(U/\ v)=do)(X A F)

where JT, F(= #„ cypO=w and o)(Y)=v.
Let JSJ and Hp be two normally horizontal subspaces at p^P. Then

analogically to [5] (p. 42), we can prove that

(2.3) CBl
p(u A v)-CB*(u A v)=Sr(v)w-S'(w)v

where S=Sfil
pH

2
p. So as to prove this equality, we have only to note that

there exists a representative Hp of //£ such that (2.2) Implies the equality
X1—X2=S(v)f. This Is proved as follows. Let Fp be any complement of
Ep in TP(P) and choose a representative Hp of ^ such that HpdFp. Then
both 1^— X2 and S(v)f are elements in Fp and so (2.2) Implies X1—X2=S(v)f.

We define the map 0: Kom(F, ^?)->Hom(FA F, F) by W(t/Av)=5'(w)v
-5(v)w for ^eHom(F, ^). Then (2.3) is written by CH2

p-CHl
p=OS.

3. Now we define the structure function C of the (G, S'j-sub bundle P
and state the prolongation of P. For the sake of later convenience (cf. Lemma
4.2), it will be defined as a Hom(FAF, F>valued function such that C(/?),

, belongs to the chosen complement C(p) to 6'Hom(F, Q).

Let V and W be finite dimensional vector spaces and let Q be a subspace
ofHom(F, PF).

Denote by ^(1) the set of all TeHom(F5 ^) which satisfy T(u)v=T(v)u
for all w, veF. i?(1) Is called the first prolongation of Q.

The first prolongation of the space ^-^cHon^F, jff(*~2))5 k>2, is called
the /c-th prolongation of ^ and is denoted by ^(A>).

Let £F be a foliation of codimension g and let P be any (G, £F)-subbundle of
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the normal frame bundle of 3r. We denote by 3 the Lie algebra of G and by
V a g-dimensional real vector space. We choose a complement C to dHom(F3

^)inHom(FAF9 F).

Lemma 3.1. For any p^P, there exists a normally horizontal subspace

Hp atp with Cffp^C.

Proof. Let Hp be any normally horizontal subspace at p. Then we
have a unique decomposition CB'P=C+dS where CeC and d&edHom(F3 S).

For X'^H'p, we set u=&p(X') and Jir=^r/~5(w)?. Then ff^ = {Ar(=Ar/-
S(u)f); X'^H'p} is a transversally horizontal subspace at p. Clearly we have
p(X'-X)=p(S(u)f) and as is stated before, we get C0f

p-CHp=dS. There-
fore Cffp=C which proves Lemma 3.1.

Let Gr2-(Hom(FAF3 F)) be the Grassmann manifold of /-planes in the
vector space Hom(FAF9 F). We set f=dimHom(KAF, F)-dimdHom(F3

3). Denote also by C a smooth map of a (G, 20-subbundle P to 6r2-(Hom(F
A F3 F)) such that each image C(p) of p&P is a complement to dHom(F3 <?)
inHom(FAF3 F).

Let Hp be a normally horizontal subspace at p^P with Cffp^C(p). Then
by (2.3), C#, is independent of a choice of Hp and depends only on p^P.

Therefore we can set C(p)=Cffp, C3p^C(p).

Definitioe $A, This Hom(F A F5 F)-valued function C is called the struc-
ture function with respect to C of a (G, £F)-subbundle P of the normal frame
bundle of 3.

A normally horizontal subspace Hp at p^P defines a linear isomorphism

of F+£ with Qp=Tp(P)fSpby V^v-*pa>?(v)^Qp and £=zA-+p(Af)<=Qp

where o)Jl is the isomorphism of F with a representative Hp of J?^ and this
definition is independent of a choice of Hp.

Let Hp and J5J be two normally horizontal subspaces at p&P with Cff*,
CB2

p^C(p) and let ^ and ?72 be the corresponding isomorphisms of V+S
with TP(P)JEP. Then for 5e5(1) if we define rsEEHom(F+£? F+^) by
TS(A)=A for ^e^ and rs(v)=v+S'(v) for v<EF3 we get 7j1=^oTs.

We set G(1) = {rs; Se5(1)}. Then G(1) is a Lie subgroup of GL(V+Q).

Denote by P(^ the set of isomorphisms 97 of V-\-Q with g^ defined by normally
horizontal subspaces Hp with Cffp^C(p),

Lemma 302e P^ is a G(l}~subbundle of the normal frame bundle of £?.
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Proof. The foliation 3? gives rise to a collection {V^f^^A where
is an open covering of P and/^: V&>-^Rq is a submersion being constant along

the connected components of any leaf of £? in Va. Let *WP be the set of nor-
mally horizontal subspaces at p<=P and set (W=\JCW1). Then (JV,P,X) is

j>eP

a fibred manifold where /I is the projection of ^ onto P. Then for each Va

we may assume that there exists a cross-section 9^ of Va to S^. We set Hp
=<P&(p) f°r J^P*- Then we have a unique decomposition C0p

:=Cp+dSp

where Cp^C(p) and dS^edHomfT, 5). As was proved in Lemma 3.1, if
we set H'p=iX'', X'=X-Sp(u)f, X^Hpy o)p(X)=u}9 then Cnf

p=Cp. Set-
ting 9*(p)=Rp, 9® is a cross-section of F^ to <W with CV^e £(/?). This

map £>^ gives rise to a cross-section on Va of the normal frame bundle F(Q)

of 3* such that the image is contained in Pfi. This shows that P^ is a G(1)-

subbundleofF(0.

Definition 3e20 P^ is called the first prolongation of a (G, £F)-subbundle
P.

The group G(1) is also called the first prolongation of G. It is clear that
the Lie algebra of G(1) is Q(l\

Remark 3.1. Let f? be a foliation on M of codimension q and let P be
a (G3 £F)-subbundle of F(Q). Assume that G(1) consists of only the unit ele-

ment. Then P^} is clearly a (G(1)
3 3>subbundle. Therefore the lift 3" of £F

is lifted to a foliation 2r(1) on P^}. Later we will discuss the possibility of

lifting £F to a foliation 2r(1) on P^} more generally (Theorem 4.4).

4. In the beginning of this section, we will explain the natural paral-
lelism along the leaves of a foliation due to R. Hermann [3].

Let 9" be a foliation of codimension q on M given by a collection {£/rt,
/*}*e4 where {i/tf}-e^ is an open covering of M and/^: U&->Rq is a submer-
sion such that fj(x)=<pvp(x)o fp(x) for j ve^nf /p where <p^(x) is a local
diffeomorphism of Rq,

Let L be a leaf of 3 and let r- [0, 1]->L be a curve. Then there exists

a parallel translation of vectors vegYCo) along r, [0, l]3?->v(/)e2v(/)j such
that

(1) v(0)=v,

(2) for ij and r2 sufficiently near such that r(0> ^i<^<^2 ? lies in a con-

nected component of LfW* for some ae^, we have /^(f)(v(r))=/^(f.)0
;(^))
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where f^^ is the linear isomorphism of T^t)(M)/E^t) onto Tf^^(Rq) in-
duced from /rt.

It is easy to see that v(l) obtained by this way depends only on r and v.
The mapping v->v(l) is denoted by fcy. This parallel translation of normal
vectors to £? along curves lying in a leaf of £F is called the natural parallelism

along the leaves. It is known that two homotopic curves r\ and r2
 with the

same end points satisfy k^=k^2. This natural parallelism is also defined for
normal frames (vl5 • • - , vq)€=F(Q). The set of all k^ for all loops based at x^L

forms a group which is called the holonomy group of the leaf L. It is clear
that for any x and y^L, the holonomy groups are isomorphic to each other.

Let P be a (G, £?)-subbundle and let L be a leaf of £?. For any curve f :

[0, 1]->L9 we set r=x°?- Then r is a curve of [0, 1] to the leaf L=n(L)
of 9".

Since n maps any leaf of SF to a leaf of £F, n induces the projection ft*

of Q = T(P)/E onto Q = T(M)/E. For any normal vector X (resp. X) to SF
at f(0) (resp. to £F at r(0)), denote by f(t)X (resp. r(O^) tne normal vector
obtained by the parallel translation of X along f (resp. X along r}-

Lemma 4.1.

By taking a finite covering of the curve f , it is sufficient to prove

this equality in the case that f is contained in some U#ff where {£/*<„ f^} aeA.aec

is the cocycle of 3 given in Lemma 1.1. Then for p =(x9 a • g) e £7*0.= C/^ x a • F,

A<r(^ ^'^^AWj £)• We have then *4s0(/^(o)"loA^(o)=(A-ya))"lo/^(o)0^*-
This implies that ft*(f(t')X)=r(t)ft*X for any normal vector X at f(0). The
proof is completede

Let P be a (G9 ̂ Fj-subbundle and let Hp be a normally horizontal sub-

space at p^P. Hp is considered as a subspace of the fiber Qp over p of the

normal bundle Q of S* on P. Let L be the leaf through p and let f: [0, 1]-»Z,
be any curve with f(0)=p9 f(l)=p't Choose a basis -faO?), • • • , vm(/?)} of Hp

and denote by vf-(/?') the normal vector at /?' obtained by the parallel transla-

tion of Vi(p) along f. The subspace J^/Cg^/ generated by {v '̂), •••,vw(/?/)}
is then a normally horizontal subspace at/?'. It is clear that Hpf is independent
of a choice of a basis of 5^. Therefore we can say that Hp/ is obtained by
the parallel translation of Hp along f and so we can also say that CSpf is ob-
tained by the parallel translation of CQP along the curve f.

Lemma 402e Let P be a (G, 3)-subbundle. Then there exists a map C
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of P to Grz-(Hoin(F /\V, V)) satisfying the following conditions:

(1) £(p)©0Hom(K, £)=Hom(FAF, V).
(2) The structure function C with respect to C is invariant under the natural

parallelism along the leaves of 3.

Proof. Let_p£:P and let U be a neighbourhood of n(p) such that n~\U)

= UxG. We&tJCp=iHpG&p;Hpc:T*(p)(U)xiQ}}. Then JCP Is Independ-

ent of a choice of a local triviality of n"\U). Let L be the leaf of 3 through
p and let f be any curve in L connecting p with pf and denote by Hpf be the
normally horizontal subspace at p' obtained by the parallel translation of
Hp, Hp^JCp, along f. Let v be any vector in Hp and denote by v'^Hp, the
normal vector at p' obtained by the parallel translation of v along f. By the

parallel translation of v along the leaves of £?, the property of the vertical com-
ponent of v being zero is invariant. Therefore the vertical component of v'
is also zero and so there exists a repersentative Hp> of Hpf such that Hp'd
TP'(U') X {0} where U' is a neighbourhood of *(/?') with n-\U') = U' x G. Thus
the family {JCP} p(=P is invariant under the parallel translation along the leaves

of 3.

If Hp and H'P^JCP, then Hp-H
f
pc:T«(p}(U)x {0}. On the other hand

p(X-X')=p(S(uyf} where *€=#„ JT€=#; with o(X)=G>(X')=u. Therefoie
S (=SHpff'p)=Q and we have CJBP=CB/

P. Thus Cffp is independent of the
choice of Hp<=JCp and the family {Cffp}p&p,HpGJCp is invariant under the

natural parallelism along the leaves of £F.

We can choose a map 6?: P->Cjrf.(Hom(KA^9 I7)) such that C(p)^Cffp,
Hp^J{py for any /?eP and such that £(>)©dHom(F9 ^)-=Hom(FA F3 F).
Then the structure function C with respect to C is given by C(p)=Cffp, Hp^
JCP, and this map C satisfies (1) and (2). This completes the proof.

.1. A (G, SO-subbundle P Is called a <G3 3>subbundle if
P is invariant under the natural parallelism along the leaves of 3f.

Remark 4.1. If P is the associated transverse G-structure of a G-foliation
3 in the sense of L. Conlon [1], then P i s a <G3 S

r>-subbundle.

. 430 Let P be a <G5 3y-subbundle. Then there exists a map

C'. P->Gr,(Hom(FA V, ¥)) such thai Pg> is a <G(1)
5 3^-subbundle.

Proof. Let C be a map obtained in Lemma 4.2 and let ^V ^
be a local cross-section which gives rise to a Uivialily of (7r(1))~1(^) and such
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that we have a submersion f&: V^R9 associated to £?. Since VJ3 has a man-

If old structure, there exists also a cross-section s& of VJ3^>V#. We set ^
^^a0^- Since any point in P^} Is Identified with a normally horizontal

subspace., we can write i^/
(&(p/)=ffp where p=sc&(p/) and Cffp^C(p). Let L

be the leaf through /?„ Then for any p In Zfl F^, by the parallel translation
of Hp along any curve In L fl F^ connecting /? and p, we have a unique normally
horizontal subspace Hp with Cffp^C(p) because there is a submersion f&\ V&

->Rq. By this way we get a new cross-section ^ of F^-^P^p.

Let (Ftf, ^J and (F^ ^^) be two such pairs and assume that F^fl Fp=t=0.
For any point ^eF^fl Fp, we can set ^t&(p)=Hp and -fip(p)=Hfp with C^*9

C#ge£(/0- Then we have a unique S,=S#;#5eHom(F, £) with 9^=0.
Let p be any point in F^ fl F3 n £. We shall show that Sj Is independent

of p on each component of V& n F^ fl .£.
Let X*^H*P and X^Hl such that o>(Ar*)=o)(^)=w. Then we have

p(X*)=p(X*+Sp(u)f). Let pCF05) (resp. p(7^)) be the vector In &} (resp. J5|)
obtained by the parallel translation of p(X*)efilp (resp. ^(J5Tp)eJ5f) along a

curve f: [0, 1] -> F^n V^L We shall prove that P(Y*)=p(Y*+Sp(ujy).
^c

Then since p(Sp(u)f) is translated to P(Sp(u)p) by the parallel translation

along f and so p(F£B)-p(F^+^)|)9 we get Sf(u$ = Sp(ujy and so 5j=5^
for any p and /? In the same component of V^ n F^ n i.

Since dim2r=dim2r
? there exists a neighbourhood U of x=n(p) such

that, by the projection 7r: P->M, any component of t/n^ is diffeomorphic to
some component of UnL where U=x~1(U). We may assume that Ul^V^
0 Fp. Let ^ be any point In the component of UnL containing p and set

x=7c(p). Let r be a curve of [0, !]->£/ fl£ with r(0)=x and r(l)=^ and
let f : [0, 1]-*F(0 be the curve with f(0)=/? obtained by the parallel transla-
tion of p along r- Since P is Invariant under the natural parallelism along
the leaves of £?5 f : [0, 1]— >jLdjP, Since f is continuous and r • [0, !]-> C/fl A
we get f : [0, !]-> UftL- Therefore we have f(l)=p. This means that any
p in the component of U[\L containing^? is obtained by the parallel translation
of/? along some curve r In U n I/.

If we set/7=(vj, '"9 v?) and p=(vl9 ••• , vff), then v;- is the normal vector to
£F obtained by the parallel translation of Vj along r- The vector

Q q
(resp. ^#£(7*)) is expressed as a linear combination S^-v, (resp. S^-v,.

1=1 1=1
By Lemma 4.1, ^^(F05) is obtained by the parallel translation of

along the curve r-
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<7

On the other hand, the normal vector 2 civi is obtained by the parallel
q J~l 9

translation of the normal vector ^civi along r- Therefore we get S£,-?,• =
q i = 1 i==1

Scf-v(-, that is, ci=ci (i=l, °-°, q). Then by choosing a canonical basis {e^ • • • ,

eq} of Y, o>(X«)=p-1p7u*(X")=p-17u*p(X«)=p-\^civi)=^

Furthermore since G>(^)=a>(A'*), we have ^
1 = 1

Since p(Y^) is obtained by the parallel translation of p(X^) along ?, again by
Lemma 4.1 fc^.p(Y^) is obtained by the parallel translation of n*p(X^) along

r. Therefore we get £#£(7*) =2^,.. This implies that (o(Y^=o)(Ya)=u
1=1

and we get P(r-)=p(7'l+Sy(ii)*), 5f =Sfl«fl§.
The correspondence p-*Sp is constant on each component of F* fl Pp fl £.

Since the transition function for (F^ ^ J and (Kp, ̂ ) is given by

/

and is constant on each component of V^VpftL, P(^ is a (G(1)
3 ^-sub-

bundle and so £? is naturally lifted to a foliation £?(1) on P^} by Lemma 1.1.
Furthermore P^} is invariant under the natural parallelism along the

leaves of 3> because C is chosen so as to satisfy the conditions in Lemma 4.2.

Therefore Pfi is a <G(1)
3 3>-subbundle and the proof is completed.

Definition 4e2. The foliation £F(1) is called the first prolongation of £?„

4.40 Let P be a <(G, Sty-subbundle. Then we have a sequence
of foliated manifolds {(P(k\ S^)}k>Q satisfying the following conditions:

(1) P<n=Pand9«»=3.

(2) pw is a <fl(k\3(k-vy-subbundle on P(k'1^ for k>\ and P™ is the

first prolongation of P(k~l\

(3) £FW is the first prolongation of£F(k~v for k>l.

4.3. (P(h\ 3^) is called the fc-th prolongation of (P, 3"). The
basic form on P(*} is denoted by a/*5.

5. For a foliation fff of codimension ^ on Mf- (f=l, 2), assume that there
exists an isomorphism 0 of 2^ with 32. Then 0 induces the bundle isomor-
phism 0' (resp. 0) of the normal bundle Q1 of 3l with the normal bundle
Q2 of ff2 (resp. of the normal frame bundle F(Q^ of 3l with the normal frame



188 KAZUSHIGE UENO

bundle F(Q2) of 32). Let G be a closed subgroup of GL(q, K).

el. A (G, £?!)-subbundle Px on Mx Is said to be Isomorphic to
a (G, £?2)-subbundle P2 on M2 If there exists a foliation Isomorphism 0 of
£?i to £F2 with $(P1)=P2. <£ Is called an isomorphism of Px to P2. In par-
ticular9 if M1=M2 and 3'1=32y 0 is called an automorphism.

Lemma 50L Let PI be a (G, 3 ^-subbundle on Mi9 i=l9 2, and let o}i be
basic forms of P{. Assume that G is connected. If $ is a foliation isomor-

phism of 3?! on P1 with EE2 on P2 such that <p^a)2=ao}1for some a^G, then there

exists a foliation isomorphism <p ofSl with 3*2 such that <p\Pi=<p0Ra.

Proof. Let zt be a vertical curve in P]? that is, a transversal curve with
Q)i(zt) = ®- By the assumption that <p*o)2 = aa)1 and $ Is aa isomorphism

of £?! with £?2, we know that <p(zt) is also a transverse vertical curve
in P2. Therefore $ is fiber-preserving and induces a dirTeomorphism <p of
M1 with M2. Then it is clear that 9 is an Isomorphism of 2^ with £F2. Now
we shall prove that ^\Pl=^oRa. If we set F(Q1)^P3=^~l(P2)y then P3 is
a (G9 S'^-subbundle. J— <p~lo(p is a fiber-preserving map of Px to P3 and
since 9 Is a bundle isomorphism of F(Q1) to F(Q2), we have 9*o52— -Wj where
o>?- is the basic form of F(Qj). Since the basic form o>,- on P,- is the restriction
of <SZ- to Pi (z = l, 2, 3) where 633=a>l5 we get 9"1*cy3=(y2. Thus we get J*o)3

=aa)1. Furthermore / induces the identity transformation on Mv Therefore

we have z^p^(Z)=^(Z)=a-l^MZ))=a-\J(^^^^
P^^{Z) for any z^P1 and any ZeT/P^. This proves J(z)=za"1

9 that is3

9 1 Pi=$QRtt' This completes the proof.

Lemma 5.2. Let Pi be a <G? 3^-subbundle on Mi (/=!, 2). //"^ w a/7
isomorphism of the foliation 3?P on Pi1} with the foliation £F(

2
1} ow P2

15 5t<c/z

^/7a^ -fr*a)(
2^=Q)(i\ then there exists an isomorphism 0 of the foliation EF1 with the

foliation 32 such that ^o}2=o)1 and $ \ P{^=^.

Proof. By Lemma 5.1, we know that ^ induces an isomorphism 0

off?! with £?2 such that $\PP = T/r. We have only to see that <f>*Q)2 = o)l.
But this relation Is obtained from the relation ^*cy^)=cy(

1
1) because, for

Ze7X^1}) if we set p=nP(p),Xp+Af=(nP)*Z and v=<oi(Xp\ then a#\Z)
=p-lPi(nV\Z=p-lpi(Xp+Af)=p-1^^^ This com-
pletes the proof.

5o3e Let Pi be a <G3 3^-subbundle on M{ (/=!, 2) a«rf fer
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k be any positive integer. Then there exists an isomorphism i/r of the foliation

3?> on Pi*} with the foliation 3?} on P(P such that ^*cJ^=a^ if and only
if there exists an isomorphism <t> of the <G5 3^-subbundle Pl on M1 with the
<G, 3^-subbundle P2 on M2.

This proposition is an Immediate consequence of the construction of
and Lemma 5.2.

828 Let £F be a foliation of codimenslon q on M and E the
tangent bundle to £?. If there exists 1-forms o>l5 ° ° ° 3 ce>? on M satisfying the
following conditions (1) and (2), then the pair (£?, G>) Is called a generalized
Lie foliation where o)=(a)l9 • • - , cys):

(1) E 3 X if and only If o>(jr) -0.
(2) do)i=^cijko)j/\o)k where c^ Is a function on M". In particular

If all cijk are constants, (2% o>) is called a Lie foliation.

DefiraftloE 5.3. Let 2r be a foliation of codimenslon q on M. If there
exists an <( {e} 9 £F^>-subbundle P where e is the unit element of GL(q, R)9 then
the pair (2% P) is called an {e} -foliation.

Proposition 5040 There exists a natural one to one correspondence between
generalized Lie foliations on M and {e} -foliations on M.

Proof. Given a generalized Lie foliation (2% o>) on M, the tangent vectors
Y1

X9 • • - , Yq
x at x^M can be chosen so as to satisfy o)i(Y{)=dij (i9j=\9 - - - 5 q).

YJ
X Is determined up to the vectors belonging to Ex and so uniquely determined

as a normal vector YJ
X^QX = T(M)X/EX. Then for any xf=M there exists a

neighbourhood C7 of x such that there are vector fields F1, ••• , F3 on U satis-
fying 5>(y^') = y/ where 3? is the canonical pi ejection of T(M) onto Q0

Let LYi (resp. ^i) denote the Lie differentiation (resp. Interior product)
with respect to Y*. Then

= 2] (Cjk
k<h

where r/A, 1°. a constant. Therefore for any local cross-section X of
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= [Lyi, cx]o)j

-0

and this implies that [Y1
9 X] is also a local cross-section of E. Then F1, •-•, Yq

are invariant under the natural parallelism along the leaves of 2, This shows

that if we set P={(Y1
X9 — , Yq

x); x<=M}5 the pair (£?, P) gives an {<?} -foliation
on M.

Conversely given an {e} -foliation (£?, P) on M. Then there are given

vector fields 71, — , 7* on M such that (5>(Ti), — , 5>(7J))eP for any *eM.

These vector fields satisfy the property that, for any local cross-section X of

E, the blacket [Y\ X} is also a local cross-section of E, /=!, •••, #. Define
1-forms G)', • • - , coq on M by

Then since cyl3 • • - , o>g define a foliation 2% the system ^ = {<y,-; /=!, ••- , g}

is a completely integrable differential system. Therefore we have locally

(5.1) do>i = S cf-y*Q)-AQ>*+ S 5f-A/o)A A©/,-
y<* A,/

wheie o>/f. is a local 1-form. Let X be any cross-section of E. Then because

[F;
9 X] is a local cross-section of E9 we have

,̂(F^ X ) = Y ' u i m '

On the other hand by (5.1) we have

dvW, x) = 2

and since X is any local cross-section of E we get £,-y/=0. Thus we obtain

the relation

y<*
and so by setting ty=(eal9 • • • , c«>9) (£F5 o>) is a generalized Lie foliation on M.

This completes the proof of Proposition 5.4,

5«,4o A <(j? 2^-subbundle P on M is said to be of finite type

if the following statement (S) holds:
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(S) We set G>=G><°> and 3=3^. Then there exists an Integer k>Q
such that the pair (3(k\ o)^) is a generalized Lie foliation where (P(k\ EFW)

is the fc-th prolongation of (P9 £F) and <a(*> Is the basic form on P(A).
The minimum Integer such that G(K* = {e} Is called the order of P.

§2o Differential <of EnciideaiE Type

6. Denote by En the Euclidean space of dimension n I.e. the real number
space Rn of dimension n with the canonical Inner product

Let J*(RM, En) be the space of fc-jets of local maps of Rm to En and each
element ofJk(Rm,En) Is denoted by jk

x(f) where ̂ eJR* and /Is a map of a neigh-
bourhood of x to jEK, Then /*(#*, En) admits the canonical product struc-
ture RmxRnxRn^X — x^BW where n(l)=dimJl(Rm, En)-dimJl'\Rm

9 En)
(!</<£). Denote by {xl9 -"9xm} (resp, {wl3 •••,«„}) the canonical coordi-
nate system on jRm (resp. En) and set

Then {^}1...;-/; l<i<n, l<j\< "°° <jt<m} Is the coordinate system on jRw(/).
Denote by P(^3 £B) the set of fc-jets of local maps of Rm to E'2 of maxi-

mal rank i.e. fc-jets of local immersions If m<n and /c-jets of local submersions
If in >n. Then it Is clear that J*(Rm,E*) Is open and dense In Jk(Rm,En).

>.lo A subset S of Jk(Rm
9 En) Is called a differential equation

If, for any point p^S, there exist a neighbourhood U and functions /13 -a°9frp

on £7 such that £n U={p'^U; /&') = — =frp(p')=Q}. Any local map s:

is called a solution of 8 if {jjf»;

Let r be a pseudogroup on ^n and for any tfeJ1 and jk
x(f)^Jk(Rm

5 En)

we set $(®(jx(rj)=jx(<f>°f) If the composite 0o/ Is defined on a neighbourhood
of x. Thus P can be regarded as a pseudogroup on Jk(Rm

9 En) which Is de-
noted by r<*>. Note that 7*(UW, EM) Is preserved by the action

o2o A function F defined on a neighbourhood ^ of 7 J
£") Is called a r-differential Invariant If 0<*>*F=F for any 0(A

where r^ | <U* Is the restriction of F^> to ^U*.

Denote by S the pseudogroup of local Isometries of En and consider the

function ^-SG?!)2 (resp. P2-l](Mi)2) on J\R"\ En) (resp0 J*(Rm, f?)).
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Then it is clear that pl and p2
 are ^-differential invariants.

Let SiClJk(Rm
5 En) be a differential equation and denote by <S(5f-) the set

of solutions of £i (z = l, 2). For any open subset VdE*1, we set S(S1)\
CU =

); s is a map into ^U}.

o3o A local transformation <p : CU->^I/' of En is called a local
isomorphism of Sl to S2 if <p(<S(Gd \ C0)=<S(62) \

 cl;. In particular in the case
81=62=6, a local isomorphism is called a local automorphism and the pseudo-
group generated by all local automorphisms of 6 is called the automorphism
pseudogroup of 6 and is denoted by <Jl(6).

1. Let / be a map of Rm to En and set /K(X) ̂ iO"i(/)) and If
2(x) =

P2(jl(f)). Furthermore we define the vector-valued functions a{ and a{ by

a{(x)=(p\(jl(f)\ •»,/>?(

Proposition 7.1. Consider the differential equation £dJk(Rm, En) (m} n>2)
given on a neighbourhood ^U* ofjk

XQ(f) by ^-differential invariants Fl9-",Fr such

that <?n17* = {^eeU*; F1(/?) = -=/?f
r(/i)=0} wferc F^^-tf ourf F2=p2

—/1 2 a«£/ suppose that, if we restrict f to a neighbourhood of x0, it is contained

in <S(6). Furthermore suppose that ^{(x0)4=0, ^{(^o)1^^? a{(x^)^Faa{(x^ for
any ot^R and the map /t f =(%{, 2f

2) is a submersion on a neighbourhood U of XQ

to R2, Then if f and 6 are analytic, we have <Jl(£)=$> on a neighbourhood of

/(*«).

Proof. Consider the linear orthogonal transformation group O(n) on
Rn and define the action of O(ri) on the product space RH xRn by o(a, b)=(aa,

ab) where a^Ofyi) and (a, b)^RnxRn, Let O(n\a^ (resp. O(n)a) denote
the isotropy group of O(ri) at (a, b)^RnxRn (resp. at a^Rn). Then O(n)(a^
=O(n)anO(n)b and if a ̂ 0, 6 4=0 and a=f=«6 for any «eJ?5 we have dimO(/7)
— dim0(/i)(M)=2rt— 3. Therefore if we set M(a3 6) — Ha, 6); a<=O(n}}, then
M(a, 5) is a (2/2— 3)-dimensional submanifold of J^w xRn. Let ^j (resp. ?r2) be
the projection of Rn xRn to the 1-st component (resp. 2-nd component). Then
it is clear that ^(Mfa b))=S"a-

1 and n2(M(a, b))=S1fa1 where 5T1 is the (/z — 1)-
sphere of the radius r.

Since ^{(x0)^0, /l{(x0)4=0 and a{(jc0) =t= aa{(^0) for any a^R, we may
assume that we have A{(x)=£Q9 /l{(x)=l=0 and a{(̂ :) =t= aoz(x) for any «eJ?
and any x^U, a neighbourhood of x0. Then M(a{(x), af

2(xj) is a (2^—3)-
dimensional submanifold of $*xRn. Denote by n the map of RnxRH to
J^2 defined by 7u(a, b)=(\a\\ \b\2)^R2. Then x(M(a{ (x\ a{(x))) = ( \ a{(x) \ \
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|a{(X)|2). On the other hand if we denote by af the map
af

2(xJ)^RnxRn, then %f=noaf and since Xf is a submersion, the image of af

contains a 2-dimensional submanifold N(xo)dRnxRn through af(xQ) such
that TU | N(x0) is a diffeomorphism of N(x0) onto a neighbourhood V(xQ) of ^/(x0)0

This shows that n~~\V(xJi)n {\JM(af(x))} contains a (2/z — l)-dimensional Sub-
set

manifold JJ of £" xtf1 through af(xQ).
Now for any local transformation 0 of £n

3 we have

where <f>i(u)=Uj(<£>) and since

we have

=i duhdut dxl dxl

Let CV be a neighbourhood of j*Xo(f)GJ*(Ra,Ett) and set
ij?(s); s: cU-^En belongs to (5(5), x^V} n^V. Then if 0eE^Z(£), we have

(7.1) S S
dui dxl dxl

= S on S(S,

2

The jet space Jk(Rm, En) (k>2) admits the product structure R2nxRq~2" where
q=dimJk(Rm,En), R2" is the space with the coordinate system {p\, ••• , /?! ,
/>!!, "9, M'i} and J?9"2" is the space with the coordinate system {xl9 • • - , ̂ cm,
MJ, • • - , wn, •••,Jpy1.../ /, •••} (^...y^pi^ii). Let 2J be the projection of R2u X
Rq~2n onto ^2\ Then because £(£)3/and Jl(S)^O(n)9 £>($(€, Cl?*)) contains
jyn 0 where 0 is a neighbourhood of af(x0)^P?n.

Since Wi(M(a/(jf)))=S'Jf-;(jc)| and n2(M(af(x)))=Stt^(x^, it is easy to know

that dim ̂ (//fl 0)=dim n2(Hf\O)=n. Therefore we may suppose that 2n — l
functions pi, •••, p", p\i, •••, pnn are independent on H fl 0- Then p\ is written
by pl=A(pl, •••, p", pli, • • - , Xn) where ^4 is an analytic function with 2n — \
variables.

Denote by A=c+^A" the Taylor's expansion of A at (pl(jL(f)), - 0 0 ,
r l̂

Pl(jlQ(f)\ P\i(jlQ(f}\ ••%MziO'f-0(/)))^^2""1 where c is the constant term and
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Ar is the sum of the terms of degree r.
Firstly suppose that c=f=0. Then (7.1) is written by

(7.2)

on

where O is a sufficiently small neighbourhood of af(xQ)^R2n and B is a poly-
nomial with respect to p{ (i^pl) and pd which contains neither the constant
term nor the terms of linear combinations with respect to (pi)2, • o o , (pi)2*

Since the relation (7.2) holds identically on H f t O , we get

•**!&= 0 (A = !,...,„).
dl/^Hj

Therefore in this case (7.1) is reduced to the relation

(7.3)

Then we get

8 <f>f(u) r\ si i ^ \1-±-+ = 0 (h, 1 = 2, • • • , n) ,

v * / « , / ^ » / \ / ^ i / ' \

«=i du« dup

This shows that 0 is a local isometry of En, that is,

Secondly we suppose that c=Q. In this case the term S i—PiPi
*.! = ! ^MA^W/

in (7.1) is written by

and it does not contain terms of degree 1 with respect to the variables {pi,

— , pi, pli, — , /?n}. Therefore from (7.1) we get

This shows that 0 is a local isometry of En.
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In any case we obtain JlfficiS*. Since the relation 9?C.Jl(G) clearly
holds, the proof of Proposition 7.1 is thereby completed.

§3e Conformally Foliated Structures of Differential Equations
of Euclidean Type

8. Let ak (resp ftk) be the map of J\Rm, En) to Rm (resp. E*) defined by

«*0'J(/))=* (resp. A/J(/)) =/(*)) and set Jk
xz(R"\ En) = {p^Jk(Rm, En); a\p)

=x, Pk(p)=z}. Then Jk
xz(R

m, En) is dirfeomorphic to the product space Rn(1)

X ... xRn(k) and so admits the canonical Euclidean structure. In the following
we fix the points x0GRm and z0e£n and denote the space JXQZQ(Rm, En) simply

by /*(£").
Let G be the transformation group of isometries of En. Then it is known

that G30 if and only if

where 0,-(w) = w,-(0), (afV(0)) e O(/i) and Jf.(0)eJR. Denote by <P the pseudo-
group on E11 generated by G and by © the sheaf of vector fields which generate
local 1-parameter groups of local transformations contained in £P. For any
local transformation 9 of En with 9(z0)— z0, <p(k^ induces a local transformation
on Jk(En). Thus the isotropy £P?0 of .£P at z0 induces a pseudogroup 5>^A) on
/*(£*) and the isotropy 6>°o of the stalk 02() at z0 induces a sheaf S§> on /*(£"").

For p(=Jk(En), we denote by 0^ the stalk of B<g zip and by @g'° the
isotropy of &%],. Then 0^/^^f° is considered as a subspace of the tangent
space T(J\En))p of /*(£*) at p and we obtain the correspondence D(k} : /*(£*)
ap-+Dy>=e<&ieltl.'c: T(J\En))p.

Let /* denote the set of points p^J\En) such that dimD(k) is constant on
a neighbourhood of /?. Then Jk is open and dense in Jk(En). Denote by
Jr the union of connected components of Jk on which dimZ>(^)=r. Then

induces a foliation f?* on J^.

Before stating Theorem 8.1, we give here the definition of a Riemannian

foliation on a manifold M.

Definition 8.1. Let £F be a foliation of codimension q on M. EF is called
a Riemannian foliation if it admits a following transversally Riemannian struc-

ture
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where
i ) {U#} is an open covering of M,
ii) fa,: L/aj->jR^ is a submersion,
iii) goj is a Riemannian metric on Rq

a,

iv) /.=r^o/p on t/.H J7P where rrf: (*i, gJ-"(*S, ft)
are local isometrics.

Now consider a differential equation £c.Jk(Rm, En) and set

*o)=*a} and Sj(£)=i

Theorem 8.1. Assume that JL(£)=&. If Sk
r(8) is a regular submanifold

of J*, then D(k) induces a Riemannian foliation *3k
r(8) on Sk

r(S) such that each

leaf of ^(6) is an orbit of D(k\

The proof of this theorem will be given in the subsequent sections.

9. For a function <p on a neighbourhood V of jk
X

Jk(Rm, En); ak(p)=xQ}, we can define the function && by

Then 6>^ is defined on a neighbourhood cU*+1-(7rf+1)-1(cU*) of j10
+1(/)^

Jk
x*\En) where nk

l(k>l) is the canonical projection of /J0(£
K) onto /i0(£").

Let 0 be a local transformation on £M such that 0W maps an open subset
<U* c /^(E*) onto another open subset q^*. Then 0(^+1) maps cUk+1 =
(fck

k
+1)'\Vk) onto c^^i_(^|+i)-i(q;^. Let F be a function defined on cVk.

Lemma 9.1. d}(<t>w*F)=&k+v*(d*jF) on <UM for k>Q.

Proof. We have

Then
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S

= 2 /»

Any local vector field X on En is naturally lifted to a local vector field
on JxQ(En) via the lift of the local 1 -parameter group of local transforma-

tions generated by X. Then as the infinitesimal version of Lemma 9.1 we

Lemma 9,2. Let X be a local vector field on Jk
XQ(En). Then there exists a

local cross-section X of B with X=X(k) if and only if

S

where (a,^-) /51 an^y skew-symmetric matrix and pf is any constant.

Proof. It is known that Z is a local cross-section of 9 if and only if X
is of the form
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where (<a .̂) is any skew-symmetric matrix and ps is any constant. Then we

have only to show that

If we set X<-v=0 and X^=X, we have Xw=X^k'^+Yw for k>\ where

s S ^45- ... it—: . Let us show that

Since

we have

. *j 3 * .

Then by Lemma 9.1

and since

we get

Ai=^aiiPl i.e.
y

So assume that

yc-i) = £
^lA,-,;

Then

l .

= 2 «yH.™.>, '

Since
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and

we get

Thus we obtain

y«> = ± ± <£ a PJ
«-i y,.-.y,-i y-i »

This proves that

= 2 «„(«,-£-+ 23^-
«'.J = i 0WZ- 4=1 #/?

?« . i3

and the proof of Lemma 9.2 is thereby completed.

10. We have seen that the involutive distribution D(k) is induced from

the sheaf 9 of germs of Killing vector fields on En on the submanifold /J of

Jk. The foliation given by the orbits of Dw on Jk
r has been denoted by £?*.

Lemma 10.1. The foliation 3*k
r on Jk

r is Riemannian.

Proof. Let G° be the connected component of the group of isometrics

on En and denote by Q the Lie algebra of G°. Then G° 30 if and only if

where (0f-/0)) ^ 5O(w) and 6f-(0) is any constant and 5 is identified with the

Lie algebra of vector fields X on En of the form

where (a^) is any skew-symmetric /?-matrix and fa is any constant. If we

denote by <2(k) the Lie algebra of vector fields X(k) on Jk
XQ(En) of the form

= 23 *tl{u,-j— "i
/</ SM 9w
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then by Lemma 9.2 Q is canonically isomorphic to <2(k\ Let Q$ be the iso-

tropy algebra of Q at z^En. Then there corresponds to Q^ the Lie sub-

algebra Q^ of Q(k} consisting of vector fields Z(*} on Jk
XQ(En) of the form

This Lie algebra <?S*} is isomorphic to the Lie algebra S(P of vector fields Z(*}

on /*(£") (=Jk
XQZQ(Rm

s En)) of the form

The isotropy group G0 of G° at z0 is naturally lifted to a Lie transformation

group Gf } on J\En) and <?k*> is the Lie algebra of G$\ By Lemma 9.2,

the distribution Dw on Jk
r is just obtained from S^ i.e. for each p^Jk

ry

the space D^ is just the space S$ = {Z(}} (the value at /?); Z^e^} and

the orbit of the component of G(P through p^J* is just the orbit of Dw

through p.

Since Jk(En) admits the canonical Euclidean structure associated with

the natural product structure Rn(l} x ••• xRn(k\ we see that Z(*> is an infinitesi-

mal isometry on Jk(En) with respect to the Euclidean structure and so that

3^ is a Lie subalgebra of the Lie algebra of infinitesimal isometries on Jk(En).

Therefore the component of G^ is a subgroup of the group of isometries

on Jk(En) i.e. acts on j> as a group of isometries. By the theorem of

Reinhart [5], the foliated manifold (/*, £?*) is bundle-like with tespect to the

metric on Jk
r and £FJ is a Riemannian foliation. This completes the proof.

11. Let M' be a regular submanifold of a manifold M and assume that

there exists a Riemannian foliation £? on M.

Lemma 11.1. If M' consists of leaves of 3f, 3? induces a Riemannian folia-

tion on M'.

Proof. Let ̂  be a submersion of a neighbourhood U of p^M to ^
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where q=codim3' and denote by Vv the restriction of ^ to U'=M'nU.

Then fa* is also a submersion of U' to Rq' (q'<q) because M' is a union of

leaves of £F. Since M' is a regular submanifold of M, U/=^/ru^(U/) is also

a regular submanifold of U=tyu(U').

Assume that (U9 ̂ ) and (V, ̂ v) are two local submersions of 3 with

U (1 F4=0 and ^u=Suv°i/tv on ^ fl ^ where g^ is an isometry of i/rv(U fl F")
onto ^(C/n F). Since g^ carries T/v(t/Tl V) onto VvC^Tl f ) and since
^v'(Uf n K') (resp. fa^U' n F')) is a regular submanifold of irv(U n V) (resp.
T/ru(Ur\ V))9 the restriction g#/7/ of g^F to ^F/(£/'n V) is also an isometry.
This shows that £F induces a Riemannian foliation on AP.

By combining Lemma 10.1 with Lemma 11.1, Theorem 8.1 is immediately
obtained.

12. For the sheaf <9 of germs of Killing vector fields on En« denote by
the normalizer of B in the sheaf of germs of all local vector fields on En,

Lemma 12.1. X is a local cross-section of 37(0) if and only if

where aij9 ft. and c are constants and the nxn matrix (a^) is skew-symmetric,

Proof, Y is a local cross-section of 9 if and only if

o

where af-y and ̂ f- are constants and ̂ ij = —^ji- We set X=S ^A(W) - an(i
calculate the blacket [X5 Y]. Then * ^"*

• /=*=«

On the other hand since [Z, 7] is a local cross-section of O9 [X9 Y] is written by

[*, 7] = s (S r^+d^-j- .
» ^« dwf-

Thus we get
/9 A

(12.1) S «,^X«)-S (S "kjUi+ft^

For any skew-symmetric /?x?? matrix (a-j) and any vector (ftl9 •••, ̂ J, the left-
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hand side of (12.1) is always reduced to the form of the right-hand side. This
means that Aj(u) must be of the form

where <*,-/ and TJJ are constants. Then from (12.1), we get

(12.2) S V/i-S <V</ = r,i •
y=t=» y=t=/

In particular, since r«=0, we get

(12.3) 23(«,v^-«^iy)=0 i.e.
./=£'

(12.4) S «„&,+*„) = 0
y<»

from which we get ^i3- = —^ji 0"=N./) because a^. (/</') is any constant.
Furthermore we shall show that ^/f-=^ for any / and / The relation

(12.2) is written by

(12.5) ^,^n-^+^(ai^ji-aj^ij) = Tu

and exchanging the role of i and /, we get

(12.6) %(^-f-^/)+.g7K^-^^//) - Tu •

Since aij = —ajh rij = —rjt and ̂ . = —1^, (12.6) is written by

(12.7) ««(*«--*u)+ S («,v^i-a/i*u) - rw .
;=t=*,/

From (12.5) and (12.7), we get a,-/(^// —<*,•,•)=() 0' =*=/)• Tm's proves that ^=c
for any i because atl (/</) is any constant. This completes the proof of Lem-

ma 12.1.

Denote by C\9?9 r) the set of differential equations £c.Jk(Rm,E*) such
that JL(6)=S and ^(6?) is a regular submanifold of /*.

Theorem 12e2e We can naturally associate to any differential equation

Q^C\&, r) a <CO(q), 3k
r(S)y-subbundle Pr(S) on Sk

r(<S). This correspondence
is compatible with respective isomorphisms in the following sense: If $ is a
local isomorphism of £1 to G2 which is near the identity and satisfies 0(z0)— z05

then 0 induces an isomorphism </)k of the <(CO(^)? 3
k
r(S^y-subbundle Pr(G^ on

Sk
r(<Si) with the <CO(q\ 3^S2)y~subbundle Pr(82) on Sk

r(£2). If codim 3k
r(€)

>3, the (CO(q)5 3k
r(S)y~subbundle Pr(6) is prolonged to a generalized Lie

foliation (3r(8\ o>r(£)) on Mr(S)=(PT(S)}(2^ The correspondence €-*(&,(€),
is also compatible with respective isomorphism where o)r(£) is the basic
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form ofPr(S).

Proof. By Theorem 8.1 D(&) induces a Rieraannian foliation 3k
r(8) on

S*(£). Then there is associated to (Sk
r(8\ 3^(5)) an <O(^)9 £F*(<?)>-subbundle

P'r(S) on Sk
r(6) where #=codim2r*(£). Thus we can associate to 8 the

<CO(q)9 £F*((5)>subbundle P,(S) ^ P'r(S) on Sk
r(g). We shall show that this

structure is an invariant of local isomorphism classes of differential equations
in Ck(S, r) in the sense stated above.

If 0 is a local isomorphism of Si to S2 with 0(z0)=z0? then 0c^?(<?1)0~1=
<-%(<£2) on a neighbourhood of z0. Therefore 0 induces a transformation 0&

on /*(£•") such that ^D(k)=D^ and 0^(5fJ((?1))=
:»S'r((S>

2). This shows that 0fe

is an isomorphism of 3k
r(8-^ to £?J(<?2).

Since ^JL(Si)=<JL(S2)=3:), 0 belongs to the normalizer 37CS5) of £P in the
pseudogroup of all local transformations on £n. We shall prove that 0* is
a conformal foliation isomorphism.

Since </)%@=® and 0 is near the identity, there exists a local cross-section
Z of Jl(O) such that 0f0=0 where 0, is the local 1-parameter group of local
transformations generated by Z. By Lemma 12.1, Z is written by

This shows that 0 is a local transformation of the form

where ag-/? 6,- and c are constants and the n xn matrix (af-y) belongs to SO(n)a

Then

This shows that 0* is a transformation on Jk(En) such that, if we set

we have

where rij=aij-\-cdij. Therefore 0fe is a conformal transformation of the
Euclidean space Jk(En). Since E£k

r(8i) is a Riemannian and so conformal
foliation with respect to the Riemannian metric on Sk

r(Si) induced from the
Euclidean metric on Jk(En), <t>k is a foliation isomorphism as a conformally
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foliated structure.

Now for £e£*(5>, r) with codim 3*(6) > 3, by the 2-nd prolongation

of P,(£) we get a <C0(g)(2)
5 (£F*(5))(1)>subbundle P,(£)(2) on Pr(<?)(1) and

we know that CO(q)(2^ = {e}. Therefore by Proposition 5.4 the foliation

(£F*(£))(2) on Pr(£)(2) is a generalized Lie foliation (3r(G)9 a>r(S)) where EFr(S)

=(3k
r(g))(2> and the 1-form o)r(£) is given by the basic form ©<2) on P,(£)(2).

Since $k is an isomorphism of the <C0(#), £F^(<?1)>subbundle Pr(£i) with
the (CO(q\ £F*(52)>-subbundle Pr(£2)> by Proposition 5.3 $ induces the
isomorphism (0*)(1) of <C0(g)(2), (3"*(50)(1)>subbundle Pr(£,)w to <O%)(2),
(^(<52))

(1)>subbundle Pr(<?2)
(2) i.e. if codim 3"^) :̂ 3, (0*)(2) is an isomorphism

of (SX îX ®r(<Si)) to (3"r(<?2)? ^rC^))- This completes the proof of Theorem
12.2.

13. Let us give an example of a differential equation 8 such that codim

Let £c/2(jr, En) be a differential equation defined by

(13.1) pl = A! and p2 = 12

and with JL(G)=^ where Pl=S^|?tJ, Pa=s(^)2, *i(x)=Pi(jXf)) and

By regarding JC2, ••• , xm as parameters, (13.1) is a system of ordinary differ-
ential equations. Assume that n>3 and p\(p)=^Q for any p^S. Then it is
easy to check that the differential equation Q is defined by

dt

(13.2)

where r = x3. For any w—2 functions u3(t, x2, •-, xw), ••- , w«(r, ^2»
 SB% -^«)» the

differential equation (13.2) admits a solution (u^t, x2, •••, ̂ m)3 t/2(^5 ^23 •••, ^«)).
We shall show that there always exists a solution (ul9 u2) such that u± is not
constant which means that (ul9 u2, -*,, wje<5(<?).

Given any functions u39 • •- , w,, any solution u2 of the differential equation
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is also a solution of the differential equation

Therefore the solution space cS' of (13.3) is contained in the solution space
<S" of the differential equation

dt1 dt dt2 dt 2

Choose any solution u2^<S"\S' and consider the differential equation

03.5)

n /,/-. \2

Then because w2$<S'? ^i(0— S ^^- ) =1=0. Therefore any solution MX of (13.5)
••=2 \ A /

is not constant.
Now the involutive distribution Dw on Jk(En) is generated by the vector

fields

Therefore the dimension r of the orbit of D(k) through a point p^Jk(En) is

at most n(n~l\
2

On the other hand, for any functions u3, "% uw we have a solution (ul9

u2>u& "'9Un) °f <5- Then by considering the (7c— 2)-th prolongation pk~2(S)
of c? and by choosing an open subvariety <?* of pk'\6) such that 6^(£&) is a
regular submanifold of Jk

r, we have the inequality dim Sk
r(8

k) + m + n >

dim/*^"1, £w-2) and by taking an integer k such that dhnJk(Rm
9E

n~2)>f^l^+

m+n+2 we get dim 5'*(<g*)>/t^~1^+2>r+2 i.e. codimS'*(<5*)>2. There-

fore there corresponds to 5& a generalized Lie foliation (3?r(6
k), o>r(8

k)) on
a manifold M(8k) in the sense of Theorem 12.2.
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14. In this section we refer to foliations on a subvariety of a manifold.
These foliations naturally correspond to involutive systems of differential
equations of some regular type.

Let A be a subvariety of a manifold M i.e. a subset of M such thatg for
each point pQ€=A,> there exist a neighbourhood U of pQ in M and smooth func-

tions /!,—,/„ on U satisfying AnU={p(=U; fi(p)= — =/«(>HO}. A sub-
variety ^4 is said to be almost regular if the set A' of points p^A such that
A fl U is a submanifold of M for a neighbourhood U of p is open and dense
in A. Let ^4(d) be the union of d-dimensional connected components of A'.

Then A' is the disjoint union \JA(d).
d

Definition 14.1. A family of connected subsets 9?={L?}peK of ar* almost
regular subvariety A of a manifold is called a foliation on ^4 if the restriction
9?(d) of £F to ^t(d) is a foliation on the manifold >4(W) for each d.

Definition 14.2. Let A and J? be almost regular subvarieties of a mani-
fold and let 3A and 3?B be foliations on A and 5, respectively. A homeomor-
phism 0: A-^B is called an isomorphism of 3A to £FB if it satisfies the following
conditions:

(1) 4>(A(d))=B(d) and the restriction 4>d of 0 to 4(rf) is smooth for
each d.

(2) ^ is an isomorphism of 3A(d) to 3B(d) for each rf.

Now let us consider differential equations in Jk(Rm, En).

Definition 14.3. A differential equation ffdJk(Rm,En) is said to be pseudo-
involutive if, for any p^S, there exists a solution s^S(£) such that jk

x(s) =p.

If <SdJk(Rm, En) is pseudo-involutive, then for each /?0e£, <£ is defined on
a neighbourhood U of p0 in Jk(Rm, En) by smooth functions Fl5 ••-, F^ and, if
U=UnJk(EK)=$=(f>9 Sk(S) is the common zeros on £7 of the smooth functions

/i, "%/* where fi=Ff\U. Therefore 5A((?) is a subvariety of /%T).

Corollary 14.1. Let S be a pseudo-involutive differential equation in

Jk(Rm, En) with JL(G) =3* and set Ar=Sk
r(S\ Then Ar is a subvariety of Jk

r. If
Ar is almost regular, then there is induced a foliation 3r on Ar such that 3r(d)

is a Riemannian foliation on Ar(d) for each r and d.

Proof. Since Sk(£) is a subvariety of J\En) and /* is open in Jk(En\

Sk
r(S)=S\e) n Jr is also a subvariety of /*.

Let rk denote the projection of J\RM
9 En)=RmxE"xRn(1) X
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onto J\En)=Rn™ x — xRn(k> defined by r\x, z, ;?)=/> where (x,

and p<=Rn™x — xJT(*}. For any open subset JC of ^4r=5j(<?), 5j:-
where K=(rkTl(K) is an open subset of G and Sk

r(8K)=K. In particular for
K=Ar(d) we have a pseudo-involutive differential equation <50 being open
in G and satisfying Sr(£0)=Ar(d). Therefore Z)(fe) induces a foliation £Fr(W)
on ;4r(W) of codimension d—r such that any leaf of 3r(d) is an orbit of D(k}.
Thus if we denote by £Fr the family of orbits of D(k) in Ar, 3r is a foliation on
Jr. By Theorem 8.1, 3r(d) is a Riemannian foliation on Ar(d). This com-
pletes the proof of Corollary 14.1.

Corollary 14,2* Let G1 (/=!, 2) &e pseudo-involutive differential equations

in Jk(Rm, En) with JL(Gl)=@ and set ,4 j =£*(£'')• Assume that A[, i=l, 25 are
almost regular. If there exists a local isomorphism 0 of G1 to Gz satisfying
0(z0)=z0 and being near the identity, then $ induces a foliation isomorphism <S>7

of (Ar, £FJ) to (A2
r, 3

2
r) such that the restriction of <j)r to Al

r(d) is a conformal
foliation isomorphism of (A\(d)9 3tl

r(cTj) to (A2
r(d), 32

r(d)) for each r and d,

Proof. By Corollary 14.1, on the subvariety Al.=Sk
r(G

l) there is induced
a foliation £?£ such that the restriction £?£(W) °f ^ to A*r(d) is Riemannian
and Ar(d)=Sk

r(So) for some differential equation <?j which is open in G1.
0 induces a homeomorphism $r of A\ to A2, and since 0 is also a local iso-
morphism of Gl to Gl at (z0? zQ)^EnxEn, it induces a foliation isomorphism

of (Sk
r(Gl\ 3k

r(Sl)) to (Sk
r(Gl\ 3kr(Gl)) which is conformal by Theorem 12.2.

Since (Sk
r(Si), ^(<?j))-(^J(J)9 3

l
r(d)\ this completes the proof.
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