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Extension of Holomorphic Functions
with Growth Conditions

By

M

Shigeo NAKANO*

§1. Imtroduction and Summary

In his paper [4], Y. Nishimura discussed the problem of extending holo-
morphic functions on a submanifold X of C” to ones on the ambient space,
with the order of growth in consideration. In this note we shall take up this
problem in a slightly different setiing. We consider a Stein manifold X with
a strictly plurisubharmonic C* exhaustion function v~ such that sup y¥»=-+oco.
We also set f,=inf+y. For a real valued continuous function A(#) on [¢,, o0),
we set

(1.1) X, 2) = {h|h is holomorphic on X and
sup | h(p) | exp(—A(¥(p))) <o} .

GU(X, 2) is a Banach space with respect to the norm
(1.2) [1Ally = sup | A(p) | -exp{—ACH(p))}-

If Y is a closed analytic submanifold of X, Y is again a Stein manifold
and y|y is a strictly plurisubharmonic exhaustion function for ¥. We shall
use the similar notation as (1.1) and (1.2) for ¥ and | ,.

For two C* functions #(z) and A(f) on [£,, o), £« 2 shall mean «(r) < (1),
L' @O=Z2'() and () Z27(¢) for all t €[1,, o).

Now our main assertion sounds as

Theorem 1. If X and v are as above and if' Y is a closed analytic sub-
manifold of codimension 1, then there exists a non-decreasing convex C= function
u(t) of 1E€[ty, o), such that for any C= function A(t) with v& Y, there exists
a constant C, such that any he (Y, 2) has an extension He (X, 22 +vD),
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with ||H|x». o ZC)||A|l,. Here 29 is defined by 29(t)=a(t-+i) for i=1,2
and similarly for v®.

There are many works in this direction. To mention some of them,
we have [0] and [6]. They have their own general scope or concrete view-
points. The author hopes that the present work is not completely covered
by them.

Many thanks are due to the referee for valuable suggestions.

8§2. Construction of ¥

Let X, v and Y be as above. Let us take locally finite open covers
U=A{U;};e; and U’ ={U?},;c; with the following properties:
(1) For each i €1, there exists a system of local coordinates (z}, *--, zf) which
is valid on an neighborhood U’ containing U;, and in this coordinate system
U; and U{ have forms

@2.1) {U:: {z)] 28] <1 for a@=1,-,n},

U/ = {@z)]|zf|<l—e; for a=1,--,n 0<e<l.
(2) I is the disjoint union of subsets /; and 7, For iel, U;,NY=+¢ and
z#=0 is a local equation for Y in U}’. Fori&l, U;N Y=¢.
(3) If p and g belong to U;, then |y (p)—v(g)| <1.

We set R;=z} fori<I, and R;=1 foriel,. Then {R;} form a system of
local equations for ¥ and

2.2) bi; = Ry/R;

defines a system of transition functions for [Y]. It is clear that such coverings
exist provided e; are suitably chosen. For /&I, we define the projection
z;: UV—=UNY by

2.3) n(Z;, z}) = %;, where Z; = (z}, -, 2%7Y).

Now there exists, for each p&U;N U} (jEI,), a positive number s,,(p) such
that

|Zi(p)| =s;(p) or (Z;(p),)€U,NU, for [{] <s5;(p) .
If we set
2@ (p)NU;NU, =z (p) X W,,
”?1(75;'(17)) NU;NUI =z (p)xXW},
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W, and W} being open sets on the zj-plane, we have

2.4) {m(ﬁ) = max [z4(p), sup{s| {| 24| <s} CW,}] if W,=0,

riu(p) =12i(p)| if W,30.
(Note that r;(p)=|zj(p)| in any cases.) Then we have the following:

Lemma 1. liminfr;(q)=r;(p) when q—p. r;, is bounded from below
by a positive number.

Proof. Suppose W,20 and r;{(p) =sup{s|{|zj| <s} CW,. For any s
with 0<s<<r;(p), =;(p)x {|2z}| =s} is a compact set in U;x U,. Hence there
exists an open neighborhood V of z;(p) such that V'x{|z}| <s} CcU;NU,.
Then for g with g€ U; N U/ and z,(q)EV, W,D{|z}| =s}. Hence (2.4) holds
for g and we have r;,(g)=s. Hence liminfr;(g)=s

In other cases we have lim inf r;,(g)=lim inf | z(q) | = |25(p) | =r;/(p).
Next, set

€ = %inf {lx—y||x, yEC, xEW}, yEW,}.

It is clear that ¢;,>0. We have r;(p)=¢;, for p€U;NU}. In fact, if W,5$0,
then

ri(p) =12i(p)| = | 2i(p)—0] =2¢;, .

(z3(p) is in W} always.) Suppose W,30. If ¢;<sup{s|{|z}| <s} CW,},
then clearly r;(p)>e¢;. Otherwise there isa y&C—W, with | y|=e;. Hence
ru(P)Z | Zi(p)| 22¢;,— | y| =<

For each p, there are only a finite number of pairs (j,/) such that
peU;NU}. Hence

(2.5 r(p) = rglg ri(p)

is a well defined positive valued function on a neighborhood of Y. This can
be extended to a function on X with the same properties, by setting r(p)=1
outside.

We choose a partition of unily {o;} subordinate to UJ’. We also take
a metric along the fibres of the bundle [Y]™*. This is expressed by a system
{a;} of positive valued C* functions g;: U,—R, such that

(2.6) aj/ak == l b]k |2 on (]_7 n Uk B
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Because the coordinates (z;) exist on U}’ which contains U; and because we
can assume R; is also defined on U}/, we can assume that g; is defined as a
differentiable function on U#%. This we shall assume to be the case. Set,
for each peU;, b,-(p)=mlax|10g|bj,(p)[2], ! ranging over such indices that
p<U, Then we have

—b)(p) = log a;(p)— log a(p)=by(p) -
We put b(p)= 2 0/p)b,(p), then we have

—b(p)= log a,(p)— 35 0/(p) log ai(p)=b(p) .
We replace a,;(p) by a;(p) exp (— 2 0/(p) log a,(p)), then we have the estimate

@7 exp (—b(p))=a;(p)= exp (b(p)) .

Finally we choose a complete Kéhler metric ds* on X. In terms of local co-
ordinate system (z;), ds® will be expressed as

ds? =23 g;,pdz%dz8 .
We set
(2.8) r; = det (g;up) »

then {r,} defines a metric along the fibres of K%', where Ky denotes the canon-
ical bundle of X.

All these being settled, we take a C* non-decreasing convex function »(¢)
on [¢,, o), such that

J @ [ el o) 30 maxd, (5101 P dv<oo

2.9 ( (b) 3<82u (¢)>_<62 log a,->_<82 Tog rj)%(g,-“s) ,

0z50z% 027028 027028
© exp{—v(y(P)+b(p)} -7 (p) -7 =C,

where ¢; appeared in the definition of U}, j is any index such that pe U/,
and C is a positive constant.

§3. The Proof of the Theorem

For a function heJ{(Y, 2), we extend it to the holomorphic function
h;jin U; (jEI), by
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3.1 hi(p) = h(zy(p)) -

For jE1,, we simply set 7;=0. In U;NU, h;—h, and R; have the zero set
U;NU,NY in common. Hence

(3.2) hjy = (h;—h)/[R;

is holomorphic in U; N U, and {h;} form a 1-cocycle in ZYU, O(Y]™). As
usual we consider the I-cocycle {H} in ZXU, 2"((Y]'®K%") defined by

ij = iljkdzi/\ "'/\dzf}
and set

(33) Ny = — ; pmeijmj 9

where e;,=(R,/R;) det ZEZ";, then we have 7;—e;n,=Hj,. We set
Zp

(3.4) fi= éﬂj ,
then f={f;} is a [Y]'®Kx"-valued (n, 1)-form on X with 9/=0.

With the aid of a function «: B— R, we introduce the inner product (¢, x)
of [Y]'®K x*-valued (n, g)-forms ¢={p,} and x={x;} by

(3 (0, 1) = | _exp (—utw)-arig; 051,

and denote by _L(X, «) the Hilbert space of [Y] '®Kx"-valued measurable
(n, g)-forms ¢ with (@, ¢)<<co.

Lemma 2. For any heH(Y, ), [ consiructed as (3.1)~(3.4) belongs to
LYX, 220 +y) and the correspondence h—f is a continuous linear map. For
7; we also have

GO i, = [ exp{-@O@) N A= C Ik

Proof. For hEJI(Y,2), h; satisfies |h;|(p)=||hllx-exp{2@(w(p))}, be-
cause p and =;(p) belong to the same U;. Consider %;(p) for pe u;nu,
and in particular as a function of z%, other z7’s being considered as para-
meters. If | z}(p)| =7(p), then (3.7) below holds trivially. If (z;(p), O)€U,;N U,
for |¢| =r(p), then h;(Z;, ¢) has the maximum of its absolute values on the
circle || =r(p). Hence

37 Fi(p)| < 2 |Ihfly-exp 2O (p)}
r(p)
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holds. Since supp o,, is contained in U}, for any m, we can estimate 7; and
f; by virtue of (3.7), and see

)= SX exp{—QAP) +r@}a;r i 2 9piejihydzi A -+ Adzf)
A#(2 00,8t jdzn A -+ \dz})
= SX exp{—2P ) +r(y¥)} a,-?’j(zll Bpibiihy;dzi A\ -+ N\ dzf)

A *(; 00y Az N +++ A\ dz%)

< C, || exp{— QAW+ a7, S biBusntin| w07

where u;, and w; denote the pointwise inner product of dp, with dp, and
dzjA -+~ Adz} with itself respectively, that is: 8.0, A *(80,)=u;,dv and (dz;A
-« Adz?) /\m;’-):wjdv. C, is the constant which appears in [5],
Lemma A (p.18). (The same lemma is referred to as Lemma 11.1 in [3].)

Hence we have

(L NHI=4CIAIR SX exp{—v(y)+3b} r(p) ™ 23wy | dv

SACYHE | exp{—vw)+ 3611 (0) " (S 190, |V
=CllAll},

where C, is a constant independent of 4. Thus we have

(3.8) WAl =+ Cyllally -

The proof of (3.6) is similar.

Next we apply Hoérmander’s 8-theory. Since components of the curva-
ture form O of the metric along the fibres are

2 [T, [P )] [Oosas] [0logri] g

XN @58 & N8 @A =
9z502% 027028 9z5 828 0250z

we have
(e(6)4—4e(0))p, 9)=(9, ¥)

for (n, g)-form ¢ with compact support (g=1). Hence
(3.9 (@, 9)=(0p, 09)+(8*p, 5*p)

for such a @, where 8* denotes the adjoint operator to d. Because ds® is
complete, (3.9) holds for any ¢ of LY(X, 24 +v), which belongs to the inter-
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section of the domains of & and 9*. ([5], Theorem 1.1, p. 18. See also [3],
theorem 14.1.) Then Hormander’s theorem ([2], Theorem 1.1.4) tells that

(*) For f defined by (3.4), there exisis a §€.LYX, 24V +v) such that
F=3¢, lEl| p=IIf1l p and € is C=.

Set
(3.10) 7;—&; = g;dz; A+ Ndz},
then g; is a holomorphic function on U; and we have
(3.1D) hy, =g;—(R/R)g, on U;NU,.

Hence
H= 71:‘ —R;g; = h—Ryg;

is a global holomorphic function on X which extends % on Y.

We have only to estimate H. Take any point p of X. p is contained in
U} for some j. Set (*=z§—z%(p), then the multi-disk D={()]|{"]|<e;}
is contained in U; and g; is holomorphic there. Hence we have, for |7,| <e;

ST S (T SR Yo
Qrv/ 1) S1eti=ry,  1gM=r,  CL” ¢heede

2z 2z .
Ll e e a0, do,

B (2z)" Jo,=0 .

gip)=

Multiplying both hand sides by z,---7, and integrating from 7,=0 to r,=e;,,
we obtain
ez.n 1 = n g1
?gj(P) = @y ngj(Z)dzldzlu-dZ dz".
Hence
2n
(3.12) L gip)| = —1—5 (ni{2)—€4(2))dz dz" - d2"dZ" |,
2 2z)" Jp

where 7} and ¢} denote the coefficients of dzj A---Adzj in 7; and &; re-
spectively. We have, by Schwarz inequality,

| SD (7i(z)—E&X4z))dz'dz"---dz"dZ" |

i T2 01 @ E(_"?b') o gll? _ __y_(")b) L__El
o SD a; " T eXp {l (¥)+ 2 } aJ/ exp{ ’1(1)(30) D) }(77] £7)dv
1 —ln—2 @ v
> {gv a;'ritexp {22 ("#)‘I“V(w)}dv}

IA
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Al asexp 20009} 13— €5}

=272 S a;'ri’ exp QAP()+u(y))dz'dz" - dz"d2" | V2ln' €| |,,

where || ||, denotes the latter factor in the preceding expression. Because of
(2.7) and (2.9c), we have

| S a;'r5" exp{220()+r(y)}tdz'dz" - dz"dz"
< exp 22O () + 2O} | | exp{—v(y)+b(}77dz--02'|

< 2— C exp{2P((p) 25O (D)}
while
17—l <l —&lly, = ll7—Ello, < 2llnlly,+ 2A[EN 3 2 <2C, 1l

Thus we have, from (3.12),

6] L gi(p)| < 7"\ € +2C)| |l exp L@ () + v (w(p))} -

(2)\/

2V C-C,
(@m)"

(3.13) lg;(p)| -exp{—=2PW(p) =P ()} = C;e[IAl]x .

Because [R;(p)| <1 and |hy(p)| <Z|lAll\ exp{2®(¥(p))}, we have proved
that

(3.14) | H(p)| -exp{—2D(p) —v @ (P)} = Cse||Allx -

Putting C,= , we finally have

§4. Nishimura’s Case

In this section we shall sketch that we can deal with Nishimura’s case
by our method partly. In this case X=C" with the standard cartesian co-
ordinates (¢%, .-+, ¢") and y(Q)={1+ 3}|¢*|3}¥2 Y is defined by an entire

@

function F as Y={({)| F({)=0} and F satisfies the conditions

@1 {IF(C)IeXp{—BVI(C)”} =M (ex,

|dFQ)|exp{B v ()"} =M'>0 (€Y,

where |dF({)|?= EI@F/@C”lZ and 7, M, M’', B and B’ are positive constants.
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Nishimura’s main result is as follows:

Theorem N. Suppose that above conditions are satisfied, then for any
B,;>0, there exist positive constants B, and C, such that for any he H(Y, B,t"),
there exists an HE JH(C", Byt") satisfying H|y=h and ||H||p,m = Cyl|h||5,m.

We shall assume that =1, and shall show in the following that

Theorem 2. If X=C" and Y is defined by an F satisfying (4.1) with n=1,
then the function v(t) mentioned in Theorem 1 can be taken as v(t)=Bt", where
B, is a suitable positive constant.

Since (¢+i)"< At” for a constant 4 and for i=1, 2, it is clear that Theo-
rem N follows from Theorems 1 and 2.

We shall sketch direct construction of the covers U and U’. First we
recall a classical lemma in the theory of functions of a complex variable.

Lemma 3. Suppose w=f(z) is a function of a complex variable z, holo-
morphic in the disk |z| <R and |f(z)| <M there. Moreover assume that
f(0)=0 and f'(0)=c,=£0. Then the inverse function z=g(w) (with g(0)=0) is
defined at least in the domain |w|<<|c,|?R%/6M and we have |g(w)| < |c,|- R%4AM
there.

For the proof see, for example, [1] Lemma 17. 7.1 pp. 385-386. We
shall also make use of the following™®

Lemma 4. ([4], Lemma 2) I H is a function in H(C", Bt") for some >0,
B>0, then |1/m! 8™ H[o¢™| <||H||zm(n/ 1n)'"™ exp {~KBt"}, where m denotes
the multi-index (my, -+, m,), |m|=>m, and K=2"-1.

These being settled, we first verify without difficulty, that if p and g&C”
are such that y¥(p)=2 and 31|¢%(p)—<%(q) |2<%{E | ¢%(p)|% 7", then we have

|v(q)—y(p)| <1. In the construction of U and U’ we pay attentions to
that part for which v(p)=2. Remaining part can be dealt with separately.

Take pe Y, we change the coordinate into (§5) by a unitary transforma-
tion;

(4.2) &5 = 23 esp)(¢ P—CP(p)),

* Note that our {14+33]|¢®|2}"/2 and Nishimura’s (2}]¢%#|2)"/2+1 define the equivalent
norms in the sense of (1.1).
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so that 8F/9&5(p)=0 for a<<n. Then 8F/8&}(p), which we denote by c,, has
the absolute value

(4.3) led = {Z}I L (91372 exp{—(A'+B¥(p))}

o&5
where B’ appears in (4.1) and A’ is a constant determined by M'.

For the moment we fix £}, --+, 57! to be =0 and consider F as a function
f(&)=w of a single variable £§=¢£7. If we set

1y
3w(p) ,

M = exp {4+By(p)'},

then we can apply Lemma 3 to f with R, M in (4.4). (A is determined in con-
nection with M in (4.1).) Thus we have the inverse function &=g(w), defined
in a domain containing {w||w|<<exp{—(4;+Bsv(p)")}}. (Here and in
the following, A;, B; are suitably chosen constants independent of p.)

4.4)

In order to take the change of &}, .-+, 37! into account, we consider the
relation

w = HE,, &) = G,&,, £)—G,E,, 0),

where £ » stands for (§}, -+, €37 and G, is the function F expressed in terms
of (§,). Because of Lemma 4 we have

| HE, O1=16,E, O—6,E,, 0| =1 | 56,/0¢E,, )|
=V n M exp{KB(y(p)+1)"} |€].
16, 01 =1, & 16eEy, Opae| = || S ezT2cE,, 0]

< 31631 -v/ 7 M exp{KB@p)+ '}

igg(gw())! B i%(e‘b’ 0)‘ aG”(O 0+ Sudr{aGp( EP’ 0)}dT
<o} 5o 2o
»

=|e]— Z‘.IIE‘SI *2nM exp{KB(¥(p)+1)"}.

Hence if we choose 4, and B, suitably and set

V,= {(Ep)l [63] < exp{—(4,+ B (")},
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we have, in V',

j |H| = exp{—(4s+Bsy(p)")},
*3) (‘g?(éw O)lZLZ’—I, le:| = exp| —(4'+Bv(p)")}.

We apply Lemma 3 to H. When |&}]| < exp{—(4,+Bar(p)")} for e=1,
..., n—1, the relation w’=H(EI,, £) can be solved as Ezw(gp, w’) for |w'| <
exp{—(4s+ Bsy(p)")}. We change 4, and B, if necessary and can achieve

that | G,(E,, 0] < exp—(ds By (p))}, then
£ =U(E,, w—GyE, 0)

is holomorphic for|w]| <% exp{—(4s+Bsy(p)")}. In other words, we have

constructed a neighborhood ¥V} of p and local coordinates (E »» W) such that

Vi = &, w)| 1€3] < exp{—(4,+Bar(p)")},
Iw] < % exp{—(ds+ B (p)"}}

where w(q)=F(q) for gV},

Take U, ={(E,, W)||&%] <o, |w| <o} and Uj=A{(E, w)| %] <(1—e)o,
[w| <(1—¢)p}, where po=exp{—(4,+By(p)")}, ¢ is small positive and in-
dependent of p, in such a way that U,CV,. Choose a locally finite system
{U%} jer, from among {U}} ey so that UU;D Y. As a matter of fact we
choose {p;} and denote U},]_ by Uj}. (Similarly for U;) We add {U}};e,
and {U;}e;, to obtain covers of X, as described in §2. Those U} and U;
(j€1I,) which intersect _Lér U; shall be taken in similar forms as Uj;, U, above

j
with the origin p; of (¢ J-)-]coordinates as the centre of U7, and w;=F—F(p;)
instead of w,=F. Coordinates for U; which does not intersect any Uy(k&1,)
can be taken as linear coordinates unitary equivalent to ({). ¢ will be taken
to be common all through.

These coordinate systems are not normalized as described in §2, but
dependence of o; on j is known and its effect on the choice of the function v
is clear.

We have only to estimate r;, appeared in §2. Take a pair (j, k) of
indices in 7; such that U;NUj=¢. &% (@=!, -, n—-1) are linear functions
of (€3, -+, &):
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(4.6) ' = ﬂZycg(pk)-EE(p,-)EHE ca(p)(CP () —CP(y) -

ca(py) and c}(p;) are entries of unitary matrices and hence coefficients of the
linear terms in (4.6) are bounded when j and k vary. In U; we take &5 (¢=1,
-+, n—1) and w;=F as coordinates. & (1=a=n—1) are holomorphic func-
tions of these coordinates. We have

o6

ow; -

(-2 P a -t
=2 <300 3P (%) .

Hence

}?}(q)} < explds B (@t for qEU;.
i

Consider a point g & U; N Uy, for which
[wi(@)| < exp{—(4s+Bs(@)")}

where A, and B, are suitably chosen. We have |&%(g)| <(1—é)p, for 1=
<n—1, hence for ¢'Ex;" (z;(g)) for which |w;(g")| = exp{—(4y+Bn(q9)")},
we have

[€3@) <o (@=1, -, n=1),

and we see that ¢'€U; N U,.
This shows that r; is not less than exp{—(4s+Bg")}, and combined
with above considerations, shows that we can take »(¢) to be By,t”.

Note added in Proof. The condition 7=1 in Theorem 2 can be replaced
by 2>0, if we take ¥(C) to be w(c)=;—log{1—i—2 1¢%|% and #(r)=Bexp(nt).
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