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§ 0. Introduction

By a conformal covariant we mean a holomorphic differential operator
which intertwines two holomorphic ("positive energy") representations of the
conformal group. In this article we determine all such.

Specifically, the representations are parametrized by triples r' =

r' f — r, n , n—m\ W^QTQ n> m are nOn-negative integers and r is a half-

integer (2r^Z). The representation U^ determined by r' has the form

n — m

(0.1)

on (® C2)®^ C2)-valued holomorphic functions /on the generalized unit disk

, C)|zz*<l}5 if g~l=(c d)^SU(29 2) (a, 69 c5 and rf are 2 x 2

complex matrices).
As was proved in [8], one may switch freely to holomorphic functions

on the generalized upper half plane £D={z^M(2, C)\(z— z*)/2/>0} and
to an action of the conformal group G, identical to (0.1), but with a, b, c, d
denned by another, isomorphic, real form of SU(2, 2)c, in the strong sense that
if a differential operator D intertwines UTl and UT2 on ^, then the same oper-
ator D intertwines the corresponding representations on 3). (Since 3$ fl ̂ 4=0,
it makes sense to compare constant coefficient differential operators, such as D
above on J3 and on 3).) To be precise; the realization of t/T/ as acting on
vector-valued holomorphic functions on 3) is obtained by letting the C7T/ in
(05 1) act on the element of ^C/p, 2)° which corresponds to the Cayley trans-
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form z->(l+/z)(l — iz)"1. We can also remark along these lines that covariant
differential operators are homogeneous and hence are also covariant with respect
to change of sign on the variable. We may thus choose the following more
usual version of C/T/:

(0.2) (t

on (®C2)®(® £72)-valued holomorphic functions on 3) -obtained by means of

conjugation by the Cayley transform, followed by conjugation by the element
corresponding to conformal inversion z-> — z~l on 3), followed by the map
z^»—z (and a switch to an isomorphic SU(2, 2)).

Dual to the space of AT-finite vectors for £/T/ is a highest weight module
M(Vr) whose highest weight vector transforms under K (K is an appropriate

maximal compact subgroup of G) according to a representation r=r( r, n ?

n~m) dual to the T' of £/T/. The determination of the set of covariant
2 /

differential operators is equivalent to the determination of the set of homomor-
phisms between such so-called generalized Verma modules [12], [8].

This is the road we shall take and we will not, in fact, return any more, in
this article, to the representations J7T/.

We present here a complete description of the full set of homomorphisms
between generalized Verma modules M(FT) as above for the conformal group.
Furthermore, we determine the subspace structure of the 7kf(FT)'s. This struc-
ture is often richer than what can directly be inferred from the homomorphisms.

The invariance of the solution subspace to a spin (—, dbj-mass 0 wave

equation under the conformal group seems to have been known to many phys-
icists, at least for n=Q, 1, 2, for several decades. The invariance of Maxwell's
equations under G was first observed by Batemann [1] and Cunningham [6]
though it may be argued that it is already contained in Lie's work [15].

More recently, Kostant [14] proved equivariance of the wave operator [j
and in so doing, employed Verma module techniques. In Jakobsen-Vergne [10],
the covariance of D and of powers thereof as well as powers of the Dirac
operator, was established. The covariance of wave operators on more general
Lorentz manifolds has been established by 0rsted [21], [22], and later extended
by Branson [4], [5] to differential forms, and by Paneitz [16] who found an
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analogue of D2 on an arbitrary pseudo-Riemannian manifold.

Returning to SU(2, 2); all situations Ur^D=DUT^ with U^ unitary on

the set {<p\D<p=Q} were determined by Harris- Jakobsen [8]. A complete

differential geometric treatment of Maxwell's equation and the Dirac equation

was given by Paneitz and Segal [18], [19]5 and in a continuation of this work

Paneitz [17] found, among other things, the composition series of all repre-

sentations C/T/ for which r' remains irreducible when restricted to the rota-

tion subgroup of K. Viewing U^ as a component of a degenerate series

representation, he also paid attention to more general composition series,

i.e. involving negative or mixed energy subspaces. Also, following a head-on

investigation of Knapp-Stein intertwining operators around singularities,

Petkova and Sotkov [20] have written down the composition series of a sizable

subset of the representations above. Finally, we have recently learned that

Enright and Shelton [7] have determined the composition series for generalized

Verrna modules for SU(p, q) of semi-regular highest weight and that, based

on this, Boe and Collingwood [3] have found an abstract algorithm for de-

termining the set of homomorphisms into generalized Verma modules of regular

infinitesimal character.

The present investigations relies on the results on Bernstein-Gelfand-

Gelfand [2], but besides that, it is quite straightforward. The key fact;

Proposition 4, is proved in Chapter 1. It describes those covariant differential
operators that contain a factor of D" for some n> 1. More generally, the idea
behind most of what is going on is simply that the determinantal ideal in the set
of polynomials in four variables corresponding to H; Ii(O) = C[zl9 z2, z3, zj
0 (zl+zl+zl—zl) or equivalently, /2(n)=Cr[z1,z2,z3,zJ-(z1z4— z2Za), is prime.
Following this, there are two more chapters, entitled: 2. Conformal Covariants
and 3. The Subspace Structure, respectively.

We wish to thank Tom Branson for providing us with some important
examples.

§ 1.

The Lie algebra Q=su(2, 2) is represented as in [9]. Let

(1.1)
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0 0
1 0

0

0
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Also let

(1.2) jr = {
zn z12
Z2j Z22

0 1
0 0

1, and

and hv =

Elements of fr corresponding to the appropriate matrices above are denoted
zfj whereas the analogous elements of $+ are denoted by z?>. Further we let

(1.3.a) hi} = [zfi, zh]; i, j e {1, 2}, and

Specifically, if D(a, fe, c, fif) denotes a 4x4 diagonal matiix with entries from

the top a, b, c and d, then

If lc denotes the complexification of the Lie algebra I of K then tc=su(2)c@

su(2)c®C, and k£, k^ and h^ define one su(2)c, k^, k^, and /zv the other, and

h defines the center C.

Any irreducible unitary representation r of K on a vector space FT is

uniquely determined by a vector vTeFT which satisfies:

(1.4) fcjVT = fcjVT = 0,

hpVr = n«vT5 hvvr=m*vr, and A v T = = r » v T ,

with «, m, and 2r^Z, and m, «>0. (We do not lose any generality by re-

stricting 2°r to Z.)

We now define the generalized Verma module M(Vr) by demanding that,

in addition to (1.4), VT satisfies

(1.5) $+vr = Q.



CONFORMAL COVARIANTS 349

Thus, M(VT) is the left

(1.6)

In other words, M(YT) is the linear span of all expressions zfizj 2z2iz22
 ev with

(a, b, c, d)<=Zi and ve FT, and g, gc, or ^(g*7) acts from the left through the
adjoint action together with (1.4)-(1.6). Note that the abelian algebras £+ and
JT are F-modules and that [p+, }r]clc.

If r satisfies (1.4) we write r=r(w, m, r). Any nontrivial homomorphism
M(FT])->Af(FT) is then completely determined by a non-zero element gTje
M(Vr) satisfying:

(1.7) ^qri=ktqri=ktqri = Q, and

, and AgT - rT .

The elements /722, 7?^, and Av form a basis of a maximal abelian sub-
algebra £) of Ic, and f) is also a Cartan subalgebra of gc. Let el9 e2, e3 denote
the usual basis vectors of C3. We identify § with C3 by mapping h22 to el— e2,
hp. to ^2+^35 and Av to ^2— e3. Furthermore, we also identify §* with C3.
Specifically, and defining the ordering at the same time, the positive roots of r)
in gc are taken to be e2±e3 (the compact) and e^e^ e^e^ (the non-compact).
We let

(1.8) ft = e,-e2 , <*! = e1-e3 , a2 = ei+e3 , r = e,+e2 ,

and A = e2+e3 , j/ — e2—es .

A generalized Verma module is then determined by an element A=(Xl9 Z2, ^3)^^*
and the A corresponding to (1.4) is

( 1 9 ) A - n+m n~m(1.9) ^_

For a=(a, b, c)e§* we denote by Sff the reflexion on §* defined by

(1.10)

where

a2+b*+c2 '

Observe that p=— (/?+«1+«2+r+^+^)-(2, 1,0).

It is a corollary to the celebrated Bernstein-Gelfand-Gelfand theorem (see
[12, Proposition 1.5]) that one has the following.
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Proposition 1. If Al=(rlf
 /7*+/7\ ni~mi\ Defines a subquotient of M(FT)

with T = r(n,m,r) corresponding to A as in (1.9), then A^p is of the
form Sp(A + p), S^A + p), Sa2(A + p), Sv(A + p), S^A + p), S^(A+ p),
SySai(A + p), SiSaz(A + p), SaiSaz(A + p), S^S^SpW + p), S^S^A + p), or
SfS^S^S^A-^p). Furthermore, if A1+p=Sy, ••• SVi(A+p) is one of these
forms, then

(1.11) ¥7 = 1, -, i: <j^ S,.^ .-. S^(A+p)y^ {0, 1, 2,.-} .

Remark 1. It is straightforward to see that the above chains are the only
possible (in relation to [12, Proposition 1.5]).

Remark 2. This proposition includes the situation of (1.7).

Remark 3. We have that S^S^S^SyS^S^ and S^S^S^S^S^.

With A as in (1.9), let (z, x, y)=A-\-p. The two cases j >0 and j<0 are
related by a simple exchange of G-I and «2, and it is thus with no loss of generality
that we from now on assume that j>0.

Through a straightforward trial and error investigation the following result
is easily obtained.

Proposition 20 Let x and y be fixed and assume that j>0. For
as below, the given sequences of reflexions are the only possible which satisfy the
requirements of Proposition 1 :

(1.12) z<-x: None

-x<z<-y-l: Si (ifx =y+l: void)

l-y<z<y-l: S^ S,S.Z (ify<l: void)

z = y- s«2
y+l<z<x-l: S^ S«2, S^S^, S^S^S^ (ifx=y+l: void)

z = x: SSa

Lemma 30 Inside ^Uft)") we have the following equations for non-negative
integers x, x' , and d:

= (d-x

-d *x - x' • (rf+ 1)"1 det
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1.13.b) z12(ad kp)x(a.d k~)x'z22

= (d-x+ l)(d+ l)-2(ad kpffad k^)x/+1zd^1

Jrd°x°(d+l)-1dQtz(adkpY-lff>A1^x''*d-'1 22 3

1 . 1 3.c) z21(ad fc;r)F(ad k'fzl 2

'2(ad fc?)*+

)-2(ad ^)^

+d(d+ 1)'1 det z(ad k^

Proof. Since z12=[A;~, z22], z21— — [kfL, z22], and zu=[k^f z2i], it suffices to
establish (1.1 3. a). With no loss of generality we assume that x9 x' < d.
We have that p=(adk^Y(adk^)x/zd

22 belongs to the 1-irreducible subspace S of
d

®£~ whose highest weight vector is z2/. 5 = ®P~. Thus z22°p^p'~®S.
s

More generally, the highest weight vectors of the !-module ^UCP") are (det z is
defined in 1.16 below).

(1.14) (det z)sz22* ; t,s e N U {0}

and it follows easily that
d d+1 d-1

(1.15) p~® (g)p~ = ®|)~+detz®p~ .
5 5 5

Hence z22° p can be written as a sum according to (1.15), and it follows by
looking at weights that the vectors involved are the ones given. The exact
values of the coefficients are easily determined. It suffices to find just two
equations involving these, and this can be done by looking at leading coeffici-
ents of e.g. z12 and z22. We omit the details. Q

The following proposition, which puts severe limitations on the lc-
symmetry that qri can possess, is crucial. Let

(1.16) det z = zllz22—z21z12 .

Proposition 4 Suppose that ^^0 satisfies (1.7) and that furthermore

(1.17) ?T

for some s^N and some pr ^M(FT). If n^pm, then n°m=® and n

Furthermore, if (ti, m)=(n, 0) then (/?', m')=(Q, m'), and, symmetrically.
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Proof. Observe that kppri=kfpTi=Q. Furthermore we have that modulo

(1.18-a) z?i(det z)s = s(det z)s-\z22(hll+2-s)) (mod <U -f+)
(LIS.b) z^det z)s = -j(det zy'\z21(h12+2-s)-z22k^) (mod <U-I+)
(1.18.C) zJi(det z)s - -jr(det z)s-\z12(h21+2-s)+z22k;) (mod <U-I+)
(l.lS.d) z2

+
2(det z)s = j(det zrXzn(/z22+2-*)-z12£;i+z2^-) (mod <U-f+) .

The exact form of (h^+2—s) follows from [9], since it is enough to establish
it for n = m=0.

We may assume that pTi is homogeneous of degree d. Let x and x' be
determined by

(1.19) n1 = d+n-2x

m1=

As basis of Vr we choose {(A^)'(&7);vT}?;7=o,o5 and denote by /?0 the coefficient
of pTi with respect to VT. Thus we have, for some N>Q,

(1.20) Po = f] cf det z'(ad ̂ )'-J(ad fc7/"'^i"2/ ,
/ = 0

and CQ^Q; cQ=l, say.
Since the ideal generated by det z inside C[zn, z12, z21, z22] is prime it

follows immediately from (1.1 8. a), by looking at vT-coefficients, that

(1.21) 0u+2-*)A-vT = 0.

Let us now assume that j^X). We observe that h12=hn—hfJl and use (LIS.b) to
look at ^-coefficients in Zi"2((det Z)SJ?TI). Specifically it follows that the vT-coef-
ficient of (z21(/z12 + 2— j)— z22k^pri is proportional to det z. Thus, «1z21jp0+
^22!̂  jpj i§ annihilated by (ad fc£)*+1 and (ad fcj)*'. Hence, since [fcj, zzj=0,

(1 -22) l/Vto+Za ad k^zj^ = 0 ,

and this implies, because [fc]I, z22] = — z21 and [k^f z2J=0, that

(1.23) n=x.

We now return to z/i. It follows from (1.7) that the terms of pri involving
VT, k^vr, and ^i"vr are

(1.24) ^Tl(vT)+^Tl(fcj:vT)+^Tl(fc-vT) = ((ad fcS)*(ad fc7

(mod det z).

n
x'(d-x'
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We wish to evaluate the ^-coefficient of zn applied to (1.24). We write tacitly

A11-vT=w11-vT though by (1.21), wu=s—2+x+x'. We have the equations

(1.25) [z^k~]=z}1? [z}1,zf2]=k+, [z&, zT2] =

[zn, z2J\ = —k* , and [zfi, z12] = k+ .

Thus,

(1.26) ^[(^(v^+^C^vO+^C^v^Cmod det z)],T

- -*.*'(ad fcjO'-'Cad ̂ '-^WO^-^-!))

-Jc-*'(ad /c^'Xad /^-V^^J^J--^-!))

By looking at weights it follows that the first interval in which a vector of

the form (1.17) may exist is y+l<z<x— 1.
Let us first look at the situation corresponding to S^S^: It follows from

(1.21) that any element />TI of the form (1.17), satisfying (1.7), and having weight
S^S^A+p^—p satisfies h11qTi = —s—2, Since A = (z,x,y) it follows that

s=z+l— x, and this is never positive in the given interval. Let us then con-

sider SyS^S^: We compute the vT-coefficient of zn#T by means of (1.18. a)
and (1.20):

Observe that the computation of the vT-coefficient corresponding to

det z/+5zfi(ad ^-)^~/(ad k'Y"1^21 is given by (1.26) with (jc, x', d) replaced by

(x—I9 x'—l, d—2l). The terms involving C^ (cf. (1.20)) are easily computed
to be

(1.27) C^ det z"(-l)(x-N)(x'-N)(d-2N)(wu+ d-x-xf+3)

-(ad k^f~N-\ad k-)xf-N~1zd
22

2N~1+N^CN det zN~l

where 7f=N+s.

The term containing det ZN in the v,, -coefficient of «n^T is given by (1.27);
the contribution from the second summand can be found by means of (LI 3. a).
The result is easily computed to be

(1.28) CN(x
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It is easy to see (cf. the diagrams of the following chapter) that l<7f<x— y,

x=x+y— s, x'=x—y—s, and d=x+z—2s, hence all factors in (1.28) are non-
zero.

In the case z=x, the only possible sequence of reflexions is S^S^. This
sequence is ruled out by the computation below, by which it is also ruled out
for z>x.

Consider finally z>x-±-l: Two sequences may lead to a qTi of the form
(1.17) and satisfying (1 .7). The first is S^S^Sp : We have that S^S^S^z, x, y)
—p=(—x—2, z—l. —y), and it follows then from (1.21) that s=l+x— z<Q.
The other possibility is SySc,iS062Sp=S&iSot2: The vT-coefficient of any qTi =

q^tf having highest weight S^S^z, x, y)—p is

(1.29) det zs f] C, det zf'(ad *£)— '(ad fcJT)""^?? """
1=0

with s=z—x+l. By insisting that either zu
+£Tl=0 or z22

+qri=Q, it is easy to
see that CW=NO. Using (l.lS.c) it is then straightforward to compute the lead-
ing term in det z of the vr-coefficient

(1.30) (z2
+tfTl),r - (-lY-m(n-m}\Cm(m-n)(z~y) det z'+^zSr"-1

+ lower order terms in det z .

Thus, zJi?Tl =1=0. D

We now proceed to prove that in the remaining cases we do have (1.7)
satisfied for qr*s of the form (1.17) (and r and r1 appropriate). Our proof
follows the lines of the preceding investigation but we remark that it is possible
to give an alternative proof of Proposition 5 (and probably also Proposition
6) along the lines of [11]: If the two pieces of the Dirac operator are denoted
by a and a (a=D+, a=c(D) in the terminology of [11]), and if D^d'Alem-

bertian, then the statement is equivalent to the asseition that D* ® <* as well

as CT®£ are intertwining differential operators for all non-negative integers n

and k, and this fact can easily be obtained from [11] (or [10]).

ion §* Let A=(s+n/2—2, n/2, n/2) for s, ii<=N. Then (1.7) is
satisfied precisely for a qTi of the form (1.17), and with rl corresponding to Al =
S^S^A + p)-p= (_(Jy+/z/2)-2, n/2, -v/2). Similarly for A = (s+n/2-2,

n/2, -n/2) and A1=(-(s+n/2)-29 n/2,77/2).

Proof. The two cases are clearly so similar that it suffices to prove one
of them, say the first: Let then T= A and let VT be as in (1.4) and (1.5). Observe
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that in the present situation, also fci"vT=0. By looking at weights it follows
that any qr satisfying (1.7) must be of the form (1.17). In fact, it is easy to
see that

(1-31) qri = (det z)s ± ^zlTlzU^)lvT .
1=0 i I

Since k^qTi=®, and since A and A1 are set up appropriately, to establish (1.7)
it suffices to prove that zJ^^O, and to this purpose we apply (1.1 8c). Ob-
serving that A22vT=(,y— 2)vT, hnvr= (s— 2+w)vT, /721vT=(,s— 2+w)vT and h12vT=
(s— 2)vT? we get

(1.32) z?i qr = det z^det z S — (rc-
«=o z !

'•=o I I

and this is zero. []

,
/

Proposition 6e Let A=(n—2+s, n, 0) for s, n&N. Then (1.7) is satisfied
precisely for a qTi of the form (1.17), and wilh TI corresponding 1o A1—
—p=(—n—S—2, nf 0).

Proof. The vT-coefficienl of qTi is given by

(1.33) ±c&

for some constants ch and z=n-\-s. The recursive relations imposed on the
Ci's by (ziiqTJv =0 are the same as those imposed by the analogous equation
for 722, namely

(1.34) /c8(-z+/-l-/7)+c,_1(z-/+lX/-l-/7) = 0

and these can of course be solved. Furthermore it is easy to see that the VT-
coefficients of zfiq^ and Zi"2^Tl are zero. Thus there is a unique #TI for which
the vr-coefficient of any z+qri is zero. Since any non-zero highest weight vector
for fc in M(FT) clearly has a non-zero vT-coefficient, it follows that this qTi

satisfies (1.7). []

Remark. For /7 = 152, these homomorphisms correspond to the covariant
differential operators recently determined by Branson [23].

The highest weight vectors of the !-module ^(p ) are
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(2.1) (detz)sz|2;

Through this one obtains a representation of £7(2) X 17(2) given by the double
diagram :

(2.2)

This is not unique., and to make it correspond to (2.1) as a representation of K
one should take the ® -product of (2.2) with the ^-representation (ui,u^)-*
(det %)~(2s+0 (cf. 1.2). In this sense, we are really only working with SU(2)x
SU(2) representations, but the form of (2.2) is convenient because the total
number of boxes in one of the diagrams, 2s+t, is equal to the degree d of

(2.1) (and hence, det zsz|2e®^").
In the same sense of non-uniqueness, a representation r gives rise to a

double diagram

(2.3)

We recall that (g)-products of SU(ri) representations can be handled com-
pletely by the Littlewood-Richardson rule (hereafter: the LR-ruIe) ([13]).

In the following we examine which of the sequences of reflexions in Prop-
osition 2 in fact do correspond to a qTi as in (1.7). We do know that any
single reflexion, as e.g. Sy when —x<z<y—l, does correspond to a such
([12, Proposition 1.6]). The only problem at this level is that of multiplicities:
Assume that —x<z<—y—l. Then Al=Sy(A+p)—p = A—(z+x)a1. Thus,

d=(z-{-x)9 n1=n—d9 and ml=m—d9 and thus the result is a double diagram

(2.4)

and according to the L^-rule, this has multiplicity one (as implied by the
indicated row of d 1's).

An analogous argument gives that S^ gives a qr with multiplicity one when
—y<z<l~y as well as when l—y<z<y—l. Furthermore, in the last inter-
val, Sy corresponds to a unique non-trivial homomorphism into the module
defined by S^A+p^—p. However, as we shall see below, S^S&2 does not
correspond to an element of c(](^~)®Vr and hence, the composite homomor-
phism is zero: We have that SySa(A+p)—p = A— (z+y)a2 —(x— y)r> It
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follows that d=x+z, n^Ji—fc+z), and ml=m+z—x+2y. This gives the

following pictuie:

(2.5)

Observe that z+x<n=(x+y—l) and that x—y=m+l. According to the
LE-rale, the diagram to the left can only occur in the ®-product

whereas the diagram to the right, due to the occurrence of at least one 25 which
is implemented by the column of length 2 as indicated in (2.5), can only occur

in ® -products of the form

(2-7) - ^ ^ „ 2,

This contradicts (2.2) and thus (2.5) does not correspond to an element of

In the case z=y we have a single reflexion, so let us turn to the interval
y+l<z<x—1. Here it follows again that Sai and S^ give unique honio-
morphisms. Let q&i and q&2 be the corresponding vectors as in (1.7). It is
then easy to see that ^CP")0^* fl'UCP"")0^^ {0}. In fact, this follows by
looking at multiplicities: The double diagram corresponding to S^S^ is

(2.S

and the corresponding ^-representation clearly occurs with multiplicity z— y+l

in CU($~)®V^ We have that d=2°z and it is easy to see from the LA-rule

that (2.8) occurs with multiplicity 1 in the (g)-product
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for each s=09 l,~-9z—y. Thus, there is at least one qri corresponding to
S^S^. But if there were two linearly independent q^'s then there would also
be one of the form (1.17) and this is ruled out. Hence there is multiplicity
one. Maintaining the assumption y+l<z<x—1, we finally consider the
double diagram corresponding to SfS^S^:

__ _^_ z~y

(2-10)

Due to the fact that each diagram contains non-trivial columns, any q^ cor-
responding to (2.10) must be of the form (1.17) and is as such ruled out by the
assumption that x>y+l since this implies that «4=0 and m=t=0.

Through analogous reasoning it follows that for z=x, unless x=y+l or
j>=0, S^S^ is ruled out by Proposition 4. Finally, when *-ri<z, Sp gives a
unique homomorphism, S^jSp and S^Sp do not correspond to elements of
c(](^~)®VrT, and S^S^Sp as well as S^S^S^Sp correspond to cases in which
the potential qri is forced to be of the form (1.17) and hence are ruled out
unless x=y+l or y=0. If x=y+l there is a unique homomorphism for
S^SehStt2Sp=S€tiSet2 given by Proposition 5 whereas Proposition 4 rules out
S^S^Sp. Analogously, for y=0, Proposition 6 gives a homomorphism for
SaiSaz whereas S^S^Sp again is ruled out.

All in all we have now established

Theorem 7. Let x and y be fixed and assume that y>Q. For
as below there is a non-trivial homomorphism into the generalized Verma module
M(FT) of highest weight A=(z,x,y)—p exactly for the given sequences of
reflexions. There are no multiplicities:

None

5,

None

(2.11) z<-x

—x<z<~y — l

-y<z<y

Z = X

ii) x=y+l:
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z < l — x : None

z = x: S&1S&2

x+l<z : S^S

Hi) y=Q:

z<—x: None

l<z<x-l

x+l<z iS^S^. Q

Remark, As a part of the proof of Theorem 7 it was established that the

homomorphism corresponding to S^S^ when y-\-\<z<x— 1 is the composite

of the homornorphisms corresponding to S^ and S^. It is furthermore a

consequence of part i) that the homomorphism related to S^S^ for z>x+l in

part ii) and iii) does not factor through the homomorphism related to Sp.

§ 30 The Subspace Structore

Let A be an invariant subspace of MT and assume that ^^{0} and A^F
M(Vr). Then VT^A and hence there is in A at least one element q of lowest

degree, and d>\. Since I preserves degree and $+ lowers it, we may assume

that q satisfies (1.7). The space -^=^(9^)°$ is thenan invariant subspace con-

tained in A and in case it is not irreducible we can repeat the above procedure.

For the present investigation of the subspace structure of M(Vr) it is, in view of

the preceding determination of the full set of homomorphisms into M(FT), more

pertinent to investigate whether it may happen that A\B^p{®}. Should this

occur, one is led, as above, to an element q^A\B of lov/est degree which satisfies

(1.7) modulo B. Thus, such a q does not necessarily satisfy (1.7) proper and

hence needs not define a homomorphism into M(FT).

The purpose of this chapter is to prove that this theoretical possibility, in

the current situation does materialize for the representations A=(—]9 n, 0).

It is a consequence of the Bernstein-Gelfand-Gelfand theorem [2] that any

q as above has a weight A} as given by Proposition 1. We then begin our

proof by looking anew at Proposition 2 :
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Since for |z| <y— 19 &A2 does not correspond to an element of M(FT),
the first interval in which a phenomenon as above may occur is y+l<z<x—
1: Consider S^S^: We have seen that there is a unique homomorphism at
this level; defined by the double diagram (2.8). Let us then suppose that there
is at least one q, as above, of the same weight. We then have that z^q defines
a highest weight vector for lc and the corresponding double diagram is ob-
tained by removing one box from each of the lowest rows in (2.8). Thus5 the
new lowest rows have lengths z-\-y—l and z— y— 1, respectively, and this
means that neither the diagram of the I-type qai that defines the homomorphism
corresponding to $„ , nor the diagram of the analogous q#2 is contained in the

diagram of z^q. But then ztiq cannot belong to Vfo^q^ U €U(Qc)qat2. Hence
zn#=0. Let qaiC62 be the element of M(FT) that defines the homomorphism for
S^S^. Then also Zuqaie62=Q9 and hence there is a q in the span of q and
#0 02 which is of the form (1.17) and which is annihilated by Zn. Again it
follows that (1.21) holds and also as in Chapter 1, it follows that ((S^S^z, x9 y))

— 0X^11) = ((— *> x, — j>)— (2, 1, 0)) (1, 1, Q) = —s—2 for some s<=N. But this
equation becomes s=z—x+l9 and in the given interval, such an s is less than
or equal to zero.

It remains to investigate SyS^ S#2. As noted before, the shape of the
diagram (2.10) implies that any element q^^ of M(Vr) corresponding to this
reflexion, contains a factor of det z. If (z—y— 1=1=0), the following expression

(3.1) (z^+(z+y-ir1z^k--(z-y-ir1z^k^

defines a highest weight vector for tc corresponding to the removal of a box
in each of the top rows in the diagram (2.10). Evidently, this expression is
not in the ideal generated by qaiC62 and hence it must be zero. By bringing the
A>'s and k~'s to the other side of the z+'s, we can use (1.18) to evaluate (3.1),
but it suffices to observe that the term which does not contain any factor of
detz;

(3.2) (a
—a(z-y~l)-\z+y—

for some ae JB, has -a(z-y-l)~l (z+^~ ̂ "^(jc+z) (z-j-1)-1 (z+j-1)'1.
We now turn to the case z=y+l. (Still; z<x— 1): It follows that the VT»

coefficient of ^7*2*2 *s §iven by

(3.3) (q^2\r = det z(ad fc?)-(ad Ar7)"z?2
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where, as before? n=x+y—l and m=x—y—l. We have that

(3.4)

is a highest weight vector for fc. By Lemma 3 and (1.26), its vT-coefficient is

easily computed;

(3.4)

+m(n+l)-1n2(n+2)(m-n-l) detz(ad A:?)"-1

Recall that the f-type corresponding to (2.10) does not belong to
On the other hand, there must be a (unique) f-type $ in this ideal of the same
weight as (3.4), and this q must satisfy:

(3.5) (zu+z12fc;r -(n+ 1 -m)-lz2fa -(n+ 1 -ni)z22k^k^ = 0 .

We have that

(3.6) (<ar = (ad ^(ad k^)mz^l+a det z(ad ^"-'(ad k^'^K1

for some aeJB.
The a is evaluated by means of Lemma 3, and it follows that a=n2(n+l)

•(/i+2). Thus,

Assume now that /2>w. Again we have an element;

(3.7) (^i+(n-mYlz^k-)q,aia2 ,

which is a highest weight vector for lc. We compute:

(3.8) [(z

= -n\n-m+V)(n-l)(n+l)-\n-mYl det z(ad k^)n~l (ad Wzfc1 -

At this level, 77 = 1 is excluded. It is then quite obvious, e.g. because the ^
above is non-zero, that (3.8) cannot define an element in *Uftr) q*1&2-

Finally, S, ̂  (̂1, x, 0)—p=(—x—2, 0, 0). Thus, in case n=m and z=l,
(3.4) is the only quantity that needs to be considered and hence, in this case
we do get a quotient. Observe that due to the assumptions on the interval;
x>2.

Let us now continue our investigation with a look at z— x: If ^>j+l, we
have seen that there are no homomorphisms into M(FT), hence, evidently, there
are no quotients either; M(FT) is irreducible. If y=® there is a unique homo-
morphism given by Proposition 6. Since S^ Saz is the only possible sequence,
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it follows that there are no other quotients. Similarly for x=y+l.

Finally, in case z>x+l, there is a unique non- trivial homomorphism
M(FTi)-*M(FT), where TI is denned by Sp(A+p)—p. S^ Sp and S^ Sp are ruled
out as before. The remaining cases are S^ S#2 S$ and Sy S^ S&2 Sp. They can
be handled by counting multiplicities : Let p denote a highest weight vector in
M(FTi) (TI as above), let VT] denote the highest weight in FTi (vTi=z22 VT) and let
PQ denote the coefficient of p with respect to vTi. It then follows from Lemma 3
that if

(3.9) pQ = (ad fc;i)c(ad k~)6z22 det z^+higher order terms in det z

and if the image of p under the homomorphism M(FTi)-»M(FT) is zero, then

(3.10) (n+l-a)(m+l-b) = 0 .

Next, let r2 be the I-type defined by S^S^S^A+p^—p, and r3 the one defined
by SySaiSct2Sp(A+p)—p. Then, with m=x—y—l, r2 has multiplicity m+l in
M(FT) and multiplicity m+2 in Af(FTi), whereas r3 has multiplicity m+l in
M(FT), multiplicity 1 in M(FT2), and multiplicity m+l in M(FTi). (The multi-
plicity m+2 of r2 in Af(FTi) is a reflexion of the fact that the homomorphism
M(FT2)->M(FTi) maps into the kernel of Af(KTl)-*M(KT), as follows from
Theorem 7), It is then straightforward to see that S^ $a2Sp does not define a
quotient Moreover, unless x=y+l or y=Q, neither does SyS^S^Sp, which
again follows by counting multiplicities and by observing (via e.g. Lemma 3)
that all representation of type r3 in Af(FTi) are mapped into non-zero elements
of M(FT). In case x=y+l or y=0 we have a homomorphism and it is easy
to see that there can be no quotient besides the one thus obtained. Observe
that in these last cases a very interesting phenomenon occurs : The images of the
homomorphisms do not overlap. In fact; due to irreducibility the intersection
must be trivial.

In the following, H denotes homomorphism and Q denotes quotient (i.e.
not defined by a homomorphism). We can then state

Theorem 80 The subspace structure of the generalized Verma module of
highest weight (z,x,y)—p is given as follows. There are no multiplicities.

(3.11) z<-x : None

-x<z<-y-l

-y<z<y
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<x-l: Sai(H), S«(H), SK

z = x : None

x+l<z

ii) x=y+l:

— x: None

,T+1<Z

iii) y=0:

z<~x

z =

\<z<x-\

Z = X

None

SJH)

,SatSa2(Q) (x>2)
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