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When is a Field a Jacobi-Field?
A Characterization of States on

Tensor Algebras

By

Erwin BRUNING*

Abstract

In order to analyse the positivity condition for states on the tensoralgebra E over certain
(function-)spaces E more efficiently a representation of the components of the states in terms
of a set of "independent parameters" is suggested. For this purpose the concept of a Jacobi-
field is introduced. In the case of a finite dimensional space E every state on E is "para-
metrized" this way. If however the basic space E is infinite dimensional additional domain
problems arise related to algebras of unbounded operators which are involved naturally.
It is analysed to which extent this "parametrization in terms of Jacobi-fields" also works
in the general case, and it is shown that for "many" basic spaces E which occur in applications
"most" of the states admit indeed such a "parametrization". This then also means a cor-
responding decomposition for the associated algebra of unbounded operators into "inde-
pendent components". Several applications are indicated.
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§0. Introduction

States on the tensoralgebra over a veetorspace E of functions arise na-
turally in various domains of Physics and Mathematics. With an appro-
priate choice of the basic function space E they arise in:

i) general quantum field theory as the sequence of '«-point-functionals' of
the field [5],
ii) statistical mechanics as the sequence of correlation functions of a system
[20], and
iii) the theory of generalized stochastic processes as the sequence of mo-
ments [21].

As our motivation for this subject came from quantum field theory the
assumptions about the basic space E are guided by this. But they are general
enough not only to cover i) but also a rather general situation for iii). Vari-
ous parts of the results also apply to ii).

As usual a state T on the tensoralgebra E over a space E with involution *
is a normalized continuous linear functional on E which is positive with re-
spect to the positive cone defined naturally by the product and involution
of E (for details see Section I). The distinguishing feature of a tensoralgebra
E is its special grading (compared to topological ^-algebras in general). This
is partly reflected by the fact that a state T on E has components Tn (the n-
point-functionals of a field, the correlation functions, or the moments of a
generalized stochastic process):

T={1,T19T29 -.-}.

The positivity condition implies a complicated chain of inequalities and
relations among these components. This fact has prevented any successful
analysis of the relations between the components Tn of various degree that
goes beyond the GNS-construction [2,4]. A "parametrization" of the T
in terms of a "set of independent parameters" is the best one can hope for
in this context.

In this article we want to isolate a "set of parameters" for states on tensor-
algebras and to prove its basic properties. The appropriate notion for this
purpose is that of a Jacobi-field (Definition 1.2) and the associated Jacobi-
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states (Definition 1.5).

In order to give a very short (but rough) explanation of the underlying

idea we consider the simplest example which is well known, that is we con-

sider the case where the basic space E is one dimensional. Then every state
on the tensoralgebra E over E can be considered as a sequence C={1, cl9 c2,
•••} of positive type. By the GNS-construction there is a hermitian operator
A in a. separable Hilbert space with cyclic unit vector <f>Q such that

c«=<00,^0o>, i = 0, 1,2, -.

holds. And such an operator A is known [1] to have a representation in terms
of a Jacobi-matrix

of complex numbers alV=%; and the numbers

have to be considered as independent (with some modifications if for some
/ 0f-ff-+1=0 occurs, see Definition 1.3). The components cn of the sequence
C of positive type now appear as functions of this set of parameters:

(the 00-component of the /z-fold matrix product).

Thus for instance,

C3 = tf

= C2c,+c2(c2- 1 Cl 1 2)+(c2- 1 cj 1 2)au .

In the general situation of an infinite dimensional space E, various addi-
tional complications arise as now an infinite set of operators {A(x)\x^E}
with cyclic unit vector in a separable Hilbert space occurs which in the general
case do not commute and are not bounded. The appropriate concept which
generalizes the Jacobi-matrix a of the one-dimensional case is that of a "Jacobi-
field" and can thus be considered as the corresponding "parametrization" for
states on E.

The concept of a Jacobi-field in quantum field theory is from a physical
point of view a rather natural one and has proved to be very useful [17, 19].
In fact all relativistic quantum fields which have been constructed up to now
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over physical space-time are Jacobi-fields. Our analysis will offer an explana-
tion of this fact.

This article has to be considered as a corrected and extended version of
my RIMS preprint n. 463 "When is a field a Jacobi-field?" which contains
some errors and gaps.

The organization of this article is indicated by the table of contents. Some
applications are pointed out at the end of Section V.

§L Jacobi-Fields and Jacobi-States

1. 1 Assumptions and definitions.

The basic space E over which we are going to consider the tensoralgebra
and states on it is supposed to satisfy the following assumptions:

E is a nuclear barreled space over C with continuous involution * such
that all spaces

(H) En = ®lE n=2, 3, —

are barreled too.

Here ® *E denotes the completed «-fold projective tensor product of E. In
the case of a nuclear Frechet-space for instance it is known [11, 13] that all
the spaces En are nuclear Frechet-spaces and thus are barreled. Another
way of assuring the tensor-product spaces of E with itself to be barreled would
be to assume E to be a nuclear LF-space and to work with the inductive tensor-
product topology and to proceed along the line of [16]. In any case when-
ever (H) holds we know all the spaces En9 /i=l, 2, ••-, to be nuclear barreled
spaces with continuous involution (by canonical extension) and therefore
the locally convex direct sum

is a nuclear barreled space with continuous involution * [11, 13], Under the
product

fe y) -> x*y, (x*y\ = 2 x,®yj x9 y<=E (1.1)- - - -
E turns out to be a locally convex *-algebra with unit

i = (1,0,0,-).

E is called the (completed) tensoralgebra over E.

Definition 1.1. A family {A(x) \ x&E} of linear operators A(x): 3)-*3), 3)
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a dense subspace of a separable Hilbert space M9 is called a field over E iff
i ) xt-*A(x) is a linear map from Is into the algebra L(3), 3)) of linear opera-
tors 3)-*3).
ii) xi->A(x)<f> is a continuous map from E into c# for every
iii) ,4(;c*)eC4(x))* (=the adjoint of A(x) in M) for every
iv) There is a unit vector 00e.2) such that the linear span

3), = Lin^Cx!) - A(x^\x^E9 n = 0, 1, 2-}

is dense in Si, e.g. 00 is cyclic for \A(x) \x&E}.
Thus we consider a field ^4 over £ to be an element of

£h
scc(E, L(3), 3))) (1.2)

where h refers to the hermiticity relation iii), sc to the continuity property ii)
and c indicates the existence of a cyclic vector.

If A is a field over E we denote by M^ the closed sub-space of M gener-
ated by {A(x^-A(xJ)t0\xiGE9j=09 1, — , n} .

The n-field-sector Mn of A is then defined as

D for /i > 1 and <#0 = C00 (1 -3)

e.g. that subspace of M^ which is orthogonal to M(n^. If Qn denotes the
orthogonal projection from M onto Mn we know Qn3) to be dense in MH, but
O«5) may fail to be in the domain 3) of the field A.

A Jacobi-field is defined to be a field for which Qn3) always is contained
in 3). More precisely we have [71.

Definition 1.2. A field A over E with cyclic unit vector <l>^3) is called
a Jacobi-field (over £) iff

a) 3)=®3)n (direct sum), 3)Q=C<t>^
»=o

^n is dense in the «-field sector Mn, n=l,2, •••
b) There are linear maps Afj: E-*L(<DJ9 3)^ (L(3)^ 3)^) the space of linear
operators 3)f-*3)i) for /, j=0, 1, 2, ••• such that

ii) jci->^^(jc)# is a continuous map from E into Mt for every
iii) ^/**)£(^/«(x))* for every

iv) ^(,v)0 - S S^Cx)^ for all .reE whenever 0={00, 0ls • - - , 0,, 0, 0,

Remark 1.1. We mention a simple but important consequence of these
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definitions:

An+ltn(E) - A2fl(E)AltQ(E)t0 is total in Mn+l (1.4)

for 71=0, 1,2—.

It turns out to be useful to distinguish special classes of Jacobi-fields. These
are defined as follows:

Definition 1.3.

a) A field A over E is said to be a bounded Jacobi-field iff A is a Jacobi-field
such that all the operators Afj(x), x&E, are bounded operators from the
Hilbert space SLj into the Hilbert space SL{ for all i9j=0, 1,2, —.
b) A field A over E is called a Jacobi-field of order N iff A is a Jacobi-field
such that the state space M of A is generated by the first N4-1 field sectors,
e.g.

M = ®<9in N^N minimal
»=o

If A is a bounded Jacobi-field we can and will assume that the operators A^(x\
x&E, are defined on all of Mj and not only on the dense subspace 3)j of Mj.

Remark 1.2. The notion of a Jacobi-field has been introduced in axio-
matic field theory by Yu. M. Berezanskii and V. D. Koshmanenko in 1969
[19]. Their notion of a Jacobi-field seems to correspond what we have called
a bounded Jacobi-field. But already simple examples of relativistic quantum
fields such as the Wick-square of a free field [5] show that also Jacobi-fields
occur which are not bounded (In this example the diagonal operators AH(x)
are not bounded). From the point of view of classifying fields Jacobi-fields
which are not bounded obviously should be considered.

Remark 1.3. Corresponding to the notion of a Jacobi-field of finite order
there is the general notion of a field of finite order. A field A over E is called
afield of order N iff N is minimal such that the state space M of A is generated
by the first N+l field-sectors [8, 10]:

M = ®Mn=M(N). (1.5)
8 = 0

Here we will not consider this case fuither in much details.

1.2. Fields over E and states on the completed tensor algebra over E.
If one wants to decide whether a given field A is a Jacobi-field or not this

seems to be quite hopeless because of lack of information about the projectors
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Qn. Therefore the question whether a given field is "equivalent" (in some
useful sense) to a Jacobi-field seems to be more appropriate. In order to
explain the following definition of equivalence of fields we have to recall some
facts about fields.

The sequence

TA = {1, rf , Tf, -, TA
9 •••} (1.6)

of n-point-functionah

(1.7)

of a field ^4 over E with cyclic unit vector 00 uniquely defines a linear func-

tional TA on the tensoralgebra £?(£)= 0(®1£) over £. This functional turns
«=o

out to be continuous [4, 6] and thus has a unique continuous extension TA to
the completion E of 3(E). TA is state of the *-algebra E with unit

(1.8)

(' indicates the topological dual).
By the GNS-construction [2-5] every state T&£(E) on E gives rise to

a strongly continuous hermitian representation AT of the ^-algebra E by linear
operators on a dense invariant subspace 3)T of a separable Hilbert space with
a cyclic unit vector <f>Q=<t>l^3)T such that

T(x) = <00, AT(x)<t>Qy for all xGE (1.9)

holds. And such a representation AT defines by restriction to E a field AT

over E: AT: =AT \*E. If T=TA is the sequence of w-point-functionals of a
field over E it is quite natural to consider the fields A and AT± "essentially as
the same". Therefore we propose

Definition 1.4. Two fields (over E) A and B are said to be equivalent iff
their sequences TA resp. TB of w-point-functionals agree (on 3(E) or E):TA=TB.

It is instructive to note which possibilities are left for equivalent fields. Be-
sides the obvious one of unitary equivalence there are in general quite a lot
of other possibilities. These possibilities are most conviently described in
terms of the associated representation AT of E for a given T^6(E) [3, 7]. Any
strongly continuous hermitian representation A of E in MT such that:
i) AT^A^AT (there exists always a maximal hermitian extension AT of AT

which is strongly continuous) or
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ii) A c AT but with A(E)<f>0 dense in MT (1.10)

yields according to equation (1.9) the same state T on E and thus all fields
A=A hjE where A satisfies i) or ii) are equivalent to the field AT=AT \*E
which is given by GNS-construction.

Note that the corresponding phenomenon occurs if a single hermitian
operator with a cyclic unit vector is to be represented by a Jacobi-matrix (of
numbers).

The following definition of a Jacobi-state takes care of this nonuniqueness
of the associated fields.

Definition 1.5. A state T^G(E) is called a Jacobi-state iff the associated
field AT (by GNS-construction) is equivalent to a Jacobi-field. The set of
all Jacobi-states on E is denoted by <?/(£). The set of all states T on E such
that AT is equivalent to a bounded Jacobi-field is denoted by <?/*(£).

According to this definition we have

Sn(E)^ej(E)^e(E) (1.11)

and within each class of fields one could distinguish the class of states of finite
order and that class of states which are not of finite order thus obtaining a
first classification of states on the tensoralgebra E. A characterization of
those states T on E such that the associated GNS-field A is (equivalent to)
a field of finite order is given in Theorem 2 of [10]. This characterization is
entirely in terms of the state itself not referring to the associated field. Simi-
larly in Section III a characterization for a state on E to be a Jacobi-state will
be given using only properties of the state.

1.3. A first characterization of Jacobi-states.

By definition the projection operators Qn map the domain 3) of a Jacobi-
field into 3). By the following proposition we learn that this property is up
to equivalence characteristic for Jacobi-fields.

Proposition 1.1. If A is afield over E with domain 3), <3)=M, and if the
projections Qn on the n-field sectors Mn of A map the domain into itself, Qn3)
d<D9n=l929 ••• then A is equivalent to a Jacobi-field.

Proof. If 00 is the cyclic unit vector of A, define ^)0=C<f>Q and 3)n=Qn3).
A eo

Then 3)n is dense in Mn, n=l, 2, — and the direct sum jg)=0.2)n is dense
«=o

eo

in M as 3) is dense in M=®Mn. By assumption all the operators are well
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defined. As A is strongly continuous on 3) (property ii) of Definition 1.1)
we get that Ai} is strongly continuous on 3)j (property b ii) of Definition 1.2).
Hermiticity of A, e.g. property iii) of Definition 1.1, immediately implies

(At fa))* = A,fo*) for all x(=E and ij = 0, I, 2, - .

By definition of the subspaces <9i(n) we have

A(x)3) n .#w C.0 0 «#GH.D

and therefore for all 0e.0n <#(»), all *e£, and all i^n+2

Q;A(x)<f>=0

and thus ASJ=0 for i— 7>2. Because of the hermiticity relation for the Atj

we get AU=Q whenever | i—j \ >2.
If A(x)=(Atj(x)9 i, 7=0, 1, 2, •••) denotes this matrix of operators we

get A \*3)=A: for any 0={00, #lf -, #*, 0, •••} e4)c.fl), <t>n^3)nc:3) we have

= 2 A(x)tj -= S 2 C^(.v)0y*y = S
y=o ' f=o/=o I-

This implies that A is a Jacobi-field over E with domain .2) and cyclic vector
00 such that TA=TA holds. Therefore ^4 is equivalent to the Jacobi-field A.

If A is a field over E with cyclic vector $?, domain .g), and statespace
SiA=3) it defines by canonical extension a hermitian representation ./4 of the
(incomplete tensoralgebra 3(E) over E) on j®. This representation has as
minimal dense invariant domain just

If B is an equivalent field over E with cyclic unit vector 0f and state-
space MB an isometric map U is well defined from 3)% onto the minimal dense
invariant domain J®o for the representation B of 2(E) associated with 5 by

VA(x)ti = B(x)$ for all

By continuous extension a unitary map £/: MA-*MB is obtained such that

UMfa = MM for n = 0, 1, 2, -.. .

It follows that U maps the fieldsector M* of ^4 onto the field-sector «#£ of 5,

Therefore up to a unitary transformation of the statespace equivalent fields
have the same field sectors.
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Together with (1.10) this observation implies the following corollary to Prop-
osition 1.1.

Corollary 1.2. Let T be a state on E and AT its associated GNS-field on
its minimal invariant dense domain 3)lc.MT. Then T is a Jacobi-state iff AT

has an extension A^-Ch
scc(E, L(3), 3))) in MT (e.g. A is afield such that 3)1^

3)^MT and A(x) \*<Dl=AT(x\ x<=E) such that for the domain 3) of A and the
projections Qn onto the field-sectors of A the relations QnS)^S) hold for n=
0, 1, 2, -..

Proof. If T is a Jacobi-state it can be regarded as the sequence of n-
point-functionals of a Jacobi-field A. This Jacobi-field A can be supposed to
be realized in the GNS-Hilbertspace for T and then satisfies the conditions
of the corollary. Conversely if these conditions are satisfied for the extension
A of AT it follows T=TA. By Proposition 1.1 AT is equivalent to a Jacobi-
field. Therefore T is a Jacobi-state.

§ II. Density of Jacobi-States

II. 1. Spaces with approximation property.

In order to prove that the set 6j(E) of all Jacobi-states is dense in the
set of all states 6(E) on E a certain approximation property of the basic space
E is used. The appendix contains a short discussion of this property and
shows in particular that many important spaces E which actually occur in
applications have this approximation property.

Definition 2.1.
a) A locally convex topological vector space E is said to have property (a)
iff there is a net (^)-yer of continuous linear maps TTY: E-^E such that
i) dim Ran ̂ <oo for all
ii) lim 7Cy(x)=x in E for all

•yer
iii) {KI(X) | r ̂  F} is bounded in E for every x e E.
b) A locally convex topological vector space E is said to have property (a)
with respect to sequences or property (as) iff there is a sequence {^n}neN of
continuous linear maps nn: E-*E such that
i) dim Ran tfw<oo for all
ii) lim nn(x)=xm E for all».>«»

Suppose now that the space E satisfies (H) and has property (a). As E
is supposed to be barreled we get immediately that {^Ir^P} is an equi-
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continuous subset of -C(E, E) (Theorem III 4.2 of [11]). We can and will as-
sume that 7r^=7ry holds for all r^T- Otherwise we would take £Y=(7rY+
7r^)/2 where the definition **(*)•"==(**(**))* is used, idf is again a continuous
linear map with finite dimensional range Ran 7r^==(Ran TTY)* and Km K$(X)
=(lim 7ry (x*))*=(x*)*=x for all x^E. Thus % has the same properties and
satisfies £^=£Y-
For every r^-F1 we define TTY: E->E by

-_ . _ /TN -JgJM 7r®0 _ 1 O 1 \
7T«y. - ^7 Try 7t-y - I . \jL.L)

» = 0

These maps are homomorphisms of the *-algebra E with unit, e.g. for all x9

all r ̂ r we have

(2-2)

Furthermore we will show

fe 1 r ̂  ^} is equicontinuous in -£(£, ̂ ) (2.3)

lim KI(X) =xinE for all x&E . (2.4)
Yer

Ran XT = 3 (Ran %) for all r ̂  ^ (2.5)

If #(M) is a continuous seminorm on En there are continuous seminorms
ql ••- ̂  on E such that #(»)<#i®* — ®*#«.
As {^Ir^r} is equicontinuous in £(E,E) there are continuous seminorms
pl9 ••-,/?„ on E such that #/%(*)) </?/(*) holds for all r^A ;ce£, and j=l,
— , w.
It follows

for all rer and

Therefore {n®n\r^r} is equicontinuous in X^, Ett) for «=1, 2, — and thus
felr^r} is equicontinuous in £(E, E). For any x=xl® ••
we have

As i^(xn) \r^r} is bounded in E we get by induction on n

and therefore ^f = lim Ky(x) for all
•yer

This implies (2.4) because 3(E) is dense in E and fe| r e/1} is equicontinuous
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The following relations for «=1, 2, ••• and r^F are obvious:

7uf»(®"E) = ®'*Ran ̂  .

®* Ran TTY, being finite dimensional, is a closed subspace of En\ thus Ran nfn

=?z:?)"(£,l)=®*Ran KI and therefore

Ran *- = <g) Ran Tzf " = 3 (Ran jr-)
»=o

e.g. (2.5)

II.2. Density ofJacobi-states.

If the underlying space E satisfies (H) and has property (a) there is a net
OrY)w of continuous linear maps E-+E according to definition (2.1). Then
the associated continuous linear maps TTV: E-*E defined by eq (2.1) have prop-
erties (2.2)-(2.5). Thus if T is a state on E we define for

T* = To*, (2.6)

and get immediately by (2.2) and (2.3) that {T*\r^r} is an equicontinuous
net of states on E. By (2.4) it is clear that

Mm T*(x) = T(x) (2.7)
•yer

holds for every x<=E. The Banach-Steinhaus Theorem (§39.5.1 of [13]) im-
plies that the above convergence is uniform on every precompact subset of
E. Thus if we could show the T1 to be Jacobi-states we had specified a notion
of convergence with respect to which the set of Jacobi-states is dense in S(E).
In order to do so we recall first the following definition [6].

Definition 2.2. A state T^£(E) is said to be finite dimensional iff the
range of the associated GNS-field AT is finite dimensional, e.g. if AT(E) is a
finite dimensional space of operators.

Remark 2.1. In [6] this class of states is characterized by the equivalent
condition that the factorspace E/I(T)f]E is finite dimensional. Here I(T)
denotes the maximal two-sided ideal in E which is contained in the leftkernel
L(T)={x&E\T(x**x)=Q} of the state T. If AT denotes the GNS-representa-
tion of E associated with T one has J(r)=Ker AT.

Proposition 2.1. Every finite dimensional state on E is a bounded Jacobi-
state, e.g.
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ifSf(E) denotes the set of all finite dimensional states on E.

Proof. For a finite dimensional state T on E9 we know that the sub-
spaces

MEM, EU> = {x<=3(E)\Xj = 0 for allj>4

in the GNS-representation of T are finite dimensional. It follows

and dim M(n-> < oo . Therefore the w-field-sectors

in this case are finite dimensional subspaces of the domain 3)T of the GNS-
representation and this implies On3)T^3)T for all n=09 1, 2, •••. By Proposition
1.1 AT is equivalent to a Jacobi-field which is obviously bounded as the field-
sectors are finite dimensional; thus Tis a bounded Jacobi-state.
Together with the remarks at the beginning of this subsection this proposi-
tion immediately implies the density of Jacobi-states.

Theorem 2.2« Suppose E satisfies (H) and has property (a). Then for
every state T^£(E) on E there is a net (T^^r of finite dimensional states
T**^£f(E) and a continuous hilbertian seminorm q_ on E such that

i) \r*\<q forallr^r
ii) T(x) = lim T^(x) uniformly In x^K for every precompact subset KdE.

Proof, a) If re<?(£) is given define T'1 according to (2.6). Then the
net {T*\r^r} is equicontinuous. Thus there is a continuous seminorm
q on E such that i) holds. As E is nuclear this seminorm can be chosen to
be hilbertian. Relation (2.7) and the remark following it prove ii).
b) Let us denote by A = (A, 00, <D=A(E)<f>09 M) the GNS-representation of
T where the specification of the cyclic unit vector <f>Q, the domain 3) and the
state space M is included and by A**=(A\ <f>l 3)^=A\E)<1>19 M^) that of T1.
Then we have for all

Therefore A1 is unitarily equivalent to the following representation of E in M:

A* = (A*^, 00, ,4(2(Ran 7rY))00? [4(2(Ran *Y))0J) .

Here equation (2.5) is used and [M] denotes the closed subspace of M generated
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by a set M^M. In this representation we have

and therefore dim A\E)<dim Ran^Y<°°j that is T1 is a finite dimensional
state on E for each r^r and this proves Th. 2.2.

Using some general results about weak topologies one can give a stronger
version of Theorem 2.2. As a nuclear space is separable with respect to each
of its continuous seminorms Th. Ill 4.7 of [11] implies:

Lemma 2.3. Let F be nuclear space with topological dual F' and HdF'
be an equicontinuous subset. Then the weak topology of F' restricted to H is
metrizable, e.g. a(F'9 F) ^ H is metrizable.

In the situation of Theorem 2.2 every state T on E is the weak limit of
an equicontinuous net (T^er of finite dimensional states. As E is nuclear
we can apply Lemma 2.3 to H={Tl\r^r} U {T} and obtain that o(E',E)
^H is metrizable. Therefore we can select a subsequence Ti=Ti(3}J^N,

converging weakly to T.

Corollary 2.4. Suppose E satisfies (H) and has property (a). Then every
state T on E is the weak limit of a sequence (Tj),j^N of finite dimensional states,
e.g. S(E) is the weak sequential closure of£f(E) and thus in particular ofSjb(E)
or8j(E).

Remark 2.2. For E=S(Rn\ the Schwartz space of rapidly decreasing
C°°-functions on Mn, HJ. Borchers proved in [6] that the set of finite dimen-
sional states is weakly dense in the set of all states on E. As this space is known
to be a nuclear Fr^chet space it satisfies our hypothesis (compare appendix).
Thus this result is covered by Corollary 2.4 which provides however important
additional information.

§ HL Characterization of Jacobi-States

III. 1 . Decomposition of states.

In the introduction it was claimed that a Jacobi-field provides a para-
metrization of the Jacobi-states in the following sense: every component
Tn^E'n of a Jacobi-state re<?/£) appears as a function

Tn = r.((^y)lt/HlilA...) (3.1)

of the independent parameters Aij9 0</<j</-fl, i+l<[n/2].
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But as we have seen in Section 1.3 there is some freedom with respect
to extensions or restrictions of the associated Jacobi-field A=(Aij\iJ=Q9 1,
2 •••) such that (3.1) holds. Therefore the goal of this Section III is to elimi-
nate this freedom in the parametrization (3.1) which is due to domain prob-
lems for unbounded operators involved, and to present the corresponding
characterization entirely in terms of properly chosen functionals. This is
achieved by introducing the notion of a "Jacobi-decomposition" of a state
in such a way that
i) the sequence of w-point-functionals of a Jacobi-field has this decomposi-
tion property
ii) if a state allows a Jacobi-decomposition then it is a Jacobi-state (in the
sense of Definition 1.5).
Obviously i) has to be more or less the definition of a Jacobi-decomposition
while ii) needs a proof.
By its very definition a Jacobi-field A associates to every x&E an infinity of
linear operators {Aij(x)\i9j=09 1, 2, ••- , \i—j\ <!} in some Hilbert space.
In principle this fact can be described by saying that A arises by GNS-con-
struction from a state on a much bigger algebra than E in which however E
is embedded. (Formally E has to be replaced by

F=ILFiJ (only for |/-j|<l)
M=O

and the big algebra in question is a certain subalgebra of the tensoralgebra
over F with appropriate definitions of the product and the involution).

As in this approach one cannot restrict to direct sums of finite tensor
products various additional topological problems arise. This would imply
that this approach though in some sense being more elegant is actually more
complicated than necessary.

If one restricts to reconstruct only the structure of the underlying Hilbert
space and not this big algebra of unbounded operators the situation is much
simpler and more direct as it now suffices to consider only direct sums of finite
tensorproducts of E which is much easier. But instead of states on an al-
gebra one now only has certain non-negative sesquilinear-forms on a certain
space E. This nevertheless yields a complete description of those states on
E arising from a Jacobi-field and allows to discuss various important properties
of the set of all Jacobi-states. We begin by introducing some notations. For
weN we denote:



224 E. BRUNING

<&(«) = {/£<£(«) h\ = A:}.

Obviously ^*(w)=0 if k>n and efn(ri) contains exactly one element 7=7(«)
=(n,n-l, -,2,1).
For 7=(ilf -, in)*=/(n) we define /*=(/„, -, *2, /,).

(«) and 7*e^(m) we denote

7X7 = (|18 ..., j^, 4 = fc =jl,j2,

Furthermore we introduce

M+1 = {(/l9-,/r+1)i/ye^^

and obtain for H(=[k, /]r+1 and

With these notations we can describe Jacobi-fields and the associated
sequence of «-point-functionals in more details. Assume a Jacobi-field A
=((AU) 1,7=0, 1,2, •••) to be given according to Definition 1.2 with cyclic
unit vector 00 in the Hilbertspace M. In order to describe the minimal dense
invariant domain for A and its action on it we introduce some abbreviations.
For 7e^(fl) and xl9 •••, xn

AtjUx&t (3.2)

and for #e[fc, /]r+1 and ̂ lf — , xre£

^(^i® — ®^) = 2̂(*iKv3(*2) — ̂ Mr+i(^r) • (3.3)

It follows

(3.4)

for all 7e^/(n), H<=[k, J]r+

In terms of its "components" the action of the Jacobi-field A is now given by

A(Xl) - AtxJh = 0 S ^7fe® - ®^) (3.5)

for all Xi&E, n=l, 2, •••. The orthogonal decomposition in (3.5) arises be-
cause of the orthogonality of the field-sectors Mk. Note that by definition
(3.2) we have for all n^k all x&E®n and all

If we define now for k=l, 2, •••

& = lin U U ^(£(7)) (3.6)
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where E(l)=E®n for It=/k(n) and

& = ®3f SP = C<t>Q (direct sum) (3.7)
k=0

we obtain the minimal dense invariant domain 3) for the Jacobi-field A.
By Remark 1.1 we know that

fc = l,2,- (3.8)

is already dense in the fc-field sector Mk.
Relation (3.5) implies the following decomposition of the 7*-point-funetionals

= 2 rK*i® - ®*») (3.9)
Ie/0(«)

with

- = - (3 1Q)

for all x&E and all 7e^0(w). This decomposition does not yet suffice to ex-
press the operator relations of eq. (3.4). These relations can be expressed
in terms of continuity and symmetry-relations for the functionals

To this end we denote £0(Q)= {(0)} and

£(/) =EQ = C for /e^0(0) (3.11)

and for n^l

E(I) = En for all

and introduce a family of maps

by the following relations:

^o.oteo, *o) = *&o for afl a<>, b0S=E0 (3.12)

For /e^0(«)5 H>1, je^(7), a0eJ?0

*>o,^ = *-r/(y). (3.13)
For 7€E^(«); /e^(m), 77, /«> 1, *<=£(7), j;e^(J)

^/,/(A% J) = <^/(*), ^/W> - (3.14)

Because of (3.2)-(3.4) and (3.11)-(3.14) this family of sesquilinear maps has
the following properties :
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(O) BIt/=Q i

BItJ(x, y) = r{0}x/*x/(**®;0 for all x(=En, y(=Em and
for all

(S2) BItH*j(x, z®y) = JVx/f/(z*®*, JO for a11 x^En, z^Er9 y^Em and
for all I^/k(n), J(=/j(m)9 H^[k, l]r+\ k<n, l<>

For any finite collection of points ar&E(I), I^£k(n\ k<n

(P) 0<S

Note that the orthogonality relation (O) derives from the orthogonality
of different field-sectors, the symmetry-relation (S) is due to the operator rela-
tion (3.4) and the hermiticity condition b iii) of a Jacobi-field; and the posi-
tivity-condition (P) is a consequence of the definition of Btj as a scalar prod-
uct of functions with values in a Hilbert space where the orthogonality rela-
tions (O) have been taken into account.
The family {BItj} of maps introduced in (3.11)-(3.14) can be considered as
the components of a nonnegative sesquiUnear form B on the space

E = ®En (locally convex direct sum) (3.16)
»=o

EQ=C andforw>l

En = ® 0 £(/) (3.17)

which is again a nuclear barreled space. B is simply defined by

if a=(
for w> 1 and the same for AejE1. Introducing a map ^: E -+ M by

l^/fe) (3.19)
*=°

we also have

(3.18')
A

It follows that B is a nonnegative continuous sesquilinear form on E.
Its relation to the state T on E determined by the Jacobi-field A is convenient-

ly described in terms of the following embedding of E into E:

-*
(3.20)
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If we observe now for n, m=l, 2, •••

} (3.21)

we obtain for all x,y&E using (3.18), (3.15), and (3 9)

*(/<*), JGO) = 2 2 2 */./(*/, .v/)
*£-A« /e/,(w) /e A(m)

-US 2 rwx/*x/(*?®j'/)*^«A» /et£(n) JeMm)

= 2(2 2 2 rw x/*x/) (*f ® j J
«,« *jg.A« /

= 2( 2
«."1 H^Mn

= 2 r.+-l(jc*
« f?w

e.g.

= T(x**y) for all x, je^ .

Next the density property (3.8) is expressed in terms of this sesquilinear

form B. This is achieved by introducing first a certain subspace of E:

E = . (3.23)
j = 0 for all /EE^(«), Ar^/i-1, 6/e^* for

By (3.19) the density property (3.8) just says that
A

ir(E0) is dense in the statespace of the Jacobi-field A.

In terms of B this reads as follows if we use (3.18'):

For all a^E: M{B(a-b< a-b) \ b^E0} = 0 (D)

Denote by j£t+(E) the cone of all non-negative (separately) continuous sesqui-
A A

linear forms on E and then by <$Q(E) the subset of those B satisfying the nor-

malization condition (3.12) and the orthogonality relation (O). Finally we

define

-S/Gt) = {Be J8f (!) | B satisfies (S) and (D)} (3.24)

and arrive at

Proposition 3.1. For every Jacobi-state TonE there is B=BTG<3^(E) such

that for all x,y&E

(3.22)

holds. This representation of T€=£j(E) Is called the Jacobi-decomposition of

the state T.
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Remark 3.1. By this definition a state T on E admits a Jacobi-decomposi-
tion iff the components Tn of T admit the decomposition 3.9 with the func-
tionals Tt^E'n for 7e^0(w), having the properties expressed by (3.15) and
(D).

III.2. Functional characterization of Jacobi-states.

Proposition 3.1 says that every Jacobi-state admits a Jacobi-decomposi-
tion. Here we show that conversely every state on E which admits a Jacobi-
decomposition is a Jacobi-state and that this decomposition is unique.

Proposition 3.2.
A

a) With every B&<Bo(E) there is canonically associated a separable Hilbert
space M and a continuous linear map ty: E-+M with dense range such that

B(a9 b) = O(o), V>4)> for all a, bGE (3.25)

b) The associated Hilbert space has the following orthogonal decomposition

M = ®Mk (3.26)
*=o

with

and Mk = closure of 3P in Mfor k^ 1 (3.27)

3t = lin U U ^/(^(/)) (3.28)
*

where

Proof. Part a) is quite standard. Therefore we only prove b). By
(3.25) we have for all I<=gk(n\ J^£j(m), art=E(I), and

, 67) = <î X«/), T^X6/)> (3.29)

and therefore ^/(^(J)) is orthogonal to Vv(E(/)) whenever fc=t=^ according to
(O). This implies that 3f as defined by (3.28) is orthogonal to 0 for

A

By construction we know &(£) to be dense in M9 and we have

This proves b).
The next proposition characterizes the symmetry conditions for

Proposition 3.3. B &$%(£) satisfies the symmetry relations (S) iff in the
Hilbert space realization of B according to Proposition 3.2 the following holds:
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For k, /=0, 1, 2, •-, r = 1, 2, - 0*rf JETeflfc, /T+1 rAere is
such that

(3.30)

ii) ^^/0)=^*/(*®7) foraUxGE,9JG#j(m\yGEm (3.31)

iii) Wa(jc))*2^(jc*) forallx^Er. (3.32)

Pr00/. Given the Hilbert space realization of B according to Proposi-
tion 3.2, the symmetry relations (Sj) and (S2) are expressed in terms of the

by

x//*/(**® J>)> (SO
for all Je^(»), /e^(m), xe^, y e JJ.

where Vo='V&lO"Q))

for aU

By (SO ^/W=0 impUes irff*j(x® y)^^ n (^*)J'= {0} . Therefore for each
*e£"r, each jFTe[A:, /]r+1 a linear operator AH(x): 3)l-*gy> is weU defined by
Eq. (3.31) and because of (S0 this operator satisfies the hermiticity condition
(3.32).
Every H&[k, O]r*1 has a unique representation as H=Ix{fy with I&/k(r),
k<r; thus AIX{^(x) is well defined by (3.30) and (Sx) implies that this defini-
tion is consistent with the above definition of AH and that in particular (3.32)
holds for this case.

The strong continuity of AH thus defined follows directly from the con-
tinuity of V*a/: Er®Em-*Mk and the continuity of Er^x-*x®yGEr®Em

for fixed y^Em. As the converse is obvious Proposition 3.3 is proved.
After this preparations the functional characterization of Jacobi-states is

simple. Suppose S^^(E) to be given. Then construct M and J9)k and Mk

according to Proposition 3.2 and

3) = 0 gp (direct sum). (3.33)

Next define An for \i— j\<\ by Proposition 3.3 by taking H=
there. Then we know A^Xh

sc(E, L(3)^ 3f)) and thus A^£k
te(E, L(3), SI)}

is well defined by Eq. iv) of Definition 1.2.
If we now calculate the subspaces M(n) associated with A according I.I

and introduce the subspace Mk by Eq. (1.3) such that
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k=0

we see Mk = 3)k (closure in M) (3.34)

where 3)h = A^(E) - A21(E)A10(EtyQ, ^ = ^OXD) - (3.35)
00

Because of the density condition (D) for B the direct sum © <Dk is known to
be dense in M. As obviously Mh<^Mk it follows

M = ®Mk = @Mk and thus
ft=0 &=0

Mk=Mk k = 0,1,2,-. (3.36)

This shows that
i) ^0 is cyclic for {A(x) \ xe E}.

Thus A is a field over E in c#.
ii) Mk=Mk are the field-sectors of A.

Thus ^4 is a Jacobi-field with domain 3) and cyclic vector ^0.
Now we define a Jacobi-state T on £ as the sequence of «-point-func-

tionals of this field A. By the same calculation as earlier it follows that this
Jacobi-state Tis related to the sesquilinear form B^^(E)by Equation (3.22).
Thus taking Proposition 3.1 into account we have proved

Proposition 3.4. Suppose the basic space E satisfies (H). Then a state
A

T on E is a Jacobi-state iff T is of the form

T(x**y) = B(j(x)J(y)) for all x, y^E (3.22)

with some

Naturally in this context the question arises whether B^^(E) is unique
in (3.22) or not. This will be answered affirmatively after we have investigated
some important consequences of the density condition (D) for the structure
of B.
By its definition the &-field sector Mk associated with B^^(E) according to
Proposition 3.4 is generated by vectors of the form

^/(*)(x), x(=E*k, I(k) = (k, k-l, -.., 2, 1)

for k>\ and by ^o=^C/(D) for k=0. This implies for k=l, 2, •-• that there
is a sequence

depending only on the component #/(*)./(*) of B such that

{^/(*)(^)l;eJV}

is an orthonormal basis of M)t=M''. Applying the completeness relations
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for this basis to

*/./(** y) = <*/(*
we arrive at

e.g.
Br j = #/,/(,j®5/U),/ for all 7e^(/?), J^.$k(ni) (3.37)

where the kernel Kk of the "comolution" ©only depends on S/avoo-
In particular we have for /e^0(/?), J^$Q(m),x^E^ and veEwl by (Sx)

and normalization

More generally it follows for 7e^(«), /e^0(w), x&En, y^Em

iri^j(^®y) = iri(x)Tj(y) . (3.39)

Lemma 3.5. TAe components BtJ of B^^J(E) satisfy the Equations (3.37)
and (3.38). In the Hilbert space realization of B according to Proposition (3.2)
the factorization property (3.39) holds.

As the most important consequence of relations (3.37)-(3.39) we prove
that JBe.3/Qf) is already determined by its values on j(E)dE:

Proposition 3.6. Suppose B, B' e-3/(Js) satisfy

B(j(x\./GO) = B'(j(x)9j(y)) x, y^E (3.40)

then B=B'.

Proof, a) The proof is done by showing by induction that GN holds
for N=Q, 1, 2, ••• where GN is the following statement:

BI.J = BIJ for all 7e<&(n), Je£k(m)i k<n/\m\ n, m<N . (GN)

For ^=0 this holds by normalization. So we start with N=l.
By definition of the embedding j Equation (3.40) reads for all aQ9 b^C and
all al9

fto

This yields immediately

a)
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and ((?!) follows.
The symmetry relations (S) and (3.41) imply further more

and -#(0i),(o) = A'OD.CO) •

b) Now we prove that if (GN) holds for some N^l then it also holds for N
+ 1 . The induction hypothesis thus is

BItJ = B'u for all I*=gk(n), /e=^(m); k^nAm, n, m<N .

First consider the cases «=AT+1 and m<N—l. Observe that
can be written as I=(k)xl' with IrGgj(N) and ^fc+l^w+l<#. So the
symmetry relation (S2) implies

BIt/ = -#/'f(*)x/ = ^//,(*)x/ = -S/./ (3.43)

where the second equality holds because (+) applies ((fc)x/e^(w+l) and

Now we consider the case n=N+l andm=JV.
and /c=0, 1, -, NEq. (3.37) yields

^/,/ = #/,/ao®-#/a),/ • (3.37')

As /c< N (+) applies: BI(k}J=B'mj for all J&gk(N) and A"&=^.
If now k<N-~l \\e write Iegk(N+l) as I=(k)xl' with I'e/i(N) and

and obtain by (S2) and (+):

By (3.37') and the preceding observations it follows

H/t/ = ̂ t/ for all /e/^+l), J*=/k(N), k^N-l . (3.44)

Next we consider /i=JV+l, m=N and fe=JNT. For all ^e^+j and
Eq. (3.40) reads in terms of components

S
/e/iW *=° JG

Thus (3.44) implies

S Bl9lM(x9y)= S ^/./(nr)(^ y) • (3-45)
/e«^rW+l)

In the decomposition of /,
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there is only one possibility with I'&£N(N). All the others have
For these cases we use again (S2), (+), and (3.37):

and thus

BMXI'.IM = £'(*) x/'./av) for all /' ^/N^(N) (3.46)

and therefore by (3.45) we get

^Ov)xj(tf),r(tf) = ^'(jv)x/(tf)fi(jv) • . (3.47)

By hermiticity and the symmetry relations (S) this shows altogether

n<Nmdm<N+l orn^N+l and

It remains to consider the case H=ni=N+l. For /c<AT we apply (3.37) and
use (3.48) to conclude for I,

-Bwc»)®-Bj(i)f/ = 5ffja)®
 f5{tt)t/ = l?ff/ .(3.49)

For ^, je^^+i assumption (3.40) reads in terms of components
J7+1 jr+i
S S ^,X^J) = S S ^,/feJ') -

Thus by (3.49) we conclude

(3.50)

Equations (3.48)-(3.50) together thus say that (G^+j) holds, and this then proves
B=B'.

Propositions 3.4 and 3.6 yield the main result of this section.

Theorem 3.7. Suppose the basic space E satisfies (H). Then a state T
on E is a Jacobi-state iff T is of the form

T&-y) = B(j(x\j(yj) x, ytEE

where B&*Bj(E). The correspondence T-*B defined by this equation is one-to-
one.

§ IV. Some Properties of Jacobi-States

IV. 1 . Convexity and order properties.

The results of the last section show that there is a one-to-one correspond-
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A A

ence between Jaeobi-states T and sesquilinear forms B on E belonging to lBj(E).
Therefore we can study £/(E) by studying ̂ (E). This turns out to be more
efficient because the characterization of sesquilinear forms to belong to &5(E)
only refers to properties of functionals and not to properties of an algebra of
unbounded operators as it is the case for <?/(£).

By definition elements in Sft (E) are distinguished from arbitrary con-
tinuous nonnegative sesquilinear forms on E by the two linear constraints
of normalization and orthogonality whereas elements in ^(E) are distinguish-
ed from elements in ^o(E) by the fact that they have to verify in addition the
linear constraint (S) of symmetry and the non-linear constraint (D) of "den-
sity". This implies that it is fairly easy to control various "stability-properties"

A A

within lB<i(E) but not in ^(E) because of the non-linear condition (D). In
this respect the following property of ^BJ(E) to be order convex in

&S,(]b = {BG$$(E)\ B satisfies (S)}

is of some importance. Here the natural order structure of ^(E) is used,
e.g.

*„ 52G.S+(J), B^B2 iff ̂ (a, a)<ZB2(a, a), &eE . (4.1)
A A

For J?e.$+(E) we denote by qB the following seminorm on E:

qB(a) = B(a,£p*. (4.2)

By Theorem III.5.1 of [11] qB is continuous.
A A -

For a continuous seminorm q on E and a subset MdEwe denote by Mq

A

the closure of this set (in E) with respect to q. With these notations we
obtain a simple reformulation of the density property (D).

Lemma 4.1. ForB&<Bo(E) the following statements are equivalent:

i ) B satisfies condition (D)

ii) E = EI* (4.3)

iii) B(a9q) = sup{\B(a9b)\2B(b9b)-1} forallae| (4.4)

where the quotient is defined to be zero if B(b, |)=0.

Proof. The equivalence of i) and ii) is just a matter of definitions. By
positivity of B we know

Therefore the supremum exists. In the Hilbert space realization of B accord-
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ing to Proposition 3.2 this supremum equals 1 1^ (̂0)1 12 where P is the projec-
tion from the Hilbert space M associated with B onto the subspace generated
by (̂|0). Thus (4.4) says IKK&II2HI^K£)II2 for aU o<=E and therefore
iii) is equivalent to (D).

The announced order property is an immediate consequence of condition
(D) directly or relation (4.3). It reads

Corollary 4.2. Suppose BG<BJ(E) to be given. If for B'G<B&(E) there is
;i>0 such that B'<XB then B'e&$(E).

Now we come to discuss convexity of €/(£), e.g. of<BJ(E). The set ̂ f,(£)
is obtained from the convex cone &+(E) by imposing three linear constraints.
Thus &os(E) is convex. The problem arises when the density condition (D)
is taken into account as the convex combination of two functions having in-
fimum zero need not to have zero as its infimum.

A

Therefore within -@/(^D we are confined to consider convexity-classes of B

JCB = {B'<=$+j(E)\Bx = M+(l-X)B'G&j(E) for all Jle[0, 1]} (4.5)

which are characterized by

Lemma 4.3. Suppose B9 B'&<BJ(E) to be given. Then

B'e=JCB iff for all q<=E: inf {(B+B') (a-b, Q-b)\bGEQ} = 0 . (4.6)

Proof. If B't=JCB then for aU Jle[0, 1] B^=JiB+(l-X)Br satisfies (D).
Thus for 0</1<1 a simple estimate implies (4.6). The converse is implied by
Corollary 4.2 and the observation that BK<B-}-B'.

A

The question arises whether for a given B^^J(E) the convexity-class is bigger
than {B} or not. But this is already answered by Corollary 4.2 and Lemma
4.3 in the following way:

iB'G&$t(E)\ there is A>0 such that B'^JLB} C.JCB . (4.7)

The following proposition shows that there is at least one convexity class which
is fairly big. It is that "containing" the set of all bounded Jacobi-states.

Proposition 4.4. The set of all bounded Jacobi-states is convex.

Proof, a) If T'e <?/$(£) are given we can suppose that these states are
the sequences of w-point-functionals of two bounded Jacobi-fields A1 in the
Hilbert spaces

Ml = @Mi / = 1, 2
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with cyclic unit vector <t>\>9 Mt>=C<l>v. For 0<^<1 we consider

T =

and want to check whether Tis a Jacobi-state or not.
Define

(4-8)
and

( J , 3f = © Mi (direct sum).on

We get for

and thus for all ̂ e E and all H
l - - «

Therefore it suffices to show that A is (equivalent to) a Jacobi-field.
b) Denote by M^ the closure of the linear span of {A(x^ ••• A(xr)(f>0\xi^E9

is a
/cflf^ - (Ml\

r<n} in I I and by c^ the closure of U MM in ( J. Thus c^(M> ii
V^yt / n=Q \M )

(M\n\ (Ml\
subspace of I J, n=Q, 1, 2, — and ^ a subspace of I 1. By this con-

\M(n)J \M /

struction the unit vector 00 is cyclic for {A(x)\x&E} in M. Using (4.9) and
the corresponding properties of the A* it easily follows that A is hermitian
and strongly continuous.

Next we define

and for n=09 1, 2, •-•

Mn+l = M(n^QM(n) (4.12)
and

3) = ®Mk (direct sum). (4.13)
*=0

It follows that .2? is dense in

M = ®Mk (Hilbert-sum) (4.14)
*=o



STATES ON TENSOR ALGEBRAS 237

and that

As the Ai are bounded Jacobi-fields we know that for aU

j=k-l

holds with ̂ (x)e_£(c#|, <$tj). Thus A(x) as defined by (4.9) is in particular
well defined on all vectors of the form

CD- ^Mi-
Therefore if Qk denotes the orthogonal projection from

A#i\
onto c%feO 2J we can define

W&&/

Ajk(x) = QiA(x)Q,^X(Mh, M}} (4.16)

and then for all <t>={<t>0, •-, <i>N, 0, 0, •••} e.0 we get

^(*)0=S 2 ^ytCx^t foraU^si1. (4.17)

This proves that A is bounded Jacobi-field in M with cyclic unit vector
and domain ^). By (4.11) it follows

TV. 2. Topological stability.
A

In order to study topological stability of -2f/(£) we exhibit a 'topology'
(a notion of convergence) with respect to which IBtfE) is complete.
To this end suppose that we are given a net (B*), a&A, in .@/(jf) which satisfies
i) {B*, a&A} is pointwise bounded (4.18)
ii) (#*), a&A, is pointwise Cauchysch

A A

e.g. for all a, b^E we have

ii) (B*(a, ))5 ae^4, is a Cauchynet in C.
By Cor. III.5.1.2 of [11] it follows that there is a continuous seminorm q on
A

£ such that

I *•(& *) I ̂  9^)?© foi all a e ^ . (4. 19)
A A A

By assumption ii) for each pair (a, &) in ExE there is a complex number
B(a, b) such that
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B(a, b) = lim B*(a, b) . (4.20)
<»eA

A A A

It follows that (&„ 6)H»l?(a, b) defines a normalized sesquilinear form B on E
which is positive and satisfies (4.19). Thus B is continuous. Obviously the
orthogonality relations (0) and the symmetry relations (S) are stable with re-
spect to pointwise limits, therefore BGlBos(E).
By nuclearity of E its topology is defined by a family of Hilbert seminorms.
Thus there are Hilbert seminorms p and h on E such that

q<,p<,h (4.21)

and such that the canonical map x from Mh into Mp is nuclear where <$lh and
Mp are the Hilbert spaces canonically associated with h and p9 e.g. there are

A A

continuous linear maps -fr: E-*MP, <f>: E-^Mh with dense range such that

P@f =<+&.+<&>» h(a)*=<<f>(a),<i>(a)\ (4.22)

and

for all a^E. «'?
e>^X0> °^: the scalar products of Mp respectively of M^.

By (4.19), (4.21) and (4.22) it follows that

is a well defined quadratic form on ir(E)C.Jlp with

Thus it extends uniquely to a continuous nonnegative quadratic form on Mp.
Therefore there are nonnegative selfadjoint operators C* in &p with

#*& b) = <CV(o), C^©> \\C*\\ < I (4.23)

for all a&A and all a, |e jf. The same applies to B. There is a nonnegative
selfadjoint operator C in Mp with

B(a, b) = <C^(a), Cty(6)> for all a, b£EE , (4.24)

and by (4.20) it follows

C2 = w-lim C*C* (4.25)
05S4

(weak limit in £(MP, Mp)).
As ^ is separable and as ||C* C*|| <, 1 for all a&A there is a subsequence a(j)9

thai

C2 = w-lim Cf^c-O) . (4.26)
j-»«

Let us denote Cj=C*(j\j^N, and correspondingly Bj=B*U). The 5y
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are supposed to satisfy the density condition (D). Thus if a&E and e>0
A A

are fixed there is (by (4.4)) 6,-S£'o sucri that

Bf(&, q)-s<, \Bs(a, £/)|f.B'(£/, I/)'1 for allyeJV
e.g.

l|CV(a)||2-^|<C^(a),CV(6y)>|2||CV^)l|-2 forall/etf. (4.27)
A

As the right hand side of this inequality is scale invariant with respect to bj
we can and will assume that the bj are normalized according to

A

where <t> is given by (4.22) (Note that by definition and (4.22) only those bj
occur in (4.27) for which 0(6,-) ̂ O as we maY assume that the lefthand side
of (4.27) is positive).

Therefore by weak compactness of the closed unitball of Mh we can find
a subsequence j(i)9 i&N, and Q^M^ such that

00 = w-lim 0(6/a)) (4.29)
/*.«»

in Mh. By (4.22) and nuclearity of x it follows

d)) = lim ̂ 4/(l)) (4.30)
' ^

in ^ and i^e[V<)]C^ • (4.31)

In order to prove

lim ||C*'V4(rt)IP = HC^oll2 (4.32)

we write V"(-(i))=Vro+^i with 0, -*• 0 in «^# and estimate

Thus (4.26) impUes (4.32). And similarly (4.26) and (4.30) imply

lim<C«'V<2), C«'V^(o)> = lim<(C'«)V(o
»->«» »•>«»

Therefore taking the lim i-*oo of (4.27) yields

. (4.33)

By relation (4.24) the sesquilinear form B is realized in the Hilbert space

Relation (4.31) and inequality (4.33) imply that Cir(EQ) is dense in this
Hilbert space [C^(E)]. This shows finally that the weak limit B, too, satisfies
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the density condition (D) and thus proves

Theorem 4.5. Any net (B*), a&A, in -3/(£) which is Cauchysch in the
sense 0/(4.18) has a limit B in 3)*j(E).

Corollary 46- Any net of Jacobi-states (T*), a&A, in 6j(E) such that the
associated net (B06), a^A, (by Th. 3.7) in 3)/(E) satisfies (4.18) has a Jacobi-
state T as limit.

§V. Concisions

If a space E satisfies (H) and has property (a) then by the preceding in-
vestigations we know many details about states on the (complete) tensor al-
gebra E over E. And the information about these states goes considerably
beyond that provided by the GNS-construction.
1. Various classes of states on E have been distinguished. Some of them
have been characterized. Among these the set of Jacobi-states appears in
a natural way as the set of those states on the tensor algebra E which reflect
the graded structure of this algebra in a direct way. A certain subset of the
components of the Jacobi-decomposition for these states provides the "para-
metrization" of these states as indicated in section O. (Lemma 3.5 and Pro-
position 3.7). This can be viewed as the beginning of a complete classifica-
tion of the set of states on E.
2. There are "very many" Jacobi-states. Already the weak sequential closure
of the set of bounded Jacobi-states 8n(E) equals the set of all states on ̂ (Corol-
lary 2.4), and 6jb(E) is convex (Proposition 4.4). (In a finite dimensional
situation these two properties together would mean that only boundary-points
may not belong to the set in question).
3. In terms of the Jacobi-decomposition a "topology" on the set Sj(E) of
Jacobi-states has been given with respect to which £j(E) is complete (Corollary
4.6). This topology CTO is a "natural" topology on the set of all Jacobi-
decompositions but not on the set of states on E. It is considerably finer than
the weak topology o=a (E'9 E) on the set of states on E. Though a one-to-
one correspondence between Jacobi-states and Jacobi-decompositions could
be established (Theorem 3.7) it is still an open problem whether Gj(E) is also
complete with respect to a (if so Corollary 2.4 would imply that the set of
Jacobi-states equals the set of states on E). Theorem 4.5 indicates that this
might not be the case in contrast to the claim in our first version. In any
case as indicated in 2, there are not "too many" states on E which are not
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Jacobi-states.
4. In general relativistic quantum field theory [2-6] the basic space E is E
=cS(jR4)®F with some finite dimensional vector space V and S(!&) the
Schwartz space of rapidly decreasing C°°-functions on space-time. It is known
that this space satisfies (H) and according to Proposition A this space also
has propeity (as). Thus our results apply and explain in rather general terms
why every relativistic quantum field which has been constructed up to now
on physical space-time is a Jacobi-field (not necessarily bounded) in accord-
ance with our physical intuition about quantum fields. (If it would turn out
that 8j(E) actually does not equal the set of all states on E then as indicated
in 3 the states on E being not Jacobi-states could in some sense be considered
as being exceptional).
5. If the functional characterization of Jacobi-states (Theorem 3.7) is ap-
plied in general relativistic quantum field theory it adds a lot of new informa-
tion about the general structure of the "vacuum expectation values" of such
a theory and gives new aspects of various problems (association of particle
and fields, scattering theory, asymptotic completeness, combining locality
and positivity, details about the energy momentum spectrum of the theory,
construction of relativistic quantum field models).
6. It should be noticed that the positivity condition (P) for the Jacobi-
decomposition B of a Jacobi-state T on E provides in connection with Lemma
3.5 and Theorem 3.7 many "correlation-type inequalities" for the components
Tn of T. In order to illustrate this point we present a simple example. The
components BItj of B can be expressed in terms of the given w-point-correlation
functionals" Tn (Th. 3.7 and Lemma 3.5). The positivity condition (P) im-
plies in its simplest form

This inequality says for instance (assuming ^=0 for convenience and choos-
ing /, / appropriately) :

a-^®^)!^

with F^E'e such that

BItJ) (

for all Jt3€£3. Here © denotes the "1 -con volution" according to Eq. (3.37)
and S Br j is a function of {F2, T3, T4} .

'
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7. The concept of a Jacobi-field has also proved to be very important in the
problem of positive continuous linear extensions from finite sections

EW = te^E I xn = 0 for all n>N}9 # = 0, 1, 2, —

to the whole tensoralgebra E. This problem asks for necessary and sufficient
conditions on a given functional T(N) = {1, T19 -••, TN}^Efa for the existence
and uniqueness of a state T on E such that its restriction T \*E(N^ to the finite
section E(N^ equals T(N). A nearly complete answer is given in reference [10].
8. Finally we would like to point out two other' applications of this analysis
of states. The first applies the concept of a Jacobi-field to relativistic quantum
field theory and uses it together with a solution of the above extension problem
to enlarge the class of known models of relativistic quantum field theory on
physical space time considerably [17]. The second application relies on an
extension of this analysis to a stronger positivity condition. It provides a
method of constructing Radon-probability measures on the dual E' of the basic
space E in terms of given moments. In particular a way of constructing such
measures which are not Gaussian measures (or slight modifications there of)
is obtained [18]. This then illustrates point iii) of the introduction.

Appendix: On spaces with approximation property (a).

Properties (a) and (as) of Definition 2.1 are related to but are in general
not identical with the approximation property in the general theory of topo-
logical vector spaces (for instance §13 of [13]). The approximation property
(in general) means that there is a net (7u^erdJ^(E9 E) such that

ii) lim xy(x)=x uniformly on precompact subsets of E.
•yer

But in general it is not known whether this net also is pointwise bounded.
This property however is crucial for our reasoning. Therefore we had to
use property (a).

Obviously for all locally convex topological vectorspaces E for which
the pointwise convergence of a pointwise bounded net of continuous linear
maps E-+E implies its uniform convergence on all precompact subsets of E
property (a) implies the general approximation property. By the Banach-
Steinhaus Theorem this is the case for all barreled spaces. Moreover, when-
ever a barreled space E has a weak Schauder basis (§43.5 of [13]) E has the
general approximation property and by the proof of this fact (§43.5.3 of [13])
also property (a) with respect to sequences.
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Instead of trying to give a systematic treatment of property (a) we discuss
some simple facts about it and are thus able to show that many of those spaces
which are actually used in applications indeed have property (a) respectively
(as).

A first immediate observation is:

(1) If a locally convex topological vector space E is topologically isomorphic
to a locally convex topological vector F which has property (a) respectively (as)
then E has property (a) respectively (as).

The proof of the following three hereditary properties is similar but simpler
than the proof of the corresponding statements about the general approxima-
tion property (§43.4 of [13]) and is therefore omitted:

(2) If a locally convex space E has property (a) respectively (as) then every
complemented subspace of E has property (a) respectively (as).

(3) The locally convex direct sum E=®E« of locally convex spaces E# has
&

property (a) iff all Ea have property (a).

(4) The topological product £"=11 E^ of locally convex spaces E# has property
&

(a) iff all E# have property (a).

It is fairly obvious that the nuclear Frechet space s of rapidly decreasing
sequences has property (as). By a theorem of T. Komura and Y. Komura
(p. 212 of [15] and [14]) it is known that every nuclear space is topologically
isomorphic to a subspace of the product space SA for some index set A (every
metrizable nuclear space is topologically isomorphic to a subspace of
s^). Therefore whenever a nuclear space is topologically isomorphic to a
subspace of SA which is left invariant by the canonical projections of SA (this
is used in the proof of (4)) it has property (a).

A class of locally convex spaces which is of particular interest in applica-
tions is the class of nuclear Frechet spaces. We are going to show that these
spaces have property (as). By properties (l)-(4) the class of spaces with prop-
erty (a) is enlarged considerably.

Proposition A. Every nuclear Frechet space E has property (as),

Proof. 1. By Corollary 7.3.3 of [11] we know that every nuclear Frechet
space E is the protective limit of a sequence of separable Hilbert spaces Hn

(corresponding to Hilbertian seminorms hn on E) such that the spectral maps
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WjW+1: Hn+1-*Hn, n=0, 1,2, — , are nuclear.
According to Satz 4.2 of [12] each Hn has an orthonormal basis

with {ff.j^N, n = 0, 1, 2,

and Qn: E-*Hn the canonical projections.
The spectral maps and the projections are related by

QP = LptqQq = Lpip+1 ... Lf-i.ffif
 for

Nuclearity of Ln>n+1 implies furthermore that we can choose these basis {e* \
, n=Q, 1, 2, •••, such that for all

(A-2>j=i j=i

2. Now by (A.2) we have

Ln^i&r1) = W (A-3)

and therefore by (A.I)

Qn^r-trw = o .
This shows that moreover the e%] can be choosen in such a way that

en+l=jn+len njGN (A.4)

holds. Iterating this equation we get

e"j = Xfe] where Xf = % - ^} . (A.5)

For any *e E and p&N we express QO(A:) and 2 (̂*) in terms of the basis of
H0 respectively of Hp :

2o(*) = S <ej, flo(*) VJ fi>W = g <%> QP(X»P% . (A.6)

Because of (A.I) and (A.5) we get

.
and thus by (A.6) for ally, p&N and all xe.E'

<*?, eoW>o = ^<^, fi,(*)>, • (A.7)

3. Now the construction of continuous linear maps nN: E-+E as required by
property (as) is quite easy. For x^E define

**<*) = 2 <C^S), 2oWV? . (A.8)
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Obviously nN&J?(E9 E) and dim Ran nN=N.
Then define f or p= 1,2 •••

Equations (A. 5) and (A.7) imply

np
N(x) = KN(X) for all xe E, p,N(=N (A.9)

and therefore for arbitrary but fixed /?=0, 1,2, •••

*,(*-*»(*)) = *,(*-*&(*)) = llfi,(*)-e,WK*))ll, ,,^ o ,
if we observe (A.6) and

This proves

lim TUN(X) = x inE

for every x^E, that is this space E has property (as).
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