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On Foliations Associated with
Differential Equations of Conformal Type
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Kazushige Ugno*

Introduction

The differentiability is of class C= through this paper unless otherwise
stated. Let & be a foliation on a manifold M of codimension ¢ with trivial

normal bundle defined by 1-forms @, -+, @,. Assume that dw;=3] ¢;;,®; \ @,
ik

where c;;, are functions on ». Then & is called a generalized Lie foliation.

Let E” be the n-dimensional Euclidean space and consider a differential
equation whose solutions are local mappings of R™ to E”. 1In this paper we
shall deal with differential equations & whose automorphisin pseudogroups
J(E) equal to the pseudogroup P of local isometries of £” and construct and
study foliations SF(€) which are invariants of these differential equations &.
These foliations admit transversally conformal structures and if codimF(&€)
>3, they are prolonged to generalized Lie foliations which are also invariants
of &.

In §1, we study a prolongation scheme of a principa! buadle on M as-
sociated to a foliation & on M. The method of the prolongation .s a generali-
zation of that of Singer-Sternberg ([5]). Principal bundles considered are
subbundles of the frame bundle associated to the normal bundle of &F satisfy-
ing a few invariant conditions with respect to &. Theorem 4.3 or Corollary
4.4 is the main theorem in §1.

§2 is devoted to the presentation of a differential equation & with A(E)
=%.

In §3, we construct a foliation (€) on a manifold A#4(&) for a given differ-
ential equation & with A(E)=% satisfying a regularity condition., This folia-
tion (F(E). M(€)) is Riemannian and is an invariant of & i.z. if two such differ-
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ential equations &, and &, are locally isomorphic at a point z,& E”, then (F(E)),
M(&)) is conformally isomorphic to (F(&E,), M(E,)). Applying the result of
§1, we see that if codimF(&;)>3, F(E,) is prolonged to a generalized Lie folia-
tion &'(€;) and any local isomorphism ¢ of &, to &, with ¢(z,)=z, induces
an isomorphism ¢’ of F'(&)) to F'(&,) as a generalized Lie foliation. Theorem
12.2 is the main theorem of this paper.

Theorem 8.1 and 12.2 are modified in forms of Corollaries 14.1 and 14.2
where foliations on subvarieties are introduced. These foliations are naturally
associated with analytic involutive differential equations.

§1. Prolongations of Foliations

1. Let & be a foliation of codimension g on a manifold M and let =":
Q—M be the normal bundle of &. Let #: F(Q)—M be the frame bundle
associated to the vector bundle z': Q—M. This frame bundle is called the
normal frame bundle of &. Denote by E the tangent bundle to & and by T(M)
the tangent bundie of M. We have then Q=T(M)/E. The following defini-
tion is suggested by H. Imanishi. Let G be a Lie subgroup of GL(g, R).

Definition 1.1. Let P be a G-subbundle of F(Q) i.e. a G-bundleCF(Q)
with projection w=#|P. If there exists an open covering {U,}gzea of M
with z7(U,)=~U, X G such that, for any leaf L of &, each transition function

8u8: U,NUg—G is constant on each connected component of U,NUgNL,
P is called a (G, &¥)-subbundle of F(Q).

Example 1.1, Assume that a foliation & is given by a collection {U,, f,} e
where {U,},e, is an open covering of M and f,: U,—R" is a submersion such
that f,(x)=@s(x)o fa(x) for x& U, N U, and for a local diffeomorphism ¢,s(x)
where @, is constant on each component in U,NU,. Let P be any G-sub-
bundle of F(Q) such that =z %(U,)~U,XG for any a4 and transition func-
tions are given by gus(x) =(@ap(x))s for x&U, N Us. Then g, is constant on
each component in U,NUgNL. Therefore P is a (G, F)-subbundle of F(Q).

Example 1.2. Let po: M— N be a G-structure on N. Then o defines
a foliation & on M as the pull back of the foliation on N with point-leaves.
Denote by P the induced bundle on M of the G-bundle M on N by p. Then
P is a (G, &)-subbundle of F(Q).

The following lemma has been obtained by a discussion with N. Shimada.

Lemma 1.8, If P is a (G, F)-subbundle, F is naturally lifted 10 a foliation
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G on P such that dimT =dimF and each leaf of F is mapped on a leaf of F
by the projection ©: P—M.

Proof. Let V be a cubic neighbourhood of the unit element of G. Then
U,xVca™3U,) and {U, X -V} ¢ is an open covering of z7*(U,). Therefore
{U,X0°V} 4ea0ec 1S an open covering of P. We may consider that V CR,
r=dimG. Define a map f,,: Uye=U,X0:V—>R""=R"XR by U,xo-V>D
(x,0°80)—=>(f(x), s ER* XK. If U,,N Ug, =9, we get the relation

fmo‘ = Euﬂu"rofﬁr on Uwu-n UBT s

whete &g () =(Pup(®@(P)), 07 gup(m(p))-z. Since P is a (G, F)-subbundle,
Zup 1S constant on each component in U, N UgN L for any leaf L of &. This
proves that the cocycle {U,s, fyof wea,sec defines a foliation on P. The con-
struction of & asserts that & is a foliation of codimension q+r and that each
leaf L of F is a covering space of some leaf L of &. This completes the proof
of Lemma 1.1.

Definition 1.2. The foliation ¥ on a (G, F)-subbundle P is called the
lift of & to P.

2. In this section we shall make preparations for defining the structure
function C: P—Hom(¥ AV, V)/8 Hom(V, &) for a (G, &F)-subbundie satisfying
some invariant condition, which will be a generalization of the structure func-
tion for a G-structure. The statements will be parallel to Singer-Sternberg
(I5D.

Let & be a foliation of codimension ¢ on M and let P be any G-bundle
CF(Q), GCGL(g, R), with projection ==7|F. Let o be the projection of
the tangent bundle T(M) onte the normal bundle @=T(M)/E. Denote by
V a g-dimensional real vector space. Then there exists a V-valued linear
differential form » on P defined as follows:

.1 o(X) =p~lore(X) forany XeT,(P).

Since p is considered as an isomorphism of V' with Q. =T,(»{M)/Ex,, the
above equality makes sense. w is called the basic form of P.

Let a&CG and X&T,(P). Since w=nroR,, we have zxR.(X)=m4(X).
Thus @ (R{(X)) = (pa) " oy Rpx(X) = (pa) " omy (X) = a™' p~lomy (X) = a™ o (X).
Therefore R0 =a"'w.

Let P be a (G, F)-subbundle of F(Q). Denote by E the tangent bundle
to & on P and by # the projection of T(P) onto T(P)/E. Let p&P and let
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H, be a g-dimensional subspace of T,(P). H,is called a transversally horizontal
subspace at p if ory(H,)=0.). Note that @, restricted to H, gives an
isomorphism of H, with V. Let J{, be the set of transversally horizontal
subspaces at p and introduce an equivalence relation ~ in 9, by H,~H),
if and only if #(H,) =p(H}). We set H,=H,/~. An element of J, is
called a normally horizontal subspace at p.

If H,~Hj}, then we have w,(X)=w,X") for X&€H,, X'€H} with 5(X)
=p(X").

Let H) and H? be two normally horizontal subspaces and let H} be
any representative of Hj. Then for X,€H} and X,€H? with o(X;)=0(X))
=v, B(X,—X,) is independent of a choice of a representative Hj. There-
fore we can get a linear map S (=SH#2) of V into the Lie algebra & of G
defined by

22 PX,—Xp) = B(SMF)

where S(v)* is the fundamental vector field on P corresponding to S(v)e&.
Thus for veV, there corresponds a unique element S(v)&4&. By this cor-
respondence, S&Hom(V, &) is defined for normally horizontal subspaces
H} and H3.

q
Let {e;, ---, e, be a basis of V" and set o= >] w;e;.
i=1

Lemma 2.1. Let P be a (G, F)-subbundle. Then the basic form o of P
is locally expressed in terms of a basis for the integrals of G, more precisely,
Jor any point pEP there exist a neighbourhood U of p and C*-function a;;

q
(i=1,--,q and j=1, ---,§) with q variables such that w;|U=>3a;;(y;, -, y7)dy;
ji=1

@i=1, -+, q) where {y,, -+, y;} is a fundamental system of 1-st integrals of g
on U.

Proof. Since P is a G-subbundle of the normal frame bundle F(Q) of
F, it follows easily that there exists a neighbourhood U, of z(p)EM such

that U,/F is a manifold and such that, if we set P,=z"%U,), P,/F is a G-
subbundle of the frame bundle over U,/< and P, is the induced bundle by

the projection #, of U, onto U,/<f. Let 7, be the projection of P,,/Ef" onto
U,/< and denote by #, the bundle map of P, to P,/F. Then we have Ty0p
=pomy, on P, and the basic form &, of the G-subbundle Pm/f? is defined by

B (X) = p 7, (X), X ETHP,IF) .
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For Z&T,(P), we have

o(Z) = p~lon(Z) = pT'Zx0(Z)
= Uy(P) Tyt (Z) = (2,53 ,) (Z) .

This means that o is locally expressed in terms of a basis for the integrals of

.

Let P be a (G, <F)-subbundle of F(Q) with the basic form w. The form
dw is an exterior 2-form with values in V. Let H,&J9(, and let 5, be a re-
presentative of H,. The restriction of dw, to H, A\ H, gives a map of H,A\H,
into ¥. By Lemma 2.1, we can easily see that dw,|Hd, A\ H, is independent
of a choice of a representative H,. Therefore, via the identification of H,
with V'by w,, amap Ca, of V AV into V is defined by CH (uA\v)=do(X N Y)
where X, YE€H,, o(X)=u and o(Y)=v.

Let A} and A2 be two normally horizontal subspaces at p&P. Then
analogically to [5] (p. 42), we can prove that

(2.3) CHYuNY)—CHYuNAV)=S(V)u—S)v

where S=SAiH2. So as to prove this equality, we have only to note that
there exists a representative H) of H) such that (2.2) implies the equality
X,—X,=S(v)¥. This is proved as follows. Let F, be any complement of
E, in T,(P) and choose a representative H} of Hj such that H,CF,. Then
both X;—X, and S(v)§ are elements in F, and so (2.2) implies X, —X,=S(v)}.
We define the map : Eom(V, &)—Hom(V AV, V) by aSuAv)=Su)v
—S(u for S&€Hom(¥, &). Then (2.3) is written by CH2—CH}=0S.

3. Now we define the structure function C of the (G, &)-subbundle P
and state the prolongation of P. For the sake of later convenience (cf. Lemma
4.2), it will be defined as a Hom(¥V AV, V)-valued function such that C(p),
pE P, belongs to the chosen complement C(p) to dHom(V, &).

Let ¥ and W be finite dimensional vector spaces and let & be a subspace
of Hom(¥, W).

Denote by ¢@® the set of all T€Hom(V, &) which satisfy T(u)v=T(»)u
for all u, veV. GO is called the first prolongation of &.

The first prolongation of the space %Y CHom(V, §%2), k>2, is called
the k-th prolongation of G and is denoted by G®.

Let & be a foliation of codimension g and let P be any (G, <F)-subbundle of
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the normal frame bundle of F. We denote by & the Lie algebra of G and by
V a g-dimensional real vector space. We choose a complement C to dHom(V,
G)in Hom(V AV, V).

Lemma 3.1. For any pEP, there exists a normally horizontal subspace
A, at p with Ca,&C.

Proof. Let H} be any normally horizontal subspace at p. Then we
have a unique decomposition Cg}=C-+08S where C=C and 85 €dHom(V, 9).
For X'€H}, we set u=w,(X’) and X=X'—S()f. Then H,={X(=X'—
Sw)¥); X’ €H}} is a transversally horizontal subspace at p. Clearly we have
(X' —X)=p(S(w)¥) and as is stated before, we get CH,—CH,=8S. There-
fore CA,=C which proves Lemma 3.1.

Let Gr(Hom(V AV, V)) be the Grassmann manifold of i-planes in the
vector space Hom(V AV, V). We set i=dim Hom(V AV, V)—dimdHom(V,
G). Denote also by C a smooth map of a (G, &F)-subbundle P to Gr;(Hom(V
AV, V)) such that each image C(p) of p&P is a complement to dHom(V, &)
in Hom(V AV, V).

Let H » be a normally horizontal subspace at p& P with C#,&C(p). Then
by (2.3), C#, is independent of a choice of FI,, and depends only on pEP.
Therefore we can set C(p)=CH,, CH,=C(p).

Definition 3.1. This Hom(¥ AV, V)-valued function C is called the struc-
ture function with respect to C of a (G, &F)-subbundle P of the normal frame
bundle of &.

A normally horizontal subspace H. » at p&E P defines a linear isomorphism
of ¥+ 4 with Qi,sz(P)/E'; by VBv—aﬁa);l(v)EQp and Q’BA—>,5(A}F)EQ,,

! is the isomorphism of ¥ with a representative H, of Ep and this

where @}
definition is independent of a choice of H,.

Let A, and A% be two normally horizontal subspaces at p&P with CHl,
CaieC(p) and let 7, and 7, be the corresponding isomorphisms of V+&
with T,(P)/E,. Then for S€G® if we define Ts€Hom(V+G, V+4) by
T(A)=A for A€ G and Ts(v)=v+S(») for vEV, we get 7,=n,0T%.

We set GO={T; S€4D}. Then GY is a Lie subgroup of GL(V+Q).
Denote by P(Cl) the set of isomorphisms 7 of V-+ & with Qp defined by normally
horizontal subspaces H, with C&,=C(p), pE P.

Lemma 3.2. P{ is a GW-subbundle of the normal frame bundle of g.
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Proof. The foliation g gives rise to a collection {V,, f,} nea Where {V,} sca
is an open covering of P and f,: V,—R’ is a submersion being constant along
the connected components of any leaf of G in V. Let 9, be the set of nor-
mally horizontal subspaces at p& P and set CWZPLEJPCW# Then (9, P, 2) is

a fibred manifold where 2 is the projection of 94 onto P. Then for each ¥,
we may assume that there exists a cross-section ¢, of ¥, to 9. We set FII,
=@4(p) for peV,. Then we have a unique decomposition CH,=C,+95S,
where C,&C(p) and 8S,€0Hom(V, G). As was proved in Lemma 3.1, if
we set H;={X'; X'=X—S,w5, X€H,, o,X)=u}, then CH,=C,. Set-
ting ¢, (p)=H}, ¢, is a cross-section of V, to 9 with Col»nEC(p). This
map ¢, gives rise to a cross-section on ¥, of the normal frame bundle F(Q~)
of &F such that the image is contained in PP.  This shows that Pp’ is a G-
subbundle of F(Q).

Definition 3.2. PP is called the first prolongation of a (G, &)-subbundle
P.

The group G® is also called ihe first prolongation of G. It is clear that
the Lie algebra of G® is GO,

Remark 3.1. Let & be a foliation on A of codimension ¢ and let P be
a (G, F)-subbundle of F(G). Assume that GV consists of only the unit ele-
ment. Then P{ is clearly a (G, F)-subbundle. Therefore the lift & of F
is lifted to a foliation &' on P{. Later we will discuss the possibility of
lifting & to a foliation F® on P$ more generally (Theorem 4.4).

4. 1In the beginning of this section, we will explain the nalural paral-
lelism along the leaves of a foliation due to R. Hermann [3].

Let & be a foliation of codimension g on M given by a collection {U,,
St wea where {U,} e, is an open covering of M and f,: U,—R’ is a submer-
sion such that f,(x)=@ue(x)e fe(x) for x&U,N Uy where ¢up(x) is a local
diffeomorphism of R’

Let L be a leaf of & and let 7:]0, 1]—L be a curve. Then there exists

a parallel translation of vectors ve Oy along 7, [0, 112 ¢t—v(¢£) E 0y, such
that

1D vO=v,
(2) for 1, and t, sufficiently near such that r(t), 1;<r<1,, lies in a con-
nected component of LN U, for some a4, we have fdy(,)(v(t))=]?‘,.,(,‘.)(v(t,-))
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where fwy(ﬁ is the linear isomorphism of Tyu(M)/Eyy onto Ty,eey(RY in-
duced from f,.

It is easy to see that v(1) obtained by this way depends only on 7 and v.
The mapping v—v(1) is denoted by ky. This parallel translation of normal
vectors to & along curves lying in a leaf of & is called the natural parallelism
along the leaves. It is known that two homotopic curves r, and r, with the
same end points satisfy ky =ky,. This natural parallelism is also defined for
normal frames (v;, .-+, v,)E F(Q). The set of all ky for all loops based at x&L
forms a group which is called the holonomy group of the leaf L. It is clear
that for any x and y& L, the holonomy groups are isomorphic to each other.

Let P be a (G, F)-subbundle and let Z be a leaf of . For any curve #:
[0, 1]1—L, we set y=zo7. Then 7 is a curve of [0, 1] to the leaf L==(L)
of &.

Since = maps any leaf of G to a leaf of F, = induces the projection 7
of QzT (P)/E onto Q=T(M)/E. For any normal vector X (resp. X) to g
at 7(0) (resp. to & at 7(0)), denote by #(t)X (resp. r(#)X) the normal vector
obtained by the parallel translation of X along # (resp. X along 7).

Lemma 4.1. #4(7()X)=r(t)7:X.

Proof. By taking a finite covering of the curve 7, it is sufficient to prove
this equality in the case that 7 is contained in some U, where {U,,, foof aca,ccc
is the cocycle of g given in Lemma 1.1. Then for p=(x,0-g)€U,,=U,Xa-V,
Suo%, 0-8)=(fu(), 8). We have then 7o(fai0) ™ fasio—far) ™ furor° s
This implies that Z4(7(:)X)=r(t)Z4«X for any normal vector X at #(0). The
proof is completed.

Let P be a (G, &F)-subbundle and let I?I, be a normally horizontal sub-
space at peP. H » is considered as a subspace of the fiber Q,, over p of the
normal bundle @ of & on P. Let L be the leaf through p and let 7:[0, 1]—L
be any curve with #(0)=p, #(1)=p'. Choose a basis {v(p), ---, vu(p)} of H,
and denote by vi(p") the normal vector at p’ obtained by the parallel transla-
tion of v/(p) along #. The subspace H’P/Cép/ generated by {v(p"), -+, vau(P")}
is then a normally horizontal subspace at p’. It is clear that Hi,/ is independent
of a choice of a basis of H,. Therefore we can say that H, is obtained by
the parallel translation of IZTI, along 7 and so we can also say that CH, is ob-
tained by the parallel translation of C#, along the curve 7.

Lemma 4.2. Let P be a (G, F)-subbundle. Then there exists a map C
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of P to Gr{Hom(V AV, V) satisfying the following conditions:
(1) C(p)y®oHom(V, G@)=Hom(V AV, V).
(2) The structure function C with respect 10 C is invariant under the natural

parallelism along the leaves of &.

Proof. Let pEP and let U be a neighbourhood of z(p) such that z~(U)
=UXG. Weset K,={H,EH,; H,C Tp»(U)x{0}}. Then K, is independ-
ent of a choice of a local triviality of z~XU). Let L be the leaf of g through
p and let 7 be any curve in L connecting p with p’ and denote by A, be the
normally horizontal subspace at p’ obtained by the parallel translation of
H, H,eX,, along 7. Let v be any vector in A, and denote by v'EH, the
normal vector at p’ obtained by the parallel transiation of v along 7. By the
parallel translation of v along the ieaves of 53 , the property of the vertical com-
ponent of v being zero is invariant. Therefore the vertical component of v’
is also zero and so there exists a repersentative A, of Hp/ such that H, C
T,(U’)x {0} where U’ is a neighbourhood of z(p") with z~Y(U")=U’XxG. Thus
the family {K,},cp is invariant under the parallel translation along the leaves
of &.

If H, and HyeX,, then H,—H,CT,,»(U)x{0}. On the other hand
p(X—X)=p(Sw);) whete XEH,, X'€H} with o(X)=w(X')=u. Therefore
S (=SH,H;)=0 and we have CH,=CH;. Thus CH, is independent of the
choice of H,& K, and the family {CH,}peP H,cx, is invariant under the
natural parallelism along the leaves of .

We can choose a map C: P— Gri{Hom(V AV, V)) such that C(p)=CH,,
H,eX,, for any p€P and such that C(p)@oHom(V, @)=Hom(V AV, V).
Then the structure function C with respect to C is given by C(p)=Chq,, H,&
K, and this map C satisfies (1) and (2). This completes the proof.

Definition 4.1. A (G, &)-subbundle P is called a <G, & -subbundle il
P is invariant under the natural parallelism along the leaves of <.

Remark 4.1. If P is the associated transverse G-structure of a G-foliation
S in the sense of L. Conlon [1], then P is a <G, & >-subbundle.

Theorem 4.3. Let P be a <G, Fy-subbundle. Then there exists a map
C: P—Gr{Hom(V \V, V) such that PP is a {G®, G >-subbundle.

Proof. Let C be a map obtained in Lemma 4.2 and let y,: V,—P%
be a local cross-section which gives rise to a tiiviality of @™W) (¥,) and such
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that we have a submersion f,: V,,—>1€" associated to &. Since v,/ has a man-
ifold structure, there exists also a cross-section s, of Vd/SjF—> V.. We set vl
=1r,08,. Since any point in P(Cp is identified with a normally horizontal
subspace, we can write w;(p’)zflp where p=s,(p’) and CH,=C(p). Let L
be the leaf through p. Then for any p in LN ¥, by the parallel translation
of H, along any curve in LN V,, connecting p and p, we have a unique normally
horizontal subspace Hy with CHy €C(p) because there is a submersion f,: V,
—R%. By this way we get a new cross-section v, of V,— P‘Cl,).

Let (V,, ¥,) and (Vg, ¥ ) be two such pairs and assume that ¥V, N Vg=+¢.
For any point pEV, N ¥, we can set ¥,(p)=H; and ¥g(p)=Hj with Cg?,
Cpi€Cl(p). Then we have a unique S,=SgH2a%€ Hom(V, &) with 85,=0.

Let p be any point in V,N VzNL. We shall show that S is independent
of p on each component of ¥,N VzNL.

Let X*cH? and X*€H? such that o(X*)=w(X®)=u. Then we have
BX*)=p(XP+S,wF). Let o(Y®) (resp. 5(Y?)) be the vector in H5 (resp. Hj)
obtained by the parallel translation of #(X*)& H% (resp. #(X?)€ HE) along a
curve 7: [0, 11— V,NVzsNL. We shall prove that ﬁ(Y“)=ﬁ(Yﬁ—}—S;(u)§).
Then since #(S,(w)§) is translated to ﬁ(Sp(u);E) by the parallel translation
along 7 and so #(Y*)=p(Y 5—[—Sp(u);~k), we get S;(u);zSﬁ(u);f and so S5 =S5,
for any p and p in the same component of ¥,,N VN L.

Since dim% =dim¥, there exists a neighbourhood U of x==(p) such
that, by the projection z: P— M, any component of UNL is diffeomorphic to
some component of UNL where U=z"YU). We may assume that UDV,
N Vs Let p be any point in the component of UNL containing p and set
X=n(p). Let r be a curve of [0, 1] =UNL with y(0)=x and r(1)=X% and
let #:[0, 11— F(Q) be the curve with 7#(0)=p obtained by the parallel transla-
tion of p along 7. Since P is invariant under the natural parallelism along
the leaves of &F, #:[0, 1]1—LCP. Since 7 is continuous and 7:[0, 1]—=UNL,
we get 7:[0,1]—UNL. Therefore we have #(1)=p. This means that any
p in the component of U N L containing p is obtained by the parallel translation
of p along some curve y in UN L.

If we set p=(w, **-, v,) and p=(¥,, -+, ¥,), then ¥; is the normal vector to
G obtained by the parallel translation of v; along y. The vector Z4o(X™)

q q
(resp. #xP(Y®)) is expressed as a linear combination >) ¢;v, (resp. >, &;¥;).
i=1 i=1

By Lemma 4.1, 7,8(Y®) is obtained by the parallel translation of #40(X?)
along the curve 7.
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q
On the other hand, the normal vector >}c¢,¥; is obtained by the parallel
q i=1 q
translation of the normal vector >)c;v; along r. Therefore we get >1¢;7;,=
i=1 i=1
zq‘,c,.v,., that is, &=c; (i=1, ---, g¢). Then by choosing a canonical basis {e;, :--,
i=1 q q q
e} of V, a(X*)=p lomy(X*)=p ' #4d(X")=p (R civ) =20 c;e;=p "' X ¢; ¥;) =
i=1 i=1 =1
DT(EB(Y*) = (Y").
9
Furthermore since o(X?)=w(X®), we have 745(XP)=7Z0(X*)=>1¢;v;.
i=1
Since #(Y*) is obtained by the parallel translation of 5(X®) along 7, again by
Lemma 4.1 740(Y®) is obtained by the parallel transiation of Z4o(X®) along
q
7. Therefore we get #4d(¥Y?)=31c¢;#;. This implies that o(Y?)=w(¥*)=u
i=1

and we get B(¥*)=p(YP+S5w)3), Sy =SH2AS.

The correspondence p—Sj is constant on each component of ¥, N VN L.
Since the transition function for (V,, v,) and (Va, ¥p) is given by

I s,
ng(P) :‘7 0 I :I

and is constant on each component of ¥,NVzNL, P(Cl) is a (GO, &)-sub-
bundle and so & is naturally lifted to a foliation F® on PZ by Lemma 1.1.

Furthermore P{ is invariant under the natural parallelism along the
leaves of & because C is chosen so as to satis{y the conditions in Lemma 4.2.
Therefore P§ is a (<GP, & >-subbundle and the proof is completed.

Definition 4.2. The foliation F® is called the first prolongation of &.

Corollary 4.4. Ler P be a <G, F)-subbundle. Then we have a sequence
of foliated manifolds {(P®, F")} >, satisfying the following conditions:

(1) PO=Pand FO=9.

Q) P® is g LGB, FED>-subbundle on P*™Y for k>1 and P® is the
first prolongation of P®9,

3B) G is the first prolongation of F*™V for k>1.

Definition 4.3. (P®, F®) is called the k-th prolongation of (P, F). The
basic form on P® is denoted by »®.

5. For a foliation &; of codimension ¢ on M; (i=1, 2), assume that there
exists an isomorphism ¢ of &F,; with &,. Then ¢ induces the bundle isomor-
phism ¢’ (resp. ¢) of the normal bundle Q; of &, with the normal bundle
0, of &F, (resp. of the normal frame bundle F(Q,) of &, with the normal frame



188 KaAzusuiGe UENO

bundle F(Q,) of &F,). Let G be a closed subgroup of GL(g, R).

Definition 5.1. A (G, &,)-subbundle P, on M, is said to be isomorphic to
a (G, 9,)-subbundle P, on M, if there exists a foliation isomorphism ¢ of
F, to &, with ¢(P,)=P,. ¢ is called an isomorphism of P, to P,. In par-
ticular, if M,=M, and F,=5,, ¢ is called an automorphism.

Lemma 5.1. Let P; be a (G, &,)-subbundle on M;, i=1, 2, and let »; be
basic forms of P;,. Assume that G is connected. If ¢ is a foliation isomor-
Pphism of g , on Py with E}'z on P, such that ¢*w,=aw, for some a= G, then there
exists a foliation isomorphism @ of F, with F, such that | P,=¢oR,.

Proof. Let z, be a vertical curve in P,, that is, a transversal curve with
®,(z,)=0. By the assumption that ¢*w,=aw, and ¢ is an isomorphism
of E}"l with 5272, we know that ¢(z,) is also a transverse vertical curve
in P,. Therefore ¢ is fiber-preserving and induces a diffeomorphism ¢ of
M, with M,. Then it is clear that ¢ is an isomorphism of &, with &,. Now
we shall prove that @|P,=¢oR,. If we set F(Q)DP;=3 '(P,), then P is
a (G, &F)-subbundle. J=& 'op is a fiber-preserving map of P, to P; and
since @ is a bundle isomorphism of F(Q,) to F(Q,), we have §*@,=&, where
@; is the basic form of F(Q,). Since the basic form w; on P; is the restriction
of @; to P; (i=1, 2, 3) where @;=w,, we get & *w;=w, Thus we get J*w;
=aw,. Furthermore J induces the identity transformation on M;. Therefore
we have z7'omy(Z)=0\(Z)=a"'0y(Jx(Z)=a""J(2)) orms(J:(Z))=a"*(J(2))
o0m(Z) for any zEP, and any Z&T,(P,). This proves J(z)=za™?, that is,
@| P,=¢oR,. This completes the proof.

Lemma 5.2. Let P; be a <G, &F y>-subbundle on M; (i=1, 2). If v is an
isomorphism of the foliation F° on P with the foliation F$° on P§° such
that o =wV, then there exists an isomorphism ¢ of the foliation F, with the
foliation F, such that $*w,=w, and §| PO =

Proof. By Lemma 5.1, we know that + induces an isomorphism ¢
of &, with &F, such that §|P{’=+. We have only to see that ¢*w,=w,.
But this relation is obtained from the relation v*w{’= o because, for
ZeTH(PP) if we set p=n'(D), X,+A4F =(z")4xZ and v=0w,(X,), then «{(Z)
=p @)« Z=p7 B (X, + AF)=p 0,07 () +A=v+A=w,(X,)+A. This com-
pletes the proof.

Proposition 5.3. Let P; be a <G, & )>-subbundle on M, (i=1, 2) and let
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k be any positive integer. Then there exists an isomorphism  of the foliation
F® on P with the foliation F on PP such that v*oP =o® if and only
if there exists an isomorphism ¢ of the <G, &F >-subbundle P, on M, with the
<G, Fy-subbundle P, on M,.

This proposition is an immediate consequence of the construction of
P® and Lemma 5.2.

Defimition 5.2. Let & be a foliation of codimension ¢ on M and E the
tangent bundle to <. If there exists 1-forms w,, -+, @, on M satisfying the
following conditions (1) and (2), then the pair (¥, ) is called a generalized
Lie foliation where ® =(w,, -+, ®,):

(1) E=Xif and only if o(X)=0.

2) dcoizac,-jkcuj/\cok wheie ¢,;, is a function on M. In particular

7
if all ¢;j;, are constants, (<, ) is called a Lie foliation.

Definition 5.3. Let &F be a foliation of codimension ¢ on M. If there
exists an <{{e}, F>-subbundle P where e is the unit element of GL(g, R), then
the pair (&, P) is called an {e}-foliation.

Propesition 5.4. There exists a natural one to one correspondence between
generalized Lie foliations on M and {e}-foliations on M.

Proof. Given a generalized Lie foliation (&, @) on 4, the tangent vectors
YL, -+, Y? at x&€M can be chosen so as to satisfy wi(Yﬁi):&ij @, j=1, +=, q).
Y is determined up to the vectors belonging to £, and so uniquely determined
as a normal vector Y€ Q,=T(M),/E,. Then for any x& M there exists a
neighbourhood U of x such that there are vector fields Y, ---, ¥? on U satis-
fying P(Yi)=Y] where P is the canonical piojection of T(M) onto Q.

Let Lyi (resp. ¢yi) denote the Lie differentiation (resp. interior product)
with respect to Y’. Then

Lyi(a)j) = (diyittyid)o;

= lyi(da)j)

= (2] Cjkhwk/\wh)
k<l

= IE (Cjkh(‘y"a’k)wh ”’Cjkh(‘y"wh)wk)
{3

= ; a@y

where a, i3 a constant. Therefore for any local cross-section X of E,

wj([Yi> XD =y, x10;



190 KAzusuiGe UENO

= [Lyi, tx]®;

= Lyi(t Xcoj) —¢ X(LY"(C";'))

= —tx(Lyi(@;))

= —"x(g G@y)

=0
and this implies that [Y?, X] is also a local cross-section of E. Then Y?, .-, ¥*
are invariant under the natural parallelism along the leaves of &. This shows
that if we set P={(¥;, -+, Y%); xE M}, the pair (<F, P) gives an {e}-foliation
on M.

Conversely given an {e}-foliation (&, P) on M. Then there are given
vector fields Y7, ---, Y? on M such that (P(Y}), -+, P(YY))E P for any xE M.
These vector fields satisfy the property that, for any local cross-section X of
E, the blacket [Y?, X] is also a local cross-section of E, i=1, ---, ¢. Define
1-forms @', -+-, @, on M by

o;|E=0,

w(Y’) = 8; (j=1,-9).
Then since @, -:+, w, define a foliation &, the system £={w;; i=1, -+, g}
is a completely integrable differential system. Therefore we have locally

(5.1) da),- = % cijkijwk+ % E"hlwh/\—(r)'”

where @; is a local 1-form. Let X be any cross-section of E. Then because
[Y/, X]is a local cross-section of E, we have

do (Y, X) = Yo X)—Xo(Y)—o (Y, X]) =0.
On the other hand by (5.1) we have
do (Y, X) = 3] ¢;;0,(Y)@,(X)
l
and since X is any local cross-section of E we get ¢;;;=0. Thus we obtain
the relation
do; =3 ¢;j0; \w,
i<t

and so by setting o =(w,, ---, w,) (<, ®) is a generalized Lie foliation on M.
This completes the proof of Proposition 5.4.

Definition 5.4. A <G, >-subbundle P on M is said to be of finite type
if the following statement (S) holds:
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(S) We set o=@ and F=F©®, Then there exists an integer k>0
such that the pair (F®, ©®) is a generalized Lie foliation where (P®, F®)
is the k-th prolongation of (P, &) and »® is the basic form on P®.

The minimum integer such that G® ={e} is called the order of P.

§2. Differential Equations of Euclidean Type

6. Denote by £” the Euclidean space of dimension 7 i.e. the real number
space R” of dimension n with the canonical inner product.

Let J5(R™, E™) be the space of k-jets of local maps of R" to E" and each
element of JX(R™, E") is denoted by j*(f) where x& R" and f is a map of a neigh-
bourhood of x to E". Then J*R", E") admits the canonical product struc-
ture R"XR"XR"®x .-« X R"® where n(l)=dimJ'(R", E")—dim J'""Y(R", E")
(1<i<Lk). Denote by {x;, ->-, x,,} (resp. {uy, --*, u,}) the canonical coordi-
nate system on R” (resp. £") and set

phos = O
Tydy ale e ale )
Then {p}..;; 1<i<n, 1<j;< -+ <j,<m} is the coordinate system on R"®.
Denote by J*(R", E") the set of k-jets of local maps of R” to E" of maxi-

mal rank i.e. k-jets of local immersions if m <<z and k-jets of local submersions
if m>n. Then it is clear that J%R", E") is open and dense in J*(R", E").

Definition 6.1. A subset & of JH(R", E") is called a differential equation
if, for any point pE¢&, thers exist a neighbourhood U and functions f;, -~ f;,
on U such that ENU={p'€U; filp)=--=f,,(p)=0}. Any local map s:
R"D9—E" is called a solution of & if {jis); xeU}cé&.

Let I" be a pseudogroup on E” and for any ¢ and j4(f)eJ*R", E")
we set ¢®(j4()=j%(¢o f) if the composite ¢o f is defined on a neighbourhood
of x. Thus I" can be regarded as a pseudogroup on J*(R", E*) which is de-
noted by I'®.  Note that J*(R", E") is preserved by the action of I'®,

Definition 6.2. A function F defined on a neighbourhood U* of ji(f)
€JHR", E") is called a I'-differential invariant if ¢®W*F=F for any ¢® &
'®| Uk where I'® | U* is the restriction of I'® to U

Denote by & the pseudogroup of local isometries of E” and consider the

function p,=31(pi)? (resp. pzzi}(pfl)z) on JYR", E") (resp. JAR", E")).
i=1 =1
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Then it is clear that o, and p, are SP-differential invariants.

Let &;CJ*R", E") be a differential equation and denote by S(&;) the set
of solutions of &; (i=1, 2). For any open subset UCE", we set S(&;)| U=
{s=S8(&)); s is a map into U}.

Definition 6.3. A local transformation ¢: U—Cl of E" is called a local
isomorphism of &; to &, if o(SEY|U)=S8(&,)|CV. In particular in the case
&,=E,=E, alocal isomorphism is cailed a local automorphism and the pseudo-
group generated by all local automorphisms of & is called the automorphism
pseudogroup of £ and is denoted by A(E).

7. Let f be a map of R” to E" and set 2{(x) =p0,(ji(f)) and A(x)=
o2 f)). Furthermore we define the vector-valued functions ¢f and a} by

()=, -+, PIG(N)) and &4(x)=(p11GA ) -+, PHGHS))).

Proposition 7.1.  Consider the differential equation & CJ*R™, E") (m, n>>2)
given on a neighbourhood U* of j% (f) by P-differential invariants F,, -+, F, such
that ENUr={peU*; F(p)=---=F,(p)=0} where Fi=p,—2{ and F,=p,
—2% and suppose that, if we restrict f to a neighbourhood of x,, it is contained
in S(€). Furthermore suppose that A5(x,)=0, 24(x0)+0, af(xy)=+ aal(x,) for
any ¢ E R and the map 2X =4, 2%) is a submersion on a neighbourhood U of x,
to R:. Then if fand & are analytic, we have JA(E)=P on a neighbourhood of

J(x0).

Proof. Consider the linear orthogonal transformation group O(n) on
R’ and define the action of O(n) on the product space R*XR" by o(a, b)=(oa,
ob) where s€0(n) and (a, b)eR"XR". Let O(n)s (resp. O(n),) denote
the isotropy group of O(n) at (a, H)ER" X R" (resp. at a=R"). Then O(n), s
=0(n),N O(n), and if a0, b0 and a=ab for any aER, we have dimO(n)
—dim O(n)(, 5 =2n—3. Therefore if we set M(a, b)={o(a, b); o€ O(n)}, then
M(a, b) is a (2n—3)-dimensional submanifold of R* X R". Let x, (resp. x,) be
the projection of R” X R" to the 1-st component (resp. 2-nd component). Then
it is clear that z,(M(a, b))=Spy" and n(M(a, b))=S};;* where S77" is the (n—1)-
sphere of the radius r.

Since 2{(xg)=0, 5(x,)==0 and af(x,)F+aal(x,) for any a=R, we may
assume that we have A{(x)==0, A4(x)%=0 and af(x)=Faai(x) for any eER
and any x& U, a neighbourhood of x,. Then M(a{(x), aj(x)) is a (2n—3)-
dimensional submanifold of R"xR". Denote by = the map of R*xR" to
R? defined by =z(a, b)=(|a|? |b|)ER:. Then z(M(ai(x), ab(x))) = (lal(x)]?
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|a%(x)]?). On the other hand if we denote by &’ the map U3x— (af(x),
al(x))ER" X R", then 2 ==oq’ and since A/ is a submersion, the image of a’
contains a 2-dimensional submanifold N(x)) CR"xR" through a’(x,) such
that 7| N(x,) is a diffeomorphism of N(x,) onto a neighbourhood ¥7(x,) of 2/ (x).
This shows that =z~ }(V(xp)) N {xLEJUM(af (x))} contains a (2rn—1)-dimensional sub-

manifold H of R" X R" through a”(x,).
Now for any local transformation ¢ of E”, we have

n 2 2
$®%, — E(M)
=1\ Ox{

where ¢,(u)=u;(#) and since

%, (u) _ < 8¢ (u) %%_,_ "\ Opi(u) O%uy
ox: mi=1 0u,0u;, dx, 0x, i1+ Ou, Oxi

?

we have

v 0%, (w) Ou, Ouy | &y 06 (u) 0%u,\?
@k "6i(w) Ou; Ou, W) u,\*
v zi(r;'l Ou,0u, ox, 6x1+h2=1 ou, ax§>
Let 1" be a neighbourhood of ;i (f)eJ*R", E") and set S(&,V*)=
{j2(s); s: U—>E" belongs to S(€), x&U}y N*. Then if s=J(E), we have

(1.1) 2( 5 0%84(u) Ouy Buy | 5 9, (u) a%tz;,>2
mi=10y,0u, 0x, 0x, i=1 Ou, Oxi

i=1

v /6% \2
- 2(—'> on S&, V) .
#=1\ 9x?

The jet space J¥(R", E") (k>2) admits the product structure R*" X R?"2" where
g=dim J*(R", E"), R*" is the space with the coordinate system {pi, -+, p%,
pi1, o+, ph} and RT?" is the space with the coordinate system {x;, -+, X,
Uy, 0 Upy =y Phjp o} (Pl Pl 1), Let @ be the projection of R X
R%% onto R¥*. Then because S(€)> f and A(E)D O(n), P(S(€, CV*)) contains
H N O where O is a neighbourhood of a/(x)) € R*".

Since z,(M(a” (x))):ST;f(x)l and 7=, (M(a” (x))):S’E‘;%i(x)i, it is easy to know
that dim z;(H N @)=dim =,(H N ©@)=n. Therefore we may suppose that 2n—1
functions p%, «-+, p%, pi1, **+, pt1 are independent on H N . Then p} is written
by pl=A(p:, -+, pi, pi1, =, pi) where A4 is an analytic function with 2n—1
variables.

Denote by A=c+3>14" the Taylor’s expansion of A at (pi(jz,(/)), -,

=1

PiG D), pLGE), -, p1(5,() ER* " where ¢ is the constant term and
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A" is the sum of the terms of degree r.
Firstly suppose that ¢#=0. Then (7.1) is written by

7] 0
(1.2) ct Z‘.( 2 (“)) +4e 22 E( af (")> (piy
l
+B = kE_I ()  on HNO
where O is a sufficiently small neighbourhood of a’(x;)€ R?* and B is a poly-
nomial with respect to p{ (i5=1) and p{, which contains neither the constant

term nor the terms of linear combinations with respect to (p??, ---, (p})
Since the relation (7.2) holds identically on H N O, we get

Do) o (h=1, e, n).
aulauh H 2

Therefore in this case (7.1) is reduced to the relation

(73) 2(2 6% (u) hp +E 0¢; (u) m)

m1=2 Qu,0u, Ouy

:p’z;}l(p‘fl)z on HNO.

Then we get
2
%¢iw) _ (hy 1 =2, -, n),
auhau,
(7.4)
< 08,0) 06,) _
24—~ = Uup
i=1 Ou, Oug

This shows that ¢ is a local isometry of E”, that is, ¢ = P.
2
Secondly we suppose that ¢=0. In this case the term P! T¢iw) ptpt
mi=1 0u,Ou,

in (7.1) is written by

a¢(u)(A)2_|_ Ea¢(u)A 1+2 a¢(u) hpl

i=2 ul U; hyi= 2auh3u,

and it does not contain terms of degree 1 with respect to the variables {p?,
wes, pi, P11, =, phi}.  Therefore from (7.1) we get

. 00,(u) 00w) _,
"Ezl 6uw auﬁ

This shows that ¢ is a local isometry of E”.
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In any case we obtain AE)CP. Since the relation PCA(E) clearly
holds, the proof of Proposition 7.1 is thereby completed.

§3. Conformally Foliated Structures of Differential Equations
of Euclidean Type

8. Let @* (resp £*) be the map of J*(R", E*) to R” (resp. E”) defined by
a*(ji(f)=x (resp. F(jH(f))=f(x)) and set JL(R", E")={pEJR", E"); aX(p)
=x, f(p)=z}. Then J:(R", E") is diffeomorphic to the product space R"®
X -+« X R"® and so admits the canonical Euclidean structure. In the following
we fix the points x,&R" and z,&E" and denote the space J,,(R", E") simply
by JHE").

Let G be the transformation group of isometries of E*. Then it is known
that G=¢ if and only if

Bi() = 33 a:;(8)u;+b,9)

where @;,(u) =uy(8), (a;(8))€0(n) and bi(s)ER. Denote by P the pseudo-
group on E” generated by G and by © the sheaf of vector fields which generate
local 1-parameter groups of local transformations contained in . For any
local transformation ¢ of E" with ¢(zy)=z,, ¢® induces a local transformation
on JXE"). Thus the isotropy P;, of P at z, induces a pseudogroup P on
JHE™) and the isotropy 62, of the stalk 6., at z, induces a sheaf 6% on JH(E").

For peJ*(E"), we denote by 6¢) the stalk of @ at p and by 6¥)° the
isotropy of ©%). Then 6¢)/0¢%)° is considered as a subspace of the tangent
space T(J*(E™), of J*(E") at p and we obtain the correspondence D®: J¥(E™)
2 p—=>DP =008} C T(JHE"),.

Let J* denote the set of points p&J*(E™) such that dim D® is constant on
a neighbourhood of p. Then J* is open and dense in J*(E"). Denote by
J* the union of connected components of J* on which dimD®=r. Then
D® induces a foliation &F* on J%.

Before stating Theorem 8.1, we give here the definition of a Riemannian
foliation on a manifold M.

Definition 8.1. Let & be a foliation of codimension g on M. < is called
a Riemannian foliation if it admits a following transversally Riemannian struc-
ture

({(Um fai)}a {ra’lﬂ}a {(Rgfa gaﬁ)})
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where

i) {U,} is an open covering of M,

ii) fu: U,— R is a submersion,

iii) g4 is a Riemannian metric on R%,

V) fa=Tupofp 00 UyN Up Where 7,51 (R, 2,)—> (R} g5)
are local isometries.

Now consider a differential equation £ CJ*(R", E") and set SX(E)={/},(s);
sES(E) with s(xg)=2z} and SKHE)=SHE)N J~.

Theorem 8.1. Assume that H(E)=LP. If SKE) is a regular submanifold
of JE, then D® induces a Riemannian foliation F¥E) on SHE) such that each
leaf of F¥&) is an orbit of D®.

The proof of this theorem will be given in the subsequent sections.

9. For a function ¢ on a neighbourhood U* of ji(f)eJi(EN={pe
JYR™, E"); a*(p)=x,}, we can define the function &% by

m a¢

n i a
g =3 pioP 3 3 Pt
i=1 au. i=1 = Jl
o¢
+2 2 P111 ik A 3 .
i=1 jyoryip=1 apjl’...,jk

Then &% is defined on a neighbourhood Uk'=(z}*) X (U*) of jir'(f) e
JEY(E™) where =} (k>1) is the canonical projection of J%(E") onto J; (E™).

Let ¢ be a local transformation on E” such that ¢® maps an open subset
Ut JE(E") onto another open subset CI*. Then ¢%**" maps U=
@EHY YUY onto SV =(zf+)~Y(C1*). Let F be a function defined on C{/%.

Lemma 9.1, &%(¢®*F)=¢®V*8%F) on U for k>0.
Proof. We have

A(Fop®)y - 6’F( iy O @) Buu(3®)
8pj~‘1,,,,,,-l & aup. ap¢1 i,
( (k)) 3P1(¢ ))_|_
’ ap/ iy
> 2 _QF_(QS(/:)) OpY,,...i( )).

B "kapfl - ip PJI,- g
Then
PIPPF) = Bi(Fos®)
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— > O(Fop™) 3(F°¢(k))
S5 23 30, 0
ogp(®
_1_2 E p‘ll M

Ik y,
LT 0 iy i

=3 (o p 200 5 3ok, ouu(9%)
EoOA Ou, aph1

Fr S S ol O )> L)

-
k
CONL 0 phl

(k) (%)
EMJZ(g }m p;((ﬁ )_!_2 szllap“(¢ )

uh hl aph]

ap;,(¢(k)) ()

—T" _“Ehlzhkpsh hkv) 81)"‘ (¢ )

R

+5 3 (0 Pl 33y, PP
Ouy, api,
aph ..; (@@ oF

Ayl a Il apjl fk

— Z H-(¢(k+1)) (¢(L+1)) 2 21)” (¢(l+1)) (¢(k+1))

’1

Heee ST T p”: ]k(q;(k*l))— (¢(k+1))

o ysadp 6p“ e
= (84F)og* TV =g*+DX(BIF) .

Any local vector field X on E” is naturally lifted to a local vector field
X® on J} (E") via the lift of the local 1-parameter group of local transforma-
tions generated by X. Then as the infinitesimal version of Lemma 9.1 we
have 8% X ® =X *+1 5%,

Lemma 9.2. Let X be a local vector field on J} (E"). Then there exists a
local cross-section X of © with X=X® if and only if
— n wm a
XZE“U(” +2P:1 ST
i,j=1 0 pj,

"

+ 3 P )+2ﬂ,—-

]
k a p1
where (@;;) is any skew-symmetric matrix and §; is any constant.

Proof. 1t is known that X is a local cross-section of © if and only if X
is of the form
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” n 6
X =2 au;+8)—
i=1 j=1 0 i

where (e;;) is any skew-symmetric matrix and g; is any constant. Then we
have only to show that

X® =3 a”(u Tt Zp,, oy

i,j=1

+ EPJ]

Jyattaip= l”ap'
If we set X"9=0 and X@=X, we have X®=X¢"DLY® for k>1 where

Y® is of the form 37 3 A . 9

<~ < Tk i
i=1 jypesip=1 apjll.,,,jk

Let us show that

A;:p'":jk = 12=1 G!,-,-p}':l,...,,-k
Since
n n a
X0 =37 (2 o+ ) —
i=1 j=1 6u‘.
we have
X Ou;) = 65,(2 @ u+p;) =20 aijpl]; .
J J
Then by Lemma 9.1
XO(0%u) =3 aijpi’;
7
and since
XO@%) = XOpi = YO pi = A,
we get
Ay =S aypl e XO = XOL 3 (S apd) 2,
e 13 Jj aph
So assume that
0

y¢-h =3 3 (Z,‘ a,-jpfp...,,-,_l)r

i=1jp,dy =1 5=1 Jpradi-a
Then
X<’>(6,,p,1 e = as},(X(l_l)p;-'l,-",h_l)
=85 (YU Vpi i)
= 6‘},(; aijpjzl,-u,j,_l)
= ; aijp.jf:l,---,i,

Since
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X(l)(aj,p.i1 .y 1) = X(l)[’j'l,---,f,
and
Y"’p, — X”)]),l, iy
we get
Y(l)p = E ,]pf:l,...,j,

Thus we obtain

Y(I) == E 2 (2 Up;:l""’jl)

i=1 e ip=1 = 8p"-

1o it
This proves that
X0 = S a0 2+ 330, aj, .
+] 2:;, Py ap' )+2 ﬂ. “

and the proof of Lemma 9.2 is thereby completed.

10. We have seen that the involutive distribution D® is induced from
the sheaf © of germs of Killing vector fields on E” on the submanifold J# of
J*. The foliation given by the orbits of D® on J# has been denoted by &F?.

Lemma 10.1. The foliation F* on J¥ is Riemannian.

Proof. Let G° be the connected component of the group of isometries
on E" and denote by & the Lie algebra of G°. Then G*>4 if and only if

b, (u) = g aij(¢)uj+bi(¢)

where (a;;/(¢))&SO(n) and bi(4) is any constant and & is identified with the
Lie algebra of vector fields X on E” of the form

n 7 a
X = E (2 o+ B —
i=1 j=1 0 ;
where (@;;) is any skew-symmetric n-matrix and g; is any constant. If we
denote by G® the Lie algebra of vector fields X® on J;(E") of the form

;0
R — s __pt
X E a;;{u' 1,{1 ’ a +E (p]l 6p' pll ap]
8
+ 2 (p11 Jk_,-‘*_pfl ka7 )}+2 ﬁt >
e O] i 5‘P u;
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then by Lemma 9.2 & is canonically isomorphic to G¢®. Let G, be the iso-
tropy algebra of G at zy&E". Then there corresponds to &, the Lie sub-
algebra G of G® consisting of vector fields Z® on J% (E") of the form

Z(k) = 2 a‘-j{(uj_ j

‘ —(ui—uxzo»a%
ol
+3 (p,l—a __pi O R

0 ; 0
j”alzﬂ—-—pjl""’j”w_

T1ss Tk jls“'yjk

+ 33 (P, )b

This Lie algebra G§? is isomorphic to the Lie algebra G of vector fields Z®
on JHE") (=J%,.(R", E")) of the form

6
Z(k) = E “:J{Z (pjl
i<j
; 67 ; 7]
+ Z .(p.-;'l,"',jk i —-pjl,"-,]'l, i )} *
P 6p,-1,...,,'k apjl,...,jk

The isotropy group G, of G at z, is naturally lifted to a Lie transformation
group G§® on J*E") and G is the Lie algebra of G{. By Lemma 9.2,
the distribution D® on J* is just obtained from G ie. for each pEJ,
the space D is just the space G%={Z{ (the value at p); Z® <GP} and
the orbit of the component of G{* through p&J! is just the orbit of D®
through p.

Since J*(E") admits the canonical Euclidean structure associated with
the natural product structure R*® x --- X R*® we see that Z® is an infinitesi-
mal isometry on J*(E") with respect to the Euclidean structure and so that
G is a Lie subalgebra of the Lie algebra of infinitesimal isometries on J4(E").
Therefore the component of G is a subgroup of the group of isometries
on J*E") i.e. acts on J% as a group of isometries. By the theorem of
Reinhart [5], the foliated manifold (J%, &¥) is bundle-like with respect to the
metric on J! and &* is a Riemannian foliation. This completes the proof.

11. Let M’ be a regular submanifold of a manifold M and assume that
there exists a Riemannian foliation & on M.

Lemma 11.1. If M’ consists of leaves of F, F induces a Riemannian folia-
tion on M'.

Proof. Let vy be a submersion of a neighbourhood U of pEM to R’
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where g=codim & and denote by v the restriction of v, to U'=M"NT.
Then vy is also a submersion of U’ to RY (¢’ <<q) because M’ is a union of
leaves of &F. Since M’ is a regular submanifold of M, U’ =yry(U") is also
a regular submanifold of U=yy(U).

Assume that (U, ¥,) and (V, ¢y) are two local submersions of &F with
UNV=¢ and yy=gyyoyry on UNV where gy, is an isometry of yvr,(UN V)
onto y¥z(UNV). Since gyy carries v (U' N V') onto vy (U'N V') and since
Yy (U N V') (resp. vy(U N V")) is a regular submanifold of v, (U N V) (resp.
vy (UNV)), the restriction gy of gyy to yvrp(U'NV’) is also an isometry.
This shows that & induces a Riemannian foliation on M’.

By combining Lemma 10.1 with Lemma 11.1, Theorem 8.1 is immediately
obtained.

12. For the sheal © of germs of Killing vector fields on E". denote by
Jl(®) the normalizer of @ in the sheaf of germs of all local vector fields on E".

Lemma 12.1. X is a local cross-section of JI(O) if and only if

X=2] (Eui—i‘;}i @5+ ﬁi)*a*a;

where @;;, B; and ¢ are constants and the n Xn matrix (@;;) is skew-symmetric.

Proof. Y is alocal cross-section of @ if and only if
0
Y = a..U. ) —
S a8,

where @;; and f; are constants and a;;=—a;,. We set X=>] 4,(u) 4
13
calculate the blacket [X, ¥]. Then "

and

[X, Y] = S @, 4,()— 33 (S ayu,-+ ) 245 O
7 ik b ik ou, Ou;

On the other hand since [X, Y] is a local cross-section of @, [X, Y] is written by
X, Y] = 33 (3 7oy +0) -2
i i ou;
Thus we get
(12.1) Ei ;4w “‘%‘- (Eh @, u;+ )

= 7iilU; 6;‘-
% Uit

04;
Ouy,

For any skew-symmetric # X» matrix (@;;) and any vector (8, -+, 8,), the left-
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hand side of (12.1) is always reduced to the form of the right-hand side. This
means that 4;(u) must be of the form

Ajw) = 2 Aj4+7;

where 2;; and 7; are constants. Then from (12.1), we get

(12.2) E’ aijzil'";z:—; @i = T -
In particular, since 7;;=0, we get

(12.3) E (a‘.lzl'—a”l’l) == 0 i.e.
(12.4) ]EQ @;i(2;;+2;:) =0

from which we get 4;;=—2;; (= j) because @;; (i<j) is any constant.
Furthermore we shall show that ;=2;; for any / and j. The relation
(12.2) is written by

(12.5) ail(lll'—Ziz’)"}—jgl(aijle_ajlzij) =Tu
and exchanging the role of i and 7, we get

(12.6) ati(lii—/111)-1‘].4:2’_’1(‘11;'1;;—“;':"11,') =7y
Since @;;=—a;;, 1;;=—7rj; and A;;=—2;;, (12.6) is written by
(12.7) a:‘l(lic‘_xll)'l_jg’l(a:‘j;‘jl_ajllij) =Ti.

From (12.5) and (12.7), we get @;(4;,—2;;)=0 (i==/). This proves that Z;;=c¢
[or any i because «;, (i<</) is any constant. This completes the proof of Lem-
ma 12.1.

Denote by C*(%,r) the set of differential equations & CJ*R", E") such
that A(E)=% and S¥E) is a regular submanifold of J%,

Theorem 12.2. We can naturally associate to any differential equation
EECHP, r) a <CO(q), FXE)y-subbundle P(E) on SXE). This correspondence
is compatible with respective isomorphisms in the following sense: If ¢ is a
local isomorphism of &, to &, which is near the identity and satisfies #(zo)=z,,
then ¢ induces an isomorphism ¢* of the {CO(q), FHE)>-subbundle P(E,) on
SHEY) with the KCO(q), FXE,)D-subbundle P(E,) on SHE,). If codim FHE)
>3, the {CO(q), F¥E))-subbundle P,.E) is prolonged to o generalized Lie
Joliation (F (£), @,(E)) on M(E)=(PAE))?. The correspondence E—(F(E),
o,(€)) is also compatible with respective isomorphism where ®,(£) is the basic



FOLIATIONS AND DIFFERENTIAL EQUATIONS 203

Jorm of PE).

Proof. By Theorem 8.1 D® induces a Riemannian foliation FX&) on
S¥&). Then there is associated to (SKE), FXE)) an <O(q), F4&))-subbundle
Pi(&) on SYE) where g=codim F4&). Thus we can associate to & the
{CO(q), F4E))-subbundle P,(£) D PyE) on S4E). We shall show that this
structure is an invariant of local isomorphism classes of differential equations
in C*(, r) in the sense stated above.

If ¢ is a local isomorphism of &, to &, with ¢(zy)=2z,, then ¢ A(EP 1=
J(E;) on a neighbourhood of z,, Therefore ¢ induces a transformation ¢*
on J¥E") such that ¢4D®=D® and ¢*(S¥E))=SHE,). This shows that ¢*
is an isomorphism of FX&)) to FHE,).

Since A(E)=HE,)=2P, ¢ belongs to the normalizer TU(P) of P in the
pseudogroup of all local transformations on E”. We shall prove that ¢* is
a conformal foliation isomorphism.

Since ¢4+0 =6 and ¢ is near the identity, there exists a local cross-section
Z of J1(®) such that ¢, =¢ where ¢, is the local 1-parameter group of local
transformations generated by Z. By Lemma 12.1, Z is written by

Z =2 (u;+33 “ijuj+/9£)i .
i FES 3u~

8

This shows that ¢ is a local transformation of the form
¢,'(u) == Cui+2 a,-,-u,-—?—bi
]
where a;;, b; and ¢ are constants and the nX#n matrix (@;;) belongs to SO(n).

Then

 0'g,(w) _ <h 99(w) d'u,,
axg.i.,.ax;.g =1 Qu, ax;}.”@x;g

(= lht1,).

This shows that ¢* is a transformation on J*(E”) such that, if we set
Piyrip = Piperi (8

we have
Piyip = 23 TikPly iy

where 7;; =a;;+ cd;;. Therefore ¢* is a conformal transformation of the
Euclidean space J*(E"). Since F4&;) is a Riemannian and so conformal
foliation with respect to the Riemannian metric on S*(&;) induced from the
Euclidean metric on J*(E"), ¢* is a foliation isomorphism as a conformally
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foliated structure.

Now for £€C*P, r) with codim F*&)> 3, by the 2-nd prolongation
of P(E) we get a <CO(q)®, (FHUE))®>-subbundle P(E)® on P(E)® and
we know that CO(q)®={e}. Therefore by Proposition 5.4 the foliation
(FHE)N® on PA(E)P is a generalized Lie foliation (F,(£), ®,(£)) where F(£)
=(F4£))@ and the 1-form »,(€) is given by the basic form »® on P(£)®.
Since ¢* is an isomorphism of the <{CO(q), F*&))>-subbundle P,(&,) with
the <CO(q), F%E,y-subbundle P/E,), by Proposition 5.3 ¢* induces the
isomorphism (¢9)® of <CO(g)®, (F4&,))®>-subbundle P, (£)® to {CO(q)?®,
(FHE)PD-subbundle P(E,)® i.e. if codim FEE,)>3, (4*)@ is an isomorphism
of (FAED), »,(EY)) to (FAE,), ®,(E;)). This completes the proof of Theorem
12.2.

13. Let us give an example of a differential equation & such that codim
FHE)>2.
Let ECJX(R", E") be a differential equation defined by

(13.1) o1 =12, and p, =2,

and with A(E)=% where pl=é<zui>2, p2=é<gz—uz">z, 2(x)=p,(j(f)) and
2(X) =L JH)- e s

By regarding x,, ---, x,, as parameters, (13.1) is a system of ordinary differ-
ential equations. Assume that n>3 and pi(p)=0 for any p€&. Then it is
easy to check that the differential equation & is defined by

( i(t)_ n dZui ﬂ)Z
( 2 gz dr* dt

) o552

where t=x;. For any n—2 functions uy(z, X,, -*«, X,), ***, u,(f, X5, **, X,,), the
differential equation (13.2) admits a solution (uy(¢, Xy, ***, Xu)s Up(Z, Xz5 *>*5 X))
We shall show that there always exists a solution (u;, u,) such that u; is not
constant which means that (i, u,, -, u,) € S(E).

(13.2) = (h(t)—}j; ( dl;"

Given any functions ug, -+, u,, any solution u, of the differential equation

(13.3) (%)z+g (‘;—‘;‘y—zl(:) —0
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is also a solution of the differential equation

Aty dty | v du; duy () _
di? dt = df* dt 2

(13.9)

Therefore the solution space S’ of (13.3) is contained in the solution space
&’ of the differential equation

(d_Z’LZ. du
di* dt = 2

S
dr®
) 40
(< dt ) +l=3 xl(l)
< () 31 (5) —40).
Choose any solution u#,=S8”\&’ and consider the differential equation
du, \? = du; \?
13.5 (%) = 20— Gy
(13.5) = (-2 T

Then because u,&ES’, 4,(t)— 2 ( > #0. Therefore any solution u, of (13.5)
is not constant.

&)

Now the involutive distribution D® on J*(E") is generated by the vector
fields

8, @
zZH = z?.‘ <P§'1 ——Pi 5 >+
1

opj, op3,
; a g )
i .9 9 ).
+j1§fk<p’1""’1k OP;, i Phyoeais O] i
Therefore the dimension » of the orbit of D® through a point pJ¥E") is
at most n(nT——l)'

On the other hand, for any functions us, -, u,, we have a solution (i,
Up, Us, ==+, U,) of & Then by considering the (k—2)-th prolongation p*~%&)
of € and by choosing an open subvariety &% of p*~%&) such that S¥E*) is a
regular submanifold of J¥, we have the inequality dim S¥E¥)-+m-+n>
dimJ*(R", E*~?) and by taking an integer k such that dim J*(R", E "'2)>ﬁ(~n—2_—1)—|—
m+n+2 we get dim S’;(8k)>n(nT~1)+2>r+2 i.e. codim FYEH>2. There-

fore there corresponds to &% a generalized Lie foliation (¥ .(&%), @(£%) on
a manifold M(E*) in the sense of Theorem 12.2.
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14. In this section we refer to foliations on a subvariety of a manifold.
These foliations naturally correspond to involutive systems of differential
equations of some regular type.

Let A be a subvariety of a manifold M i.e. a subset of M such that, for
each point p,& 4, there exist a neighbourhood U of p, in M and smooth func-
tions f;, -, f,, on U satisfying AN U={peU; f(p)= --- =f,(p)=0}. A sub-
variety A is said to be almost regular if the set 4’ of points p& A such that
ANU is a submanifold of M for a neighbourhood U of p is open and dense
in A. Let A(d) be the union of d-dimensional connected components of A’.
Then A’ is the disjoint union LdJA(d).

Definition 14.1. A family of connected subsets F={Lg}gex of an almost
regular subvariety A4 of a manifold is called a foliation on A if the restriction
G (d) of F to A(d) is a foliation on the manifold 4(d) for each d.

Definition 14.2. Let A and B be almost regular subvarieties of a mani-
fold and let 4 and &% be foliations on 4 and B, respectively. A homeomor-
phism ¢: 4— B is called an isomorphism of F4 to & if it satisfies the following
conditions:

(1) #(A(d))=B(d) and the restriction ¢, of ¢ to A(d) is smooth for
each d.

(2) ¢, is an isomorphism of F4(d) to F2(d) for each d.

Now let us consider differential equations in J*(R", E™).

Definition 14.3. A differential equation £ J*(R™, E") is said to be pseudo-
involutive if, for any pEE&, there exists a solution s&S(€) such that j4(s)=p.

If ECJ¥R™, E™) is pseudo-involutive, then for each p,&&, & is defined on
a neighbourhood U of p, in JX(R", E") by smooth functions Fj, «--, F, and, if
U=UNJHE") %6, SH&) is the common zeros on U of the smooth functions
fi» ***» fo Where fi=F;|U. Therefore S¥&) is a subvariety of J*(E").

Corollary 14.1. Let £ be a pseudo-involutive differential equation in
JER", E*) with J(E)=P and set A,=S4E). Then A, is a subvariety of Jt. If
A, is almost regular, then there is induced a foliation &F, on A, such that F(d)
is a Riemannian foliation on A,(d) for each r and d.

Proof. Since S*&) is a subvariety of J*(E") and J* is open in JA(E"),

SHE)=SHE)N J* is also a subvariety of J%.
Let 7* denote the projection of J*(R", E")=R"XE"XR*® x -« X R*®
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onto J¥(E")=R"® x --- X R*® defined by r*(x, z, p)=p where (x, zZ)ER" XE"
and pER*® x -« XR"®_ For any open subset K of 4,=S%&), Ex=ENK
where K=(r*)"Y(K) is an open subset of & and S¥Ex)=K. In particular for
K=A4,d) we have a pseudo-involutive differential equation &, being open
in & and satisfying S¥&,)=4,(d). Therefore D® induces a foliation F(d)
on A,d) of codimension d—r such that any leaf of &,(d) is an orbit of D®.
Thus if we denote by &F, the family of orbits of D® in 4,, &F, is a foliation on
A,. By Theorem 8.1, &,(d) is a Riemannian foliation on A4,(d). This com-
pletes the proof of Corollary 14.1.

Corollary 14.2. Let & (i=1, 2) be pseudo-involutive differential equations
in JHR", E") with JA(E)=P and set A:=S¥E"). Assume that AL, i=1,2, are
almost regular. If there exists a local isomorphism ¢ of & to E satisfying
&(zp) =z, and being near the identity, then ¢ induces a foliation isomorphism ¢,
of (4;, F}) to (A2, F?) such that the restriction of ¢, to AXd) is a conformal
Joliation isomorphism of (4}(d), FH(d)) to (AXd), FXd)) for each r and d.

Proof. By Corollary 14.1, on the subvariety 4.=S*%&") there is induced
a foliation &7 such that the restriction Fi(d) of Fi to Ai(d) is Riemannian
and Ai(d)=S¥&{) for some differential equation &f which is open in &°.
¢ induces a homeomorphism ¢, of A; to 4% and since ¢ is also a local iso-
morphism of & to &4 at (zy, z)) EE" X E", it induces a foliation isomorphism
of (S¥Es), FHED) to (SKES), FHER)) which is conformal by Theorem 12.2.
Since (SKE8). FHED)=(4i(d), Fi(d)), this completes the proof.
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