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Introduction

The Virasoro algebra L is the Lie algebra over the complex number field
C of the following form:
L =3>)Ce,PCet,
”ez

with the relations: for any n, neZ

3__
[em em] = (m—n)en+m+n”:l§’—na

n+m,066 )
[ed, e, = 0.

This type of the Lie algebras was first introduced by a physist M.A.
Virasoro (cf. S. Mandelstam [1974]), as the gauge group of the string model
of elementary particle physics.

Consider the Lie algebra L’ of trigonometric polynomial vector fields
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on the circle:

L= E Cln; [[ns lm] = (m‘—n)ln-i-m (l’l, mEZ),
nez

l, = Zan-Zd; (z = e).

Then the 2-dimensional Gel’fand-Fuks cohomology of L’ is known as
HY(L'; C)=C,
and its generator ¢ can be taken as

3__
(15(6”, em) = ?%3

n+m,0 *
The Virasoro algebra L is the central extension of the Lie algebra £’ defined
by the cocycle ¢.

Quite recently the Virasoro algebra was used to analyze the critical phe-
nomena in the two dimensional statistical physics (cf. A.A. Belavin-A.M.
Polyakov-A.B. Zamolodchikov [1984]). 1In that situation, the Virasoro algebra
plays the symmetry group of the theory.

In the mathematical side, V.G. Kac ([1979]) studied the left -L-module
M(h, ¢) parametrized by C?*>(h, ¢), called the Verma module. The Verma
module M(k, ¢) is the left L-module with a cyclic vector |4, ¢) with the funda-
mental relations:

eulh, > =0 (n21); elh, ¢y =hlh,c>, ei|h, c>=clhc).

V.G. Kac obtained the formula concerning the determinant of the matrix
of the vacuum expectation values of M(h, ¢) (cf. §2). Using this Kac’s deter-
minant formula, F.L. Feigin and D.B. Fuks ([1983]) determined completely
the composition series of M(h, ¢) for each (&, ¢)EC?

In this paper, we construct another kind of representations of L para-
metrized by C?3 (w, 2), which we call the Fock space representation (F(w, 2),-£),
and intertwining operators between them, and investigate these _{-modules
F(w, 2) and M(h, c) and their relationship.

At first consider the associative algebra A over C generated by p, nEZ)
and 4 with the following Bose commutation relations:

[pm pm] = n76ﬂ+m,0; [Aa pn] = 0 (l’I, mEZ) .

For each (w, )EC? we consider the left 4-module (v, 2) with a cyclic
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vector |w, > with the fundamental relations:
Poalw, 2> =0 (=1); polw, D> =w|w, >; Alw, 2> =2|w, 2>.

Now consider the following operators which can act on the Fock spaces
Fw, 2):

1 n—1

L,= (po—n/l)pﬁ?jE:lp;pn_ T Epw,-p-j (n=1);
1 n—1

L_, =(potnMp_y+—2p_jPjont 2 PiPn-;  (Z1);
2 i=t j=t

1
L, = 7(!7%—/12)’*" ]Zglpjp—j;
L} = (—1242+1)id .

Then the first result is the following (Proposition 1.3):

Theorem O0.1. The operators L, mEZ) and Li satisfy the commutation
relations of the Virasoro algebra: for n,meZ

3__
{ [Lm Lm] = ("7_'”)Ln-l-m+rn ]2"1 6n+m,0L{);

In the special case where 4=0, these operators are the ones which were
introduced by M.A. Virasoro (cf. S. Mandelstam [1974]).

By using the canonical homomorphism = (i.e. z(e,) =L, (nEZ); n(et)=L}),
we get the left L-module (F(w, 2), 7(, ), -L) which is called the Fock space
representation, and by the explicit formulae of L, and Lj,

% Ly|lw, 2> z%(wz—lz)lw, Dy Liw, D> = (1—1223)|w,2>;
L_,|w,2>=0 for n=1.

By the universal property of the Verma module M(h, ¢) as an _L-module,
for each (w, ) &C? we get the unique _L-module mapping

”w,h: M(II(W, X), C(l)) g g(‘t’, 2)

which sends the vacuum vector |A(w, 2), c(2)> & M(h(w, 2), ¢(2)) to the vacuum
vector |w, 2>& F(w, 1), where

h(w, /1)——«%();3——/12) and  c(2) — 1—1222.
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Then by using Theorems 0.3 and 0.6, we get the following (cf. Proposi-
tions 2.7 and 2.8).

Proposition 0.2. Fix a pair (w, )EC
1) The canonical -L-module mapping

”w,)\: M(h(w’ l), C(l)) g g(wa X)

is isomorphic, if and only if the equation

a b
wH+—s—— =0
+2 s

has no integral solutions (a, b)EZ*? with a=1 and b=1, where sEC* is a root

of the equation /I=—1~ L
s 2
2) The L-module F(w, 2) is irreducible, if and only if the equation
a b
—s—— =0
e 2 s

has no integral solutions (a, b)EZ* with ab=1, where s&C* is a root of the

equation A= x -5,
s 2

And this condition is equivalent to the fact that the corresponding Verma
module M(h(w, 2), c(2)) is irreducible.

To construct intertwining operators between Fock spaces, we introduce
the operators of following type acting on F(w, 2). Fix s&C*, and consider

XG5, €) = exp (s 3 "2 exp (—s 3 ¢+ P=s oo,
n=1 n n=1 n

and for any a=1
S2 - n\ D,
Z(S; Cl, '”:Cn) = F(?; ¢]9 Y Ca) exp <S2 (Cl+"'+ca)_”>
n=1 n

X exp (—sf‘. (Cr"+---+€;”’ﬂ)Tﬂ )
n=1 n

where
T,: F(w,2) — F(w+s, 2)

is the operator such that

T, |w, > =|w+s, 2>; [T, pl =0 (n=0); [T, 4] =0,
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and
F((Z; 4‘11 "ty Ca) = H C;—(a_l)w H (Ci_cj)zw .
j=1 1i<i<e

Operators of this type are called Vertex Operators (cf. S. Mandelstam [1974]
and E. Date et al. [1983]).

Then X(s; ¢) and Z(s; ¢y, -+, ¢,) are multi-valued holomorphic functions
of {&C* and (¢y, -+, {,)E M, respectively with valued in the operators acting
on SF(w, 2)’s, where M, is the manifold defined by

Ma = {({19 B Ca)E(C*)a; Ciz‘:é,j (1§l<}§a)}
For each a=C*, denote by SF the local coefficient system with values
in € which is determined by the monodromy of the multi-valued holomorphic
function F(e; ¢y, -++, {,) on M,, and denote by S, the dual local system of S%.

Fix s&C* and an integer a=1, and take an element I'eH,(M,; S,).
For each integer b= Z, we consider the operator

O(s, I'; a, b) = S Z(s3 €,y veey CNETI 0o E70NAC o0 d L,
r
Main Theorem 0.3 (Theorem 3.8).
1) For each (w, 2)EC?, the operator O(s, I'; a, b) acts as
O(s, I'; a, b): F(w, 2) = F(wtas, ).

2) Take s€C* and a, bEZ with a=1. Put z:/m(s):L_%’ then the
operator s
0. Isa, by F(—Ls— L. 1) > (252 2)
2 s 2 s

commutes with the action of _L.
For suitable s&C* and weC, the equation

a b

W= ———

2 s

has a countable number of integral solutions (@, b)) Z? if and only if @=s%2
is a rational number. This index @ characterizes the property of the mono-
dromy of the function

F((Z, Cla R C’a) = 'fj:l c;(a-—l)ﬂé H (Ci_ci)zw .
7=

15i<ise

If a is irrational, then the monodromy of the function F is of logarithmic type,
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and if @ is rational, then the monodromy of F is of algebraic type.

The essential points to prove this theorem are the following two formulae
(Propositions 3.3 and 3.4).

Proposition 0.4. For any {EM, and s€C*,
X(Ss Cl)"'X(s’ ga) = Z(S; Cl, °%ty Ca) (Cl_"ca)spo+(a/2)sz .

Proposition 8.5 (Conformal Covariance).

— d 52
J— m o P
[Lys X(s, Q)] =¢ (é’dc m(s/H— 5 ))X(s, 9]
for each meZ and s, { EC*.

In the final step, we must construct a cycle I'(@)e H, (M ,; S,) which gives
a nontrivial intertwining operator O(s, I'; a, b).
If we expand

exp (s 2 (€t +eDEr)exp( s 3 (€46 F0)

as a Laurent series ol (£, «, {,), then the coefficient of the each term of the

operator
gr Z(s3 €y +ovy CHETV e C0 1AL o0 dE,
is written as

2
S F(i; o C,,)C;"l“---g";’a“dil---Ca,
r \2
and this integral is reduced to

| Trgeva—rp T Ga-kpkeskls " dode, s,
1Si<jsa-1

g j=1
where I' =I''xI'ye H,(M,; S,)= H(C*; C)QH,_(Y,_,; S,), I'; is a genera-
tor of H(C¥;C), and Y,_; is the manifold defined by
Y,-1= {(kb ) ka—l)eca—l; kl':*:()’ 1 (léléa—l) s
ki%k; (=i<j=a—1)}.

In §4 and §3, we construct the cycle I'(ae)eH,_(Y,_;; S,) which reg-
ularizes the divergent integral

| et T (ke ek s i
1

4(a-1) j=1 1Si<jse-
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where 4(a—1) is the (@—1)-simplex defined by
da—1) = {(ky, =, ky_pER 1 1>k > >k, ;>0}.

In the construction of the cycle, we use the technique of resolutions of
singularities. We think that the results in §5 are interesting for further study
of the above integral.

Consider the set

2 ={ecC;dd+)aEZz, da—deEZ (1=d=a—1)},
then we get

Theorem 0.6. There exists I'(e)eH(M,; S,) which depends holomor-
phically on e &8 such that the operator

O(s; a, b) = 0<S9 F(?); a, b>: .Cf<w—as, L—%) g(m i_%)

N S

is nontrivial in the sense that for any weC

1) for b=0, the image O(s; a, b)|w—as, L—%} is a nonzero vecior.
K

2) for b<<0, there is a vecior |v>EF (w——(zsg —L—i> such that O(s; a, b)|v)
=|w, —1——i> . T
s 2

In the appendix, we construct the Fock space representations by using the
charged Fermion operators and explain their relationship to the Bose formalism.
In mathematical languages, the Fermi formalism corresponds to the spinor
representations and the Bose formalism corresponds to the Weil-Segal re-
presentations.

Recently appeared the paper of VI.S. Dotsenko and V.A. Fateev [1984]
which seems to be very closely related to our results.

Finally we express our thanks to Professor K. Aomoto for valuable dis-
cussions.

Notations

the cardinal number of the set S
the ring of rational integers

the field of rational numbers

the field of real numbers

the field of complex numbers

QmenNy



266 AKIHIRO TSUCHIYA AND YUKIHIRO KANIE

C*: the group of non-zero complex numbers
Clxy;reI']: the ring of polynomials in variables {xy; rI'} over C
Cllxy; reI']]l: the ring of formal power series in variables {xy; r&I'} over C
Clxy, xy';7€l:  the ring of Laurent polynomials in variables {xy; 7 €I'} over C
Cllxy, x31;r€']]:  the ring of formal Laurent series in variables {xy; r&I'} over C
A(xy;reI’): the exterior algebra in variables {xy; rI'} over C
d;: Kronecker’s delta, that is, 8;;,=0 (i), or 1 (i=J)
{EJ Ay: the projective limit of a projective system {A4,}
n

a|b: means that an integer b is divisible by an integer a
Let S be a subset of an ambient topological space X. Denote by S the closure of S in X,
and by int S the interior of S in X.

§1. Canonical Commutation Relations and Fock Space Representations
1.1) Canonical Commutation Relations

The purpose of this paragraph is to present some facts about canonical
commutation relations and Fock space representations. Consider operators
p, mEZ) and 4 with the following commutation relations:

{[pm pm] = man+m,0id (11, mEZ) 9
[As pn] =0.

We denote by A the associative algebra over C generated by operators p,
(neZ) and 4 with the defining relations (1.1.1). The algebra 4 is made

Z-graded algebra by defining degrees as degp,=n and deg A=0. Then 4
is decomposed to the sum of homogeneous components as

(1.1.2) A =31 ).

(1.L1.1)

Consider an index set M=(m,;, m,, ---) with non-negative integers m;
satisfying |[M]|]:= 3] jm;<<oco. We denote by P,(M) and P_(M) the elements
7

«-pyepts and pTi pZ3--- of the algebra A respectively. Then any homogeneous

element of ] of degree d is uniquely represented in the following form:

(1.1.3) 2] cM,N(Po’ AP (M)P_(N),

|- lVil=d

where ¢y, v(pg, 4A)EC[py, 4] and the above summation is finite.
Define a decreasing filtration

(1.1.4) Ad) =A(d)D A (d)D Ay(d)D -+

by the following rules; the element
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Car,n(Po> AP (M)P_(N)EJd)

A=Vl =d

belongs to A,(d), if and only if ¢, y(ps, 4)=0 for ||[N||<n. Then we get the
composition

(1.1.5) A (d) X Au(d) D (a1, @) > a° 0, E A (dy+dy)

with n=max(n,—d,, n;). Define the completed vector space Jz(d) by this
filtration as

(1.1.6) @) = lim @)/ () -

Then any element in Jz(d) is represented in the following form:

(1.1.7) > (P HPLMP(N)EAW) ,
120 Nwii=a

where ¢y n(po, A)EC[py, 4] and the summation may be infinite in this time.
Then

(1.1.8) Ad) = Ay d)D Ad) D Ad)D -+
defines a completed linear Hausdorff topology and the embedding
(1.1.9) A(d)D J(d)

has a dense image and the composition (1.1.5) can be extended to a continuous
map

(1.1.10) A d) X Ay — A(dy+d)

in a unique manner. And the sum of these spaces
(1.1.11) A= Ad)>DA
dE€Z

becomes a topological graded algebra.
For each (w, 2)&C? consider the left J-module F(w, )= |w, 2> with
the cyclic vector |w, 2> which has the following defining relations:

P—nlwa Z>=0 (I’lgl)
(1.1.12) Dolw, 2> = wlw, 2>
Alw, 2> =2|w, >.

We call that this vector |w, 2> is the vacuum vector of SF(w, 2). Similarly
we define the right Jf-module F'(w, )=<A, w| L with the vacuum vector
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<, wl,
<, wlp, =0 (n=1)

(1.1.13) <2, wlpy =<2, wlw
L, wld=42,w|2.
The vacuum expectation value
(1.1.14) > FP(w, )xF(w, 2) = C

is uniquely defined by the following conditions:
i) <] >isC-bilinear; i) <1, w|w, D=1;
iii) <va|v>=<v|av’)forany {yv| €eF'(w, ), |v>EFW,2)and ac.
A basis of F(w, 2) and F'(w, 2) over C is given by
(L1.15) { | M, w, 2> =P (M)|w, 2> with M = (my, m,, ---) and
o <l’ w, NI = <la WIP—(N) with N = (nla Ay, "')

respectively. Then the vacuum expectation values are explicitly given by
the following formula

(1.1.16) A w, NI M, w, 2> =06y ,n"M!,
where

Onu = anl,mlang,mg"'anj,mi'°' 5

(1.1.17) nM = 1m12m2a-- .mj... and
J

M! = mylmyte-om;le- .
Define the grading in F(w, 1) and &F'(w, 1) by setting
(1.1.18) deg|M, w, 2> = ||[M|| and deg<2,w, N|=||N]|,
and decompose them into the sum of homogeneous components:
(1.1.19) F(w, ) =‘§£Fd(w, 2) and F'(w, 2) =§ Flw, 2),
where F;(w, 2) and Fj(w, 2) is the space of homogeneous elements of degree

d. This gives F(w, 2) and F'(w, 2) the graded A-module structure. By enu-
merating the number of the basis (1.1.15), we get

(1.1.20) dim F,(w, 2) = dim Fi(w, 2) = p(d)

where p(d) is the number of partitions of the integer d.
By the formula (1.1.16), we get the following proposition.

Proposition 1.1. Denote by < | Da,.dq the restriction of the vacuum expecta-
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tion value to the homogeneous components Fy (w,2) X F 4 (w,2). Then | D4y 4,
is trivial unless dy=d, and < | >;=<| >4 4 is always nonsingular.

Note that the restriction < | >, is independent of the parameters w and
2, so denote by D, the matrix determined by the restriction < | >;, that is, D,
is the diagonal matrix whose diagonal components are given in (1.1.16).

For each integer d, the submodule Homg (F(w, 1), F(w, D))(d) of
Homg (F(w, 2), F(w, 2)) is defined by

(1.1.21) Homg (F(w, 1), F(w, ))d) = E[o Homg (F(w, 2), Foiu(w, 2)) .

And the filtration of Homg (S (w, ), F(w, 2))(d) is defined by
(1.1.22) Gy2G,2G,2---,
G, = {#€Hom¢ (F(w,), F(w, V)(d); ¢ =0 on ZE:EF,,(W, Dr .

Then this filtration defines a complete Hausdorff linear topology on the space
Homg (% (w, 2), F(w, 2))(d) and the composition of mappings is continuous in
this topology.

Consider the canonical mapping

(1.1.23)  ®(w, 2): JA(d)Da > O(w, 2)(a)=Homg (F(w, 2), Fw,))(d)

defined by
O(w, Na)|v> = alvy for |vWweF(w, ).

Proposition 1.2. The mapping (1.1.23)
O(w, 2): JAd) — Homg (F(w, 2), F(w, D))

is surjective and preserves the filirations for any dE Z.

For two elements

a ZHM”_%”#CM,N(%; AP (M)P_(N) and
a'= >\ cun(py, DPL(M)P_(N)
11w i=a

the equality @(w, 2)(@)=®(w, )(a’) holds, il and only if ¢, y(v, )=cirn(w, 2)
for any M and N with ||[M||—||N||=d.
By the commutation relations (1.1.1), we get the isomorphism
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as left C[p,(mn=1)]- and right C[p,(n=< —1)]-modules. Hence we can define
the normal product
(1.1.24) D Clp,(nEZ), A= A

as the uniquely defined C-linear isomorphism under the condition that the
mapping (1.1.24) is a left C[p,(n=1)]- and right C[p,(n=-—1)]-module map
and satisfies the equalities : A"pl:=A"p¥ for any n, m=0. Moreover this
normal product on .4 can be naturally extended to the completion A.

Remark. The Fock space representations &F(w, 2) of the algebra A can
be constructed on a function space of infinitely many variables x{, Xg, X1, X,, ***.
In fact, let

(1.1.25) T: F(w, 2) = V =C[xy, X N P

be the C-linear mapping defined by

(1.1.26) T(| M, w, 2>) = nMx¥ evrtra
where
(1.1.27) XM = xPixizee- .

Define the action of the operators in the algebra A on the space V as

(1128)  p,—nx, @21), poy—-2 1=0) and 4 =2
0 ox4

7%

Then it is easily seen that the mapping ¥ is an JA-module isomorphism.

1.2) TFock Space Representations of the Virasorc Algebra

For a formal vatiable z&C*, define the operator

(1,21) p(z) = 2 pnz” s
nez
and
(1.2.2) L(z) = L:p(z)z: — Az—d p(z)— 1 g
2 dz 2
=31L,2",
ez

then L, ui(n) and the explicit forms of the operators L, are given as follows:
for n=1
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1 7—1
L,= (po_nA)pn+ ~ E pjpn—j+ Z Du+iD-; »
2 i=1 =
1 n=1
(1.2.3) Loy = (potnd)p-t - 2 P-iPj-at 2 PiP-n-j >

Ly = - (b= A)4Dy,
where

(1.2.4) Dy=2)p;p-;
j=1

is the Euler operator, so the homogeneous decompositions of the Fock spaces
are eigen spaces for D,, that is,

{ffd(w, Y = A{lv>ed(w, 2); Dy| vy =d|v)},

1.2.5
(.23 Fiw, 1) — 1 €F (w, ; 1Dy = 1}
By elementary but long calculations we get the following proposition.

Proposition 1.3 (Commutation Relations for L,).

m3—m 2 .
(126) [Lm Lm] = (m~")Ln+m+T 6n+m,0(_12A +1)ld .

[Lm pm] = mpn+m+m2/18n+m,0 H]
(1.2.7)

(L0 @] =222 )l Az

The Virasoro algebra L is the Lie algebra over € of the following form:
(1.2.8) L=3Ce,BCes,
ez
with the relations

129 ! e €al = (1 —errat™ "0, s,
et =the center of the Lie algebra ..
Let U(L) be denoted the universal enveloping algebra of .£. Put
(1.2.10) w(e,) = L, (nEZ) and (ef) = (1—128)id ,
then by Proposition 1.3, we can define the homomorphism

(1.2.11) z: UL)— A,

and the action of . on SF(w, 2) and F'(w, 2) gives the representation 7, , of
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the Lie algebra L on Z(w, 2) and F'(w, 1) respectively. This representation
is called the Fock space representation of the Virasoro algebra L.
Introduce the polarization of the Virasoro algebra [ as

(1.2.12) L=n,PHSn_,
where
n+=%‘{Cen, n. = 3> Ce,
L h = Cey+Cef .

The dual H*=Hom¢ (), C) of the abelian subalgebra Y is identified with
C? by setting for (4, c)EC?,
(1.2.13) (h, c)e)) =h and (h, c)(et) =c.

The homogeneous decompositions (1.1.19) of the left and right -L-modules
F(w, X) and F'(w, 2) respectively coincide with the weight space decomposition

w.r.t. the subalgebra ¥, and the homogeneous components &F,(w, 1) and F(w, 2)
are the weight spaces belonging to the same weight (h(w, X)+d, c(2)), where

(1.2.14) h(w, 2):%(14;2—/12) and c(d) = —12241,
that is,

(1.2.15)
{ffd(w, D) =A{>eFW, ); L|v)> = (h(w, )+d)|v>, Li|v)> = c(A) [V},
Fiy(w, 2) = L[| €F'(w, 2); v| Ly = v | (B(w, D+d), <v| Lt = <v]e(A)}-

1.3) Here we set up the fundamental problems for the Fock space re-
presentations <F(w, 2) of the Virasoro algebra _£. In this and the succeeding
articles, we will discuss these problems.

Firstly we give the definition of singular vectors. A vector v&S(w, 2)
is called singular if it satisfies the equalities

(1.3.1) Twa(e-y =0 (=12 -).

Denote by S(w, 2) the set of singular vectors in F(w, 2) and by S,(w, 2) the
set of singular vectors of degree d.

Fundamental Problems Take a pair (w, ) EC2
(1) When the L-module F(w, 2) is irreducible?
(2) Then the map U(L)Da—a|w, 2>ESF (w, ) is surjective?
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(3) Determine the subspace S(w, 2) of F(w, 2). In particular, is S(w, 2)
bigger than C|w,2>?

(3') Are there singular vectors of F(w, 2) of positive deggree d? that is,
is Sy(w, 2) trivial or not?

(4) in the case when F(w, 2) is reducible, detedmine its composition tequence.

Note. We can set up the similar problems for the dual module (v, 2).
However the problems for F'(w, 1) will be solved in the same moment as for
F(n, ).

§2. The Verma Module of the Virasoro Algebra
2.1) Verma Modules and Kac’s Determinant

For convenience, we summarize here some results about the Verma mod-
ules for the Virasoro algebra L.
Fix the polarization of £

2.1.1) L =n.dhPu_,

as (1.2.12). Take an element (4, c¢) of the dual §* of the abelian subalgebra b.
Similarly as the Fock space representations (§1.1), we can define the left /-
module M(h, ¢) and the right L-module Af'(h, c¢), with the vacuum vectors
th,c>E M(h, ¢) and <{c, hl =M'(h, c) respectively. The vacuum vectors are
defined by the following relations:

@.12) {e_,lIh, c>=0 (n=1)

elh, > ="h|\h,c>; etlh, c>=clh,c>,
2.1.3) {(c, hle, =0 n=1)

e, hley =<c, h|h; <c, hiet =<, hlc.

The Verma modules M(h, ¢) and M'(h, c) are generated by the vacuum vectors
|h, ¢> and <c, h| respectively.

Then by Birkhoff-Witt’s theorem, the universal enveloping algebra U(.L)
has the basis

(2.1.4 e.(M)edoes'e_(N)
for multi-indiccs M =(m1,, in,, -++) and N=(, n,, ---) of non-negative integers

with [[M|[= 3] jm;, |[N|[=2>]jn;<oo, and non-negative integers /, and /,,
7 J
where

(2.1.5) e (M) = ---eyzels and e_(NV) = e’y .
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And U(L) is also a Z-graded algebra as

(2.1.6) UL =X UD@),
by setting
2.1.7) dege,=n (MEZ) and dege; =0,

and any element of U(L)(d) is uniquely represented as

(2.1.8) b cur,n(eos e0)es(M)e_(N),

Nl =&l =d

where ¢, n(ep, €4) is a polynomial of e, and e5. The Verma modules M(#, c)
and M'(h, ¢) have the basis over C:

|M’ h: C>=€+(M)|h,, C>, degIMa h’ C>=”M“ and

2.1.9 e, by N|=<c, hle_(N), deg<c, h, N| = ||N]|

for multi-indices M and N with [|[M|], ||N]|<eo, and they have also a structure
of graded U(.L)-modules:

@L10) M o) =35 Muhc) and MG, c) =3 Mi(h, ©)

where
SMd(h, c) = C|M,h c¢> and
| Xl|=d

@.1.11)

1M1=d

( M, ¢) = Ccle, b, M.

Then this homogeneous decomposition (2.1.10) is also the weight space de-
compositions of the Verma modules M(h, ¢) and M'(h, ¢) with respect to the
abelian subalgebra § respectively. And the subspaces M, (h, ¢) and Mk, c)
belong to the same weight (h+-d, ¢), and their dimensions are also the same

number p(d).
The vacuum expectation value
(2.1.12) | Dner M(h, c)xM(h, c) = C

is uniquely defined by the following conditions:

{ i) C-bilinear; ii) e, hlh ), =1;
lll) <va| w>h,c = <v ] aw>h,c
for any {v| €eM'(h, ¢), |w>EM(h, ¢) and ac U(L).

Then the restriction of the vacuum expectation values to the subspace M4, c)
X M 4(h, ¢) is trivial unless d=d'.
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Let = be an automorphism (or anti-automorphism) of an algebra & and

let ¢ be a C-linear mapping between a left G-modules &, and a left (or right,
respectively) G-module &,. Then we say the map ¢: F,—F, is defined over
(G, ), if the following equality holds: for any g€ & and f €Y,

2.1.13) #(gf) = =(&)s(f) or ¢(gf) = #(f)e(2)

respectively.

Let o be the C-linear anti-isomorphism of the universal enveloping al-
gebra U(L) defined by

(2.1.14) ole,) =e_, (neZ) and o(e) =ep,
and define the C-linear isomorphism
(2.1.15) 6: M(h, c)— M'(h, c)
defined over (U(L), o) by
o(|h, ) =<c, h|.

Then o preserves weights for §) and for any M,

o(| M, h, c>) =<, h, M].
Define the bilinear form on M(h, ¢)
(2.1.16) (1): M(h, c)xM(h, ¢)—C
by

(1) =<La(IvD) v

Consider the restriction of the vacuum expectation values to the degree d
subspaces:

(2.1.17) D er Mih, )X Myh, ) —C .

Take the basis (2.1.11) in My(h, ¢) and M}(h, c), then the matrices of the
bilinear forms (2.1.16), and (2.1.17) coincide with each other, and denote them
by A,(h, ¢), that is

(2.1.18)  Ayh, )™ =<, hy M| N, h, Hh.c = (| M, h, S| IN, I, ).
It is easily seen that the matrix 4,(%, ¢) is symmetric.

The determinant of the matrix A,(h, ¢) plays a very crucial role in the
irreducibility problem of Verma modules, and is calculated by V.G. Kac as
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a function of parameters (%, c)&h*.

Propesition 2.1  (V.G. Kac [1979], F.L. Feigin-D.B. Fuks [1982]).
2.1.19) det? A,(h, ¢) — const. f{ 10,5k, P,
where

(2120) Byt €)= 1Lt (5= (e—13)+ -y — D} -+ (e k3

Here we remark the following symmetry of the function (2.1.20):
(2.1.21) Qk],kz(h, c) = d)—kl,—kz = @kz,kl = o—kz,—kl
for any (%, ¢), moreover we can decompose it to the product of linear factors:

Proposition 2.2.

1 1 1
@122) O 0) = vt k) = )
w2 k) v S et )
2 s 2 s
where
¢ = ()= —122241 — <3~2>(3a—2),
a
1 w2 (a—1)°
h=hw, D)i=—0W=23¥) =L
(2.1.23) L = h(w, 2) 5 WF=2%) 5 1o
a =a(s):= EE and 2 = A(s):= 1 _5,
2 s 2
Note. The meaning of the parametrization (2.1.23) will be explained
below.
Note. C*le—>1=L — %EC is a double covering with branching points
s=4+/21. y
The mapping
(2.1.24) z: C*2(w, ) (h, )=C?

defined by (2.1.23) is a 4-fold branched covering.

Remark. 1In this article, we use the same notations for vectors of Verma
modules M(h, ¢) and Fock spaces & (w, 1), for example |/, ¢> and |w, 2>. But
we consider that the readers aren’t confused, because we always use the letters
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h, c for parameters of Verma modules and 1w, 2 for Fock spaces.

2.2) Relations of Fock Spaces and Verma Modules

For each (w, )EC? let h=h(w, ) and c¢=c(2) as are given in (2.1.23).
Due to the universality of the Verma modules and the formulae (1.2.3), we
get the unique left L-module map

2.2.1) zy,a M(h(w, 2), c(2)) = F(w, 2)

which sends the vacuum |A(w, 2), ¢(2)> to the vacuum |w, 2>, and the unique
right L-module map

(2.2.2) 7t M'(h, c) = F'(w, 2)

which sends the vacuum to the vacuum. They preserve degrees and can be
explicitly represented as

(2.2.3) T, (I M, h, ) = mle (M) b, 2>
= 2 C(I(ws x)NM!]\], W, 2> a
[INl|=d
224 zly (Ko, by M |) =<2, wlm(e_(M))
= > CJov, )N, w, N |
HN[I=d

for a multi-index M with ||M||=d, where C,(w, 2),™ and Cj(w, 2),¥ are poly-
nomials of w and 2.

Then we can see that the vacuum expectation values are compatible in
the following sense.

Propesition 2.3. For any (w, N)EC?, the following diagram is commutative.
A >s MG, 2), ¢(Q)) x M(h(v, 2), c(2)) =~ C

(2.2.5) i xl l s l id
) o Fiw, YXF(w, ) ——> C

Let o be the C-linear anti-automorphism of the algebra  defined by
(2.2.6) olp,) =p., (nEZ) and o(4)=—41.
Then by the formulae (1.2.3) and (2,.1.14), the following diagram commutes:
o: UL)— UL)
(22.7) E l x
o. <_)qA e j
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Define the C-linear isomorphism
(2.2.8) o: Fi(w, —2)— Fi(w, 2)

defined over (Jl, o) which sends the vacuum vector |w, —2> to the vacuum
{2, w|. Then the following diagram commutes:

o: My(h, c) —> Mi(h, c)

(2.2.9) l T, l 7y a
o -C-Zrd(w, —/2) — gg(”” ;‘)

Hence the matrices of the mappings =, _, and =}, , are related as
(2.2.10) Ciw, DN = Cy(w, =)™ .

Then by the above commutative diagrams, we get the decomposition
of the Kac’s matrix A,(4, c).

Proposition 2.4. For each (w, )EC? and any d =0,

(2.2.11) Ay(h(w, 2), ¢(2)) = Cy(w, D, Cy(w, —2)
that is,
(2.2.12) Afh, O = 3 Cylw, Ny Dy M Calw, Dy

H/1=112"1=d

Note again that D, is a nonsingular diagonal matrix whose diagonal com-
ponents are given in (1.1.16).

2.3) Singular Vectors

In this paragraph we summarize results about the Verma modules and
the Fock space representations.

At first we give the definition of singular vectors of the Verma module.
A vector v of M(h, c) is called singular, if

2.3.1) ey =0

for any n=1. Denote by S,(h, ¢) the set of singular vectors of degree d in
M(h, c).
Recall that for any (w, )EC? (h, c)&9H* and d=0,
2.3.2) dim M (h, ¢) = dim M }(h, c)
= dim F,(w, 2) = dim Fi(w, 2) = p(d) .

Then standard arguments lead us to the following proposition.
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Proposition 2.5. For each (w, )EC?, let

(2.3.3) h = h(w, 2) = —é—(uz—lz) and ¢ — c(d) = 1—1222 .

Then the following conditions are equivalent.

(1) The Verma module M(h(w, 2), c(2)) is irreducible.

(2) There is no singular vector in M(h, c) of positive degree.

(3) det A (h, ¢)==0 for any d=0.

(4) The mappings =,,: M(h, c)—>F(w, 2) and =}, ,: M'(h, ¢)—F'(w, 2)
are isomorphisms.

(5) det C,(w, 2)=0 and det C,(w, —2)=0 for any d=0.

(6) There are no singular vectors in F(w,2) and F(w, —2) of positive
degree.

(7) The Fock space representation F(w, 2) is irreducible.

Moreover we get the following proposition which is essentially proved
by F.L. Feigin and D.B. Fuks [1982].

Proposition 2.6. (1) For any (w, )EC? and d=1,
234 dim S,(w, H=1.

(ii) The set
(2.3.5) 2ig(d) = {(w, HEC?; dim Sy(w, 1) = 1}
is an algebraic set of C*.

Proof. Fix an integer d=1. The space S;=8,(w, 1) of singular vectors
of degree d is the kernel of the linear mapping L~ :

236) L =L, Fy=Fy, D) > Fy, — ':20 Fw, 2) .

n=1
For a multi-index M =(m,, m,, --+), put

| M, w, 2>/nMn! if m;=0 for any j=1
0 if m;<0 for some j=1

2.3.7) IM> = {
Then we get
(238) pn|M>:n(n1n+l)lM+an> and .D—nIM>:lM_6n> (’7;1)7

where 0; is the multi-index whose i-th component equals to d;; (Kronecker’s
delta).
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Introduce the order among these vectors as the lexicographic order for
corresponding multi-indices M=(m,, m,, ---), that is, the vector |M > is called
higher than | Ny (denoted as | M >> | N)), if there exists j =1 such that

m; =mn; (I<j) and m;>n; .

By this filtration in the space F(w, 1), decompose F, and &F,_, as

d . .
Gy =23F5; Fg = span of {|M>; [IM|| =d, m =d—j},

(2.3.9) ’ 3_1
Fyor =1 0&75_1; Fi_1=span of {|ND>; || N||=d—1, n,=d—1—j},
=
then we get
(2.3.10) {dimff,? =4(0) =1; dimF; = q(1) = 0;
T ldim F = q()=q(0)+ - +¢(i—2) = dim Fi} (d=jz2),
where
(2.3.11) q(Jj) = #{(my, my, +++); m; =0, X3 im; = j}.

=2
By the remark (2.3.10), it is sufficient for the statement (i) to show that
a .
the restriction of the operator L~ to the subspace > <} is injective.
ji=2

By the formula (2.3.8), we get the explicit formula for the operator L™ as

(23.12) L |M)>= > EyM|N>

Nil=d-1
d n—=1
= 35 D) | M8, >+ 5 | M—0;=0,.>
+ jzaj(n1j+1)|M+6j-6j+n>}'

fote that all of E,¥ are polynomials of w and 2, so the second statement
(ii) is obvious. By this expression (2.3.12) of the operator L~, we get
k+1 __ |
L (@c 3 Fi
j=k-2
for any k, in particular
(2.3.13) EM=0 for |N>EFE, and |M>ETF] (j=k+3).
For |M>&%,, let |N,,> be the highest vector among the vectors |N)>
with E,Y =0, and we call |N,,> the peak of the column corresponding to the

vector |M>. Then for |M>eF, with my<d—2, Ey,” belongs to the
submatrix E(k) for 0=k=d—2, where



Fock REPRESENTATIONS OF VIRASORO ALGEBRA 281

(2.3.14) E(k) = (ENM)|N>€9'k I]\/[>€g§+2 .

d—1s

Hence by the remark (2.3.13), it is sufficient for the statement (i) to show that
the matrix E(k) is of full rank for 0=k=d—2.

The operator L™ (k)
Lo(k): T4 - Fhy
corresponding to the submatrix E(k) is given as
2.3.15) L) | M = (d—k—1) 5| M43y,
For any M=(m,, m,, ---), we get the peak corresponding to the vector |M>
explicitly as
(2.3.16) Ny = M+6,—9¢, (g = max{n; m,+0}).

Note that for any |N>EF%_,, there is only one vector |M>&F4+? such
that E, =0, that is, M =N—08,--6, with /=d-+1—||Ni|. Hence the columns
corresponding to all vectors |M>EF4*? are linearly independent, that is,
the matrix E(k) is of full rank for 0=k =<d—2. qed.

2.4) Determinant Formula for Fock Spaces

In this paragraph we show the determinant formula for the canonical
L-module mapping

2.2.1) T\ M(h, ¢) — F(w, 2).
Here we recall the relations among the complex parameters A, ¢, w, 2, s
and «:
(¢ = ()= —122241 = (2 —2)(304_2)5
\a
1 w?  (a—1)
h=hw, )= —W=»3) =21 _‘Y""°/
(2.1.23) h = h(w, ) 5 (w*—27) 5 1o
5 1 s
a=a(s):="-— and 2 =)= —~—,
(s) 5 (s) T3

For each 2&C, let 5. be the roots of the equation 2=21(s), and denote

b a b
2.4.1 e = Wou(s4) = Lo+ 2 =25 4+ %5 .
( ) We,b W ,b( +) 2 + o D) +F )
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Then we get

Proposition 2.7.

d a k p(d—k)
det C;(w, 2) = const. I <w+ 7s+—|—— s_>
k 12
(2.4.2) . . sty
det Cj(w, 2) = const. I] <w—~2—s+—— s_)
k=1 4|k

As a corollary, we get
Proposition 2.8.

(1) The L-module mapping =, ,: M(h(w, 2), c(2))—>F(w, 2) is isomorphic,
if and only if the equation

2.4.3) Wt ;—s+—i—%s_ —0

has no integral solutions (a, b)E Z* with a=1 and b=1.

(2) The L-module mapping =, ,: M'(h(w, 2), c(Q))—=F"(w, ) is isomorphic,
if and only if the equation (2.4.3) has no integral solutions (a, b)EZ* with
a<—1and b= —1.

() S(w, 2) is irreducible as an _L-module, if and only if the equation (2.4.3)
has no integral solutions (a, b)EZ* with ab=1.

Now we summarize the fact about the existence of nontrivial intertwining
operators between Fock spaces in the form used in the proof of Propositions
2.1 and 2.7. This is immediately obtained from Theorem 3.8 and Proposition
4.4. (Note that the proofs of these statements are not dependent on the re-
sults obtained in this section.)

Proposition 2.9. Let a, b be positive integers, and AC. Assume that

a(s)EQ. Put w=w, ,(s4) and w'=w_,,(s;). Then there exist intertwining
operators

Oa, b): Fw', ) = F(w, 2)
and

O(a, —b): F(—w, ) > F(—w', 2)

such that i) O(a, b)|w', 2> is a nonzero singular vector of degree ab; and ii)
there exists a vector |v>EF ,(—w, ) such that O(a, —b)|v>=|—w’', 2>.
2.5) Proofs of Determinant Formulas

In this paragraph, we prove Theorem 2.1 and Proposition 2.7, and use
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the notations in §§2.4.

Proof of Proposition 2.1. At first, we note that the degree of det A,(h, ¢)
d

as a polynomial of 4 is equal to X3 jp,(d), where py(d) is the number of parti-
ji=1

tions of the positive integer d by just j positive integers. Hence the degrees
of both side of the formula (2.1.19) coincide with each other, due to the follow-
ing combinatorial identity:

@5.1) 32 ipid) = 3 d(pd—),

where d(j) is the number of positive divisors of the integer j, i.e.
d(j) = #{keZ,; k| j}.
Hence we must only prove that det® 4,(h, ¢) can be divided by the left hand

side of the formula (2.1.19).

For each ceC, choose 2 with ¢ =¢(2) and s=s, =s5,.(1) with 1= 2(s)
smoothly. Then the roots of c¢=c¢(2) are 42, and s_-:—z, §{(—2)=—s and

S

s_(-—/l)=£.
s

Now by the induction on d, we prove the formula (2.1.19) and the follow-
ing assertion:

(#); There exists a nonzero singular vector in M (h(w, ,(s), c(A(s))) for any
pair (a, b)EZ? with d=ab, generically w.r.t. s.

At first, let d=1. Then det 4,(h, c)=<c, h|e_se;|h, c>=h and @, ,(h, c)=
K. And wy(s) = —2, so A(w,(s), ) =0. Hence (#), holds for all s, since
e,10, c>= M(0, ¢) is a singular vector.

Now assume that the formula (2.1.19); and the assertion (#); hold for
all 1< j<d.

If |[v>eM,h, c) is a nonzero singular vector, then U(n,)|v) is contained
in I(h, ¢), where I(h, c) is the kernel of the bilinear form (2.1.16) (| ): M(h, ¢)
XM(h,c)—C. Since Verma modules are U(u,)-free, the dimension of
(Umy) | vD) N My(h, c) is equal to p(k—j) for any k=1.

Using notation (2.4.1) for w, ;, we can rewrite @, , as

25.2) 40,5 = (Wtwas) (W—wa,p) (r+105,0) (W—ws0) .

So, by the remark above and the induction hypothesis (%); (0= j<d), the
polynomial det? 4,(h, c) is divided by
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d-1

II ©; 4(h, )P .
it

=1

£

Let (¢, b)) Z? with d=ab. By Proposition 2.9, there exist singular vec-
tors [v> & Fy(0,,4(5), s)) and V"> € FosWa s —5), H—8)) = Fas(— W, s(A(S)),
—A(s)).

Hence by Proposition 2.3 and the commutativity (2.2.9), the bilinear form
() on My(hy, co) X My(hy, c,) is degenerate, that is, det A,(hy, c,)=0, where
ho=h(w,,i(5)) or hy=—w, ,(s), and co=c(A(s))=c(—A(s)).

On the other hand, det 4;(%, c,)+0 for each j(1 =j<d) and generic s,
since det® 4;(h, ¢) is the product of the form (2.5.2) for ab= j(<d) as a poly-
nomial in (4, c).

By the above 2 facts, we get a singular vector in M ,(h,, ¢,) for generic s.
Thus det 4,(h, c) is divided by (w—w, 4(s)) (W+w, (s)), so det? 4,(h, ¢) is divided
by @, ,(h, c). g.ed.

Proof of Proposition 2.7. Fix 2&C and denote by s. the 100ts of the
equation 2=2(s).

Assume that e=a(s,) €C\@ (note that @(s_)=a(s,)™"). Then the equation
(2.4.3) has at most one integral solution (g, b)) EZ>

Fix integers a, b=1 and put

{Wo = wau(8); ¢ =c().

2.5.3
(2.3-3) h = h(we, 2); h' = h-+ab.

Let I(h, c¢) be the kernel of the bilinear form (2.1.16), then any submodule
of M(h, c) is contained in I(4, ¢). Then by Propositions 2.1 and 2.2, the Verma
module M(h', ¢) is irreducible, and dimZ,; (4, c)=1, where I,(h, c)=I(h, c)N
M_y(h, c). By the similar proposition for Verma modules as Proposition 2.6
(i), the space I,,(h, c) is spanned by singular vector |v>. Denote by M’(h, ¢)
the L-submodule generated by this [v>. Then we get the intertwining operator

@, Mh', c)— M(h, c)

of degree ab, which sends the vacuum vector |A’, ¢> to the singular vector |v>.
This mapping ®@,, is injective by the irreducibility of M(#’, c). Then by
Proposition 2.1,

dim Md(ha c)/Id(h: C) = dim Md(h3 c)/@a,d(Md—ab(h’a C))

for any 4=0. Hence
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P, (Mh', €)) =M'(h, ¢) = I(h, c),

and this is the unique proper submodule of M(#, c).
By Proposition 2.9, we get a nontrivial intertwining operator

O(5+; @, —b): F(—wy, ) = F(—wp, )
of degree —ab <0, where wi=w_, ,(s).

Then the L-module mapping z_, ,: M(h, c)—>F(—wuy, 2) cannot be iso-
morphic, since the .L-module mapping O(s;; a, —b)-7_,,, is a zero-mapping
(Note that any Verma module is generated by its vacuum vector). Hence by
the uniqueness of the proper submodule of M(#, c), we get

ker (n—wo,}\) = M,(h: C) - q)a,b(M(h’s C)) 5
and
dim (Ker (7_y, ) N My(h, ©)) = dim M,_oH', ¢) = pd—ab)

for any d=ab. So the polynomial det C,(ir, 2) of w is divisible by the power
of linear factor
p(d—ab)
(9 wp)p@=ab) = <w+£ Sﬁ-ﬂ S_> .
2 2
Note that
(a— by

(\v—i—%sr!—%s_)(w—l—gh —l—% s-) = w2—|-ab/12—(a—l—b)hv————2- .

By the same argument, it is seen that det C,(w, —2) is divisible by

a b b(d—ab) X
(w—7s+—7s_ . Thus we get the formula (2.4.2) due to Proposi-

tions 2.1, 2.2, 2.4 and the formula (2.2.10). g.e.d.

§3. Vertex Operators and Construction of Imtertwining Operators
3.1) Operators on Fock Spaces

At first we introduce weakly defined operators on Fock spaces.
For each (w, A)EC? the Fock space F =%F(w, 2) is endowed with a
topology by the filtration

(3.1.1) F = G F)2G(F)2GLF)2---,

where G,’s are defined analogously as (1.1.4). Then the completed Fock
space (i, 2) is defined by
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(3.1.2) F(w, 2) = lim F(w, D/G(F(w, 2)).

Then S_AY"(w, 2) is a Hausdorff complete topological vector space with the dense
subspace &F(w, 2). The left action of { on &F(w, 2) can be extended uniquely
to a continucus left action on <(w, 1), and the vacuum expectation value

(1.1.14) >0 Fiw, Y)XFw, ) —=C

can be extended uniquely to a continuous bilinear map

(3.1.3) | Fow, HxFw, ) > C,

where the topology in <F'(w, 2) is considered as discrete. Consider the map
(3.1.4) ®: F(w, 2) > Homg (F'(w, 3), C)

defined by

(3.1.5) Ow)(v) = vlwy

where ueé’(w, 2) and v&F'(w, 2). Then this map @ is a topological linear
isomorphism between topological vector spaces F(w, 1) and Homg (F'(w, 1), C).
Fix two pairs of indices (w;, ;) and (uy, 4,)EC? and consider a linear

map
(3.1.6) 0: F(wy, ) — F(wy, ),

which we call an operator.

If an operator O: SF(wy, /11)—>‘.:Af(wz, 2,) depends on complex variables ¢,
.+, ¢,, and any matrix element {v|O({)u> of the operator O({) is a holomor-
phic function for <v| €F'(w,, 4,) and |upEF(w,, 4,), then we call the operator
0(¢) is holomorphic on ¢y, ++-, {,.

For two operators

G170y F(wy, 2) = F(wy, &) and Oy Fwydy) — Fws, ) ,

their composition product can not be defined in general. So remark the fol-
lowing fact (it means that we consider operators always in the weak sense).

Lemma 3.1. There is a one to one correspondence between the following
objects.
(1) Operators

(3.1.6) 0: F(wy, 2) —> F(w,y, 4,
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(2) Bilinear maps
(3.1.8) 01 F'(wy, 2)XF(wy, 2) = C..
The correspondence is defined by
(3.1.9) <u|(A)|v> = {u|Ov>
Jfor Lu| EF(wy, 2) and | v>E F(wy,a,) .

For each integer d =0, let {|u; ), -, |4z )0} be a basis of Fy(wy, 2;)
and {<uy,1|, *++, <uapa |} be its dual basis of Fj(w,, 2,). Then the expression

2
;-2=1 lud,j> <ud,j|

can be considered as the identity operator of & (ws, 4,).
If the series

D A A

(3.1.10) E} §<Vloz|ud,j> <ud.j[01|u>
is convergent for any <{v| €F'(ws, 4;) and |u>EF(w,, 4,), then the formula

A oo p(d) A A

v|Ogluy = d2=0j2=1<"| O,lua ;> <ud,jl01‘u>

defines a C-bilinear mapping
G.1.11) Os: F'(wy, 2) X F(wy, 4) — C,
hence by Lemma 3.1, this mapping 53 defines an operator

(3.1.12) 052 F(wy, A) = F(ws, 45)

and this operator Oj is called the composition of these operators O, and O,,
and is denoted by O;3=0,-0,.

3.2) Definition of Vertex Operator

Fix (w, )&C?% For variables s&C and { =C*, consider the operators

(3.2.1) ¢or F(w, ) = Fw, 2, F'(w, )= F'(w, )
(3.2.2) EL(s, ©): F(w, )= F(w, ), F'(w, ) = F'(w, 2)
(3.2.3) E_(s,0): F(w, ) — F(w, 1), F'(w, D) — F'(w, 2)

defined by
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%0 = exp (spy log €) ,

_ nPn
(3.2.4) E. (s, {) =exp (s él ¢ , ) and

E_(s,¢) = exp(——s > C"’b>
= n

respectively, and the translation operator T is uniquely defined as a C-linear
mapping

(3.2.5) { T,: S(w, 2) = F(w+s, 2)

T.: F(w, ) = F'(w—s, 2)
under the following conditions:

{Tslw, D =|wts, D; A, w|T, =<2, w—s|,

(3.2.6)
Tspn :pnTs (n:i:()), TSA = ATs .

Now define the vertex operator

(3.2.7) X(s, &) F(w, ) — éf(vv—{—s, 2)
as
(3.2.8) X(s, €) = Ey(s, OE_(s, OT,LFsbo

By the definitions (3.2.4, 6), we get

PoTs_TsPO = STs H

| Tuy = Tiluy (veEF (w+s, ), ueL(w, 2));
(3.2.10) 0T, = T %, T.E, =E,\T,, T,E_.=E_T,.

(3.2.9)

Note. The vertex operator
X(s, ¢) = ¢ PT.E (s, O)E_(s, {)
operates also as a linear map
X(s, O): F'(w, 2) — fi‘A'T(w—s, 2.
By the commutation relations (1.1.1), we get
SCTPEL(s, 0) (n=-—1)
0 n=0)

sCTPE (5, 8) (n=1)
0 (n=0),

[pm E+(Sa C)] = {
(3.2.11)

(£, E-(s, )] = {

so for s, teC and ¢, {,&C*, the composition E_(s, {;) E.(t, {,) can be defined
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as formal Laurent series of ¢, and ¢, and is expressed as

(3212) B-(5, CDE ) = exp {—st 33 L (C/C)FELL QE-(5, 0.
Hence

Proposition 3.2. For s, t, {;, (,EC with |{|>|{,|>0, the composition
(3.2.12) can be defined in the sense of (3.1.11) and the composition

(3.2.13) E_(s, CDEL(t, &) = (1—=C/C)"EL(t, GIE(s, €,

is holomorphic in the domain {(¢,, {;)EC?; |{|>|¢,|>0} as an operator-
valued function of ¢, and {,, where in the right hand side of (3.2.13) we take the
principal branch of the multi-valued function (1—¢,/C,)%.

For an integer a=1, define the submanifold M, of (C*)* as
(3.2.14) M, = {{ =(C, . L)EE@H; G+ G+,

and the multi-valued holomorphic function F(e;{) on M, parametrized by
acC as

(3.2.15) Fla; &y ey &)= 1 (&G T ¢
i<® 1=si<e

1=i<j

Then the function F is symmetric in ¢, ---, {, and is invariant under the C*-
action of the form

(3.2.16) (€1 o oory C) o (REL KE,, -+, kE)  (kECH).
For s, define the operator-valued functions

E(s; €y ey €02 Fw, 2) = G, 2), F'(w, 2) = F(w, 2)
E_(s;Cqy o, 8 F(w, 2) = F(w, 2), Fl(w, 2) — S%T(w, 2)

for (¢, -+, £,)E(C*)° and
Z(s; €y, oy Co)t F(w, 2) = F(wtas, 2), F'(w, 2) — F'(w—as, 2)

for (Cb ) C'a)ej‘da as

(3_2.17) Ei(S; Q‘D e, {a) = exp (:ES E (CI—L”%—“'—FC?’)H?")
n=1 n

and

(3.2.18) Z(s;5 Cyp 0, C)

2
- F<‘§2—; Cls ", C,,)E.;_(S; Cl’ "t cn)E—(S; Cls °0ty ca)Tsﬂ .
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Then these operators are holomorphic on {=({;, -*+, {,). By using itera-
tedly Proposition 3.2, we get

Proposition 3.3 (Short Distance Expansion).

For any integer a=1 and any s, ¢y, -+, (,EC with |§|> o> --->|,[>0,
the compositions E.(s, () Es(s,{,) and X(s, {,) - X(s, {,) are defined in the
sense of (3.1.12), and
(3219) Ei(ss Cl) B Ei(sa ca) = Ei(s; Co oy C.a) , and
(3220) X(S’ Cl) ot X(Ss Ca) = Z(Sa Cl: "t Ca) (Cl oo Ca)sp0+(a/2)sz »
where in the right hand side of (3.2.20), we take the principal branch of the multi-

valued function

2
F(:VZ_ Gy, e, ga) (&, oo C)tat(ems®,

Note. E(s; {y, -, ¢,) and E_(s; {3, ++, {,) are single-valued and sym-
metric in {3, --+, {,EC*, so Z(s; {,, -+, {,) is also symmetric.

3.3) Conformal Covariance

From the formulae (3.2.10, 11) and the definition (3.2.8) of the vertex
operator, we get

(3.3.1) {[Aa X(s, )] =0 and

[pm X(S: C)] = SC—”X(S, C) (I’IEZ) .

By these formulae, the expressions (1.2.3) of the operators L, and Proposi-
tion 3.3, we get the following important relations.

Proposition 3.4 (Conformal Covariance). For any n€Z

—erfeld o )
(3.3.2) [L,, X(s, )] = ¢ {cdc n(sA+ 2) XGs, 0),
for s€C and L C¥*, and
(333) [Lm Z(S, Clu °tty Ca )]

a —n 0 / 2 N
= ,Z:i {3 [ngC_j+{Spo_% sz——n(sA-{—%)}]Z(s; 0,

forseC and L e M,

Proof. For example,
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d
(34 (X6 O

- S<E {pi— i)X(s, O)+s 3 ¢TI PE p_E_T,
7=0 2 =1

= [Ly, X(s, €)].

3.4) Intertwining Operators

Let S¥ be a local system with coefficients in C, associated to the mono-
dromy group of the multi-valued function F(a;{y, ,, -+, {,) on the manifold
M, (for example, see P. Deligne [1970]). Denote by &, the dual of the local
system S¥ over M,.

Take an element I of the homology group H,(M,; S,), and define the
operator

@41 O, I Ly e L) = g dCidCy »r A LTI e L1 Z(s5 €)
r

for a complex number s and integers /y, «°-, /,.
Here we remark the following fact which will be proved in §3.5.

Proposition 3.6. The integral
(3.42) [, crtmte it (ss €4, € o, COUE

vanishes unless I,+1,+ <+ -+1,=0.
Then we get

Proposition 3.7. The operator (3.4.1) is homogeneous of degree l,+1,+ -
+1,, and can be considered as the linear mapping

(3.4.3) O@s, IT'; 1, »++, 1): F(w, 2) = F(w+as, 2).
Moreover
(344 [L_,,O(s, I'; 1y, ==, 1,)]
a asz SZ
=> {lj——71—|—spo—7 +/1<SA—|— 5)}0(.?, T R P T A
j=1
Proof. From Proposition 3.6 and the definition (3.2.18) of Z(s; {), we get

the homogeneity of the operator (3.4.1) Hence for any vector |v>ESF(w, 2),
its image lies in &F(w+as, 1), because the summation is finite in the expression
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O(s,T"; I, --+, 1)|v>. The relation (3.4.4) follows from Proposition 3.5 and
the integration by parts. g.ed.

Put b=/,=:--=I,, and let the coefficients in the right hand side of (3.4.4)
be equal to zero for any n& Z, that is,

st as®
(3.4.5) — 1454+ 5= 0 and b+s‘D°_7 =0.
Note that 4=2id and p,=(w-as)id on the space F(w+as, ). Hence we get

that if the parameters satisfy the equalities

2
(3.4.6) S 425—1=0 and w= —is—ﬁ— )
2 2 s

then the operators of Fock space representations commute with the operator
3.4.7) O(s, I'; a, b) = O(s, T, b, -+, b): Fw, ) > F(wtas, 2),
a
that is,
(3.4.8) [L_, OCs, T'; a,b)] =0 for any neZ,

Due to Proposition 3.7, the operator O(s, I'; a, b) is homogeneous of degree
ab.

Remark. For a=2, the operator O(s, I'; 2, b) in (3.4.7) coincides with the
operator O(s, I'; b, b) in (3.4.3). We hope that this notational confusion does
not bother the readers, since the distinction is clear in the context.

Summarizing above facts, we get one of our main results.

Theorem 3.8. For each s = C* and integers a=1 and b, take a cycle
reH,(M,; S,) (¢=s%2) and put

(3.49) A=) =L 5 ad w=al_".
s 2 2 s

Then the operator

(3.4.10) O(s, I'; a, b): F(w—as, ) = F(w, 2)

is an intertwining operator of degree ab.

Remark. In the [ollowing we will show the existence of a cycle I" of
H,(M,; S,) for which the intertwining operator O(s, I'; a, b) is nontrivial.
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2
Remark. When a= % is an integer, the local system S, is trivial. We

can take a cycle 'e H,(M,; S,)=H,/(M,; C) as the cycle which represents the
residue around ¢;=0, ---,{,=0. For this cycle I, the operator O(s, I'; a, b)
gives a nontrivial operator.
3.5) Proof of Proposition 3.6
By §3.6 we can assume that a=2. Define the manifold
(351) Yoy = '{(kh ) ka—l)E(C*)a_l; ki":‘:kj (l:i:])a k:':i:l}s

and consider the C*-bundle

(352) e Maa(ch "ty Cn) = (kl’ oty ka——l)E Y{I—'l
defined by
(3.53) k,‘ == Ci+l/cl (1 == 1, °rey, a'_l) .

Then this bundle is trivial, in fact, the mapping

(3.5.4) Y, xC* —> M,
U] U]
((kh oty ka—l): C) = (Cs klci ) ka—lé’)

is an isomorphism of C*-bundles. By this coordinate transformation, the
function F(a; ¢, -+-, {,) changes into the function

(355) G(an kla k29 °ty ka—h c) = G(a: k19 k27 °*% ka—l)
= MO (i—k) H_ (I =k koo,

1Si<i<e-1 1=ige

which is independent of the fiber variable ¢, and can be considered as a multi-
valued holomorphic function on Y,_; for each @. Hence the local system &,
is decomposed as the product of the constant local system € on €C* and the
local system S’ on Y,_; analogously defined by the function G(s; ky, «*-, k,_)).
Then we get

Lemma 3.9. For any a=C,
(3.5.6) H(Y,.;:8) =0 (j=a).

The proof of this lemma will be given in §4.1. By this lemma and
Kiinneth’s theorem, we may assume that a cycle I'e H,(M,, S,) is taken as a
product of a cycle I';e H(C*; C) and a cycle I'ne H,_(Y,_,; 8,). Hence the
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integral (3.4.2) changes into the integral

(3.5.7) S P— % S ket kS Gle ) dyeedkyy
Iy

Iy

whose first factor is nothing else but the residue.

3.6) Case Where a=1

Let a=1, then M,=C*, F(a;{)=1 and the local system &, is constant
for any e=C*. Hence

(3.6.1) H\(M,; Sa) = H(C*; C)=Ce, ,

where e, is the positively oriented unit circle on the plane €. So in this case,
Proposition 3.6 is obvious.

Take a cycle I'= e, of Hi(My; S,), then we get

1

2z —1
1

(3.62) O(s, I';1,b) = So e 2R (53 O)E_(s; O T dt (¢ = e 2V=T)

= @b(s)Ts ’

where ©@,(s) is the homogeneous component of degree b of the operator
E (s; OE_(s;¢).

Here we remark the well-known facts (see for example, D.E. Littlewood
[1958]):

(3.6.3) exp (1221 {'x) = Er P(x),

where P,(x) is the character polynomial of the irreducible representation cor-
responding to the Young diagram Y,=(/)= @ of the group GL(N, C)
where N is sufficiently large, and /

(3.6.4) X = }ftr ¢  (zeGLW, C)).

In particular, the polynomial P,(x) is homogeneous of degree /, where deg x,=/.
For example,
Pyx) =1, Py(x) = x,,
(3.6.5) Py(x) = x,--x3/2, Py(x) = X3+ x1x,+x3/6 ,
P(x) = x,+ x5+ x5/2-Fx3x,/2 -+ x4/24 etc.
So we get
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(36'6) @h(s) = ZbPl(spla "y spn/”a "")Pl’("'s —Sp_,,/n, '“) .
==
1,1/20

Let 5=0. Then the operator

6. s, I'; (-5 - gL
(3.67) 06, 51,0 F( > 29) > F(L, )
is nontrivial, since

(3.6.8) 0Gs, I'; 1,0)] —g, As)> = | g—, As)> -

Let 5>0. Then the image of the vacuum vector
(369) O(S, r;l1, b)lW—S, /1> = Pb('"a Spn/”: ”°)|W’Z>
is a nonzero vector of degree b of the Fock space <F(w, 2), where

(3.6.10) =S b g ==L 5,
2 K} N

2

that is, the operator O(s, I'; 1, b) is nontrivial and its image is a proper sub-
module of F(w, ).

Let b<<0. Then by the regularity of the vacuum expectation value (1.1.14),
we get a vector |v>eF(w, 2) of degree —b such that

(3.6.11) Poy(rory —p ) > = |, 2>
n

Hence the vector T3!|v>ESF(w—s, 2) is mapped to the vacuum by the inter-
twining operator O(s, I'; 1, b), that is,

(3.6.12). O@s, T'; 1, )T vy =|w, 2.

3.7) Case Where a=2
Let a=2. Then the base space Y; of the C*-bundle 7, (3.5.2) is
3.7.1) Y, = {keC*; k+1} =C—{0, 1},
and the function (3.5.5) is simply
3.7.2) Gla; k) = (1—k)¥k* .

In this case, Lemma 3.9 is obvious.

For a pair of integers m = (my, m,) with m;=m,=0, consider the poly-
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nomial

1ty if m=m,

3.7.3 M(@m) = M(m; t, t,) =
(3.7.3) (m) (m; 1, 1)) Pertlats i my 4 m,

and expand the exponential function
(3.7.4) exp( 3 (+10)x) = 3, 3 M(m)N(m),

where m = (m,, m,), |m|:=my+m, and N(m) = N(m; X, X,, ***) € C[xy, X, *-*]
with deg N(m)=|m|. Then the polynomials N(m) are linearly independent.

Take a cycle I'=I",xI',€ H(M,; S,)=H,(C*; C)QH,(Y;; &), then the
intertwining operator O(s, I'; 2, b) is

(3.15) O, IT'; 2, b) — S A dCLTETZ(s; oy C)
r

2
=> g A dCT i P (L ¢, ¢z>
dy=0 |ml=a; JI 2

dzgo % =dz
X M(m; €1, COM(n; €78 CGON(m; ey Lo YNy ooe, P )T,
n n

but the summation on d; and d, here is in fact only for the set {(d,, d,)EZ?;
dy,d, =0, d,—d,=2b}. So we must calculate the integral of the form

2
(3.7.6) SF d(,dCzCr’l“Cz"’z'lF<S7 . c:z)
2
= S dcehlt S a’kk"z"lG(i 5 k) s
ry Iz 2
hence of the form

(.17 SF (1 —kykPdk ,

where £ is taken as S+ is an integer.

To construct a cycle I',& Hy(Y;; 8,), we divide the three cases i) 2a& Z,
ii) 2a is an odd integer and iii) 2« is aneven integer. Note that these cases
correspond to the conditions (4.2.5).

Case i) Let2ae&Z, and take a cycle I'ne H,(Y,: S%) as
(3.7.8) Iy =T"° = —ep[(&™V"1—1)+(¢c, 1 —&)+elf(e™*-1—1),

where e; is the standard circle with the center i and originating at the point
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i+(—1)’e (i=0 or 1) for some small e>0. Note that dim H,(¥;; 8%,)=1.

Figure 3.1

Take @ and £ as Re 2a, Re #> —1, then the integral (3.7.7) equals to the beta
function

(3.7.9) BQat1, 1) = gl (1 —k)?kPdk
0

_ P@a+DI(F+1)
I'Qa+p+2)

and for other values of @ and g, the value of the integral (3.7.7) is obtained
by the analytic continuation of the beta function (3.7.9). Hence, the integral
(3.7.7) is meromorphic as a function of @, and its poles and zeroes are all simple

»

and situated at most at half-integers (that is, ae%Z), because ft+aeZ.

Case ii) Let 2a€Z\2Z, and take a cycle I',e Hy(Y;; S.) as
(3.7.10) I'y=T"°=me/2n\/ —1.

Note that dim H,(Y;; 8,)=1. Then we get that the integral (3.7.7) equals
t0 Opgt1,0-

Case iii) Let e Z, and take a cycle I',e H(Y;; S2) as
(3.7.11) Iy =1TI"* = mey2n\/ —1+nei/2z/ 1.

Note that the local system &, is trivial and dim Hy(Y;; 8%)=2. Then we get
that the integral (3.7.7) equals to mdgy;g+n0s441,, hence to mdgy .

8§4. Nontriviality of Intertwining Operators (Generic Case)
4.1) Vanishing of Hemelogy
In this paragraph, we prove Lemma 3.9 in a more general setting.

For an integer m=1 and complex numbers @, A and r, consider the mani-
fold Y,, and the holomorphic and multi-valued function G on Y,, defined by
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(4.1.1) Yn = {ky, -+, k) E(€®"; k;=£0,1 and ki==k; (£ )},

“12) G A, 7k o) = T Gk LISk

1=si<jsm

Then define the local system S% ;4 on the manifold Y, by the monodromy
of the function (4.1.2), and denote by &S, gy the dual local system of S% g
(note that S, — e 0a=34; see §3.4~5).

Proposition 4.1. For each integer m=1 and complex numbers a, 8, r
(4.1.3) Hy(Y; Sap) =0 (jZm+1).

Proof. For integers p, g=1, define the manifold
“4.14) Fpg=A{lky, -, k)EY,; ki1, 2, -+, g 1=i=p)},
and consider the local trivial fibering

4.1.5) z: F,,— B,
U U
(ky, oo kp) =k

where the base space B, is the region obtained by omitting g4-1 points from
the complex plane C:

(4.1.6) Bq = C'—"{O’ 1, 27 ot q}‘
Then the fiber over the point g+1& B, is just the manifold F,_; ;4.

Fix an integer m=1. Then we get a sequence of locally trivial fiberings

T
4.1.7) Fym-p+1=> Fyprrm—p = B,

for I=p<m—1. Note that F, =Y, and F, , =B,

Denote by the same symbol S, gy the restriction of the local system S, g y
on the fiber F,_; ,_,4, at each stage. Then we can show by the induction
on p (1= p=<m) that

(4.1.8) Hy(Fpm-pr1; Sap) =0  (j=p+1).
In fact, the first step
(4.1.9) Hi(Fym; Sap) =0  (j22)

is obvious, and it is well-known that there is a Leray spectral sequence {E7 ;}
of the fibering (4.1.7) such that
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(4-1-10) E%,i = Hi(Bm—p; j[j(Fp,m—p+1; Sw,ﬁ,?)) = H*(Fp+l,n1—-p; ’Sm,ﬂ.')') .

Note that the Leray sheaf H;(F,m-p+15 Sapy) O0 B,_, is also locally con-
stant. Then by the assumption of the induction, we get

(4.1.11) Hi(Bu-ps K Fpm-p+15 Sapn) =0,
if i=2 or j=p. Thus the proof is completed.
Define the set 2(m)CC® as

(4.1.12) 2(m) ={(e, B, r)EC? dd+1)aEZ
dd—Ve+dp&Z, dd—Daet+drez 1=d=m},

for which we can construct good cycles (see Proposition 4.2). Here we give
some conjectures about lower homologies.

Conjecture 4.A. For (a, B, r)E823n),
(4.1.13) H{(Y,; Sapy) =0  (j+m).

The symmetric group 2,, of m letters acts freely on the manifold ¥, as
permutations of the coordinates ki, -+, k,,. The function G(e, 8, r; ky, -+, k,;)
is symmetric in ki, ---, k,,, that is, % ,-invariant, hence it can be considered
as a function G(e, g, r; ky, -, k,,) on the quotient manifold W,,=Y,,/2,. Then
G is holomorphic and multi-valued on the manifold W,,. Denote by S, 54
the local system on W,, defined by the multi-valued function G analogously
as Sypy Then we get that G(e, B, 7r;k)=z*G(e, f,7; k) and S,py=
7:*3,,,3,7, where = is the projection:

T Ym'_> Wm = Ym/zm .
Conjecture 4.B. For each (e, B, r)E82(m),

1 for j=m

4.1.14 dim H(W,; S, -
( ) m H ) {O for jEm.

Remark. In the trivial coefficient case, the homology groups H;(Y,;C)
were calculated by F.R. Cohen [1976], and by his results it can be shown that
the Euler characteristic is given as

(4.1.15) 20 (—1) dim H(Y; Supy) = (—1)"m! .

By this formula, it can be shown that Conjecture 4.A implies Conjecture 4.B.
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4.2) Cycles and Selberg’s Integrals

Fix an integer m=1. Let I'(a, 8,7) be a cycle of H,(Y,; Sapy) given
for each (e, 8, r) of an open set 2 CC®% Then we call I'(«, 8, r) holomorphic
on &, if for any holomorphic function g(k,, ---, k,,) defined on Y,,, the integral

(4'2'1) G(as ﬂa T kla 7ty km)g(kla ) km)dkls " dkm

gP(w,ﬂ,‘Y)

is a holomo1phic function of (e, 2, 7)E£2.

The set £(m) defined in (4.1.12) is connected, dense and open in 3. Then
we get

Proposition 4.2. There exist cycles I'(@, B, 1) EH,(Y,,; Sa.p.y) defined on
2(m) such that

1) I'(a, B, 1) is holomorphic on 2(m).

2) If(e, B, r)E20m) and (I}, -+, ) EZ" satisfy the inequalities

4.2.2) Rea>0, Rer>0 and Re f>-min/;,
j

then the equality of integrals
@23) | 6@ 8,75k e Kl kediyed
I'(@,B,Y)
= g m G(Ol, /9: 75 kly ) km)k{:l'"knllmdkl"'dkm
d(m

holds, where 4(m) is the open simplex in R" defined by
4.2.4) Am) = {(ky, -+, k) ER"; 1>k>->k,>0},

and the right hand side of the equality (4.2.3) is considered as an improper in-
tegral which is absolutely convergent.

The proof of this proposition will be given in §5.

Remark. For each integer a=1, define the set
(4.2.5) 2, = {acC; dd+)eEZ, da—deEZ (1=d=a—1)},
then for any e 2,,,,, the triple (e, —ma, 2a) belongs to the set 2(m).

The integrals of these types were considered by many people, such as
A. Selberg [1944], F.J. Dyson [1962], K. Aomoto [1984] etc. The following
proposition is due to A. Selberg.
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Proposition 4.3 (A. Selberg [1944], I.G. Macdonald [1982]).
Let @, 8, r =C satisfy the inequalities

(42.6) Rep>—1, Rer>—1, Rea>—min{-1—,Reﬂ+l,Rer+l},
m m—I1 m—1

then the improper integral (4.2.7) converges absolutely and is explicitly expressed
as

“-2.7) g 4(m) 1sigsm(ki_kj)zw ﬁt ki —h;ydiey:dle
_ 1 (et DI —Detp+ DIG—Datr+1)
ml= Pt DI((mtj—2atAtr+2)

Note. In the case that m=1, the integral (4.2.7) is the beta function

(4.2.8) [} k1 e = TEEDDG LD
0 r(p+r+2)

(see §3.7).

Problem 4.C. For (a, 8, r)EC?, (I, -+, [,)EZ" and a symmetric function
SECTky, -+, ky, kT, +o+, k' FPm, compute the integral

(4.2.9) (e — ;32 1T KB —F;) [y, =+, Kp)dlye=+dlicy .
i=1

54(1}1) 1Si<jsm

4,.3) Nontriviality of Intertwining Operators

Take integers a=1 and b, and a complex number s with a=s2/269a
(see (4.2.5)). Put m=a—1, w=2is~—lland XZL-—%. Take a cycle I',=
s s
I'(e, —ma, 2a) of H,(Y,,; Sy -mss) as Proposition 4.2, and let I'=I", XTI,
where I'; is a generator of H(C*; C). In this situation, as a corollary of Pro-
position 4.3, we get

Propesition 4.4. The intertwining operator
4.3.1) O(s, T'; a, b): F(w—as, 2) — F(w, 2)

is nontrivial in the sense that

1) Jor b=0, the image O(s, I'; a, b)|w—as, Xy is a nonzero singular vec-
tor of degree ab.

2) jor b<<0, there exisis a vector |v)> of degree —ab whose image is the
vacuum vector |w, 2>, that is, O(s, I'; a, b)|vy=|w, 2.
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Before the proof of this proposition, we prepare some facts about sym-

metric functions (cf. I.G. Macdonald’s book [1979]).
Fix an integer a=1. Consider the polynomial algebra C[t,, ---, t,], and
the subalgebra

4.3.2) A =Clt;, -, t,]*

of symmetric polynomials, where the symmetric group 2, acts on C[t,, -+, 1]
by permutations of indices. And consider the polynomial algebra

(4.3.3) V = Clx;, x5, +*]

of an infinite number of variables x;, x,, --. These algebras are made graded
algebras by defining degrees as

4.3.4) degt; =1 (1=j=<a) and degx,=n (n=1,2,-).
and

(4.3.5) A=34, and V=31V,

d=0 a=0

are their homogeneous decompositions.
For each integer d=0, consider the set
(43.6) Poy={m=(my, -, m)EZ*; m=-=m, 20, |m|:= X m; =d},
=1

and let p, ;=# P, , the number of partitions of the integer d by at most a posi-
tive integers, then

(4.3.7) Pa.d§Pa+1,d—_<—'"§Pd =Pd,g = Pa+1,4 = "«
Note that
(4.3.8) Dag =dimA4; and p,=dimV,.

Now choose a family of elements M(m)=M(m; t,, -+, t,) EA parametrized
by me goP,,,, with the property:
=

(4.3.9) the set {M(m); meP, ;} is a basis of 4, for each d=0.
Then the following lemma is well-known.

Lemma 4.5. Consider the expansion

(4310) exp (B (i++x) =3 3 MmNmE 3 4,QV,,

d20 meP,
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then the elements N(m)=N(m; x;, X, ***) for mEP, ; are linearly independent
in the space V, for d=0.

Now for me P, 4, specify the element M(m)E 4, as
(4.3.11) M(m) = M(m; tla oo, ta) == Z t;n<11)“‘t:(a,;) s

cEXa/ % al™

where 2 (m) is the subgroup of 2, defined by

(4.3.12) Zym) ={0€ Z,; 174y taly = it 15},

and denote by N(m)E V, the corresponding element given by Lemma 4.5.
Proof of Proposition 4.4. At first consider the case where 5=0. Since

the elements N(m) for m&P, ; are linearly independent in the space V,, there
exists an element {v| € F};(w, 1) such that

1 if m= (b, R b)EPa,ab

(43.13)  <v|N(m; spy, P2, S”S <) w, 2> = { .
0 otherwise

2
by the nondegeneracy of the vacuum expectation values (1.1.14). Then
(4314) <V|E+(S; Cla °%0y CE)E—(S; Cla b a)lw’ l>

= E M(m: cla °°Ty a)<le(n1 spb )lwa /l>

MEP g qp
= {4l
Hence for the given I'=I"',xI',& H,(M,; S,), we get
(4.3.15) <v|O(s, T'; a, b)|w—as, 2>
— | dtiede gt € )
XVEL(s5 €y w05 CHE(s5 €y oo, €)W, 2
— gr F(@; &y, oory C)CT e CTAE oo dC

=Gl ko, Kooy
Iy

1 f[I’(IaH)I“((J e+ I({(j+e+1)
T @—nli= I(e+1)I'(je+2)
This does not vanish by the condition for a.
For the case where <0, take an element |v>EF ,(w—as, 2) such that

(4.3.16) {2, w—as|N(m; —sp_y, %, ) [V

{1 it m=(—b,, —b)EP, 4
|0 otherwise
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then the remaining of the proof is similar as above.

§5. Construction of Cycles

This section is devoted to the proof of Proposition 4.2. In §3.7, we
already discussed and prove it in the case that m=1. So fix an integer m=2
throughout this section.

In the first few paragraphs, we prepare some concepts and make some
observations about the geometries of the manifold Y,, and the simplex 4(m).

5.1) Faces of Simplex 4(m)

We use the same symbols &, ---,k,, for coordinates of the spaces R"CC",
and the conventions that k,=1 and k,,.,=0. Recall that

4dm) = {(ky, -+, k) ER"; 1>k;> >k, >0} .

In this subsection, we introduce the parametrizations K of hyperplanes
of R"™ and C”, and 4 of faces of the closed simplex 4(m), which correspond
to the singularities of the function

G, B 73k o k) =TI (k=™ TT RSk

The parametrizations K and 4 are the families of subsets of N(m):=
{0, 1, 2, ---, m-+-1} defined as

.1.1) {JC: ={K=(,)); 0Zi<j<m+1, K+(0, m+1)} CN(@m) X N(m) ,
o g:={J=1i,jl =G, i+1, -, ); 0<i<j<m+1, J£[0, m+1]} .
Define the depth of their elements as
(5.1.2) G, j)) =d([i, j) =j—i,
then X and 4 are the disjoint union of subsets of the same depth:
(5.1.3) K= U Kd); §= U 4d);
1<dsm 1Sdsm
where

{Jf(d)i = {KEXK; dK) = d} = {(i, i+d); 0=i=m—d+1},
dd): = {7ed; dJ) = d} = {li, i+d]; 0=i=m—d+1},
and note that $ K(d)=#4(d)=m-+2—d for 1=d=m.

For an element K=(i, /)X, define hyperplanes D(K) of C” and D(K)g
of B" by
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[ D(K) := {(ky, - kW) EC™; ki =k}

(.14 | D(K)g:= DIK)NR" .

For each J=[i,jl€ Y, define the connected complex submanifold L(J)
of C™" of codimension d=d(J) and its real section L(J)p by

LJ):= N DK)={keC”; k; = kjyy = =+ = kiya} »
KeX
(5.1.5) Jox
Ke X
JcK
Then for KeKand I, JE€ Y4,

D(K)DL(J), if and only if KCJ,
(5.1.6) { (K)D L(J), if and only i

L{I)DL(J),ifand only if ICJ,
where the inclusions among elements of K and 4 are considered as subsets of
N(m).
We identify 4(1)=A(1), since for d=1,

(5.1.7) L{i, i+1]) = DG, i+1)  (0<i<m).

Now we introduce primitive faces of closed simplex 4(m7) by the following
(5.1.8), with which any face of 4(m) is represented as in the formula (5.1.11).
For J=[i, j1€ 4, let

518 {A_(J): = L) NA(m) = {(ky, -, k)E4(m); k; = ki = -+ =k}
(5.1.8) 4(J): = intd(J),

then

(5.1.9) J(J) = D) N d(m)

and 4(J) is a face of 4(m) of codimension d(J). And for each 1=d'<d(J),
Iy= n 40,

Ieyd)
IcJ
in particular,
(5.1.10) A(J) = A(li, j1) = 4, 7 — 1D N4+ 1, /D) -

Note that all codimension 1 faces of 4(m) are primitive, that is, they are
expressed as 4(J) for J € 4(1).
The faces of the closed simplex 4(jm) are parametrized by disjoint unions
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of some elements of 4. More precisely, take J,=[i;, jil, -**, J,=li,, J1EZ
with the conditions
Ii<ipm (A=I=r-1);

(note that [0, m-+1]€E J) and let

&y, -, 1) = 0 &)
(5.1.11) =
A(Jls °y Jr): =int A(Jh o0y Jr) P
then 4(J,, ---, J;) is a face of 4(m) of codimension Zr‘, (j,—1,), and any face of
- =1

4(m) is of this form. By (5.1.9),

r

(5.1.12) aJy, +,J):=N N 4(K).
=1 KcJ;
Ke K1)

It is easily seen that any primitive face 4(J) is an (m—d(J))-simplex, and
has coordinates similar as 4(m) such that primitive faces of 4(J) are similarly
given by these coordinates:

Lemma 5.1. For each J=li, j1€ 4(d) with 2=d <m, there exist coordinates
(u, v)=(uy, ***, tg, V1, ***, Viy_qg) of C" such that
4m) = {(u, vYER"; 1>u>-->u,>0, 1>, > >y, >0}
(5.1.13) 40) = {w, VER"; u = O(uy =+-=uy; = 0), 1>v,>->v,_,;>0}
4(J) = {(u, vy€d(m); u = 0} CL(J) = {(w, VEC"; u = 0}

and for any 1CJ (here we write I as I=[i+i,, i+1i,] (if i>0) or I=[j—i,, j—I]
(if i=0))

(5.1.14) {

A1) = {(u, v)E4(m); Uiptr = U g =00 = Uiy = 0}
L) = {, VEC"; uy 1y = ty 4 =+ =ty = O},

where we use the convention that u;,=0.

5.2) Exponent of Analytic Form

Consider a pair (M, JI) of an m-dimensional complex manifold M and
a finite collection J! of connected and closed complex submanifolds of co-
dimension 1 of the manifold M. Then we call a family JI be normal crossing
at a point pe M, if there exist local coordinates (U; z) near the point p such
that

i) z(p)=(z(p), -+ z4(p))=(, ---, 0) (in this situation, we call these

coordinates z=(z,, ***, z,,) are given around the point p);
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ii) for some 0<d=<m

(5.2.1) UN(U D)= {z€U;z;,=0,0r -, 0or z; =0} .
Dedl

A family J1 is called normal crossing, if J1 is normal crossing at any point of M.

We call that a triple (M, JI, ©) satisfies the condition (E), if it satisfies the
following conditions i)-iv):

i) M is an m-dimensional complex manifold and JI is a finite collection
of connected and closed complex submanifolds of codimension 1 of the mani-
fold M.

ii) J1 is a finite collection of connected and closed complex submanifolds
of codimension 1 of the manifold M. Any pair (D, D’) from JI is normal
crossing.

iii) O is a multi-valued analytic m-form on the manifold M and is holo-
morphic and does not vanish on M\N, where N is the codimension 1 sub-
variety N= U D;

Dedl

iv) for each point p& M, there exist local coordinates (U; z) around p
such that for some d and a;€C (1= j=d),

(5.2.2) Oy = 11 f11(2) dzy -+ dzs,
j=1

where f(z) is a nonvanishing holomorphic function on U and f;=0 is the local
equation of some element D,-Ei_ﬂ through the point p, that is,

(5.2.3) D,NU={f; =0} and (df;),+0 (g€U).

Let a triple (M, Jl, ) satisfy the condition (E), and take a codimension 1
submanifold DeJl. Choose a point p& D and local coordinate (U; z) around
p such that

i) UND'=( for any D'e€JI\{D}; UND={z,=0};

ii) the form @ is written on U as

(5.2.4) O = z{g(z)dz,-+dz,,

for some complex number ¢, where g(z) is a nonvanishing holomorphic
function on U.

Then this number e in (5.2.4) proves to be independent of the choice of a point
p and local coordinates (U; z), hence we denote this number by e=e(D, ©),
and call e(D, ©) the exponent of the m-form @ along a codimension 1 submani-
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fold D J1.

Now return to our situation of Proposition 4.2.
At first, we recall that the manifold Y, and the simplex 4(m) are of the
form:

Y, = {lky, -, k) EC"; k;F+k; O=i<j=<m-+1)}.
(5.2.5) { {(k, ) *k; O=i<j=m+ )i

Adm) = {ky, >+, k) ER"; 1>k > >k, >0} .

Consider the collections JI of closed, connected codimension 1 submani-
folds of €™ and the subvariety N defined by

= {D(K); K
(5.2.6) {32 {D(K); Ke K}
N:= U D= U DK),
Dedl KeX
then we get
(5.2.7)  =C™\N.

For each (e, 8, r)&C?® consider the analytic m-form (e, 8, ) on C" de-
fined by

(5.2.8) 0:=0(a, B, 7) =G(a, B, 7; ky, ++, kn)dk, -+ dk,,

where
G(az /9, 7 kl, o0ty km) = ].—.[ k? (1 _kj)y H (ki_kj)zw D
<m

1552 15i<ism
then 6(e, B, r) is multi-valued on C™ and is holomorphic on Y,,.
It is easily checked that this triple (C”, J1, ©) satisfies the condition (E),
and the exponents of @ are given as follows: for K=(i, j)e K

g if j=m+1
(5.2.9) e(D(K),B) =171 if i=0
2a otherwise .

However, the family J] is not normal crossing, so it is difficult to con-
struct a desired cycle in H,(C™\N; S,,5,9). In order to avoid this difficulty,
in the next paragraph we will desingularize L(J) J€42)U --- U4 (m)) such
that any divisor of singularities of the m-form intersects with the closed cell
4 in some l-codimensional face, and the family of these divisors is normal
crossing at any point of 4.

5.3) Blowing Up

In this paragraph, we will construct a complex m-dimensional manifold
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M, and a proper holomorphic mapping
(5.3.1) Tt Mo, — My: =C"

which has the following properties:
(1) The restriction

(5.3.2) i M\N. — C™\N = ¥,

is biholomorphically homeomorphic, where N .=z2'(N).

(I) For DeJl, ==Y(D) is a connected and closed submanifold of M.,
of codimension 1.

(III) The family J.={=='(D); DEJ1} is normal crossing at each point
of the closed cell 4.., where

(5.3.3) 4., = z{(4(m)C M. \N...

By the induction on d(d=1, 2, :--, m—1), we will construct this mapping
7. M.— C™ as a composition of a sequence of mappings:

Tm-1

V(3
(534) 7wt M. =M, ,—>M,_,

m—2 7‘?2

2 0
M, —5 My =C".

The induction data {M,, T, Ly, 4} <igm-v a0d {7} qcacm_p are given
as follows:

(1) M, is an m-dimensional complex manifold.

(2) J1, is a collection of (;n—1)-dimensional connected and closed sub-
manifolds of M, parametrized as

(5.3.5) Ty = T,)UTL(2),
{ J1,(1) = {Dy(K); K& K(2)U -+ U K(m)}
T = {Ds(); 7€ I MU U=} -

m—d
B) L;=U_L,), where _L,(]) is a collection of (m—I)-dimensional sub-
=2

manifolds of M,, parametrized as

Lu) = {Ly(N); TEJ (D},

such that any two d-dimensional submanifolds from _£,(m—d) are mutually
disjoint.
@) w4 My, —M, is the blowing up of M, along the d-dimensional

submanifold L,C M,, where L,= U dL,J).
Je Im—d)
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(5) 4,=z711(4,-,) is an m-dimensional cell in M,;\N,;, which is biholo-

morphically homeomorphic to 4,=4(m), where N;= U D.
DeJl,;

For the stage that d=0, we may add the subscript 0 to corresponding
objects in §5.1. We must only note that _£i(m) consists of two distinct points
L0, m)) =(1, -+, 1)&C™ and Ly[1, m+1)=(0, ---, 0), and Ly=L[0, m])
U L([1, m+1))cC™.

After the blowing up =,,,, we define objects at the (d-+1)-stage as follows:
for K& GJC(j) and Je4(1)U U 4, let
i=2 I=m—d+1

D,;1(K): = the closure of zz{1(D,(K)\(D(K)N L)),
(5:3.6) { Dy(J): = the closure of 7zl ,(Dy())\(DA(J)N L)) »
for J € 4(m—d)
(5.3.7) DysiJ) = PULy(J))
and for J&" "glg(l),
(5.3.8) Lyai(J): = the closure of z711(Ly(J)—(Ls(J)N Ly)

where Py(L;(J)) is the projective normal bundle of L,(J) in M,. (Note that
submanifolds L,(J) (J€4(m—d)) are mutually disjoint, so we can blow up
individually.)

Then it is easily seen that these objects satisfy the assumption (1)-(4)
of the induction except that any two submanifolds from _[;,,(m—d—1) are
mutually disjoint.

For 7€ U " 4() and 7€ 4(1) U U 40,1t
1=2 =m—

(5.3.9 LD = Lisi(DNdy15 43iJ) = Day(N)N 4y,
By the construction, we can see that
(5.3.10) Ti+12) = {DETy41; DN 44110}

and any codimension 1 face of the closed m-cell 4,,, is expressed as 4,,,N D
for some D&J1,,,(2). Moreover, the family J7,,,(2) is normal crossing at
any point of 4,,,, where 4,,,=z7{1(4,).

We illustrate for the case that d=0. Let J=[l, m+1], then the blowing
up of My=C"™ along the point LyJ)=(0, ---, 0) is expressed by the coordinate
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change:
(5.3.11) ky = wy, ky = wyw,, oo, ky = wiwy,

in a neighborhood U of 4, L,(J). Then {w,, == w,} gives affine coordinates
of Py(L(J))=P™ 'in U, and

(5.3.12) 4(J) = {(wy, =+, W) EALNU; wy = 0, 1>w,>wy> o0 >w,, >0} .
For I=[i, j1<J,

{wy, o, w)ELNU; 1 =wy =wg = -+ =w;} ifi=1

4L(HNU =
)N { {wy, =, W) ELNU; W = Wiy =+ = j} ifi1.

In particular,
{Ll(ll’ m])n U= {(Wl’ °%y Wm)EU; 1= Wy = W3 = °o° = Wm}
L2, m+1DNU = {(wy, =+, W) EU; w, = wy = +o+ = w,, =0}
Hence
L1, mDN L2, m+1D) =0,
since the left hand side is included in
T (Lo([1, m]) N Ly([2, m+-1]) = =7 (L1, m+11)) = Ly(1, m+1]),

soin U. It is also clear that J7,(2) is normal crossing in U.

A0,31 A1,3]
1 A[1,4] f nbd of
\3 | A]0,3]
A A i
Ao[l ’ 3] AO[O’ 2] ; A][O, 2]
](2 ™ At Ay
< : A
A, - S —
ST =h 7 —
Af1,4] Agf2,4] Af2,4]

Figure 5.1 m=3, J=[1, 4]

The blowing up along the point (1, --- 1)=L(|0, m]) is similarly described.
Other primitive faces have the same structure as in the d=0 stage, except that
we can consider one variable freely (w, in the above case, see Lemma 5.1).

Thus we can show that for any J=[i, i+d] (d=2), L,,_,(J) doesn’t inter-
sect with other L, _,(I) with d=d(I), and after the blowing up of M,,_, along
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Lm—d('])s
Lm-d+1([i9 1+d_1])n Lm—d+1([i+1= 1+d]) = Q .

More in detail, similarly as Lemma 5.1, we can introduce coordinates {u,,
oo, Uy, Vg, *** Vgt in a neighborhood U of 4,,_; N L,,_,(J) such that

By yNU = {u,VER"NU; 1>u> - >u,>0, 1>9,>0
(5.3.13) (<i<m—d)}
4y (NHNU = {(u, VER"NU; uy = ++ =u; =0, 1>y>0
(1Zism—ad)},

and for 7, and I, 4(d—1) such that I, U I,=J,
Ly s(DNU = {(u, WVEL,_yNU; 1>u; =ty = ++» = 1u,>0, 1>9,>0
(I=si=m—d)}
L, IHNU = {(u, WEL,_;,NU; 1>u,>0, uy = - =u, =0, 1>v,>0

(<i<m—d)} .

The blowing up =,,_44, of M,,_; along L,_,(J) is expressed by the coordinate
change

(5.3.14) Uy = Wy, Uy = W Wy, oo, Uy = WiW,
in a neighborhood U’ of 4,,_;4,N L, _z4+:(J), so

{Lm'dﬁ(ll)ﬂ U ={wvEU;1=w= " =wg}
Lm—tl+1(lz)n U = '{(W’ V)EU’; Wy =0 =Wy = 0} ’

hence L, z41(1) N Lyy—a1:1(1)=0.
Now the induction procedure is justified, so we get the proper holomor-
phic mapping

T2 Ty

. T -1 L3 m
Tt Mo = M,y —3M,_, M,—> M,=C

which satisfies the three conditions ([)—(III) in the first part of this subsection.
Since every blowing up above is defined over &, we can define real sections
of M.. and D..(J)=D,,_,(J) JEY) as

M‘”,R = W;I(Rm); D”’R(J) == DW(J)nMw,R .

Note that .£,,_;=0. Replace the subscript m—1 with oo,
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AGl0,3
/o[ ]

A
AdL4] A4

Figure 5.2 m=3

The family 77..(2)g=1{D(J)g; J E 4} of connected, closed, 1-codimensional
and real analytic manifolds of M., g is normal crossing at each point of M.,
at least near 4... And 4., is one of connected components of M., zp\ U D.. r.
Jed

For 0=d=<m, let

(5.3.15) E(d) = {p<=4..; there exist just d elements of Jl.. containing p} then

m

(5.3.16) 4., = NE®W).
a=0
Then the subanalytic set 4., in M., p has the structure of a stratified set:
(5.3.17) EQ)=4.; EQ) = U 4.(J),
Jedg

and 4..(J) is homeomorphic to an (m—1)-dimensional disk. Each connected
component of E(d) is the interior of the intersection of some elements of {4,
(J); J€ 4}, and is a real codimension ¢ submanifold of M.,  which is homeo-
morphic to an (m—d)-dimensional cell.

Now define the analytic m-form 6., oa M., by

(5.3.18) 0.. = 0.(a, B, 1) =O(e, B, 7)),

then the triple (M., S, ©..) satisfies the condition (E), and the exponents are
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computed as follows:
Propesition 5.2. For J=[i, jle 4(d) (1=d=m),
d(d—)a+dr+d—1 ifi=0
(5.3.19) e(D.(J), 8.) = { dd—De+dp+d—1 if j=m+1
d(d+1)a+d—1 otherwise .
Proof. For JE4(1), the blowing up =.. gives no essential changes for
coordinates near a generic point of D..(J), so the formula (5.2.9) is the desired.
For any J€ 4(d) 2<d=<m), take a generic point p of D..(J), then coordi-
nates near p are changed from ones near z.(p) essentially (i.e. singularly)
only by the blowing up =,,_,4, (see (5.3.13, 14)).
More precisely, we can introduce coordinates {wy, **, Wy, X3, ***, Xp-a}

around p in a neighborhood UCC™ and {uy, -, uy, V1, ***, Vu_a} around z.(p)
in 7 (U)C M. such that 1) the mapping z..: U—z(U) is given as

Uy = Wi, Uy = WWy, oo, Uy = WWy, ¥, = X; (1SiSm—d),
and 2) the m-form 6, is expressed as

60 = II ur II (ui_ j)sz(ula ey Ugy Vyy 00, vm—d)dul'"duddv]"'dvm—d 9

1Sizd 1=5i<isd
where f(u, v) does not vanish on z..(U) and
y=r (ifi=0),y =g (fj =m+1), v = 2a (otherwise).
Hence
0,, = wig(wy, *o2, Wy, Xy, ) Xpy_g) AWy ooe dwydxy -+ dXp_y
where g(w, x)==0 on U and

e = du+‘—l(—d2:D x2at+d—1.

5.4) Proof eof Proposition 4.2 (Construction of Cycles)

Here we use the notations in the preceding paragraphs. Fix an integer
m=2 and an element (e, 8, 7) of the set 2CC? defined by

(54.1) 2 =8(m) = {(¢,8,7)EC? e(J; @,8,1)& Z for any JEJ}
= {(¢,8,7)EC? dd+1)a& Z , dd—)a+dp&EZ,
dd—Da+dr&Z (1=d<m)} .
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Since 7w: M.—N.—>M,—N,=Y,, is homeomorphic, we get an isomor-
phism between the homology groups

(542) 7usr: Hy(Mw—Na; So_)—> H(My—Ny; So) = Hu(Y; Sapy)

where Sg, and Se_ are the local system on the manifolds M..—N., and Y, =
My—N, determined by the m-forms 6. and @, similarly as &,. Hence we
will construct a cycle I'.(@, 8, r) and project I'., to get the desired cycle I'(e,
B, 7)of Hup(Y,; Sa.p,9)-

Recall that 4.(J) for JE4 is an open subset in D.(J)gz and the family
N, g=1Dw())g; J EF} is normal crossing at any point of 4.

Introduce a riemannian metric in M. and fix a small ¢>0, and consider
the e-neighborhood Uy(d) of E(d) in M. and the real section Uy(d)g="U,(d)
NM.. g

We construct chains ¢(d) and e(d)EC,,_;(M.—Nw; Se_) inductively on
d=0, 1, -+-, m such that

j c(d) = c(d—1)+e(d),
support (dc(d)) .=l;_nJ . UJ(d),

(5.4.3)
l support (e(d))C U, (d) .

\
\

\ Dy(K) codim 1

Figure 5.3

At first we introduce the orientation in dy=4(m) C My g=R"={(ky, -**,k,)}
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by the ordering of this coordinate system, and introduce the orientation on
4., by the homeomorphism z..: 4..— 4.
Put

(5.4.4 c(0) = A‘,,—(JE‘U,,Z(d)R) Nn4.
with the orientation on 4., then
(5.4.5) 8¢(0)C do— U U(d) .

i=1

Take a point p& E(1), then there exists an element J € 4 such that p=4..(J)
and near the point p we have a local coordinate system (U; z) such that

(U={z=(z, ", zo) EC"; |2;| <5 (I1=i<m)},
Up:=UNMer={z€U;Imz; =0 (1=i=m)},
(5.4.6) UNd. = {z€Ug; z,>0},
UN4u(J) = {zEUg; z; =0},
UNU() = {z€U; |z,| <e} .
Now the exponent e=e(D(J), O(a, £, 7)) along D.(J) is not an integer,

since (@, B, 7)=2. So we can suppose the orientation w. coincides with the
orientation of U N M. g induced by the ordering of this coordinate (z;, =+, z,).

On this coordinate neighborhood U,
(5.4.7) c(0) = {zEUN M. g; zlgé}

with this orientation. Define a chain e(1) as

—2nie

(548) ey = g SU(S) Xz’ =z -r,2); Imz; = 0 QS j<m}
e
where
S() = a€C; |al = 7}

with a positive orientation.
By patching together this e(1)|, at each point pe E(1)\( U Ue(J)N Mo ),
j=2
we can get a chain e(1) such that ¢(1)=c(0)+e(1) and e(1) satisfy the condi-
tions (5.4.6).

In the second stage d=2, we can construct e(2) analogously. In fact,
take a point p& E(2) then there exist local coordinates (U; z) such that



(5.4.9)

then

(5.4.10)

where
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U={z=(z,, *, z,)) EC™; | z;| <5 (1Zi<m)},

Up=UNMur={z€U;Imz; =0 (I1Zi<m)},

UNd.. = {z&Ug; z,>0, z,>0} ,

UNEQ) = {z€Ug; 2z, =0, >0} U {zE Ug; z,>0, z, = 0} ,

UNU) = {z€U; |z| <e, |Imz;| <¢ 2= j=<m), Rez,>—¢}
UfzeU; |z <e, |Imz;| <e (j=*2), Rez;> —¢},

UNUQR) = {z€U; |z] <e, |z,] <, |Imz;| <e 3= j<m)},

UNEQ) = {z€Ug; 2z, = 2, = 0},

23
|
|
l
i
|
(1) ! c(0)
i
|
|
el -
I\ : \\
[}
S T A
' 1)
!
ex1)
Figure 5.4
(0 = eEUN Mg 22 &, 225},

ey = e(Dlv+eDly,
1 3 &
el(l)lU = msi(z)x {(Zz, oty Zy)s Iij =0, ?§Zj§5} s

1

eDly = 123 Imz, =0, ggzlgﬁ xSé(g)

X{(Z3, °% Zm); Imzj == 0: ‘%ézjés} 5

Sﬁ(%) = {zEC; |z] =§} (7=1,2
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with a positive orientation, and @, and «, are the exponents along the sub-
manifolds {z,=0} and {z,=0} respectively.
Then define a chain e(2) as

1
(e—Zm'wI _ 1) (e—zm'wz_ 1)

X {(z3 *+*5 Zy); Imz; = 0, —z—éz,éS} ,

(5.4.11) e@)|y =

s«g)xs;(g)

and by patching together this e(2)|, at each point pEE(Z)\(G Uel(J)rN 4o),
j=3

we can get a chain e(2) such that ¢(2)=c(0)+e(1)+e(2) and e(2) satisfy the
conditions (5.4.6).

By induction on d, we get the chain ¢=c(m) and this chain is the desired
cycle I'w(@, 4, T)EH,”(MN\N‘», Sew(w,s.v))-

The key points to the inductive steps are

(1) the family Jl.. is normal crossing at any point of 4..;

(2) along each D Jl.., the exponent of @.. is not an integer.

The work is tedious but not difficult. In order to make the patching of
locally defined chains e(d) ]|y, we use the technique of controlled tubular neigh-

borhood system of the stratified set 4..= L’jE(d) due to Thom-Mather (see
d=0
J. Mather [1970]).

Appendix. Fermi-Bose Correspendence

A.0) In this appendix, we show the way how the Fock space represen-
tations SF(w, ) of the Virasoro algebra L can be constructed by using charged
Fermi operators.

When we were studing the work of F.L. Feigin and D.B. Fuks ([1982]),
we arrived at our Fock space representations &F(w, 1). In that paper, they
constructed representations of £ depending on two parameters, by using ex-
terior algebras. Here we reconstruct representations of this type by using
charged Fermi operators, then due to the Fermi-Bose correspondence de-
velopped in the paper of E. Date et al. [1983], we express these representations
by Bose operators. This is the way how we found our Fock space represen-
tations F(w, 2).

A.1) Charged Fermi Operators and Representations of Virasore Algebra

Consider the associative algebra B over C, generated by -, anld v(neZ)
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with the following Fermi commutation relations:

[wim '\b'n]-*— = ["/’Im Il]-i- =0

A.l1.1

( ) [‘Sb‘ms ¢L]+ = 6m,n s
where

(A.1.2) [4, B]l, = AB+BA .

Moreover the algebra B has the Z-graded algebra structure
(A.1.3) B=>9,,
ez
by defining the degrees of v, and +} as
(A.1.4) deg ¢, =1 and degy) = —1

for any ne Z, and then we call these degrees the charge.
Consider the vector spaces ¥ and V' defined by

(A.1.5) V=>Cy, and V' =3 Cy},
nez neZ

and put

(A.1.6) W=Vaer'.

By the paring {v»,, ¥} >=4, ,, the vector spaces ¥ and V' are dual with each
other, and the sets {y,, n€Z} and {y}, nEZ} constitute the dual bases.
Fix another polarization of the space W defined as W=W.,.@ W_, where
{W+=zcwn+2w2,
n20 20

ALT
1D W- =50yt 3 O

Since any two elements in W,(or W_) anti-commute with each other
respectively, we get the isomorphism

(A.1.8) B AW, )QAW.) = AW.DW.) = AW)

as left A(W,)- and right A(W_)-modules, where A(W) is the exterior algebra
of W. Hence we can define the normal product

(A.1.9) iAW) =B,

as the uniquely defined C-linear isomorphism under the conditions that (1)
:1:=1and (2) : :isaleft A(W,)- and right 4(W_)-module mapping.
Consider the left B-module 4 with the cyclic vector |0) satisfying
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(A.1.10) W_|0>=0,
and also the right B-module A" with the cyclic vector <0| satisfying
(A.1.1D) QO|w,.=0.

Then the module 4 is a free A(W,)-module and the module H'is a free A(W_)-
module, that is, the two mappings
(A.1.12) AW)2a— a|l0de g =BBW_ and
(A.1.13) AW )2b—K0|be g’ = W, B\B
are C-linear isomorphisms.
By these isomorphisms, the grading in A(W,) and A(W_) can be trans-

ferred to 4 and (', and the degrees in 4 and ' are also called charges: for
homogeneous elements as A(W,) and be A(W_),

(A.1.19) deg a|0> =dega and deg<0|b = —deg b;
(A.1.15) H =39, and ' =3} H}.
ez ez

The homogeneous components 4, and 4} of the decompositions (A.1.15)
are called the charge [ sectors.
The vacuum expectation value

(A.1.16) > HxH —C

is uniquely defined by the following conditions:

i) <[> is C-bilinear; ii) <0[|0>=1;

iii) <va|ud =<v|au)> for any {v| €', |upEH and a=B.
Then it is easily seen that the restriction of {|> to H}xH,, vanishes if /=1’,
and is nondegenerate if /=/".

Define the operators H, and U, for n Z by the formulae:

Hn = 2 :‘Sb‘j Tf-}-ﬂ:
iEZ

(A.1.17) o
Uy =2 j 0 Fiant -
i€Z

Then these operators are well-defined as operators on the spaces 4 and A"
Identify the vector space ¥ with the space C[z, z7'] of Laurent polynomials
of z, by setting

(A.1.18) v, =2 (nEZ).
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For each (w, )&C? define the representation o, , of the Virasoro al-
gebra _L on the space V=C|[z, z™"] by the formulae:

P €s) = nd
(A.1.19) dz
p(w,)\)(e(/)) =0.

+{w+%—(l—%)n}2" (heZ)

And define the representation o' of £ on the dual space V', skew-adjoint to
the representation p, that is,

(A120) <ol (@' [¥D4<H | ouu(@¥> =0 (e€L, g'eV", paV).
Then

s p(w,}\)(en)"pm = (m+ W—i—% - (}l '—_;’ )n)"ﬁmﬁz

| Phamledrh= —(mtwt - =@+ i,
for any n, me Z.

Remark. Consider the quotient Lie algebra .L'=_[/Ce{, then the space
V can be considered as an _£’-module, that is,

(A.1.21) e, =L ez,
dz
Easily we can show that

(A.1.22) HY\(.L'; V)=C?

and a representative of a cycle (w, ) €C? can be taken as
(A.1.23) w, 2 (e, = (w—l——;——— (2 —%)n)z” nez).
For (w, )EC?, define the linear mapping
(A.1.29) bwn ' -L— Home(H, )
by the following formulae:
Beu(en) = Unt At - — Qb Ot o 0,08 —)id (1€ 2)
Beon(eh) = (—122241)id .

(A.1.25)

By easy but long calculations, we get

Proposition A.1.
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1) b i a representation of the Virasoro algebra L in the space Y.

2) For each meZ and ec L, p,(e) preserves the charge m sector 9,
hence b, induces a representation of L in the space 9,

3) Foreachec L, '€V and vV,

{ [Bwn(@), V] = on(e) (W)
[ﬁ(w,h)(e)s ¢T] = pzw,h)(e) (¢T),

where the left hand side of (A.1.26) is considered in the operator algebra.

(A.1.26)

Remark. Consider the generating function defined by
(A.1.27) E¢Cw =3¢ "Bun(en) 5
then by (A.2.20-21)
(AL28) E(C5w D) = : (CZHOWO: ++): HOPD:

1.,4d. ). 4L (w222
+@+ 5 )Cdc' POP©): + 5 W —2)id,

where we set

(A.1.29) Y(©) =3 v and ¥I() = Ty

A.2) Fermi-Bose Correspondence (after E. Date et al. [1983])

Proposition A.2 (E. Date et al. [1983]).
1) Foranyn, meZ

(A.2.1) [H,, Hy,] =1 08,4moid.

2) For any vector |v>& Y, there exists a positive integer m such that H,
[ v>=0 for any n=m.

3) For any n=1 and any vector |v)E Y, there exists a positive integer
m such that (H,)"|v>=0.

4) ForanyleZ

{ﬂz ={lwed; H|v> =1} and

(A22) I = Kv|edlt; v Hy =<l

Introduce an infinite set of variables x=(x;, x,, --+) and set

(A.2.4) H(x) = 3 x,H, and
ﬂgl
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(A.2.4) e =3 L (H) .
n20p
By Proposition A.2, the actions of the operators H(x) and e?* on the spaces
H and 4" are well-defined, and
(A.2.5) H(x)|0> =0, hence ¢Z®|0> =]|0)>,

but here note that <0| H(x)=0.
Define a state of charge » as

Qg  (n<0)
(A.2.6) <n| = {<0] (n=0)

O]yh -y (m>0)
Consider the C-linear mapping
(A.2.7) O: H—CY =Clu, u™, x1, Xp, ***]
defined by

O@|0) = S <m|effPa|0u”  (aED).
meyg

Proposition A.3 (E. Date et al. [1983]).
(1) The mapping @ is a graded C-linear isomorphism, where the grading
in the space CV= >3 CV,, is given as

(A.2.8) degu=1 and degx,=0 (®=1),
hence
(A2.9) O(H) =V, =u"Clxy, X, -=*] (MEZ).

(2) The isomorphism O gives the action of the operators H, on the space
CV=Clu, u™, x,, x,, **-] as

H,=29, n>0)
(A.2.10) Hy, = ud,
H ,=nx, ®>0)

where 0,=08/0x, (n=1) and 9,=0/0u.
By the same method to prove the Proposition A.3 (2), we get

Proposition A.4. The isomorphism @ gives the action of the operators U,
on the space CV=Clu, u™*, x,, x,, *--] as
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_ _n+l 1 2=} .
Un - (uau 2 )an+?§ ajan-j+ El.]xja;ﬁj s

A211) U, = i(ua,,)z—iuaﬂr 217 x;0;,
2 2 izt

. n-1
P L) I W M)
forn=1.

Sketch of Proof. For a complex number {€C* we introduce the ope-
rators defined by

(A.2.12) Y(O) =T ¥t and 'O = T yic™,

then ¥(¢) and +'(¢) are holomorphic operator-valued functions in the sense
that

(A-2.13) Luly(©)[v> and Luly'(O)]v>

are holomorphic functions of ¢ for any {u| € 4" and |vD>& . Then for ({,,
&) E(C*)?, the normal product of generating functions

(A.2.14) P CW(ED): = mzezc{c;m RV
are also a holomorphic operator-valued function on (C*)>. Then we get
(A215) (OY(O): =2 ™D Yhem) = 2 ("H,, and
mez ez meZ
(A216) (6L g C v (€ Teme -ty =D D Iplantt = 20,
d¢, ! nEz ez nez

Thus we must calculate the operator form on the space ¢{/ of the operator
Y(O'($):. Consider the product

(A.2.17) (N (E) = ”;Ezc{cmm&in

as an operator-valued Laurent series on ¢, and {,. Then as Laurent series,

we get
(A2.18)  Y(CI¥'(C) = MEEZ:{ 5"‘:¢,¢L:+1§(Cl/cz)‘[w,, ¥ils
= 3 &G+ 2 (686D
l,mezZ 1>0

Here we note that in the domain |{;|>|{,| >0, the functions
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-
(a2.19) D@y =

and Y (C)¥'(¢,): are holomorphic, hence Y(¢)y'(£,) is also holomorphic
in this domain, and satisfies the equality

(A.2.20) P(EDP'(6): = P(CIP(& z)_ C
2

On the other hand, E. Date et al. [1983] calculated the operator form
of v(E)v'(&,) on the charge m sector CI/,,, so they obtained

(A221) PEW@): = G HE -1
where

(A.2.22) X, 8 = P AR AP CIALH A
and

(A.2.23) &(x, ) =n§ x,¢" and (9, ¢) =n§ _’];c-”a”_

On the other hand, consider the operators A and B defined by

Ex, C)—E(x, &) = (C1— cz)zcl j Xy = (G~ A,

(A.2.24) 14—
£, ) —€(, ¢) = (6—¢) 1L =" O (¢ 3B,
»zl (—C, n

then A and B are operator-valued holomorphic functions of (¢;, {,)E(C*),
and note that these are holomorphic even at (¢, £)==(0, 0). So we get

(A.2.25) A, ©) ZE nx,C"t, B, ¢) = @21 8,7,
and
(A.2.26) X, &) =k§ Xi(& &) (60,
where
(A.2.27) X(¢ &) =33, #A‘Bi :
itiok

For each meZ, we can expand the function (£,/,)" as

(A.2.28) (€E)" = A+ = 1 () (i
cz jzo J Cz

Hence we get
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(A229)  HEWE): = & A/ XE )1}
17 52

={ 3 (’}') ST AT ) I (AL

20 j+k=h+1
i=0,k21

Note here that the function >} (’]'.1) {77 X,(¢y, €,) are holomorphic at

jtk=h+1

£,=C,+0. So we get
(A.2.30) [, 4 RS (S H IS
as,
= mEX(C, O)+E2X(E, O+ czl—a—%Xl(CD o=z, -
1

Hence by (A.2.16), we get the formulae (A.2.11) for the operators U,,.

A.3) By Proposition A.4, we get the explicit form of the operators (A.1.
25) on the space CV=C[u, u™, x;, x,, **-].

Proposition A.5. On the space </,

(A3D) Bnle) = (r+ud,—n)nx,+— 515 3 )01,
(A'32) ié(w,?\)(e-n) = (W+uau+nl)an+%:§_:ajan~j+ ijjan+j
(A33) pA(w,A)(eO) = ";_'{(W’*_uau)z_lz}'ld"i-g jxjaj

(A34) bunleh) =(1—122)id.

If we restrict the representation 4, , on the charge zero sector <{/;=
C[x,, x,, -++], then this representation is nothing else but the Fock space repre-
sectation =, , on F(w, 4) of the Virasoro algebra £ (see (1.1.28, 1.2.3, 10)).
Here we identify

(A.3.5) F(w, )=C[x,, x5 -]

and

(A.3.6) Pw =NXpp_, =08, (m=1), py=wid, 4 =2id.
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