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Introduction

The Virasoro algebra X is the Lie algebra over the complex number field
C of the following form:

-£ = S Cen®Ce'*,
»(=Z

with the relations: for any n.m^Z

( [en, em] = (m-n)en+m+n^dn+mi^ ,

I K en] = 0 .

This type of the Lie algebras was first introduced by a physist M.A.
Virasoro (cf. S. Mandelstam [1974]), as the gauge group of the string model
of elementary particle physics.

Consider the Lie algebra J2' of trigonometric polynomial vector fields
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on the circle:

_£' =: V! C/ • (7 I ] = (m n)l (n

ln=z — (z = e ).

Then the 2-dimensional Gel'fand-Fuks cohomology of X is known as

and its generator 0 can be taken as

rrp—m
$(*» em) = —— 8n+m,Q •

The Virasoro algebra X is the central extension of the Lie algebra X' defined
by the cocycle 0.

Quite recently the Virasoro algebra was used to analyze the critical phe-
nomena in the two dimensional statistical physics (cf. A.A. Belavin-A.M.
Polyakov-A.B. Zamolodchikov [1984]). In that situation, the Virasoro algebra
plays the symmetry group of the theory.

In the mathematical side, V.G. Kac ([1979]) studied the left -f-module
M(h,c) parametrized by £72B(/z, c), called the Verma module. The Verma
module M(h, c) is the left -T-module with a cyclic vector | h, c)> with the funda-
mental relations:

e,n | /7, cy = 0 (n ̂  1); eQ \ h, c)> — h \ h, c)>, e'Q \ h, c)> = c \ h, cy ,

V.G. Kac obtained the formula concerning the determinant of the matrix
of the vacuum expectation values of M(h, c) (cf. §2). Using this Kac's deter-
minant formula, F.L. Feigin and D.B. Fuks ([1983]) determined completely
the composition series of M(h, c) for each (h, c)^C2*

In this paper, we construct another kind of representations of X para-
metrized by C723(w, /I), which we call the Fock space representation (EF(w9 X),X),

and intertwining operators between them, and investigate these ^-modules
£?(w, X) and M(h, c) and their relationship.

At first consider the associative algebra <JL over C generated by pn (/?(
and A with the following Bose commutation relations:

[/>«» Pm] = MSn+m,oi [A> Pn] = 0 (",

For each (w, ̂ )eCf2, we consider the left cJ-module 9r(w, /I) with a cyclic
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vector | w, X)> with the fundamental relations :

/>-.|w,*> = 0 (H^l);/>ohM> = w |w,J> ; A\ w, J> = A\ w, J> .

Now consider the following operators which can act on the Fock spaces

&(w,X):

"~1

jP-j ("^ 1);

Then the first result is the following (Proposition 1.3):

Theorem CLL The operators Ln(n^Z)and LQ satisfy the commutation
relations of the Virasoro algebra: for n,

f \T 1 ^= (in n)Ln+m

In the special case where A=Q:> these operators are the ones which were
introduced by M.A. Virasoro (cf. S. Mandelstam [1974]).

By using the canonical homomorphism n (i.e. x(en)=Ln (n^Z); 7c(eo)=Lo)y

we get the left ^-module (3(w, /I), ^(WiX), X) which is called the Fock space
representation, and by the explicit formulae of Ln and L'Q5

J Zo|w,^>=y(^-^|

I L_Jw, ^> = 0 for

By the universal property of the Verma module M(h, c) as an ^C-module,
for each (w, 1)^C2 we get the unique »f-module mapping

which sends the vacuum vector \h(w, ^), c(/l)> e M(h(w, X), c(X)) to the vacuum
vector | w, ̂ >e3"(v^, ^), where

A(W, ^) = — (u'2-^2) and c(X) = I -121? .
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Then by using Theorems 0.3 and 0.6, we get the following (cf. Proposi-

tions 2.7 and 2.8).

Proposition 0.2. Fix a pair (w, 2) e C2.

1) The canonical J^-module mapping

*WiX: M(h(w9 X), c(Xj) - &(w, X)

is isomorphic, if and only if the equation

2 s

has no integral solutions (a, b)^Z2 with a^l and b^l, where s&C* is a root

1 sof the equation 3.= --- .
s 2

2) The X-module 9?(w9 X) is irreducible, if and only if the equation

2 s

has no integral solutions (a, b)^Z2 with ab^l, where s^C* is a root of the

equation X = --- — .
s 2

And this condition is equivalent to the fact that the corresponding Verma
module M(h(w, X), c(X)) is irreducible.

To construct intertwining operators between Fock spaces, we introduce
the operators of following type acting on 3?(w, X). Fix s&C*, and consider

X(s, O = exp (s 2 C^\ exp ( -s 2 rnp^\s

\ »=i n / \ w=i n /

and for any a^l

Z(s; Cls -,O =F; Clf -, Ca exp

X exp -s

where

is the operator such that

Ts | w,^> = | w+*, ^>; [rs, ̂ ] - 0 (»=f=0); [rs, ^] = 0 ,
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and

F(*; c13 -, Q = n C7('~1)- n (ff-r,-r.
y=i igi<j£a

Operators of this type are called Vertex Operators (cf. S. Mandelstam [1974]
and E. Date et al. [1983]).

Then X(s; C) and Z(s\ C19 • • • , Cc) are multi-valued holomorphic functions
of Ce£7* and (Cl3 ••• , CJeMfl respectively with valued in the operators acting
on 3(w, A)'s, where Ma is the manifold denned by

Ma = {(C1? .-, Oe(C*)'; C,=K, (l^K/^fl)}-

For each aeC*, denote by <S* the local coefficient system with values
in C which is determined by the monodromy of the multi-valued holomorphic
function F(a\ Cl5 ••• , CJ on Ma, and denote by <Sa the dual local system of <S*.

Fix s^C* and an integer a^l, and take an element F&tfa(Ma; Sa).
For each integer b^Z, we consider the operator

J/1

Main Theorem 083 (Theorem 3.8).
1) For each (w, X)^C2, the operator O(s, P\ a, b) acts as

O(s, P\a,b)\

2) Take s<^C* and a, b^Z with al>l. Put Z=Z(s)=~—^L, then the
s 2

operator

0(s,r;a,V): fff-^-A, *} -+ gr/A 5 _A 9 A
\ 2 s/ \ 2 j /

commutes with the action of X,

For suitable s£=C* and iveC., the equation

a bw = — s — —
2 s

has a countable number of integral solutions (a, b)^Z2, if and only if a=s2/2

is a rational number. This index a characterizes the property of the mono-
dromy of the function

;c1,-,c tf) = nc7(a-1)- n (c,-cyr.y=i igi'<y^B

If QJ is irrational, then the monodromy of the function F is of logarithmic type,
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and if a is rational, then the monodromy of F is of algebraic type.

The essential points to prove this theorem are the following two formulae
(Propositions 3.3 and 3.4).

Propositloo 0,4 For any

X(s, O-JTO, O = Z(s; C1? -.,

Proposition 0.5 (Conformal Covariance).

[Lm, X(s, 0] = C-m(c-msA+-x(s, 0

eac/z m^Z and s,

In the final step, we must construct a cycle r(a)^Ha{Ma\ <Sa) which gives
a nontrivial intertwining operator O(s, F; a, b).

If we expand

exp jS (f J+- + «)\ «=i

as a Laurent series of (Cl5 ° ° 8
? CB), then the coefficient of the each term of the

operator

( Z(s; C15 -, f JCr*-1-^"1^!-^
Jr

is written as

and this integral is reduced to

-k,r H

where F =r1xr2s=Ha(Ma; SJetH^C*; C^H^Y^; SJ, rl is a genera-
tor of #1(C

f*;Cr), and F^.j is the manifold defined by

1; M=0,l (l

In §4 and §5, we construct the cycle r2(a)^Ha_1(Ya_1; <Sa) which reg-
ularizes the divergent integral

TLkjW(i-kjr n (fc,-
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where A(a— 1) is the (a— l)-simplex defined by

A(a-l) - {(kl9 • • • , fc a _ 1

In the construction of the cycle, we use the technique of resolutions of
singularities. We think that the results in § 5 are interesting for further study
of the above integral.

Consider the set

then we get

Theorem 0.6. There exists r(a)^Ha(Ma; <§„) which depends holomor-
phically on a^@ such that the operator

0(s; a, b) =

is nontrivial in the sense that for any

1) for 6^0, the image O(s\ fl, b)\w—as, — — — )> is a nonzero vector.
A Zj

( 1 s \w—as, --- ) such thai O(s\a,b)\vy
s 2 /

In the appendix, we construct the Fock space representations by using the
charged Fermion operators and explain their relationship to the Bose formalism.
In mathematical languages, the Fermi formalism corresponds to the spinor
representations and the Bose formalism corresponds to the Weil-Segal re-
presentations.

Recently appeared the paper of Vl.S. Dotsenko and V.A. Fateev [1984]
which seems to be very closely related to our results.

Finally we express our thanks to Professor K. Aomoto for valuable dis-
cussions.

Notations

%S: the cardinal number of the set S
Z: the ring of rational integers
Q: the field of rational numbers
R: the field of real numbers
C: the field of complex numbers
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C*: the group of non-zero complex numbers
C[xy; r e F]: the ring of polynomials in variables {_xy; r e F} over C
C[[xy; reF]]: the ring of formal power series in variables {xy; reF} over C
C[xy, x^1', r^F]: the ring of Laurent polynomials in variables {#?; r^F} over C
&[[xy, Xyl; r ̂  F]]: the ring of formal Laurent series in variables {xy; re F} over C
A(xy, reF): the exterior algebra in variables {xy; r^F} over C
dt,j°° Kronecker's delta, that is, <5,y=0 (/=}=;), or 1 (1=7)
lim Aa: the protective limit of a projective system {^4»}

a \ b: means that an integer b is divisible by an integer a
Let S be a subset of an ambient topological space X. Denote by S the closure of S in X,
and by int S the interior of S in X.

§1. Caoooical Commutation Relations and Fock Space Representations

1.1) Canonical Commutation Relations

The purpose of this paragraph is to present some facts about canonical

commutation relations and Fock space representations. Consider operators

pn (n^Z) and A with the following commutation relations:

d.1.1) IbwJ=-

We denote by Jl the associative algebra over C generated by operators pn

(n&Z) and A with the defining relations (1.1.1). The algebra <JL is made

^-graded algebra by defining degrees as degpn=n and deg A=Q. Then <JL

is decomposed to the sum of homogeneous components as

(1.1.2) JL=^JL(d).
d^Z

Consider an index set M=(ml9 m29 •>••) with non-negative integers m^

satisfying ||Af||:= S/Wy<oo. We denote by P+(Af) and PJ(M) the elements
3

•••pfopf1 and/?*1!/?"!--- of the algebra Jl respectively. Then any homogeneous

element of JL of degree d is uniquely represented in the following form:

(1.1-3) S cM>N(pQ9 A)P+(M) P_(N) ,
i\x\\-\\jn\=d

where cMaN(p09 A)^C[pQ, A] and the above summation is finite.

Define a decreasing filtration

(1 . 1 .4) JL(d) =

by the following rules; the element
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23 CM,N(P*, A)P+(M)P_(N)^Ji(d)
\\*\\- \\tf\\=d

belongs to Jln(d), If and only if cMiN(pQ, A)=Q for ||7V||</2. Then we get the
composition

(1.1.5) Jlni(dl)xJL1t2(d2)^(a1, a2) ̂  a

with «=max(H1— dl9n2). Define the completed vector space <JL(d) by this
filtration as

(1.1.6) J(d) = Mm JL(d)IJLn(d) .
n

A

Then any element in Jl(d) is represented in the following form :

(1-1.7) 23 cM.N(Po, A)P+(M)P_(N)
\\x\\- \\jy\\=d

where cMiN(pQ, A)^C[p^ A] and the summation may be infinite in this time.
Then

(1.1.8) ,(d) = 0(

defines a completed linear Hausdorff topology and the embedding

(1.1.9)

has a dense Image and the composition (1.1.5) can be extended to a continuous
map

in a unique manner. And the sum of these spaces

(1.1.11) J=S

becomes a topological graded algebra.
For each (w, /l)eC2

? consider the left cJ-module 2r(w? X)=JL\\v9 ^> with
the cyclic vector | w5 /l> which has the following defining relations :

(1.1.12)

We call that this vector | w, £> Is the vacuum vector of 3?(w, X). Similarly
we define the right <J?-module 3T(w, X)=(l,w\Jl with the vacuum vector
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(1.1.13) 9 w\pQ = <X9 w\w

The vacuum expectation value

(1.1.14) < | >: S-f (w, ;OxS*(w, *) -> CJ

Is uniquely defined by the following conditions:

I) < | > is C-bilinear; li) <^3 w\ w, J>=1;

iii) <v a | v'>-<v | a v'> for any <v | eS^(w, ^), | v'>e£F(w5 J) and

A basis of £F(w, X) and £?T(w, X) over £7 is given by

| M, w, ̂ > = P+(Af) | w3 /l> with M = (ml9 m2, • • •) and

With ^ = (11!,̂ ,

respectively. Then the vacuum expectation values are explicitly given by

the following formula

(1.1.16) <J, vi

where
*JN,M

(1.1.17) nu = i^'t—fi- and

Ml = m,\my\" -m:\-~ .
1 6 J

Define the grading in 3(w, X) and 3\w, X) by setting

(1.1.18) deg|M, w ;^> = ||M|| and deg<A , w, N\ = \\N\\ ,

and decompose them into the sum of homogeneous components:

(1.1.19) &(w,X) = S &i(w,X) and

where 3"j(w9 ^) and ffJO^ ^) is the space of homogeneous elements of degree

d. This gives £?(w, ^) and 9"T(w, /I) the graded ^-module structure. By enu-

merating the number of the basis (1.1.15), we get

(1 . 1 .20) dim &d(w, /I) = dim 33(w, X) = p(d) ,

where X<f) is the number of partitions of the integer d.

By the formula (1.1.16), we get the following proposition.

Proposition 1.1. Denote by < | >rflp^2 the restriction of the vacuum expecta-
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tion value to the homogeneous components 3l^w3 X) X £F<?2(w3 X). Then < | )><?ls<?2

is trivial unless dl=d2 and( \ >rf=< | >rffd w always nonsingular.

Note that the restriction < | >«? Is independent of the parameters w and
I, so denote by Dd the matrix determined by the restriction <( | \, that is, Drf

is the diagonal matrix whose diagonal components are given In (1.1.16).
For each integer d, the submodule Hom^ (£F(w3 X), £F(w? X))(d) of

Homc(ff(w, J), £F(w, /I)) is defined by

(1.1.21) Home, (£F(w, J), ff(w5 *))(</) =

And the filtration of Hom^(2r(ws ^), S"(w, ^))(d) is defined by

(1.1.22) GoaG^G,^-,
n-1

= 0 on S -
k = 0

Then this filtration defines a complete Hausdorff linear topology on the space
Homc(£F(vt^ X), £F(w, X))(d) and the composition of mappings Is continuous In
this topology,

Consider the canonical mapping

(1.1 .23) 0(w, X) : .(d) 3 a h-> (D(w? ̂ )(a) e Homc (3"(w,

defined by
<D(w, X)(a) | v> = a | v> for | v> e £F(w9

Is2o 7%e mapping (1.1 .23)

is surjective and preserves the filiations for any

For two elements

*= S ^^(po, A)P+(M)P_(N) and
iwi-iijy|l=rf

«' = 23 c^^o, ^)P+(M)P^(N)
\x\\-\\in\=d

the equality (Z>(vi^, X)(a)=<D(w, X)(a') holds, If and only If cMtN(w, X)=CMtN(w9 X)
for any M and 7¥ with ||Af ||-||JV||=rf.

By the commutation relations (1.1.1), we get the Isomorphism

JL =
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as left C[pu(n^l)]- and right C[pn(n^— l)]-modules. Hence we can define

the normal product

(1.1.24) : : : C[pn(ns=Z)9 A] -+ JL

as the uniquely defined £7-linear isomorphism under the condition that the

mapping (1.1.24) is a left C[pn(n^l)}~ and right C7[^(^^—l)]-moduIe map

and satisfies the equalities :Anp$;=Anp% for any n, m^O. Moreover this
A

normal product on Jl can be naturally extended to the completion Jl.
A

Remark. The Fock space representations S(w9 X) of the algebra Jl can

be constructed on a function space of infinitely many variables XQ, XQ} xl9 x29
 e °- .

In fact, let

(1 . 1 .25) W : S(w9 X)-+V = C[xl9 x25 - - -}ewx^Xx^

be the €f»linear mapping defined by

(1 . 1 .26) W( | M, w, ̂ » = nMxM e^+^ ,

where

(1.1.27) xj" = jcrw?»-.

Define the action of the operators in the algebra Jl on the space V as

(1.1.28) Pn=nxn(n^l)9 P_n=-L(n^Q) and A = A .

Then it is easily seen that the mapping F is an <J?-module isomorphism.

1.2) Fock Space Representations of the VIrasoro Algebra

For a formal vaiiable zeC*3 define the operator

(1-2.1) X*) = S />„**,n*=z

and

(1.2.2) L(z) = l:Xz)2: -Azj-^z)-^-^

then Ln^JL(ri) and the explicit forms of the operators Ln are given as follows:
for/ i>l
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-

(1.2.3) 4 L-H = (PaJrn^)P~n+ —S p~.jpj-.n+ ^Pjp-n-i ?
2 j = 1 J^l

1

Zr

where

(1 -2.4) A> = 23 /* -P- •

is the Euler operator, so the homogeneous decompositions of the Fock spaces

are eigen spaces for D09 that is,

f 2r^fw X) = iI v>e£F(w ^)° Z>nl v> = dl v>}
(1.2.5) ' X v ' ;' ol x /f>

By elementary but long calculations we get the following proposition.

Proposition 1.3 (Commutation Relations for Ln).

(1.2.6) [Ln, Lm] = (m-ii)LH+m

[ [Ln, Pm] = mpn*

(1.2.7)
= z-'(z J- -«

The Virasoro algebra JC. is the Lie algebra over € of the following form :

(1.2.8) -£ = SCte.eCfe$,
«ez

with the relations

j [en, em] = (m-nje^+^^d^e'v ,

center of the Lie algebra _£.

Let £/(^) be denoted the universal enveloping algebra of J?. Put

(1.2.10) n(en) = Ln (»eZ) and w(e{) - (l-12yi2>W3

then by Proposition 1.3, we can define the hornomorphism

(1.2.11) TC: U(£)-+J19

and the action of Jl on £F(u', /I) and ff^w, /I) gives the representation ^(tt,sX) of
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the Lie algebra J2 on £?(ws X) and 3?\wy X) respectively. This representation
is called the Fock space representation of the Virasoro algebra X.

Introduce the polarization of the Virasoro algebra JC, as

(1.2.12) j: = T

where

The dual Jj*=HomC7(Jj, C) of the abelian subalgebra § is identified with

by setting for (A,

(1.2.13) (A,c)(*o)=A and (A,

The homogeneous decompositions (1.1.19) of the left and right _£-modules
3?(w9 1) and 3P(w9 X) respectively coincide with the weight space decomposition
w.r.t. the subalgebra §3 and the homogeneous components 9?d(w, X) and £FJ(w, X)
are the weight spaces belonging to the same weight (h(w5 X)+d, c(X))9 where

(1.2.14) A(w, J) = — (w2-^2) and

that is,

(1.2.15)

, ^); <v|L0 = <v\(h(w, X)+d), <v\L'0 = <v\c(X)}.

1.3) Here we set up the fundamental problems for the Fock space re-
presentations 9?(w, X) of the Virasoro algebra J2. In this and the succeeding
articles, we will discuss these problems.

Firstly we give the definition of singular vectors. A vector ve£F(w3 X)
is called singular if it satisfies the equalities

(1.3.1) *(..*)(*-> = 0 (n = l,2,-).

Denote by <S(w, X) the set of singular vectors in £F(w? X) and by Sd(w, X) the
set of singular vectors of degree d.

Fundamental Problems Take a pair (TV,
(1) When the X-module £F(w, X) is irreduciblel
(2) Then the map U(X)^a^-^a \ w, ^>e2r(w, X) is surjective?
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(3) Determine the subspace S(w, X) of 3(w9 X). In particular, is <S(w, X)
bigger than €\ w,^l>?

(3') Are there singular vectors of ^F(w, A) oj positive deggree d? that is,
is <Sd(w, X) trivial or not?

(4) in the case when 3?(w, 2.) is reducible, determine its composition tequence,

Note. We can set up the similar problems for the dual module ^3*(w9 /I).
However the problems for £FT(w, X) will be solved in the same moment as for

3 '̂, X).

§20 The Yerma Module of tlie Virasoro Algebra

2.1) Yerma IV

For convenience, we summarize here some results about the Verma mod-
ules for the Virasoro algebra JC.

Fix the polarization of X

(2.1.1) X = tu0Ij©n_ ,

as (1.2.12). Take an element (/?, c) of the dual fr of the abeiian subalgebra §.
Similarly as the Fock space representations (§1.1), we can define the left JC-
module M(h, c) and the right J?-module Ml(h, c), with the vacuum vectors
|/7, c>eM(/7, c) and <c, h\ eAfr(/?5 c) respectively. The vacuum vectors are
defined by the following relations:

(2'L2) ' " - / I / N /I / N I / N= /? I /?, c>; e'0\ h, c> =c 1 /?, c> ,

(2.1.3) j/ 7 e" ~° ("-1J

I \c, /? I e0 = <c, /71 /?; \c5 /? | ̂ o = \c? /? | c .

The Verma modules M(h, c) and M](h, c) are generated by the vacuum vectors
| h, c> and <c, /71 respectively.

Then by Birkhoff-Witt's theorem, the universal enveloping algebra U(X)
has the basis

(2.1.4)

for multi-indices M—(ml9m2, ° 8 - ) and N=(iilyn2J • • • ) of non-negative integers

with !Af |j= SjWjj 11^11= Sj^-<°°5 and non-negative integers /0 and /15

where

(2.1.5) e+(M) =-ea
2'2e'!i and
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And U(J2) is also a J^-graded algebra as

(2.L6)
d<=Z

by setting

(2. 1 .7) deg en =n (n e Z) and deg e{ = 0 ,

and any element of U(-C)(d) is uniquely represented as

(2. 1.8) ^ cMtN(eQ, efte+(M)e_(N) ,
\\jf\\ -\\xr\\ =d

where cM>N(eQ, e£) is a polynomial of eQ and e<J. The Verma modules M(h, c)
and M\h, c) have the basis over C:

M, A, c> = e+(M)|A, c> , deg|M, h, c> = ||M|| and

for multi-indices M and N with UMlUlJVl^oo, and they have also a structure
of graded t/(~£)-modules :

(2.1.10) M(A, c) = 2 Mrf(A, c) and Mr(A, c) = S Mj(A, c)
^^° ^°

where
, h, c> and

fJ(A, c) = S CKc> A, M |.

Then this homogeneous decomposition (2.1.10) is also the weight space de-
compositions of the Verma modules M(h, c) and MT(A, c) with respect to the
abelian subalgebra r) respectively. And the subspaces Md(h, c) and M](A3 c)
belong to the same weight (h+d, c), and their dimensions are also the same
number p(d).

The vacuum expectation value

(2.1.12) < | \c: M\h, c)xM(h, c)-*C

is uniquely defined by the following conditions :

J i) C7-bilinear; ii) <(c, A | A, cyhtC = 1;

1 iii) <va | w>Afff = <v | awykiC

for any <v| eM1(A, c), |vt;)>eM(A, c) and

Then the restriction of the vacuum expectation values to the subspace M](A, c)
xMd'(h, c) is trivial unless d=d'.
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Let r be an automorphism (or anti-automorphism) of an algebia Q and

let 0 be a C7-linear mapping between a left ^-modules £?! and a left (or right.,

respectively) ^-module £F2. Then we say the map <f>: 2^— >£F2 is defined over

(Q^ r), if the following equality holds: for any

(2.1.13) *&/•) = rfcX/) or #

respectively-
Let a be the C-linear anti-isomorphism of the universal enveloping al-

gebra U(X) defined by

(2.1.14) *(*.) = *-. («eZ) and a(

and define the £7-linear isomorphism

(2.1.15) o : M (A, c) -> Af f(A, c)

defined over (U(£), a) by

a ( | A , c » = < c , A | .

Then a preserves weights for !) and for any M" ,

Define the bilinear form on M(/?, c)

(2.1.16) ( | ): Af(A, c)xAf(A, c) ™~> C

by

( |v> | |v '»=<a( |v» |v '> .

Consider the restriction of the vacuum expectation values to the degree d

subspaces:

(2.1.17) < ( yd
hy. Ml(h, c)xMd(h, c) -> C .

Take the basis (2.1.11) in Md(h, c) and Ml(h, c), then the matrices of the

bilinear forms (2.1.16)rf and (2.1.17) coincide with each other, and denote them

by Ad(h, c), that is

(2.1.1 8) Ad(h, c)N
M = <C? A, M | N, A, c>f >c = ( | Af , A, c> | | ̂ 5 A, c>», .

It is easily seen that the matrix Ad(h, c) is symmetric.

The determinant of the matrix Ad(h, c) plays a very crucial role in the

irreducibility problem of Verma modules, and is calculated by V.G. Kac as
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a function of parameters (h,

Proposition 2.1 (V.G. Kac [1979], F.L. Feigin-D.B. Fuks [1982]).

(2.1.19) det2 Ad(h, c) = const. H H <*>j.k/j(h, c)p(d^ ,k=i j\k
where

(2.1.20) V^h,,
./=i 24 2 16

Here we remark the following symmetry of the function (2.1.20):

(2.1.21) <Z>M,(A, c) = 0_,is_,2 = 0k2>ki = (ZL^

for any (A, c), moreover we can decompose it to the product of linear factors :

Proposition 262.

(2.1.22) d>ki>k2(h, c) = l(^+-^-

where

(2.1.23)

a

= A(w, X):= (iv2-^2) = - - ,

=a(s):=^- and ^=^) :=-L-A.
2 5 - 2

. The meaning of the parametrization (2.1.23) will be explained
below.

1 sNote. C*^s\->A= --- eC is a double covering with branching points
, _ s 2

s=±V2i.

The mapping

(2. 1 .24) TU : C2 3 (w, /I) h-> (/i, c) <E C2

defined by (2.1.23) is a 4-fold branched covering.

Remark. In this article, we use the same notations for vectors of Verma
modules M(A, c) and Fock spaces 3?(w, /I), for example | A, c> and | ir, /^>. But
we consider that the readers aren't confused, because we always use the letters
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/?, c for parameters of Verma modules and wy A for Fock spaces.

2o2) of Fock Spaces Veraia Modmles

For each (w, X)^C2, let h=h(w,X) and c=c(^) as are given In (2.1.23).
Due to the universality of the Verma modules and the formulae (1.2.3), we
get the unique left J?-module map

(2.2.1) *w§x: M(h(w, X), c(X)) -> ff(M<, X)

which sends the vacuum | h(w, X), c(X)y to the vacuum | it', /l>, and the unique
right -/7-module map

(2.2.2) 7u]v^. M'(/7, c) -> S^M', X)

which sends the vacuum to the vacuum. They preserve degrees and can be
explicitly represented as

(2.2.3) rcWiX( \ Af , A, c» - 7r(^(M)) I H-, ̂ >

- 2] Cd(
l\N\\ = d

(2.2.4) «t.x«c, /7, M | ) = <^, w | ^

= S QO
i!j\ni=</

for a multi-index M with ||M||=rf, where Cd(u', X)N
M and CJ(ii', /1)JV

M are poly-
nomials of w and X.

Then we can see that the vacuum expectation values are compatible in
the following sense.

Proposition 2<30 For any (w, X)^C2, the following diagram is commutative.

< | >: M\h(w, X), c(X»xM(h(w9 X), c(Xj) - C

(2.2.5) j<, |^,x | id

< | >: ff^w, X)x&(w, X) - > C7

Let a be the C7-linear anti-automorphism of the algebra Jl defined by

(2.2.6) °(pJ=P-n (n^Z) and a(A) = -A .

Then by the formulae (1.2.3) and (2,. 1.14), the following diagram commutes:

a: [/(_£) - ,C/(^)

(2.2.7) I * U
* 4^

o: Jl - > Jl
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Define the C7-linear isomorphism

(2.2.8) a: 9d(w, -X) -+ &far9 X)

defined over (Jl, o) which sends the vacuum vector \w, —X> to the vacuum
<^, w | . Then the following diagram commutes :

o: Md(h,c)

(2-2.9)

o: &d

Hence the matrices of the mappings nWi-x and ^W>K are related as

(2.2.10) Cj(w, t)M
N = Q(w, -*V .

Then by the above commutative diagrams, we get the decomposition
of the Kac's matrix Ad(h, c).

Proposition 2 A For each (w, X)^C2 and any d^O,

(2.2.11) Ad(h(w, X), c(X» - *Q(H-, X)DdCd(w, -X)

that is,

(2.2.12) Ad(h,c)N"=

Note again that Dd is a nonsingular diagonal matrix whose diagonal com-
ponents are given in (1.1.16).

2,3) Singular Vectors

In this paragraph we summarize results about the Verma modules and
the Fock space representations.

At first we give the definition of singular vectors of the Verma module.
A vector v of M(h, c) is called singular, if

(2.3.1) e_nv = Q

for any n^l. Denote by <Sd(h, c) the set of singular vectors of degree d in
M(h, c).

Recall that for any (w, ^)eCf2, (A, c)<=$* and d^Q,

(2.3.2) dim Md(h, c) = dim Md(h, c)
= dim &d(w, X) = dim S^w, X) = p(d) .

Then standard arguments lead us to the following proposition.
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Proposition 2,5. For each (w, X)^C2, let

(2.3.3) h = h(w, X) -= — (v^-X2) and c = c(X) = 1 - UX2 .
jLf

Then the following conditions are equivalent.

(1) The Verma module M(h(w, X), c(XJ) is irreducible.

(2) There is no singular vector in M(h, c) of positive degree.

(3) det Ad(h, c) * 0 for any d^Q.
(4) The mappings TT^: M(h, c)-»S(w, X) and n[,^: M*(h9c)->&(w,X)

are isomorphisms.

(5) det Cd(w, ^)=f=0 and det Cd(w, — ̂ )=t=0 for any d^Q.
(6) There are no singular vectors in 2?(w9 X) and £F(w9 —X) of positive

degree.
(7) The Fock space representation 3<(w9 X) is irreducible.

Moreover we get the following proposition which is essentially proved
by F.L. Feigin and D.B. Fuks [1982].

Proposition 2.6. (i) For any (w, X)^C2 and

(2.3.4)

(ii) The set

(2.3.5) ScyW =

/^ an algebraic set ofC2.

Proof. Fix an integer d^l. The space <Sd=Sd(w, X) of singular vectors
of degree d is the kernel of the linear mapping L~:

For a multi-index M=(ml9 m2, *-), put

( \M, H-, xy/nMnl if ;??7->0 for any />!
(2.3.7) |M>= < J~

( 0 if w;- <0 for some j ^ ]

Then we get

(2.3.8) ^|M>^(mM+l)|M+^> and p_n\M>=\M-d^

where 5y is the multi-index whose /-th component equals to £,-,- (Kronecker's
delta).
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Introduce the order among these vectors as the lexicographic order for
corresponding multi-indices M=(ml9m2, •••), that is, the vector |Af> is called
higher than | #•> (denoted as | M>> | JV», if there exists j ^ 1 such that

777,- = 77,- (i<j) and mj>rij.

By this filtration in the space 9(w, X)9 decompose 9rf and 3d-i as

d

2^ = S 3'd; £F^ = span of {|M>; ||M|| = d, m1 = d—j},
(2.3.9)

then we get

= l; dim9i=9( l)=0;
(2310)

where

(2.3.11) ?(/) = tffc ^2? -); wf-^0, S iiw, =7}.

By the remark (2.3.10), it is sufficient for the statement (i) to show that
d

the restriction of the operator L~ to the subspace S 9£ is injective.
y=2

By the formula (2.3.8), we get the explicit formula for the operator L~ as

(2.3.12) L~\M>= S EN"\N>
njyi i^rf - i

O+y S |M-5y-5B_y>

Note that all of I^M are polynomials of w and /I, so the second statement
(ii) is obvious. By this expression (2.3.12) of the operator IT, we get

for any A:, in particular

(2.3.13) ^ M =0 for |#>e=95_i and

For |M>^2r
rf, let |A^M> be the highest vector among the vectors \Ny

with E N
M =1= 0, and we call j NMy the peak of the column corresponding to the

vector |M>. Then for |M>e9d with m^d—2, £NM
M belongs to the

submatrix E(k) for Q^k^d—2, where
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(2.3.14) E(k) = (

Hence by the remark (2.3.13), it Is sufficient for the statement (i) to show that
the matrix E(k) is of full rank for Q^k^d—2.

The operator L"(k)

corresponding to the submatrix E(k) is given as

(2.3.15) L~(k)\My = (rf_Ar-l)
» = 1

For any M=(ni^m2, •••), we get the peak corresponding to the vector |Af>
explicitly as

(2.3.16) NM = M^-dl-dg (g = maxfr; ww=l=0}) .

Note that for any |7V>e2r|_i:) there is only one vector |M>e2r^+2 such
that EN

M=kQ, that is, M=N—d1+dl with l=d+l — \\N\\. Hence the columns
corresponding to all vectors |M>e£F|"12 are linearly independent., that is,
the matrix E(k) is of full rank for Q^k^d—2. q e.cl

In this paragraph we show the determinant formula for the canonical
_£-module mapping

(2.2.1) 7 ,̂: M(h, c) -> ffOv,^).

Here we recall the relations among the complex parameters h, c, w, ^, 5
and a\

c = c(X): =

/i=,

a = a(s):=— and ^ = ^ ( 5 ) : = — - — ,
2 s 2

(2.1.23)

For each /leCJ, let s+ be the roots of the equation A=A(s), and denote

(2.4.1) w.,b = wa>b(s+) = ~s++^- = ̂ s++~ J- •
2 ^ + 2 2
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Then we get

Proposition 2.7.

(2.4.2)

d ( a k y<rf-*>
det Cd(w, X) = const. H II (>H—s++— $- )

k=i «i* \ 2 2a J
IT \P(d~k)

J j. x-ft/... 1\ A TT TT / ... W _ /V _ \C](w, ^) - const. H II (*>-— J+-— J.
*=i ai* \ 2 2a

As a corollary, we get

Proposition 2.8.

(1) I%e ^C-module mapping nWtK: M(h(w, /I), c(/0)-»£F(w5 /I) w isomorphic,
if and only if the equation

(2.4.3) w+— s++— s_ -0

has no integral solutions (a, b)^Zz with
(2) The J^-module mapping ^iX: M\h(w, Z)9 c(^))->3"r(w, ^) w isomorphic,

if and only if the equation (2,4.3) has no integral solutions (a,b)^Z2 with

a^-l andb^-l.

(3) £?(w? X) is irreducible as an ^C-module, if and only if the equation (2.4.3)
has no integral solutions (a, b)^Z2 with

Now we summarize the fact about the existence of nontrivial intertwining
operators between Fock spaces in the form used in the proof of Propositions
2.1 and 2.7. This is immediately obtained from Theorem 3.8 and Proposition
4.4. (Note that the proofs of these statements are not dependent on the re-
sults obtained in this section.)

Proposition 2e9e Let a, b be positive integers, and X^C. Assume that
a(s)3pQ. Put w=wa>b($+) and w'=W-ttfb(s+). Then there exist intertwining

operators

0(a,V):S(w'9X)-+&(w9X)
and

0(a,-b):&(-w,X)-+9(-w',Z)

such that i) O(a,b)\w'9 X) is a nonzero singular vector of degree ab; and ii)
there exists a vector | v>e£Ffl6(— w, 1) such that O(a, — b)\ v>= \ —w'9 ̂ >.

2.5) Proofs of Determinant Formulas

In this paragraph, we prove Theorem 2.1 and Proposition 2.75 and use
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the notations in §§2.4.

Proof of Proposition 2.1. At first, we note that the degree of det Ad(h, c)
d

as a polynomial of h is equal to 5] jpj(d), where Pj(d) is the number of parti-

tions of the positive integer d by just j positive Integers. Hence the degrees
of both side of the formula (2.1.19) coincide with each other, due to the follow-
ing combinatorial identity:

(2.5.1) S.7>/<0 = S d(j)p(d-j) ,
j=i j=i

where d(j) is the number of positive divisors of the Integer j, I.e.

Hence we must only prove that det2 Ad(h, c) can be divided by the left hand
side of the formula (2.1.19).

For each cGC, choose X withc = c(^) and s = s+-=s+(X) with l = A(s)
2smoothly. Then the roots of c=c(X) are i^, and s_ = — — , s+(—X) = —s and

c / 5\ _ **s_v AJ — .
s

Now by the induction on d, we prove the formula (2.1.19) and the follow-
ing assertion:

($)d There exists a nonzero singular vector in Md(h(w0tb(s)9 c(A(s))) for any
pair (a, b)^Z+ with d=ab, generically w.r.t. s.

At first, let d=l. Then det A&I, c)=<c, h \ e_^ \ A, c>=A and (Z)lfl(A, c) =
A2. And WijCs) = —^ so A(vt'lfl(j), ^) = 0. Hence ($\ holds for all s, since
^10, ^eM^O, c) is a singular vector.

Now assume that the formula (2.1. 19) } and the assertion ($),- hold for
all l^j<d.

If | v>eM/A, c) is a nonzero singular vector., then J7(n+)|v> Is contained
in /(A, c), where /(A, c) is the kernel of the bilinear form (2.1.16) ( | ): M(h, c)

xM(h,c)-*C. Since Verma modules are t/(n+)-free, the dimension of
(U(n+) | v» n Mk(h, c) Is equal to p(k—j) for any k^l

Using notation (2.4.1) for ivf l f f t, we can rewrite ^c>& as

(2.5.2) 40a>b = (w+wafb) (w-wasb) (w+wtj (w-w>J .

So, by the remark above and the induction hypothesis (#)y (Q^j<d), the
polynomial det2 Ad(h, c) is divided by
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n n ®j,*fj(h, cy«-» .
k=i j\k

Let (a,b)^Z* with d=ab. By Proposition 2.9, there exist singular vec-
tors | v> e S.,K,CO, *(s)) and | v'> e= ̂ K.^-j), *(-*)) - 2U-w.X*(*)),

Hence by Proposition 2.3 and the commutativity (2.2.9), the bilinear form
( | ) on Md(h0,CQ)xMd(hQ, c0) is degenerate, that is, detAd(hQ9 c0)=0, where

ho=h(Wa,b(sy) or h0=—wat6(s), and c0=c(^(j))= c(— *($)).

On the other hand, detAj(h0, c0)^0 for each 7(1 ^j<d) and generic 5,
since det2^4y(A, c) is the product of the form (2.5.2) for ab^j(<d) as a poly-
nomial in (A, c).

By the above 2 facts, we get a singular vector in Md(hQ9 CQ) for generic j.
Thus det Ad(h, c) is divided by (w— wCj^)) (w+iva^(j)), so det2 ^fd(A, c) is divided

by <Z>..*(*> c)- «f^-^-

o/ Proposition 2.7. Fix ^^C7 and denote by 5-+ the loots of the
equation A=A(s).

Assume that a=a(s+)^C\Q (note that a(s_)=a(s+)~l). Then the equation
(2.4.3) has at most one integral solution (a,

Fix integers a, b^l and put

); h'=h+ab.

Let /(A, c) be the kernel of the bilinear form (2.1.16), then any submodule
of M(h9 c) is contained in /(A, c). Then by Propositions 2.1 and 2.2, the Verma
module M(h'9c) is irreducible, and dimlab (A, c)=l, where /^(A? c) =/(A, c) n
Mab(h9 c). By the similar proposition for Verma modules as Proposition 2.6
(i), the space Iab(h9 c) is spanned by singular vector | v>. Denote by M'(h9 c)
the .£-submodule generated by this j v>. Then we get the intertwining operator

of degree a&, which sends the vacuum vector | A', c)> to the singular vector | v)>.
This mapping ®a>b is injective by the irreducibility of M(h'9 c). Then by
Proposition 2.1,

dim Md(h, c)/Id(H9 c) = dim Md(h, c)l®a,d(Md_ab(h', c))

for any ^^0. Hence
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®a,b(M(hr, c)} =M'(h, c) = I(h, c),

and this Is the unique proper submodule of M(h, c).
By Proposition 2.9, we get a nontrivial intertwining operator

0(s+; a, ~b): S(-w0, X) -> S^-ivS, J)

of degree —ab<Q, where Wo=w_f lff t(j).

Then the J7-moduIe mapping rc_H,0^: M(h, c)-^2r(—M'O, <*) cannot be iso-
morphic, since the X-module mapping O(s+; a, —b)°7u_WQ)X is a zero-mapping

(Note that any Verma module Is generated by Its vacuum vector). Hence by
the uniqueness of the proper submodule of M(h, c), we get

ker (*.WQJ = M'(h9 c) = 0..b(M(hf, c)) ,
and

dim (ker (n-WQ^ 0 Md(h9 c)) =- dim Md.ab(h'9 c) = p(d-ab)

for any d^ab. So the polynomial det Cd(w, X) of w Is divisible by the power
of linear factor

, b

Note that

By the same argument, it is seen that det Cd(w9 —X) Is divisible by
f a b \P(d~ab)
lw s+ s_\ ^ Thus we get the formula (2.4.2) due to Proposi-

tions 2.1, 2.2, 2.4 and the formula (2.2.10). q.e.d.

§58 Vertex Operators and Construction of Intertwining Operators

3.1) Operators on Fock Spaces

At first we introduce weakly defined operators on Fock spaces.
For each (w, X)^C2, the Fock space 2 r=2 r(w,^) Is endowed with a

topology by the filtration

(3.1.1) 3 = G0(£F)2^(202(^(203- ,

where (7/s are defined analogously as (1.1.4). Then the completed Fock
space 9?(w, X) Is defined by
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(3.1.2) 3(w, X) = lim 3(w, X)/G.(3(w, X)) .
n

Then £?(w3 X) is a Hausdorff complete topological vector space with the dense
subspace 3?(w, X). The left action of <Jl on £F(w, X) can be extended uniquely
to a continuous left action on £F(w, ^), and the vacuum expectation value

(1.1.14) < | >

can be extended uniquely to a continuous bilinear map

(3.1.3) < | > : &(w,X)x&(w9X)^C,

where the topology in £FT(w, X) is considered as discrete. Consider the map

(3.1.4) 0 : £F(w, /I) -> Homc (S^w, /l)3 C)

defined by

(3.1.5) <Z>(K)(V)=<V|«>

where t/efffw, ^) and ve2rt(w9 ^). Then this map 0 is a topological linear
isomorphism between topological vector spaces ^(w, /I) and Homc(9

rl(w, /I), C).
Fix two pairs of indices (v\\, X^) and (vi'2, ^eC2, and consider a linear

map

(3.1.6) O: ff(wls -10 -> S-(w2, -y ,

which we call an operator.
If an operator 0 : 2r(wl5 X^-*3?(w29 X2) depends on complex variables Cl3

• • - , Cfl, and any matrix element <v|O(C)w> of the operator O(C) is a holomor-
phic function for <v| ̂ 3\w2, X^ and | w>e£F(wl5 ^j)> then we call the operator
O(C) is holomorphic on C1?

 8 o ° , Cfl.
For two operators

(3.1.7) Oi: 3*(w1? ^) -^ ff(iva, X2) and O2: S"(w,,y - £F(w35 ^ ,

their composition product can not be defined in general. So remark the fol-
lowing fact (it means that we consider operators always in the weak sense).

Lemma 3BL There is a one to one correspondence between the following

objects.

(1) Operators

(3.1.6) O: S(Wl,^^^(w2,^,
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(2) Bilinear maps

(3.1.8) 6: &(w2, ;g x 30 ,̂ ^) -> c .

TTze correspondence is defined by

(3.1.9)

for <M|

For each Integer J^O, let {|wrfii>, aa°, i%s^(j))>} be a basis of

and {<wrffi| , ••• , <ttrffj(«n \} be its dual basis of 3J(w2, ^2). Then the expression

X<O

S K/

can be considered as the identity operator of £?rf(w2, ̂ 2)-
If the series

(3.1.10) 5

is convergent for any <(v| e2rr(^35 1̂3) and \ti>^9?(wl9 ^), then the formula

<(v | O31 w)> = S S ^v | Oz I
 wdfy^ ^w«/f j I &i I ^

defines a C7-bilinear mapping

(3.1.11) O3: 3
r(w3, ^ x3(wl9 ^) -> £J,

hence by Lemma 3.1, this mapping O2 defines an operator

(3.1.12) O3: 3(wl9 ^) -> 3(w3, A3) ,

and this operator O3 is called the composition of these operators O1 and O2,

and is denoted by 0^=0^0^

3e2) Definition of Vertex Operator

Fix (w, X)^C2. For variables »?eC and CeC*, consider the operators

(3.2.2) -E+(J,0: ^K^)-

(3.2.3) £_(^5C): &(w,X)-

defined by
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Cp° = exp (jjp0 log C),

E+(s9 C) = exp (s S C^\ and
\ »^i /2 /

£.(j, C) -

(3.2.4)

respectively, and the translation operator Ts is uniquely defined as a CMinear
mapping

(3.2.5)
' Ts: EF\w, fy

under the following conditions:

{ T~I w, ty = Iw-\-s, /r>; O, wiT. = </
Tspn = pnTs («=l=0); TSA = ATS,

Now define the vertex operator

(3.2.7) X(s,C): &(v-

as

n ? R"! We ^^ — F (?^J.^.OJ A^o, s ) Ht^.\&2

By the definitions (3.2.4, 6), we get

's—TspQ = sTs ,
(3.2.9)

(3.2.10) ^s^oT = £s2T£sp° TE =E T TE — E_T

Note. The vertex operator

vr« ^ fspQ-s2/2rr p fr, A^/T (* r\
A\&9 <*) — ^ ° J.sE/+\&9 t^-V.^9 **/

operates also as a linear map

By the commutation relations (1.1.1), we get

(3.2.11)

so for s, t^C and C19 C2eC*, the composition ̂ _(j, Cx) £+(/, C2) can be defined
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as formal Laurent series of Cx and C2 and is expressed as

(3.2.12) E-(s, CJE+(t, Q = exp {-st j -«=i /?

Hence

Proposition 3,2. For s, t, C1? C2e£7 iitf/A |C1 |>|C2 |>0, r/?e composition
(3.2.12) can be defined in the sense of (3. 1.11) and the composition

(3.2.13) £.(5, CO^+k C2) - (1 -C2/Q
s^+(^ QE-& CO ,

w holomorphic in the domain {(Cl3 C2)eC72; |C!|>|C2|>0} as a/7 operator-
valued function of £1 and C2, where in the right hand side o/(3.2.13) ive take the
principal branch of the multi-valued function (1—

For an integer 0^1, define the submanifold Mfl of (£7*)° as

(3.2.14) M, = {C - (C1? .-, Oe(CT; C^C,- (1=1=7)},

and the multi-valued holomorphic function F(a; C) on Ma parametrized by

(3.2.15) F(a; Cl5 -, Q

Then the function F is symmetric in C1? - 8 9
9 Ca and is invariant under the C*-

action of the form

(3.2.16) (C1? C2J -, Q H> (fcd, /cC2, -,

For sEiiC, define the operator- valued functions

E+(s; C1; -, f.): ff(iv, ^) -> ff(M-, ̂ ), ̂ (w, ^)

£_(^; flf -, C.): ff(w, ^) -> S(w, I), &(w, X)

^) -* (w-as, X)

for (C1; •••>C8)eAf8 as

(3.2.17) E±(s; C1; -, Q = exp

and

(3.2.18) ZC^C,, »-,C.)



290 AKIHIRO TSUCHIYA AND YUKIHIRO KANIE

Then these operators are holomorphic on C—(C1? ••• , Cc). By using itera-
tedly Proposition 3.2, we get

Proposition 3.3 (Short Distance Expansion).

For any integer a^l and any j, d, —, CfleC with ld|>|C2|>—>|CJ>0,
the compositions E±(s,£i)°"E±(s,£a) and X(s,£1)"-X(s,£a) are defined in the
sense of (3.1.12), and

(3.2.19) E±(s9 CO - E±(s, C,) - E±(s; Cl5 -, C.) ,

(3.2.20) X(s, CO — X(s9 C.) - Z(j; C1? —, CB) (d — C^o+w2)'2 ?

w/zere z« f/ze ng/zf /zawrf Mcfe o/ (3.2.20), we take the principal branch of the multi-

valued function

F(*--C ... c
^ V 2 ' C l J ? C ^

JVore. E+(sm, C15 -',Cfl) and j&_(j; C1? •~9Ca) are single-valued and sym-
metric in d, • • • , CfleC*, so Z(j; C1? • • • , CJ is also symmetric.

3.3) Conformal Covariance

From the formulae (3.2.10, 11) and the definition (3.2.8) of the vertex
operator, we get

[A, X(s, C)] = 0 and

[pn, X(s, C)] - sr*X(s, C) (/ieZ) .

By these formulae, the expressions (1.2.3) of the operators Ln and Proposi-
tion 3.3, we get the following important relations.

Proposition 3.4 (Conformal Covariance). For any

(33.2) [Ln9 X(s, C)] = r^C^-^^+l^)}^ C) ,

for s^C andC^C*, and

(3.3.3) [I^Ztod,-^)]

Proof. For example,



FOCK REPRESENTATIONS OF VIRASORO ALGEBRA 291

(3.3.4) Cd-X(3, C)

j - - - , + _
2 / /^i

= [L0, *(*, 01 -

3,4) Intertwining Operators

Let iSS be a local system with coefficients in C, associated to the mono-
dromy group of the multi- valued function F(a\ Ci, C2, • • - , O on the manifold
Ma (for example, see P. Deligne [1970]). Denote by <S& the dual of the local
system <S* over Ma.

Take an element r of the homology group Ha(Ma\ S^9 and define the
operator

(3.4.1)
Jr

for a complex number s and integers 7l5
 e ° ° 3 / f f.

Here we remark the following fact which will be proved in §3.5.

Proposition 3.6, The integral

(3A2) ( Cr^-C^1^; d, C2, .-, Orfd-rff.
Jr

vanishes unless /x+ /2+ • • • + /fl =0.

Then we get

Proposition 3.7. TTze operator (3.4.1) w homogeneous of degree /i+/2+o

be considered as the linear mapping

(3.4.3) 0(s, F; I19 .», /,): ff(w, ^) - 3(w+as9 X) .

(3.4.4) [L_,5 0(^5 r; 7lf

= S tj-

From Proposition 3.6 and the definition (3.2.18) of Z(s; C), we get
the homogeneity of the operator (3.4.1) Hence for any vector ] v>e£F(w, /l)?

its image lies in 3?(w+as, X), because the summation is finite in the expression
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O(s,F; /15 • ••, /fl)|v>. The relation (3.4.4) follows from Proposition 3.5 and
the integration by parts. q.e d.

Put &=/2 = •••=/«, and let the coefficients in the right hand side of (3.4.4)
be equal to zero for any n^Z, that is,

(3.4.5) -I+SA+^- = O and b+sp0-—=Q.

Note that A=tid and pQ=(w+as)id on the space 3?(w+as, X). Hence we get
that if the parameters satisfy the equalities

2 Z.

(3.4.6) l-+Xs-l = o and w = —*-S-— ,
2 2 s

then the operators of Fock space representations commute with the operator

(3.4.7) 0(s, F; a, ft) - O(s, F; A^-^ft): S(w, X) -> &(w+as, X) ,
a

that is,

(3.4.8) [L. j l ,0(j,r;a,ft)]=0 for any n^Z ,

Due to Proposition 3.7, the operator O(s, F; a, b) is homogeneous of degree

ab.

Remark. For a=2, the operator O(s, F;29b) in (3.4.7) coincides with the
operator O(s, F; b, b) in (3.4.3). We hope that this notational confusion does
not bother the readers, since the distinction is clear in the context.

Summarizing above facts, we get one of our main results.

Theorem 3.8. For each s^C* and integers a^l and b, • take a cycle
F<=Ha(Ma; cSJ (<*=s2/2) and put

(3.4.9) X = *(s) = -1- - — and w = a—-—.
s 2 2 s

Then the operator

(3.4.10) 0(s, P\ a, ft): &(w-as, X) -> 3"(w, X)

is an intertwining operator of degree ab.

Remark. In the following we will show the existence of a cycle F of
Ha(Ma\ <Stf) for which the intertwining operator O(s, F; a, b) is nontrivial.
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s2

Remark. When a= — is an integer, the local system S^ is trivial. We

can take a cycle F^Ha(Ma; Sa)=Ha(Ma; C) as the cycle which represents the
residue around Cl=0, • • > • , Cff=0. For this cycle F9 the operator O(s9 F;a9 b)
gives a nontrivial operator.

35) Proof of Proposition 3,6

By §3.6 we can assume that a 2^2. Define the manifold

(3.5.1) F^ - {(/cl5 -.., VOeCC*)-1; /ct.*/o (/=!= J), £,=*=!},

and consider the C*-bundle

(3.5.2) ,,.: M.3(rlf -, O i-> (7cl9 -, fc..^ F^

defined by

(3.5.3) *,- = f fWfi (/ = !, -,*-!).

Then this bundle is trivial, in fact, the mapping

(3.5.4) r,-iXC* - >M,
UJ UJ

((^-^.-iXO^Cf,^,-,^.^)

is an isomorphism of Cf*-bundles. By this coordinate transformation, the
function F(a; Cl5 • • • , Cfl) changes into the function

(3.5.5) G(a; kl9 k2, -, 7cc_l5 C) - G(a; fcl9 k2, -, /c,^)

= n (fc.—^r n a-^)2*^"1^,i^*'<y^-i i^y^«-i

which is independent of the fiber variable C, and can be considered as a multi-
valued holomorphic function on Ya_l for each a. Hence the local system S^
is decomposed as the product of the constant local system C on C7* and the
local system S',* on Ya^ analogously defined by the function G(s; kl9 "•, fcfl_i).
Then we get

Lemina 3.9 . For any a

(3.5.6)

The proof of this lemma will be given in §4.1. By this lemma and
Kiinneth's theorem, we may assume that a cycle F^Ha(Ma, cSJ is taken as a
product of a cycle rl e ^(C* ; Cf) and a cycle r^H^Y^; <S'&\ Hence the
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integral (3.4.2) changes into the integral

(3.5.7)

whose first factor is nothing else but the residue.

3.6) Case Where a=l

Let 0=1, then M1=C^9 F(a;£) = l and the local system £# is constant
for any a e C * . Hence

(3.6.1) H^M,; cSJ = H^C*; C^Ce, ,

where el is the positively oriented unit circle on the plane C, So in this case,
Proposition 3.6 is obvious,

Take a cycle F = - - - e1 of H^M^ i5J, then we get

(3.6.2) 0(s, F; 1, 6) =
Jo

where ^j(^) is the homogeneous component of degree b of the operator

Here we remark the well-known facts (see for example, D.E. Littlewood
[1958]):

(3.6.3) exp(Sf 'x /)=SP/WC',
V /2?1 /SO

where P/(JC) is the character polynomial of the irreducible representation cor-
responding to the Young diagram F/=(/)= II | -- | o f the group GL(N, C)

where N is sufficiently large, and /

(3.6.4) Xl = --tr gl (g^GUJf, C)) .

In particular, the polynomial Pt(x) is homogeneous of degree /, where deg #/=/.
For example,

PQ(x) = I , P^) = Xl ,

(3.6.5) P2(x) - Xt+xl/2 , P3W = *s+*i*2+*f/6 ,

P4W = jf4+^^+j:i/2+jcf^2+^/24 , etc.
So we get
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(3.6.6) <D,(s) = S P,(sPl, »., jp>,
/-/'=*

Let b=®. Then the operator

(3.6.7) O(s, F; 1, 0): sY- —, X(

is nontrivial, since

(3.6.8) 0(s, F; 1, 0) | - —, ^(j)> = | —, <*(s)> .

Let Z?>0. Then the image of the vacuum vector

(3.6.9) O(s, F; 1, b)\w-s, X> = P4(—, ̂ 7>5 —)I"M>

is a nonzero vector of degree b of the Fock space 5?(w, <*), where

(3.6.10) u' - — -— and X ~= X(s) = — - — ,
2 s s 2

that is, the operator O(s, F; l,b) is nontrivial and its image is a proper sub-
module of 3(w, X).

Let b<Q. Then by the regularity of the vacuum expectation value (1.1.14),
we get a vector | v^>e£F(w, X) of degree —b such that

(3.6.11) P-b(—9 -—p-*> — ) | v > = | iv , - l> .
n

Hence the vector T^l\ vy^3?(w— s, X) is mapped to the vacuum by the inter-
twining operator O(s, P; l,b), that is,

(3.6.12). O(s, F; 1, b)T7l | v> = | w, ̂ > .

3.7) Case Where a=2

Let a=2. Then the base space Yl of the Cr*-bundle ??2 (3.5.2) is

(3.7.1) 7j - {fceC*; A:^!} =C-{0, 1},

and the function (3.5.5) is simply

(3.7.2) (/(a; A:) = (1 — k)2ak~* .

In this case, Lemma 3.9 is obvious.
For a pair of integers m = (ml,m^ with ml^m2^.0y consider the poly-
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nomial

f 2*2 if ml = m2
(3.7.3) M(m) = M(m\ tl9 t2) = ,V } ^ } ^ l 2) if

and expand the exponential function

(3.7.4) exp( S (*?+«)*.) = S S M(m)N(m)9

where m = (mls m2), \m\: = m1+m2 and JV(/w) = N(m ; %15 ^c2, • • •) e C^, ^25 ° ° °J

with deg N(m)= \m\. Then the polynomials JV(/w) are linearly independent.

Take a cycle r=rlxr2^H2(M2',S(&)^Hl(C^iC)®Hl(Yl',S
f
t6\ then the

intertwining operator O(s, F;29b) is

(3.7.5) <9(*, F; 2, 6) = ( dC^f^'l^'lZ(s'9 C19 C2)
Jr

xM(m; C13
—72

but the summation on ^ and d2 here is in fact only for the set {(dly

dlyd2^Q9 dl—d2=2b} . So we must calculate the integral of the form

(3.7.6) J^ dCJCf^tf^F^- ; Cl9 C2)

r2

hence of the form

(3.77) ( (l-k)2*k?dk,
Jr2

where ft is taken as ft+a is an integer.

To construct a cycle /^e//^^; <S«), we divide the three cases i)
ii) 2« is an odd integer and iii) 2a is aneven integer. Note that these cases
correspond to the conditions (4.2.5).

Case 0 Let 2a^Z, and take a cycle r^H^Y^. <S'J as

(3.7.8) F2 = r* = -ell(e*««^~l)+(e, 1 -e)+e\l(e-M^-l) ,

where ef is the standard circle with the center / and originating at the point
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/+(—l) f 'e(/=0 or 1) for some small e>0. Note that dim

Figure 3.1

Take a and ft as Re 2«, Re ft> — ], then the integral (3.7.7) equals to the beta
function

(3.7.9) B(2a+l, ft+ 1) = f (1 -kftfdk
Jo

and for other values of a and ft, the value of the integral (3.7.7) is obtained
by the analytic continuation of the beta function (3.7.9)= Hence, the integral
(3.7.7) is rneromorphic as a function of CKS and its poles and zeroes are all simple

ar»d situated at most at half-integers (that is, <£E: — Z\ because

Case if) Let 2a<=Z\2Z, and take a cycle r2efT1(71; ££) as

(3.7.10) r2 = Ts

Note that dimH1(Y1;<S'(S) = l. Then we get that the integral (3.7.7) equals

tO ff2a+1.0-

Case Hi) Let ®^Z, and take a cycle r^H^Y^ Sf
&) as

(3.7.1 1) F2 = rs

Note that the local system <5* is trivial and dim H^Y^ Sf
&)-=2. Then we get

that the integral (3.7.7) equals to wifl0+1§0+/iff20+li0, hence to mdp+ltQ.

§4B Nontrlvlality of Operators (Generic Case)

In this paragraph, we prove Lemma 3.9 in a more general setting.

For an integer m^l and complex numbers a, ft and r3 consider the mani-
fold Ym and the holomorphic and multi-valued function G on Ym defined by
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(4.1.1) Ym = {(kl,-,km)^(C*T\ki*Q,\ and

(4.1.2) G(«,P,r;k1,-JcJ= H (fc,-fcyr
l^*<J^m J = l

Then define the local system <S*fpti on the manifold Ym by the monodromy
of the function (4. 1.2), and denote by i$-fpfy the dual local system of *SJ.M
(note that cS-f_,--2-=iSi; see §3.4-5).

Proposition 4.1. For each integer m^l and complex numbers a, p9 7-

(4.13) Hj(Ym; cS-fM) = 0 (j^m+1) .

Proof, For integers p, q^l9 define the manifold

(4.1.4) **,., ={(*i, -,fc,)€=y,;M=l,2, -^ (l^i^)},

and consider the local trivial fibering

(4.1.5) *:F,.f - >5,
UJ 01

(kl9 -,kp)t-+kp

where the base space Bq is the region obtained by omitting q+l points from
the complex plane C:

(4.1.6) ^=C-{0, 1,2, -,?}.

Then the fiber over the point q+l ^Bq is just the manifold Fp-liq+l.

Fix an integer m^l. Then we get a sequence of locally trivial fiberings

Kp
(4.1.7) Fptm-p+1 -> Fp+lim_p -> Bm_p

for l^^^m-1. Note that Fm>1=rw and F1>m=Bm.

Denote by the same symbol <Satp9t the restriction of the local system S^^^
on the fiber Fp_ltm_p+2 at each stage. Then we can show by the induction
on,p (l^p^m) that

(4.1.8)

In fact, the first step

(4.1.9)

is obvious3 and it is well-known that there is a Leray spectral sequence {E*ti}

of the fibering (4.1.7) such that
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(4.1.10) E]j

Note that the Leray sheaf Mj(Fp>m-p+1;S^iy) on Bm_p is also locally con-
stant. Then by the assumption of the induction, we get

(4.1.11) Hi(Bm.tl M}(Fp)m_p^ «S-iM)) = 0 ,

if i^2 or j ^p. Thus the proof is completed.

Define the set ^(m)cC'3 as

(4.1.12) 0(m) = {(<*, ft, r)eC3; d(d+l)a$Z ,

for which we can construct good cycles (see Proposition 4.2). Here we give
some conjectures about lower homologies.

Conjecture 4. A. For (®, ft, r)e £(//*)»

(4.1.13) H{Ym; ^-§M) - 0 (j*m) .

The symmetric group 2m of m letters acts freely on the manifold Ym as
permutations of the coordinates kl9 —, km. The function G(a, ft, r\ kl9 • • - , km)
is symmetric in kl9 -

a,km, that is, -^-invariant, hence it can be considered
as a function G(a, P,r;kl9-°', km) on the quotient manifold Wm = YJ2m. Then
G is holomorphic and multi-valued on the manifold Wm. Denote by Sa#ti
the local system on Wm defined by the multi-valued function G analogously

as S*.w. Then we get that G(<x,p,rik)=7i:*G(a9fl9rik) and <S»9w =
n*Sntfifr where TT is the projection:

Conjecture 4.B. For each (a, ft,;

for j = m
<4'L14) " -- - for J + m.

Remark. In the trivial coefficient case, the homology groups Hj(Ym;C)

were calculated by F.R. Cohen [1976], and by his results it can be shown that
the Euler characteristic is given as

(4.1.15) S (-1)' dim Hj(Ym; Sa « Y) = (-l)mm\.
J = 0

By this formula, it can be shown that Conjecture 4.A implies Conjecture 4.B.
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4.2) Cycles and Selberg's Integrals

Fix an integer m^L Let F(a} ft9 r) be a cycle of Hm(Ym; Sa^tf) given
for each (a, ft, r) of an open set £dC3. Then we call F(a, ft, r) holomorphic
on 10, if for any holomorphic function g(k^ •••, km) defined on Ym, the integral

(4.2.1) f G(a, ft, r; frlf -, km)g(kl9 -, fc.)^, -, dfc.
JrcosA?)

is a holomoiphic function of (CK, /93

The set $(w) defined in (4.1.12) is connected3 dense and open in C3. Then
we get

Proposition 4.2. TAgrg CATW^ c^cfc r(a, ft, r)^Hm(Ym; cS-fPtY) defined on
) such that

1) r(a, ^3 r) w holomorphic on £(m).

2) J/" (a, /?, r) e ^(/w) awrf (/19 •••,/„)£ ̂ ^ jar/j^ r/7e inequalities

(4.2.2) ReoO>0? Re r>0 and Re /?> -min /y ,

e equality of integrals

(4.2.3) ( G(a, A r; fcls -, km}k{^kl^dk
Jr(tf fp f?)

- f GK ̂ , r ; fcl5 -, k^
J j ( m )

holds, where A(m) is the open simplex in Rm defined by

(4.2.4) A(m) = {(*!, -,

ze right hand side of the equality (4.2.3) is considered as an improper in-

tegral which is absolutely convergent.

The proof of this proposition will be given in §5.

Remark. For each integer a^ 1, define the set

(4.2.5) Qm = {a^C; d(d+l)a&%, d(a-d)a^Z (l^^a-1)},

then for any aeJ2m+l3 the triple (a, —ma, 2a) belongs to the set Q(m).

The integrals of these types were considered by many people, such as
A. Selberg [1944], FJ. Dyson [1962], K. Aomoto [1984] etc. The following

proposition is due to A. Selberg.
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43 (A. Selberg [1944], I.G. Macdonald [1982]).
Let <xy p9 r ^C satisfy the inequalities

(4.2.6) Re f*> -1 , Re r> -1 , Re a> -minU- , **P±± , **!
1 m m—l m—l

then the improper integral (4.2.7) converges absolutely and is explicitly expressed
as

(4.2.7) ( H (ki-
Jj(m) i£i O^"

= _L fl-
ml y=i

Note. In the case that /«=!, the integral (4.2.7) is the beta function

(4.2.8) (V(l-fr)V/c = JW1)rfr+1)
Jo /Wr+2)

(see §3.7).

Problem 4.C. For (a, /9, r)^C3, (11} •••, lm)^Z'" and a symmetric function

v '••, km, /cf1, •••, km1]2"', compute the integral

(4.2.9)

403) Noetrivlality of Imtertwlimmg Operators

Take integers a^l and b, and a complex number s with a=

(see (4.2.5)). Put /w=a-l, w=— j- — and Z=- --- - . Take a cycle r2=
2 s s 2

r(a9-ma92a)ofHm(Ym;S^ma^) as Proposition 4.2, and let r=rlxP29

where F1 is a generator of H^C*; C). In this situation, as a corollary of Pro-
position 4.3, we get

Proposition 4.4. The intertwining operator

(4.3.1) 0C?5 r;a,b): 3(w-as, X) -> £F(w5 *)

75- nontrivial in the sense that
1) /or 6^0, the image O(s, P\ a, b) \w-as, /l> is a nonzero singular vec-

tor of degree ab.
2) for Z?<03 there exists a vector | v> of degree —ab whose image is the

vacuum vector \ w, /l>, that is, O(s, F; a, b} \ v)= \ w, ^>.
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Before the proof of this proposition, we prepare some facts about sym-

metric functions (cf. I.G. Macdonald's book [1979]).
Fix an integer a^l. Consider the polynomial algebra C[tl9 ••-, ta], and

the subalgebra

(4.3.2) A=C[t1,-,tay*

of symmetric polynomials, where the symmetric group 2a acts on C[tl9 °e*,ta]
by permutations of indices. And consider the polynomial algebra

(4.33) V

of an infinite number of variables xl9 x2, ••• . These algebras are made graded
algebras by defining degrees as

(4.3.4) deg tj = 1 (1 £j£a) and deg xn = n (n = 1, 2, — ) .

and

(4.3.5) A = 2 Ad and V = 2 Vd
rf^O rf^O

are their homogeneous decompositions.

For each integer d^Q, consider the set

(4.3.6) Patd = {m = (ml9 -,/wJeZ'; w^-^w^O, \m\ :=

and let patd
=$Pa,d the number of partitions of the integer d by at most a posi-

tive integers, then

- - P a P a + l - ' P d =Pd,d =Pd+ltd = ' " '

Note that

(4.3.8) pa>d = dim Ad and pd = dim Vd .

Now choose a family of elements M(m)=M(m; tl9 •••, ta)^A parametrized
by me U Pa>d with the property:

(4.3.9) the set {M(m)\ m^P0id} is a basis of ^rf for each rf^O .

Then the following lemma is well-known.

Lemma 458 Consider the expansion

(4.3.10) exp(S (*?+»• + /;)*,,) =S S M(w)^(ifi)e2
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then the elements N(m)=N(mi xl9 x2, -*) for m^Pa>d are linearly independent

in the space Vdfor d^O.

Now for m^Pasdy specify the element M(m)^Ad as

(4.3.11) M(m) = M(m; tl9 -, ta) = S *#>-£&> ,
o-elWI'aC"*:)

where 2a(m) is the subgroup of 2a defined by

(4.3.12) 2 .(m) = {a^2a; *#>••<•.) = t?-t?},

and denote by N(m)^Vd the corresponding element given by Lemma 4.5.

Proof of Proposition 4.4. At first consider the case where 6^0. Since
the elements N(m) for m^Pe>d are linearly independent in the space Vd9 there

exists an element <v | e 31*(w, ^) such that

if ™ = (b,fAiiv\(4.3.13) > 5 9 5
2 3 1 0 otherwise

by the nondegeneracy of the vacuum expectation values (1.1.14). Then

(4.3.14) <v|£+(s; Clf ..-, Ca)E_(S; Cl9 -<a)\w9 ^>

Hence for the given r=r1xP2^Ha(Ma; S*), we get

(4.3.15) <v|0(j,r;a,&)|w-flM>

-^Cr4-1-^-1^; C1? -, Q

x<v|^+(^; C19 -, OJMj; ^ -, Ol w,

(a; C19 .-, OCr'-Cj^Ci-rfC.

^
i A

This does not vanish by the condition for «.
For the case where b<0, take an element \v>G9?<tll(w—as,X) such that

(4.3.16)

1 if m = (-6, •••, -

0 otherwise
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then the remaining of the proof is similar as above.

§§« Construction of Cycles

This section is devoted to the proof of Proposition 4.2. In §3.7, we
already discussed and prove it in the case that m = l. So fix an integer m^2
throughout this section.

In the first few paragraphs, we prepare some concepts and make some
observations about the geometries of the manifold Ym and the simplex A(m).

Sol) Faces of Simplex

We use the same symbols kl9-"5km for coordinates of the spaces
and the conventions that k0=l and km+l==0. Recall that

A(m) = i(kl9 -, fc

In this subsection, we introduce the parametrizations ^K of hyperplanes
of Rm and C", and £ of faces of the closed simplex A(m\ which correspond
to the singularities of the function

The parametrizations <JC and £ are the families of subsets of N(m): =
{0, 1, 2, — , m+l} defined as

: = {K= (1,7); 0^i<7^m+l, ^^(0, m+l)} dN(m)xN(m) ,

Define the depth of their elements as

(5.1.2) d((i,j)) = d([i,j])=j-i,

then JC and £ are the disjoint union of subsets of the same depth:

(5.1.3) JC= U JC(d); g= U
l^d^m lgrf^

where
(JC(d): = {KSEJC; d(K) = d} = {(/, i+d); O^i^m-

= U^g; d(J) = d} = {[/, i+d\; Q^i^m-

and note that %JC(d)=$g(d)=m+2-dfor l^d^m.
For an element K=(i,j)eJC, define hyperplanes D(K) of C*w and

of JTby
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I D(K) :=

\D(K)R:=

For each J=[i,j]^^9 define the connected complex submanifold L(J)

of £7"' of codimension d=d(J) and its real section L(J)R by

: - n D(K) = {fce=Cw; /c, = /c,+1 = -. = ki+d} ,
K^JC
JcK

L(J)R: = L(J) nMm =

(5.1.5)

Then for K^JC and /,

f D(^) =) L(J), if and only if K C / ,
(5.1.6) ^ '

), if and only if 7c/,

where the inclusions among elements of JC and §• are considered as subsets of

N(m).
We identify ^(l)=cX(l), since for rf=l,

(5.1.7) L([/, z+1]) - D((f, i+l)) (O^i^m) .

Now we introduce primitive faces of closed simplex /(»?) by the following

(5.1.8), with which any face of I(m) is represented as in the formula (5.1.11).

(518)

then

(5.1.9) /(./)= DC/) n/(/n)

and J(/) is a face of J(m) of codimension J(J). And for each

/(/)= n
/e^W

JcJ
in particular,

(s.i.io) /(/) = A([ij}} = i([ij
Note that all codimension 1 faces of I(m) are primitive, that is, they are

expressed as A(J) for /e^(l).

The faces of the closed simplex I(m) are parametrized by disjoint unions
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of some elements of $. More precisely, take Jri=[/i, j\], •••, Jr=[ir, jr]
with the conditions

(note that [0, m+l]&£) and let

(5.1.11)
A, •»,/,) :=int/(/lf -,/,),

_

then ^(/19 ••• , /,) is a face of J(m) of codimension 2 (.//— //), and any face of
/(m) is of this form. By (5. 1 .9),

(5.1.12)

It is easily seen that any primitive face A(J) is an (m— rf(/))-simplex3 and
has coordinates similar as A(m) such that primitive faces of A(J) are similarly
given by these coordinates:

Lemma 5.1. For each J=[i,j]^^(d) with 2^d^m, there exist coordinates

(u9 V)=(M!, —, ud, vl9 —, vm.d) ofCm such that

A(rn) = {(u, v)GEJRw; l>ul>'^>ud>Qy l>v1>-8B>vw_ ( f>0}

(5.1.13) • A(J) = {(u, v)e/2w; u = 0(wj =•••= ud = 0), l>vl>"">vm_d>Q}

/(/) = {(Wj v)€E/(m); u = 0} CL(/) = {(u, v)eCT; w - 0}

and for any /C/ (Aere we write I as I=[i-\-il9 /+/2] (?//>0) or /= [j—/2,7—-/J

14)
M|I+I = i/,|+2 =-.. = t/,2+1 = 0} ,

we w,ye /A^ convention that ud+1=Q.

5.2) Exponent of Analytic Form

Consider a pair (M, 57) of an w-dimensional complex manifold M and
a finite collection 57 of connected and closed complex submanifolds of Co-
dimension 1 of the manifold M . Then we call a family ?Z be normal crossing
at a point p&M, if there exist local coordinates (U; z) near the point p such
that

i) z(p)=(zl(p), ••• ^OT(p)) = (0, • • • , 0) (in this situation, we call these
coordinates z=(zl9 • •- , zw) are given around the pointy);



FOCK REPRESENTATIONS OF VIRASORO ALGEBRA 307

ii) for some Q^d^m

(5.2.1) Uft( U D) =

A family 71 is called normal crossing, if Jl is normal crossing at any point of M.

We call that a triple (M, 57, 0) satisfies the condition (E), if it satisfies the
following conditions i)-iv) :

i ) M is an m-dimensional complex manifold and 32 is a finite collection
of connected and closed complex submanifolds of codimension 1 of the mani-
fold M.

ii) 57 is a finite collection of connected and closed complex submanifolds
of codimension 1 of the manifold M. Any pair (D9 D') from 57 is normal
crossing.

iii) © is a multi-valued analytic m-form on the manifold M and is holo-
morphic and does not vanish on M\N9 where N is the codimension 1 sub-
variety N= U D,

D^m
iv) for each point p^M, there exist local coordinates (U; z) around p

such that for some d and a.

(5.2.2) e\
j=i

where /(z) is a nonvanishing holomorphic function on U and/,-=0 is the local
equation of some element Dj e 57 through the point p9 that is,

(5.2.3) DjnU= {/, = 0} and (<//,), =1=0 foe t/) .

Let a triple (M, 57, 0) satisfy the condition (E)9 and take a codimension 1
submanifold De3Z. Choose a point j?eZ> and local coordinate (U; z) around
p such that

ii) the form 0 is written on U as

(5.2.4) 0

for some complex number c, where g(z) is a nonvanishing holomorphic
function on £/.

Then this number e in (5.2.4) proves to be independent of the choice of a point
p and local coordinates (U; z), hence we denote this number by e=e(D, 0),
and call e(D, 8) the exponent of the m-form O along a codimension 1 submani-
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Now return to our situation of Proposition 4.2.
At first, we recall that the manifold Ym and the simplex A(ni) are of the

form:
Ym = {(kl9-9i

.A(m)=i(kl9..*9km)

Consider the collections 32 of closed, connected codimension 1 submani-
folds of Cm and the subvariety N defined by

32: = {D(K);K<=JC}
(5.2.6)

' N: = U D - U D(K),

then we get

(5.2.7) Ym=Cm\N.

For each (a, £, r)eC3, consider the analytic m-form 0(oj9 /?, r) on C"w de-
fined by

(5.2.8) ©: - 0(a, ̂  r) = G(a, ft,r'9kl9-9 km)dk, ^ dkm

where
G(a9 A r; fcls -, U = n *f (i-^)v n (^-^r ,

then @(«, ft, r) is multi- valued on Cm and is holomorphic on Ym.
It is easily checked that this triple (Cm, 32, 0) satisfies the condition (E),

and the exponents of © are given as follows: for K=(i,j)^JC

(5.2.9) e(D(K\ O) =

ft ifj

r if i = Q

2a otherwise

However, the family 32 is not normal crossing, so it is difficult to con-
struct a desired cycle in Hm(Cm\N; tSrtfpfy). In order to avoid this difficulty,
in the next paragraph we will desingularize L(/)(/e^(2)U ••• U^(w)) such
that any divisor of singularities of the m-form intersects with the closed cell
J in some 1-codimensional face, and the family of these divisors is normal
crossing at any point of /.

53) Blowing Up

In this paragraph, we will construct a complex w-dimensional manifold
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Moo, and a proper holomorphic mapping

which has the following properties:
(I) The restriction

(5.3.2) n«,: MA^oo -> Cm\N =- Ym

is biholomorphically homeomorphic, where N00=7u~1(N).
(II) For DEE52, TU~\D) is a connected and closed submanifold of MTC

of codimension 1.
(III) The family 7l00 = {n^l(D)i D^Jl} is normal crossing at each point

of the closed cell /<*,, where

By the induction on d(d=l, 2, • • • , m — 1), we will construct this mapping
TToo: Moo—> C7m as a composition of a sequence of mappings:

The induction data {Md, Jld,J£d, Ad}(^d^m-i} and i^dl(i^d^m-i') are given
as follows:

(1) Md is an m-dimensional complex manifold.
(2) 32d is a collection of (m — l)~dimensional connected and closed sub-

manifolds of Md, parametrized as

(5.3.5) <3ld — 57^(1) U 37^(2),
7/1) = {Dd(K); K^ JC(2)U — U JC(m)}

;«-

(3) J?d=[JJ?d(l), where »Trf(/) is a collection of (m— /)-diinensional sub-
1=2

manifolds of Mdy parametrized as

such that any two J-dimensional submanifolds from J2d(ni—d) are mutually
disjoint.

(4) K<I+I: Md+l-^Md is the blowing up of Md along the J-dimensional
submanifold LddMd, where Ld= U dLd(J).
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(5) dd
=7CJli(dd-i) is an w-dimensional cell in Md\Nd9 which is biholo-

morphically homeomorphic to AQ=A(m), where Nd= U D.

For the stage that d=Q, we may add the subscript 0 to corresponding
objects in §5.1. We must only note that -C0(ni) consists of two distinct points

and L0([l, m+l]) = (Q9 -, 0), and L0=L0([0, m])

After the blowing up nd+l, we define objects at the (W+l)-stage as follows:

for #eUc#0)and/e^(l)U U ^(/), let
/=2 /=m-d+l

: = the closure of *7Ji(i>,(*)\(W3 0 Ar)) ,
: = the closure of n^(Dd(J)\(Dd(J) n Lrf)) ,

(5-3.6) ,„ _ „ _:

(5.3.7)

and for /e""u"
/=2

(5.3.8) L,+1(J): - the closure of

where Pv(Ld(J)) is the projective normal bundle of Ld(J) in Afrf. (Note that
submanifolds Ld(J) (J^£(m—d)) are mutually disjoint, so we can blow up
individually.)

Then it is easily seen that these objects satisfy the assumption (l)-(4)
of the induction except that any two submanifolds from £d+l(m—d—Y) are
mutually disjoint.

"" U <£(/), let
= m-d

(5.3.9) Id+l(I) = Li

By the construction, we can see that

(5.3.10) 3ld+1(

and any codimension 1 face of the closed m-cell Jd+1 is expressed as Id+l fl D
for some D^Jld+l(2). Moreover, the family 32^+i(2) is normal crossing at
any point of Jd+l, where 4d+i=Kj}i(4d).

We illustrate for the case that d=0. Let /=[!, w+1], then the blowing
up of MQ=Cm along the point L0(J)=(Q, •••, 0) is expressed by the coordinate
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change:

(5.3.11) k^ = wl5 k2 = WiW2) " 0 0
3 km = wlwm

in a neighborhood U of I^L-^J). Then {w2, ••• wm} gives affine coordinates
of Pi^(LQ(jy)=Pm-1 in tf, and

For/=[U]S/5

l J7: 1 = w, = w, = — = w.l if / = 1j/n n IT _
i f /

In particular,

U = {(wl9 •-, wje IT; 1 = w2 = ws = - = w,}

= {(wl9 .-, wje C7; w2 - w3 = - = wm = 0} .

Hence

since the left hand side is included in

so in U. It is also clear that 32^2) is normal crossing in U.

XA0[0,3]

-A0[0,2]

13 /
.i / y

AoD,3]/ /
*« L/ /

// A°>"

/ !
A0[l,4] A0[2,4]

nbdof
AJ0.3]

Figure 5.1 m=3,/=[!,4]

The blowing up along the point (1, °°- 1)=L0([0, m]) is similarly described.
Other primitive faces have the same structure as in the d=Q stage, except that
we can consider one variable freely (w1 in the above case, see Lemma 5.1).

Thus we can show that for any /=[/, i+d] (d^2), Lm_d(J) doesn't inter-
sect with other Lm^d(f) with d=d(I)9 and after the blowing up of Mm_d along
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+d]) - 0 .

More in detail,, similarly as Lemma 5.1, we can introduce coordinates {ul9
000

 3 ud9 vl9 "° vm_d} in a neighborhood U of Im^dnLm.d(J) such that

, l>vg->o

(5.3.13)
mn U; Ul = .- = ifc = 0,

and for ^ and I2(E/(d-l) such that 7X U/2=/,

U = {(u, v)^Im.dr\U; l>Wl>05 u2 = ... = Mrf = 0,

The blowing up nm_d+1 of M^_^ along Lm_d(J) is expressed by the coordinate
change

(5.3.14) MJ = wx, w2 = WjWg, • • • ,« , /= H'jWj

in a neighborhood £/' of /m_</+1n Lm_d+1(J), so

U' = {(w, v)e U'; w2 = .~=wd=0}9

hence Lm_d+1(IJ fl Lm_d+1(I2)=0.
Now the induction procedure is justified, so we get the proper holomor-

phic mapping

which satisfies the three conditions (I)-(III) in the first part of this subsection.
Since every blowing up above is defined over R, we can define real sections
of Moo and Deo(J)=Dm,1(J) (Jt=g) as

Note that Xm-i=^. Replace the subscript m—l with °o.
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A0[l,4] A0[2,4]

Figure 5.2 m=3
-A2[0,2]

AJ1.4J

AJ2.4]

The family <3200(2)R=iD00(J)R;J^(^} of connected, closed, 1-codimensional
and real analytic manifolds of MaotR is normal crossing at each, point of M^^

at least near /«,. And Joo is one of connected components of M^ R\ U D^ R.
' J^S '

ForO^rf^w, let

(5.3.15) E(d) = {p&Iooi there exist just d elements of 32*, containing/?} then

(5.3.16) /«= (\E(d).
d = Q

Then the subanalytic set /«, in M^^ has the structure of a stratified set:

(5.3.17) E(0) = A^ E(l) = U

and /co(/) is homeomorphic to an (m — l)-dimensional disk. Each connected
component of E(d) is the interior of the intersection of some elements of {1^
(/); /e^}, and is a real codimension d submanifold of M«>tR which is homeo-
morphic to an (m— ̂ -dimensional cell.

Now define the analytic m-form O^ on M^ by

(5.3.18) e. = e.(o, ft, r) = **(e(a, ft, r)) ,

then the triple (M^, <5»o, ©„) satisfies the condition (E), and the exponents are
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computed as follows:

Proposition 5.28 For J=[i, j]e£(d) (l^d^m),

(d(d-l)a+dr+d-l if i = 0

d(d-l)a+dft+d-l if j = m+l
)a+d— I otherwise .

(5.3.19)

Proof. For /e^(l), the blowing up n^ gives no essential changes for
coordinates near a generic point of DJJ\ so the formula (5.2.9) is the desired.

For any J^/(d) (2^d^m)9 take a generic point p of DM(J)9 then coordi-
nates near p are changed from ones near ^^(p) essentially (i.e. singularly)
only by the blowing up nm,d+l (see (5.3.13, 14)).

More precisely, we can introduce coordinates {wl9 •••, wd9 xl9 ••• , xm^d}

around p in a neighborhood UdCm and {ul9 • • • , ud9 vl9 ••• , v^-,*} around ^oo(p)
in ?Too(l/)cMoo such that 1) the mapping n^: U-^n^U) is given as

Ui = wl9 u2 = w^Wz, •••, ud

and 2) the m-form OQ is expressed as

where /(w, v) does not vanish on 7Too(i[/) and

v = r (if j = 0), v = £ (if 7 — m+l), v = 2a (otherwise).

Hence

where ^(w, ^c) =1=0 on £/ and

~ x2a+d-l .

5o4) Proof of Proposition 4.2 (Construction of Cycles)

Here we use the notations in the preceding paragraphs. Fix an integer
^2 and an element (CKS ft, 7-) of the set ^cC3 defined by

(5.4.1) Q - 0(m) - {(^r)eC'3; e(/; a, Ar)*Zfor any
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Since TE^I M00—NOQ-^MQ—NQ=Ym is homeomorphic, we get an isomor-

phism between the homology groups

(5.4.2) *...: Hm(M~-N»; <SeJ-*Hm(M0-NQ; <S0Q) = Hm(YM; <S,.M)

where S&Q and (50^ are the local system on the manifolds M^—N^ and Ym=

MQ—NQ determined by the w-forms O^ and @0 similarly as Sa. Hence we

will construct a cycle rjft, ft, f) and project P^ to get the desired cycle F(a9

Recall that AJJ) for /e^ is an open subset in Doo(/)j£ and the family

^oo,ig={i>oo(/)jg; /^^} is normal crossing at any point of /«,.
Introduce a riemannian metric in M^ and fix a small e>Q, and consider

the ^-neighborhood Us(d) of E(d) in M^ and the real section Us(d)R=Us(d)

n Moo>Jg.
We construct chains c(d) and e(d)^Cm^d(M00—N00; <S0TO) inductively on

fi?=0, 1, o 8 0 , m such that

( c(d) =

J support

( support (e(d))dUt(d) .

(5.4.3) J support (dc(d))d U Z7t(rf),

codim 1
Figure 5.3

At first we introduce the orientation in dQ==d(iri)c:M0tR=Iim={(kl, •••,£„)}
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by the ordering of this coordinate system, and introduce the orientation on
Joo by the homeomorphism TC^ : A^-^- AQ.

Put

(5.4.4) c(0) = Joo -(U U,/2(d)R) n ̂ oo
3=1

with the orientation on A^ then

(5.4.5) 8c(0)c4.--Ul7t(<0.
y=i

Take a point p^E(l), then there exists an element J^£ such that
and near the point/? we have a local coordinate system (U; z) such that

(5.4.6)

Now the exponent e=e(D00(J), O^a^ f}9 r)) along Doo(/) is not an integer.,

since («3 fl}r)^@. So we can suppose the orientation cyTO coincides with the
orientation of UCiM^^ induced by the ordering of this coordinate (z1? "•,, zm).

On this coordinate neighborhood U9

(5.4.7) c(0) -

with this orientation. Define a chain e(l) as

(5.4.8) *(!)!„ = _e_ 51(^)x {z' - (z2, -..,zj; Imzy = 0 (2^j^
c 1 ^

where

S1(~) =

with a positive orientation.

By patching together this e(l) \ v at each point p^E(l)\( U U^2(j) H M.O R),
j=2

we can get a chain e(l) such that c(l)=c(0)+e(l) and ^(1) satisfy the condi-
tions (5.4.6).

In the second stage d=2, we can construct e(2) analogously. In fact,
take a point p^E(2) then there exist local coordinates (U; z) such that
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(U= {z = (zl9 —,zw)eC"; |z,-|<5 (l^z^/
= {zeC7; Imz,- = 0
; z2>0, z2>0} ,

(549) J ~ " ~ ^ ' ^-- JR>ZI -03z2>0} U {zel^; Zj>0, z2 - 0} ,
), Rez2>—e}

U {zSC/; |z2| <e. |Imzy| <e 0'*2), Rez1>-e} ,

c(0)

n . j.—j Zi
I

Figure 5.4

then

c(0) - {zet/RM^; z ^ z , ^ — } ,

(5.4.10)

X {(z3? —, zj; Imzy = 0, — ̂ z,-^5} ,

where

kil =-fl (/=1,2)

17 = e-^'i-i^y^^2' "'• z-); Imz>'= °' y-z'-5J"'
i
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with a positive orientation, and a1 and a2 are the exponents along the sub-
manifolds {z1=Q} and {z2=0} respectively.

Then define a chain e(2) as

(5An)

x{(z3, —,zj;
z

and by patching together this e(2)\n at each point p^E(2)\(\J Uz/2(j)Rfl^oo),

we can get a chain e(2) such that c(2)=c(0)+e(l)+e(2) and e(2) satisfy the
conditions (5.4.6).

By induction on d, we get the chain c=c(m) and this chain is the desired

cycle Foo(a, ft, r)e#w(MooVVoo, iSe.oCa.p.?))-
The key points to the inductive steps are
(1) the family 32^ is normal crossing at any point of /«,;
(2) along each />e37oo, the exponent of 9^ is not an integer.
The work is tedious but not difficult. In order to make the patching of

locally defined chains e(d) \ U9 we use the technique of controlled tubular neigh-
_ m

borhood system of the stratified set AOQ=\JE(d) due to Thorn-Mather (see
J. Mather [1970]).

Appendix. Fermi-Bose Correspondence

A,0) In this appendix, we show the way how the Fock space represen-
tations SF(w, X) of the Virasoro algebra J? can be constructed by using charged
Fermi operators.

When we were studing the work of F.L. Feigin and D.B. Fuks ([1982]),
we arrived at our Fock space representations £F(w, X). In that paper, they
constructed representations of J2 depending on two parameters, by using ex-
terior algebras. Here we reconstruct representations of this type by using
charged Fermi operators, then due to the Fermi-Bose correspondence de-
velopped in the paper of E. Date et al. [1983], we express these representations
by Bose operators. This is the way how we found our Fock space represen-
tations 3?(w, X).

A.I) Charged Fermi Operators and Representations of Virasoro Algebra

Consider the associative algebra S3 over C, generated by -^n anld
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with the following Fermi commutation relations :

,A t „(A. 1.1)

where

(A. 1.2)

Moreover the algebra S3 has the ^-graded algebra structure

(A.1.3) S3 = 23».,
"<=Z

by defining the degrees of tyn and ^J as

(A. 1.4) deg fa = 1 and deg-^i = —1

for any n€LZ, and then we call these degrees the charge.

Consider the vector spaces V and KT defined by

(A. 1.5) V = ̂ Cir. and K* = 23
"e^ «££•

and put

(A. 1.6) W

By the paring <i>»> ir^=^n,m<> the vector spaces F and F1" are dual with each
other, and the sets {^n, «e^} and {^L ?*e^} constitute the dual bases.

Fix another polarization of the space W defined as W=W+®W_, where

(A. 1.7)

Since any two elements in W+(or PF_) anti-commute with each other

respectively, we get the isomorphism

(A.1.8) ^&^A(W+)®A(W.) = A(W+@W_) = A(W)

as left A(W+)- and right J(PF_)-modules3 where A(W) is the exterior algebra

of W. Hence we can define the normal product

as the uniquely defined C-linear isomorphism under the conditions that (1)

:1 : = 1 and (2) : : is a left A(W+)- and right ^(fF_)-module mapping.
Consider the left SS-module M with the cyclic vector 1 0> satisfying
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(A.i.10) w.\oy = Q,
and also the right 33-module SC with the cyclic vector <0 1 satisfying

(A.1.11) <0 |J^ + =0.

Then the module M is a free A(W+)-modu\Q and the module 3$ is a free
module, that is9 the two mappings

(A.I. 12) A(W+)=>a^a\0>t=M=®l®W- and

(A.I. 13)

are C-linear isomorphisms.
By these isomorphisms, the grading in A(W+) and A(W,) can be trans-

ferred to M and M\ and the degrees in M and M^ are also called charges: for

homogeneous elements a£=A(W+) and

(A.I. 14) deg a|0> = deg a and deg <0\b = -deg b\

(A.1.15) M = ̂ Mt and 3£ = ^3i\.
l^Z /ez

The homogeneous components ^ and M] of the decompositions (A.1.15)
are called the charge / sectors.

The vacuum expectation value

is uniquely defined by the following conditions :
i) <|>isC-bilinear; ii) <0|0>=1;

iii) <wz|w> = <y\au)> for any <v | e M\ \uy<=M and
Then it is easily seen that the restriction of <|> to Sl\ x^if// vanishes if /=(=/',
and is nondegenerate if /=/'.

Define the operators Hn and Un for n^Z by the formulae:

(A. 1.17)

Then these operators are well-defined as operators on the spaces M and SC.
Identify the vector space V with the space C[z, z"1] of Laurent polynomials

of z, by setting
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For each (w, ^)eC2, define the representation p(a,iX) of the Virasoro al-
gebra .C on the space V=C[z, z"1] by the formulae:

(A.I. 19)
eS) = 0 .

And define the representation p* of ~C on the dual space V*, skew-adjoint to
the representation p, that is,

(A.1.20) <Pk,)(^
t|^>+<0tkw)(^> = 0 («e J7, 0fe n ^e V) .

Then

— — (*--—)*}&*+*

for any n,

Remark. Consider the quotient Lie algebra ~C'=J?/Ceo, then the space
V can be considered as an ^'-module, that is,

(A. 1.21) ea = zH+1— (n^Z) .
dz

Easily we can show that

(A.1.22) H\X'\ V)^C2

and a representative of a cycle (w, /QeC2 can be taken as

(A.1.23) (w, X) (O = (M;+- - (^— >7)

For (w, fyZEC2, define the linear mapping

(A. 1.24)

by the following formulae:

(A.1.25)

By easy but long calculations, we get

Proposition A.I.

- M »
2 2 2
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1) A«u) & <z representation of the Virasoro algebra X in the space M*
2) For each m^Z and ee J?, ^(Wi^(e) preserves the charge m sector

hence p(a;>X) induces a representation ofX in the space Mm.
3) For each e<=£, 0Te Ff and^SE. V,

(A j

where the left hand side of (A. 1.26) is considered in the operator algebra.

Remark. Consider the generating function defined by

(A.1.27) £(C; w3 X): = S C'A^fe.) ?«ez

then by (A.2.20-21)

(A.1.28)

where we set

(A. 1.29) ^-(C) = S ^nC and

A.2) Fermi-Bose Correspondence (after E. Date et al. [1983])

Proposition A.2 (E. Date et al. [1983]).
1) Foranyn.m^Z

.1) [Hn,Hm]=ndn+mtQid.

2) For any vector \ v^^M, there exists a positive integer m such that Hn

\v)>=Qfor any n^m.
3) For any n^l and any vector |v)>£:c^, there exists a positive integer

m such that (Hn)
m \ v>-0.

4) Foranyl&Z

and
( " }

Introduce an infinite set of variables x=(xl9 x2,
 S 9 e ) and set

(A.2.4) H(x) = S xnHn and
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(A.2.4) e*»

By Proposition A.2, the actions of the operators H(x) and eaw on the spaces

M and JT are well-defined, and

(A.2.5) #(x)|0> = 0, hence eff<" 1 0> = 1 0> ,

but here note that <0| H(x)^Q.

Define a state of charge n as

-V. (n<0)

(A.2.6) <«| = <0| («=0)

Consider the C-linear mapping

(A.2.7) 0: &-><=(? = C[u, IT1,*!,*,, .»]

defined by

0(a 1 0» = S <« I ea^a \ 0>™ (ae») .
m^Z

Proposition A3 (E. Date et al. [1983]).

(1) TAe mapping 0 is a graded C-linear isomorphism, where the grading

in the space cl?=^ ^m is given asm^z

(A.2.8) deg u = 1 and deg xn = 0 (/i^l) ,

(A.2.9)

(2) The isomorphism 0 gives the action of the operators Hn on the space
-y -y e • «1 /TO, xl9 x2, j as

Ha = dtt (»>0)

Hn = uda(A.2.10)

where dn=d/dxn (n^.1) and du=djdu.

By the same method to prove the Proposition A.3 (2), we get

Proposition A.4. The isomorphism 0 gives the action of the operators Un

on the space cl?=C[u, u"1, xl9 x2, •••] as
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U9 = (ii8.-^^)0,+j_29A_,
2 2 j=i j 3

(A.2.11)
2 2 " y*i

^ I J M-l

2 2 j=i J ""' tei

/orw^l.

Sketch of Proof. For a complex number CeC* we introduce the ope-
rators defined by

(A.2.12) <vKO = 2 ^«CW and ^(0 - 2 ^IC"W,

then V(0 and VT(0 are holomorphic operator-valued functions in the sense
that

(A.2.13) <w|^(C)|v> and <n|^(0|v>

are holomorphic functions of C for any <M| ̂ M^ and | v)&M. Then for (Cl5

C2)^(C'*)2, the normal product of generating functions

(A.2.14) ^(C^CQ: = 2 fiCF":^^:

are also a holomorphic operator-valued function on (C*)2. Then we get

(A.2.15) ^(C^OO- = 2 C"^(2 -"v^/^+»0 = 2 CmHm and

(A.2.16) [d-iiKf^^as-^-f. = S r»{ S ^^-U.:} = S C-w£/ffl .JCi we^ /e^ Me^

Thus we must calculate the operator form on the space ^V of the operator
^O" Consider the product

(A.2.17) ^(C^CO - 2 C{

as an operator-valued Laurent series on £l and C2. Then as Laurent series,
we get

(A.2.18) TKf^CO - 2 C{C2-":^i^T«:+ 2

= S

Here we note that in the domain | d | > | C2 1 >0, the functions
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(A.2.19) 2

and ^(Ci^'CCij): are holomorphic, hence iKOv^C'Q is also holomorphic
in this domain, and satisfies the equality

(A.2.20) :iK W(« : = iKOl^i) —=^= •
^l~^2

On the other hand, E. Date et al. [1983] calculated the operator form

°f 'vKW'V^Gr^ on t*16 charge m sector c^m, so they obtained

(A.2.21)

where

(A.2.22) X(S19 Q =

and

(A.2.23) £(x, 0 = S *nC and £(0, C) = S —C"*^ -

On the other hands consider the operators A and B defined by

(A.2.24)

then A and B are operator- valued holomorphic functions of (C13 C2)
and note that these are holomorphic even at (C, C)=f=(0, 0). So we get

(A.2.25)
n^l

and

(A.2.26) JT(C15 C2) - S ^(C15 C2) (^-
k^O

where

(A.2.27)

i+y=*

For each m^Z, we can expand the function (£i/£2T
 as

(A.2.28)
Hence we get
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(A.2.29)

Note here that the function S () C 2"'+1^(Cl9 C2) are holomorphic at
j+k=h+i J

f1=f2=l=0. So we get

(A.2.30) [C *

Hence by (A.2.16), we get the formulae (A.2.11) for the operators Un.

A.3) By Proposition A.4, we get the explicit form of the operators (A.I.

25) on the space cV=C[u, u'1, xl9 x%, •••].

Proposition A.5. On the space ^^

(A.3.2) A«A)(£-«) = (w+udu+nX)dtt+—23
2 y=i

(A.3.3) /S

(A.3.4) t

If we restrict the representation flfa^ OI* the charge zero sector CVQ=

C[xl9 x2, •••], then this representation is nothing else but the Fock space repre-

sectation TTM,A on EF(w5 X) of the Virasoio algebra X (see (1.1.28, 1.2.3, 10)).

Here we identify

(A.3.5) SYw X)^C[x x •••]

and

(A.3.6) pn = nxn, p^n = dn(n^ 1), pQ = w id, A = X id .
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