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of A[X] and A[X, X-1]

By

Tetsuya MASUDA*

Cyclic cohomology of A coefficient polynomial algebra A[X] and Laurent polynomial
algebra A[X,X~l] is studied by making use of a deformation of projective resolution and the
machinery of A. Connes. The spectral sequence E$, n>\ behaves the same as algebraic
^-theory.

§0. Iratroiiictioii

In this paper, we give a formula of cyclic cohomology of A[X] and A[X, X~1}
in terms of the cyclic cohomology of A for an unital algebra A over C.
There is a theorem of algebraic ^-theory that for regular and noether ring A,

(0.1)

(0.2) Kt(A[X,

(see Quillen [5], Grayson [3]). We prove, in this paper, analogous formulae hold.
Cyclic theory is supposed to be an algebraic homology or cohomology theory
for algebra A and the right object must be the limit of the spectral sequence
associated with the exact couple of A. Connes. We see A[X]=C[X]®A and
A[X9 X~*\=C[X9 X~l}®A. We can easily see that Hmn(C[X])&C, Hodd(C[X])
esO, and Hmn(C[X, X-l])^Hodd(C[X, X~l])^C. (More precisely, E(l[CX])
^C7, £J(C[Al)aO, n>l and Ei(C[X, X^^C for n=Q, I and
^0 for n>2.) We also have the following natural maps:

(0.3) Hi(A) -* Hn
x(A[XJ) , 77>0,

(0.4) HRA) -> Hl(A[X, X~1}) , /7

(05) HT\A)^
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where the maps (0.3) and (0.4) are given by the shuffle product with the 0-trace
on C[X] and C[X9 X~\ respectively (see [1], [2]). In this case, the product is
taken with 0-trace so that the shuffle product is the same as the cup product
of A. Connes. The 0-trace on C[X] is the canonical one given by the evalua-
tion of the constant term. The 0-trace on C[X, X'1] is just the same. The
maps (0.5) are given by the shuffle product (which is equal to l/n times the
cup product) with the 1-trace on C[X, X~l] given by

(C \ f \ \ ( 0 ^ \ ^"^ 7^1
/o^/^o ° 1 '

where ai= S a\.Xli^C[X,X~l]9 i=0,1. By using (0.4) and (0.5), we have the

natural maps

(0.7) HH(A)®H'r\A) -» HftA[X9 X~1]), n> 1 .

The same maps also induce maps of Hochschild cohomology. Our result is
the following:

Theorem. The maps induce isomorphisms of spectral sequences and
(1)

(2)

As an immediate corollary of this theorem, we can compute cyclic coho-

mology of rings like C[Xl9XTl, • • • , A^, AfjJ1, Yl9 • • • , YM]9 N,M<=N.

This research is supported by the Educational Project for Japanese Mathe-
matical Scientists. The author would like to express his thanks to Professor
H. Araki, Professor A. Connes, and Professor M. Takesaki for several discus-
sions. This work is carried out during participation in the Mathematical Sci-
ences Research Institute project "^-theory, index theory and operator algebras."

§1. Deformation of Projective Resolution

Let A be an unital algebra over C and let

(1.1) 0 «*- A 2- B <- Ml <- M2 <- -

be the canonical projective resolution with explicit homotopy maps si A-*B
and sn: Mn-*Mn+1, n=Q, 1,2, ••• (see [2]). We construct a projective resolution

of A[X9X~l]^A®C[Z]. The case A[X] will be discussed later. Actually the
case A[X]sszA®C[N] follows immediately from the discussion of ^[A^AT"1].

Let V[X9X]=C[X9X'1]®C[X9X'1] where C[X,X-1]=C[X9X-1]° is the
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opposite algebra o f C [ X , X ' 1 ] . We define d\ V[X,X]-*V[X9X] by the multiplica-

tion by (X® 1 — 1 ®X).

LI. We put

_ e ~ 4 4
(1.2) 0<-4 ^B^N^Nt*- •••

where ^=Cp; JiT1]® A 5 =4® 4° and

(1-3) #„ - F[X3 f]®M,0F[Z?
A

and the maps iB: Nn-^Nn_l are defined by

(1.4) i>, S) = ((1®^)

o>e V[X, X]®Mn, 5}^V[X,X]®Mn_l for 77>2 and b,: N^N^B is defined by

(1.5) 4to s)

Lemma 1020 T/ie complex (1.2) /s a projeclive resolution of A=A[X, X~}]

ii7//7 a homotopy map sn: Nn->Nn+l given by

(1.6) S;i(a>, 3) =

n^, for n>\ and

(1-7) 4(^)

, X] -> V[X, X] are given by

(1.8)
»

(1.9)

(1.10)

respectively, where

(1.11) <2>(i; 3 w) - Sum (/: m)
M-l

and the notation Sum (/: M)at is defined by 5] fyfor M>0, zero for M=0,
xjf

 /=0

-(£7-!+-+^) = - S a/ /or M<0.
/=-!

Proof. By (1.3), Nn, n>0, are algebraically free modules over i? =

F[X,i"]®5. By (1.4) and 3=E®e, bH^bn=0, n>2 and ^=0. So, we show
that the maps SK are homotopies of (1.2). For ;?> 1,
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(1.12) W&(e»,3)

- bn+1((SE®Sn) (CD), (-l)»+1(iS0® 1

- ((<SE®bn+1Sn) (o>)+(*So® 1) (a)),

(1.13) ^-AK a»

^ (co)

n, where we use Ed=Q and 50rf=l. Hence, by using

'll_16fI=l, we obtain ^M+A+5'B_A = L For 72=0,

(1.14) Mo(®) = W(^®^o) (®), ~(^o® 1) H)

(1.15)

. Hence we obtain 61oAS'0+Sro^=l by using b^^+Se^l an

Q.E.D.

We next construct quasi-isomorphisms between the canonical projective

resolution and the projective resolution (1.2). We see that A is a subalgebra

of A=C[X9X~l]®A9 naturally. Let

~ 3 ~ %i ~ b2 „
(1.16) 0 *- A <-B *i Afj ^ M2 <- —

be the canonical projective resolution of ^=Cr[^T, JST"1

Definition 1039 Let AB: F[JT3Z](g)M^->Mw, n>\ be the -linear maps de-

termined by

(1.17) hn(\B®al®-®an) = Ig®*1® — ® fl", a^'e^, j - 1, — , /^ ,

and let htt: V[X9X]®MH^-^Sfn9 n>l be the ^-linear maps determined by

(1.18)

We now define IT,,: Nn-*Mn, n> 1 by

(1.19) Hn(a>, 3>) = A,(»)+(-l)"«,(ffi), (a,,
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Lemma 1040 The following diagrams commute:

Mx_, <-*=- Mn

(L20) !*.-, > \HU, „>!.
I bn I

#„_! «— - Na

Proof. First, we compute for («,0)e TV,,. Let a> = \B®al®-~®cT. Then
by (1.17) and (1.18),

(1.21) /f>, 0) =

where weusels = lFig)lB, V= V[X, X] . It follows

(1.22) 5.ofl,(o>, 0) = ly^C

On the other hand,

y=i

Hence, the diagram (1.20) commutes for (o),

Next, we compute for (09c3i)^Nn. Let S^lgiga1® ••• ®a""1. Then by
(1.18) and (1.19),

(1.24) Hn(0,S>)

Suppose !</<7t— 2. Then

(1.25) 5/z(l5®a1®-

and for /=0, /=/? — !,
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(1.26) 5,(

y=i

(1.27) 5^(15 ® a1® — ® a*"1

i
y=i

By putting (1.25), (1.26), (1.27) into (1.24), we obtain

(1.28) BHoHn(09&)

y=i

(-!)* 2 s
/=i y=i

f 1V* v 1 ~—v—JJ 2_j 15
-1

y=i

fl/+1®-®tf|-2

i11-1®^

a^1®!^

It is seen that the second, seventh, eighth and thirteenth terms cancel and then
(1.28) is equal to:
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(1.29) (-l)n(

1=1 1=1

+ (-!)" 2 S (-
;=o y = / + i

1 = 0

On the other hand,

(1.30)

It follows that,

(1.31) hn^1

So, we obtain

(1.32) (-l)'-1X..l

S
/ = !

+(-i)"s s (-l
y= i / = y + i

1® X® ai+l® • - - ® a"
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By viewing S S = S S and S S = S S in (1.32), and by using (1.28),
y=i /=/+i j=i y=i y=i /=o /=o /=/ + !

(1.29), we obtain

(1.33) 5,0^(0, 5) - (-1)V® 1) (8)+(-l)"- Vi°(l®a.-i) (S) .

Hence3 we obtain the commutativity of the diagram (1.20) due to (1.4) and
(1.19). Q.E.D.

L5, Let kn:J&n-*V[X,X]®Mn, n>l be the ^-linear maps de-
termined by

(1.34) kn(

j= , • » , « ,

and let kn: Mn-^V[X,X]®Mn_l, n > I be the ^-linear maps determined by

(1.35) £,(

We now define Kn: Mn->Nn, n> 1 by

(1.36) £» = (A-», (-!)"*»),

Lemma 1.6. (1) fcj,-1o5w=(l®6,)ojk<l+(rf®l)ofc, ;Z>25

(2) «1=(

(3) kn-i°%n = -(l®bn_Jokn, n>2.

Proof. (1) Let co =
Then

(1.37) bn(a>) = (

So, by using (1.34),

(1.38) kn_^bn(co)

• ®an~l
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On the other hand, by (1.34),

(1.39) (1®^>£>)

= (1 ® X li+'"+ l")® (a1® I)® a2® - • • ®an

Hence, by (1.35) and d(0(X9X9m))=Xm®l—l®Xm
9 we obtain the assertion.

(2) Leto) = ls®aXn<=M1,a<=A,n(EZ. Then

(1.40)

(3) Let o) = lB®alXli® -•• ®anXl"^Mn, aj<=A, l^ZJ=\9—9n. Then
by (1.35) and (1.37)

(1.41) kn-Sbn(v) Q

= ®(X, X, /2) (

-®(X, X, 4

, X, /

- -<Z>(A; f, /

where we use ®(X,XJ1+l2)=(Xli®l)®(X,XJ2)+(l®Xl2)®(X,XJ1) for the
second equality. Hence, in view of (1.35), we obtain the formula. Q.E.B,

Corollary 1.7. The following diagrams commute:

bn „

(1.42)
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We want the fact that the resolution (1.2) is a retraction of the canonical
projective resolution. We need a little correction to construct a retraction Kn

ofHn9n>l.

Definition 1.8. Let Cn:Nn-*Nni n>\, be the JMinear maps determined by

(1.43) Cn(<o, 3) = (a>-

(1.44) Wn(S>)

where 55 = 13®^® •••®6w-1e7[A r , r ]®MJI_1.

1.9.

Proof. Both sides don't include any operations involving Z, so we omit
1 ® X in (1 .44). Then the proof is just the same as that of the last half of Lemma
1.4 replacing X by 1. Q.E.D.

Corollary 1.10. The following diagrams commute:
A

#.-1 <-^~ ^»
5> IcI ^H-l f

Proof. The case w> 1 is by Lemma 1.9 and by the definitions of Cn and bn.
The case n=l follows from (I®*1)2

r
1=0. Q.E.D.

Proposition 1.11. We put Kn=CnKn : Mn-*Nn, n>l.
(1) The following diagrams commute:

(1.46) ^ „ w^
v *' "^

(2) Kn°Hn = l on Nn, n>l.

Proof. (1) follows from Corollaries 1.7 and 1.10.
(2) Let G) = l5
Then

(1.47) Jiy

+(-!)" S (-ly
Hence,

(1.48)

S
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So? we obtain Kn°Hn=\. Q.E.D.

Remark 1.12. By Lemma 1.4, and Proposition 1.11 together with the
explicit homotopy §J9 j > 1 of the canonical project! ve resolution, we also obtain
homotopy maps of our resolution (1.2). However, it doesn't coincide with the
homotopy maps (1.6) (homotopy map is not unique).

By making use of the qiiasi-isomorphisms Hn and Kn9 n>l, we compute
E?(A), in this section. We identify A* with JJ_A* (algebraic dual), where

z
A=C[X,X~l]®A. By using the similar identification^ also using the quasi-
isomorphisms Hn and Ka9 //>!, we obtain the following diagrams:

5*
(2.1) Homc(4,, C)

11 b*
W5 A*) — ^

R R
M,? A*)] H [Hom5(MB+1,

0 n [Hom5(Mn_l9 X*)] Z e n [Hom^M., A*)]
z zK fr* K

n [HomcG4a, C)] -m+ H [Homc(X.+l, C)]

We identify an element (l>^Il[Homc(An,C)]®Jl[Homc(An^€)] by a pair
z z

of Z-indexed sequences 0=(0°,*1), where ^^eHom^C), 0i,eHom(^ll.1,C
r),

We will write de Rham differential in terms of this expression.

Lemma 2.1. (1) H*(A9 A*)^11[H*(A9 A*)].

By (1.4), let 6*+i(#°,01)=(9°,91)- Then, 90»=*Si°6.+i, 9«=*i.°&ii
+ (— l)*(0i+i— 0?«+i)=0i,°*». Hence we obtain the assertion. Q.E.D.

We now compute the de Rham differential of the exact couple obtained by
the Hochschild and the cyclic cohomology of A9 in terms of the splitting given
by Lemma 2.1. For the purpose of reducing complicated formulas, we pre-
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pare some lemmas.

Lemma 2,2. Let<f><=Zn+1(A5A*)dHomc(An+l,C) and define <p^Homc(An,

by

(2.2) 9(6°, b\ .», 6") = ± (-l)W, A1, -, i', 1, 6/+1, -, bn) ,
1 = 0

bj&A, 0<j<n. Then <p is a Hochschild coboundary.

Proof. For 0</<«, we have

(2.3) ba+2(b°,b\-,bl,l,l,b'+\-,bn)

= 23 (- W, b\ -., #*>•", ..-, 6*, 1, 1, 6'« •-, b")

b°, b\ -, bl, 1, Z>m, •», bn)

S (-l)y(^°, 61, -, 6', 1, 1, &'+1, -, ^J'+1, -, 6")y=i+ i
+(-l)H+\b*b°, b\ -, bl, 1, 1, ft'+1, ••• , fe"-1) .

where ba+2 : ̂ ^^-^-^a+i is the Hochschild boundary operator, see Connes [2] or
Loday-Quillen [4]. Hence, by using <t>°bn+2=Q, we obtain

(2.4) - i] (-1)'#(4°, •••, 6', 1, *'+1, -, 6")

= 23 23 (-1)^°, -, '̂+1, -, b1, l, l, *'+1, .... b»)
1 = 1 j=o

+ 23 23 (-l)W, •», 6', l, l, bl+1, -, VV+\ -, b")
»-l!s<
/=o

n-l I= s s (—iy'0(6°, •*•> w>y+i, —, ^+1
91, i, bi+2, —, 5K)

/=o y=o

+ 23 23 (-iy#(6°, -, b', 1,1, Z)'+1,.», W+l, -, *")

= 23C3 (-
/=o y=o

+ 23 (-

6°, b1, • • - , i', 1, 1, bl+\ .», 6"-1)
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+ 2 (-

/=o

where we put

(2.5)

J<H, and !</</?. Q.E.D.

CoroMary 2.3. The map Cn: Nn-^>Nn> n>\ defined by Definition 1.8 induces
an identity map of the Hochschild cohomology H[H*(A9A*)]® IL[H*-\A,A*)].

z z
Furthermore, (he maps Kn and Kn, n>l induce the same isomorphisms of
Hochschild cohomology.

Lemma 2 A. Let <f> e Zn(A, A*) C Homc(An, €) and define <p e Romc(An,C)
by

(2.6) 9(

a* ^A9 0< 7 </?. 77/ew 9 75 a Hochschild coboundary.

Proof. We have

(2.7) ZvH(a°5 ̂  -, a^3 1) = S
y=o

Hence by using 0oZ?M+1=0, we obtain

(2.8) S(~iy#(fl°, -, «JV+1, -, aK
? 1) - 0 .

; = o

So, if we put 0(a°, •",a""1)=*(a°. — .a"'1, 1), then

(2.9) i°bn(<f, -, a") = 2 (- lX*(fl°, • • • , ff'fl'+l, - , «M)

+ (-l)K0(«V,a1, -,fl"-l,l)

= (-l)Vfl°, -,«*). Q.E.D.

2.5. Lei M=

H"(A, A*\n> 0. T/zew D.+1([p]) =[0] is induced by

(2.10) 0i = ^i

(2.11) #i=?'J,o

vv/iere 5B : ^4B-»^,J+1 is the map defined by
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(2.12) Bn((f, »., an) = ± (-ir

+ s (-
j=0

which induces the de Rham differential of the Hochschild cohomology of A.

Proof. By (1.17), (1.18) and (1.19), the isomorphism H*(A,A*)^R[H*(A9z
A*)]®R[H*-\A9A*)] is induced by

z

(2.13) *i(«°, • • • , a") =

(2.14) 0J,(A», -.., Z^"-1) = (-1)" S (-l)'
;=o

where [56] eJ?"^^*), and by (1.34), (1.35), (1.36) and Corollary 2.3, the iso-
morphism of opposite direction is induced by

(2.15)

where ([0°], [<t,1])<=H[Hn(A,A*)]@tt[H''-\A,A*)], n>\.
Z Z

Let A,+1([9>])=[0]. Then by (2.12), (2.13) and (2.15), we obtain

(2.16) #'u(<f, -, a") = ±(-l)"y+1Vi(fl"~y+1, -, «"'•', 1)

+ S(-i)"Vl(i,a"y+1,-,fl"0
J = 0

+(-l)8mpL_1(aV, a1, -, a-1, 1)

+(-l)8mpL-1(a
0, -, a"), (a°, -, c8)e^ .

The third term is a coboundary by Lemma 2.4, hence we obtain (2.10).
Next, by (2.12), (2.14) and (2.15), we obtain

(2.17) ^(b°, -..,6»-1)

+(-!)' S

7 = 0

where the first term on the right hand side is the contribution coming from
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the first term on the right hand side of (2.15), which is coboundary by Lemma

2.2. The second and third terms are the contribution of the b°Xm part in (2.14)
to the second term on the right hand side of (2.15), which are again coboundary,

by Lemmas 2.2 and 2.4 (for example, by putting W(b\ b\ — , bn)=yl
m(bnb\ b\

— , bn"\ 1)). The fourth and fifth terms of the right hand side of (2.17) are the

contribution of X between bl and bl+l in (2.14) to the second term on the right

hand side of (2.15) which are now equal to ̂ B^b0, — ,6*"1). Q.E.D.

Here, we mention that in all the discussions so far, we can replace C[X,

X~l] by C[X] and Z by JV={0,1,2,---}. Hence, we can also discuss the

case C[X]®A by using the computations which we have already done.

First, we discuss the case A=C[X9X~*\®A. By (2.10) and (2.11) of Lem-

ma 2.5, we obtain the following complex computing Ef(A) as follows:

772=0 77z = l 7;? =2

Hnll®Hn

where /f*--//*U,/4*) and /),: H"->H"-L is the de Rham diiTercni ial . The c:i^
^^CtX]®^ corresponds to the right half of the above diagram. In view of

this diagram, we immediately obtain the following.

Proposition 2.6. (1) Let I=C[X,X~l]®A. ThenEf(£)s*E:f(A)®E*-1(A).
(2) Let A=C[X]®A. Then Ef (I)^E? (A).

§3o of Spectral Sequence

In this section, we prove that for A= C[X,X~l]®A, the spectral sequence for

A is a two direct sum of the spectral sequence of A with one of which degree

shifted by — 1.
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By (2. 1 5) we have two families of Hochschild cohomology maps W": H"(A,A*)
-*H\A,A*), n>0 and V: H"-\A,A*)-»HK(A,A*), n>\ induced by

(3. i) r-(0) (ef, -,ax)=i +s n__ *(«?,, <, • • « , «u , M e #%4, ^*) ,
(3.2) y "(«s) («°s ..., a") = (-!)' S /xtfK.aJ,, a?,, - , a?,), [0] e fl-1^, 4*) ,

/Q + — + /8-0

where a' = 2 a/.^eC'KX-1]®^-4 7=0, — ,w.
/yez

We also have two families of cyclic cohomology maps Wn
K\ HH(A)-+H\(A),

n>® and Wl: Hr\A)^Hl(I\ n>\ where ?FJ=y11 and Wl is induced by

(3.3) 3^(0) (fl0,-,**)

72 /0 + -+/« = o,-

where «y= S aiJf'jGA, j=Q, — ,/j.

Remark 3.1. The case A=C[X]®A Is very simple. We only have Wn and

with the commutative diagram
H*(A,A*)

(3.4)

H*(A)

Note that in this case, the expression of wn=Wn
x is quite simple. There is

only one summand in the right hand side of (3.1) which is the term with /0=/i=
...=In=Q. Further, by Proposition 2.6(2), this morphism gives Isomorphisms
on Ef . So3 by diagram chase using the five lemmas, we can see that this mor-
phism actually induces an isomorphism of spectral sequence so that the limits
coincide (see Remark 3.11).

We now go back to the case A=C[X,X~1]®A. By (3.1), we can see that
the diagram (3.4) still commutes for the case A=C[X,X~1]®A. Next, we show
that the diagrams:
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commute.

Lemma 3,2, Let $ e Zn~\A, A*). We put

(3.6) ^u(a\ -.., an) =
/o+-

1 <fc<77, wAere ay - S a/ .ZO e A 17z£/2 ^+1 -^ e 5"(^T, JT*), 1 <k< n-1.
/^-e^

Proo/. We put

(3.7) %(a°,-,a''-1)= S 40«, "S «'C\) •
'o-1-""1-'!;-!"0

Then

(3.8) ^oi.CaO, . . . ,«•)

0, • • •, atpfa, -, ak,k, -, «?„)

23 {4+i 23
/o '--+'»=» /="

Corollary 3030 7%e diagrams (3.5) commute,

Proof, We show that (3.2) and (3.3) are Hochschild equivalent. By
using (3.6),

(3.9) S s1(/H-1+'°° + /J (

, a?,, •",

By Lemma 3.25 this is Hochschild equivalent to n4>i((f9 "',&") and we also have

(3.10) 0^, - • • , an) = 2 /^(o?^, a?2? • • • , ̂ ) .
/0+»-+/» = 0 U ! 4

Hence, we obtain the assertion. Q.E.D.

The next step Is to show that the diagrams
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H*(A,A*) - > H"+\A, A*)

\B \B ,
I %•* \

commute. (It is easy to see that H\A, A*)-*H\A, A*)->Hl(A) is a zero map.)

Let <t><=Zx(A,A*) and put Wn+l(^=¥. By (2.12) and (3.2), we obtain

(3.12) B(¥)(a°, -X)

= (-i)«o+i>(- ir;o+ s nj.-i

+ £ (-i)"(-i)'+l s /.-y
/ — 0 /o"*""""1"^"^

Lemma 3.4. Let <f><=Z\A,A*') and put

(3.13) ?/a°, -X)

= {£ (-l)'/y+i#(«?0,- - + / K = 0 i=0

1 < j < n - 1 . Then ?j°Na e ££(!).

Proo/. We put

(3.14) Vfiff, -,a«-1) = 2] /y0(«?0,-, <:!,,!).
'o+-+'»-i=°

Then ^oJV.-iSCr1^ so that -?JoNn-1°b.=rjoBnoN.eZl(J) due to -^^
obn=1}nNn (see Connes [2] or Loday-Quillen [4]). By (3.14) and the definition
of 5B (see Loday-Quillen [4]), we obtain

(3.15) ^o5.(^...,a")

= S {S (-l)'/,

i = y + i
By using 0eEZ%4J^4*)? we have

(3.16) S (-1)V«, -, «}..«],++
1
1, •», «?„, 1) = 0 .

Hence putting (3.16) into the right hand side of (3.15), we obtain Vj°bn=<pj and
obtain the assertion. Q.E.D.

By Lemma 3.4, we obtain (PJ-| \-<pK_^)Nn<E:Bl(A). Now we compute
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(3.17) (9l+...+9n_j(<f ,...,<?)

+ _
= °- S /!#(«, -,^,1),

/o+-+/»=°

where we use (3.16). We can easily see that the first sum of the right hand
side of (3.12) is equal to — (9>i+-"+9V-i)°#,, by using (3.17). Hence we can
omit the first sum of the right hand side of (3.12) for the proof of the com-
mutativity of (3.11).
We next compute Wl(B(^)}^Zl(A). We put

(3.18) (^(o0, -, a""1) = sl)°'~1)a+1)^~', -, fl"-''"1, 1) ,
j = 0

(3.19) 02(a°, -, a"'1} = SH-l)'"""^, a"'', -, fl"'''1) -
y=o

By (2.12), 5(0)=(51+<P2. On the other hand, if we put

(3.20) T?Xfl°,...,fl")

= S S (-l)'/y0«, -, flfXiVi. -, <•> -> «?.. 1) .
- J

Lemma 3.5. nSr

Proof. By (3.3)

(3.21) ny;(fl>0(fl°,

= (-1)"
lQ + ... + ln = Q i = Q

In the proof of this lemma, we write a1 instead of a\. to avoid the complicated
formula. We have no way of confusion. By (3.18),

(3.22) ^(fl0,...,

y=o

- S (-l)(

y = »-«

n-1 n-i-1 n-ln-j-l n-1 n -I »-i ff-i

Since S S^SS and S S = S S . w e obtain
/=o y=o y=o 1 = 0 1 = 0 y=»- i y = i » = »-y

(3.23) S (li+1+...+lu) (-IJQ^cP, -, fl'fll+1, •-, fl")
•=0 «-i .-/-I

= S S (/,-+!+ — + /„)(—l) f (—l) C :

y=o 1=0
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\ -.., a", <f, •-,

S S (
1=1 i = *-j

''-j, -, a'V+1, -, a", a°, -, a"-'-1,

23 S ft

where we replace 7 by j— 1 in the second double sum to obtain the second

quality. By using $^Zn(A,A*)y we obtain

(3.24) (-l)"-''-1^"-'-*-1, -, a, a\ -, <f-*-lcf-*9 1)

- i (-l)w+z'0(aB^'+1
3 — , a?V+1, — , 0", 0°, — , a"-'', 1)

Hence (3.23) is equal to

(3.25) ": i(-i)(

y=2 i = ii-y

-, a", fl°, -, a'"',

which we put S F^d*,"',^)- For /=0, we get
=y=o

(3.26) F,(<f,-,an)

and hence, in view of (3.20) and (3.21),

(3.27) (-1)" S F0(fl°, •», aK) = -(ft+
/0+-+/»=o

So? the remaining part of the proof is to show
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(3.28) 2 FJ+1(tf, -X)= S (-lyF/a'.oV",*"1).
/0+-+/«=o •••

For generic y (i.e. 2<j<n— 1)

(3.29) />», ...,a-)

->+1, • • • , a", a0, -, a'V+1, -, a1"', 1)

-l)('-1)M+1)(/,_,+ -"+/>(a"-'+1, -,aV, -,

2 (-D<-1»(-l)'+1(/.-y+-+/*)

(a"-'+1, —,a'ai+1, —,a,cf, —,a"-i, 1) .

So, we obtain

(3.30) (-l)"fXflF,fl0,-,a-1)

, a1-1, a", a°, -, a^V, -, fl"'^1, 1)

)(/0+...+/._y_2)

,aV, ~;<f-'-\ 1)

+ (-!)" 2 (-ly-^C-iy

By replacing z— 1 by i, the first term is equal to

(3.31) ( _ i ) - " ' ( _ l ) (

By using l0-{ ----- f-/«=0, the second term is equal to

(3.32) (_i)-'(_i)C-i>w+i)(/,_y_1+. ..+/„)

The sum of the third and the fourth terms is

(3.33) (_l)^2+i(-l)
(-lw(-l)'+1(/.-y-i+-+/*-i)

(ff->, •-, «;-V, -, a", 0°, •», o--^1, 1)
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where we replace /—I by i for the equality. So, by looking at (3.31), (3.32),
(3.33) and (3.29), we obtain (3.28) for generic j. The non-generic j is rather
easy to check. Q.E.D0

To avoid the complexity of our computation, we use Corollary 3.3 which
guarantees that ¥n+1((p) and ^x+1(^) are Hochschild equivalent. Since B is a
cohomology map, B(Wn+\<f)) and B(Wl+l(<t>)) are cyclic equivalent, i.e. the differ-
ence belongs to Bl(A). We now compute £(^1+1(0))- Let ¥=¥l+1(</>) and we
put

(3.34) Br(W) (a°, -, an) = ± (-\
y=o

(3.35) Bf?) (a°, -.., an) = (-1
y=o

By (2.12), B(W)=Br(W)-\-Bl(W). Since

(3.36)

we obtain

(3.37)

by looking at the proof of Lemma 3.5 (especially (3.26) and (3.27)). Hence,
it is a cyclic coboundary.

We next compute Bt(¥). By (3.3), we get

(3.38) n

72+1

Hence,

(3.39) rrW (1, fl""y+1, -, a",

23
«=o 1 = 1

- - 9 a ,
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+ 2 (/,-,+•••+/.-y)(-1)1
i=y+i

X0(l, a"~J+\ •", a", a°, -, cf-^j-1, ••>, a"-1)} ,

where we use simplified notation as before. By using <t>e.Z"(A,A*}, we obtain

(3.40) (-1X0(1, a"''*1, •", tftf, -, tf-i)

-2 (-!)'*(!, a"->+1, -, a'-i+la'-3+i+l, -, a, ef, • • - ,
» = 1

— S (—iy*(l, a*";'+1, — 9 a", fl°, •-, al'j~lal~j, —,a*~

-(-l)"+10(a"-y, • • • , a, a0, -, o"->) .

Hence, by (3.39), B,(¥)((f,-~,an) is equal to

(3.41) _1_ (-!)«+' 2 {i]2J(_ir-(4-,+
W+l ;0+--r/, = 0/ = 2 i = l

X0(l, a"-J'+1, • • • , a»-i+ia»-i-n

cf-i-^-i, •••. a"-')}

S {2(-l)"y(/o+-+/,-y)=

The second sum of the summand of 2] of the second term of (3.41) is com-
. , ,, „ if,+-+i,,=f>

puted as follows:

(3.42) (~1)"+1 2 (~l)"y(/o+ -+/.-/)*(«"••', -> «", a", -, «"";'"1)

= (-l)°'ll-"+1Wfl0,-,fl")

+(-l)"+12(-l)"U+-+/.-y)#(fl"-y, -, «", a0,-, a-''1)
J = 0

,0")

where we replace j+1 by 7 to obtain the second equality. By using 5] (— l)w;

ff
 J'=0

.(/o+...4./n^.)=2(--l)^(/o-t---' + /n-j) dueto /o+ — + ^=0, the summand of

S of the second term of (3.41) is equal to
iQ+...+in=o

(3.43) - ± (-l)"'ln_J+l<l>(a»-'+\ -,an,cf,-, a"-')-l^((f, -,a")
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= -23 (-l)"'/.-,+i*(a"-'+l, -, fl-0 -

So, the second term of (3.41) is equal to

(3.44) -J_ (_!)••» S S(-l)"y/.-/+i*(«-y+1,-,fl"-0,
W+l /0+- + /»=o y=o

1 ~
which is cyclic cohomologous to - B(¥)(a°, — ,a*) due to (3.12) and (3.17).

n+l
In view of (3.41), we define B^Zn

x(A) by

(3.45) B(a\~*,an)

S (S S(-l)"y(/.-y+i+i+-+/J (-1)''

X0(l, a"

+ 23 S (-ly=o i =y+i

Lemma 3060 H w cyclic cohomologous to n

Proof. Due to the discussion after the proof of Lemma 3.5, B(¥) is cyclic

cohomologous to B(*F) which is again cyclic cohomologous to Bt(W) by (3.37).

By (3.41), BI(¥)= - s+(3.44), which is cyclic cohomologous to
n+l n+l

n+l
B(W) as we have already discussed. So, combining all these matters,

1 -- )B(W) is cyclic cohomologous to - 3. Multiplying (n+l) on both
n+1/ n+l

sides, we obtain the assertion. Q.E.D.

Lemma 3.7. n¥%(<f>2)=3.

Proof, Replacing n—j+l by /, we obtain

(3.46) ± S (-l)"yf/,-y+,+i+ - +/„) (-1)''

= 23 23 (-l
'

Using /<>+ ••• + /„=() and replace i—j—1 by /, we obtain

(3.47) 23 23 (-l)"y(/o+ -+/,•-;-:) (-1)'+1

y=o i=/+i
X0(l, o-^+1, -, a", a", ••- , c;-J'-V,
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21 23 (-i)wy(/,--y
y=o ,-=y-n

X0(l, a"-''+1, — , a", a°, — , a1'-''-1*1', — , a*-')

By putting (3.46) and (3.47), using 23 S = 23* 23 and S "s" = S
;- = 2 i = »-j- + i f = i y = »-i + i y=o 1=0 1=0

into the right hand side of (3.45), we obtain

(3.48) S(<P,...9<f)

= (-i)"+l s si1 s (-ir'+"+%+i+-+/j(-iy/0 — -*- /M=O 1 = 1 y=«- j - r i

X0(l, a-^1, -, flV+S -, a", fl°, -, a'-')

" 1

, -, a, a, -,

Next, we compute n¥^((D2\ By (3.19),

(3.49) <Z)2(a°;...,flV
+1, -,aB)

" ' ' -+1, • • - , a " , a ° ,

l, a""'', •", «'«'

y=o „
+ S (-1)(-

where we replace j+ 1 by j in the second sum to obtain the second equality.
Hence, by (3.3),

(3.50) nVW>J(<f,...,<?)

= (-i)" s s (/,-+!+-+/.) (-iy<z>2(fl°, -,av+i, -,^)
H -1 n-i-l

2 2 (-

which coincides with (3 48). Q.E.D.

Corollary 3.8e The diagrams (3.11) commute.



390 TETSUYA MASUDA

Proof. Let <l>s=Zn(A,A*). By Lemma 3.6, B(Wn+\<t>))=B(W) is cyclic

cohomologous to — B which is equal to Wx((D^ by Lemma 3.7. By Lemma
n

3.5, F£(02) is cyclic cohomologous to ^(01)+¥l(02)=¥^(0)=¥n^B^)). This
proves the commutativity of the diagram. Q.E.D.

Lemma 3.9e The diagrams

y-i-' I5"'

commute, where S is assumed to be given by the shuffle product by the generator
aE^HKC) (which differs from the S-operator using cup product by constant
multiple).

Proof. This is a consequence of the associativity of shuffle product (equiv-
alently, cup product) and graded commutativity of the products (note that
the degree of the generator a of Hl(C) is two). Q.E.D.

By the commutative diagrams (3 4), (3.5), (3.11) and Lemma 3.9, we ob-
tain the following commutative diagram (map between exact couples):

H(A, A*)

(3.52) H*(A, A*)@H*~\A, A*) ^ H*(A) ~ > Hf(A)

Vf®Vf
V*@V*

Theorem 3.10, The maps (¥*&&*, *®^*) of exact couples induces iso-

morphisms of spectral sequences

(3.53) E*(A)®E*-\A) ^ E*(A[X, X~1]) , n> 1 ,

where we put E~\A)=^.

Remark 3.11. The same, but much simpler, mechanisms works to prove
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that the maps OF*,3P*) of exact couples induces isomorphisms of spectral se-
quences.

(3.54) E*(A)-E*(A[XD, n>i .

Proof of Theorem 3.10. By Proposition 2.6, the maps ?F*0 V*: Hn(A, A*)
@Hn~l(A,A^)-^Hn(A,A) are quasi-isomorphisms for the computation of de
Rham terms. Further, through this quasi-isomorphism, the de Rham differential
splits into each component by Lemma 2.5. So, the maps of exact couples

induce maps of ^-terms:

D?(A)

n®n

f^ > D?(A)®D?~\A)

By using the fact that the maps Ef(A)@Ef ~\A)~^Ef(A) are isomorphisms, we

can easily conclude that the maps Df(A)@Df ~1(A)~^Df(A) are isomorphisms
by the repeated use of 5-lemmas from lower degree. Actually, the starting
of the exact sequence is as follows :

(3.56) .--> E\(A) -- > Dl(A) - -» D\(A) - > E\(A)

\i n t t*

n
D\(A)

0

D\(A) -- > D\(A) -^-> E\(A) - > D\(£) = 0

t M M t
)->D?(^) - 0
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0 - > D\(A) -^-> El(A) -* 0

n \l
0 -^ Dl(A)@D\(A) — > El(A) -* 0

R
D\(A)

From the above diagram, we immediately obtain that the maps D\ (A)-*D\(A)

and Dl(A)@Dl(A)->D\(A} are isomorphisms. By using these, 5-lemma ap-
plies to show that the map D\(A)@Dl(A)-^Di(A) is an isomorphism. The
repeated use of this type of argument implies that the induced maps Df(A)
@D¥~l(A)-*Df(A) are isomorphisms. So the maps of the exact couples actually
induce isomorphisms of higher derived couples and this proves the theorem.

Q.E.D.

§40 An Example

In this section, we give explicit generators of cyclic cohomology of A =

C[X^ IT1, • • • , XN, XN\ Yl9—9 YM], N,M<=N. By using our theorem (Theorem
3.10+Remark 3.11), we obtain E*(A)£zC(* ) n> 1, where we used the basic fact
that E°n(C)^C, En(C)^Q, k> 1 for n> 1. Hence we can easily see that He™n(A)

^H°AA(A)s^C2Jir~1. Let a°, — ,fl*e.4 be of the following form:

We put

(4.2)

S

where S means 2] , l<q<N, and ̂  A -8 Ae^. is viewed as an element
/o+- + /J = 0

of A*^ under the standing assumption that el9-",eN is the fixed basis of CN.
Then, it is seen that <f>ep A...A«^ ^Zk

x(A) and furthermore, they generate Ef. We
will omit the proof in detail. But we shall give a rough sketch. Getting rid of

YI,'", YM is easy. Only the evaluation of degree zero coefficient survive. For
the part Xl9 •••9XN, we use induction. First we assume that the formula holds

for X29 •••9XN9 and use Wf, ¥f; we obtain the desired generator. Actually, the

maps ¥f leave the degree of the cyclic cocycle as before, and the maps Wf raise
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the degree by one.
There is another way of looking at these generators. On the algebra, there

is a canonical normalized trace T given by the evaluation of degree zero coef-
ficient. We also have derivations #1, • • • ,£# corresponding to the variables
Xl9"',XN which are given by

(4.3)

l<j<N. Then it is seen that the trace is ^-invariant for l<j<N and we
can construct 2^-numbers of cyclic cocycles. These cyclic cocycles differ from

(— iy(4.2) by constant multiple ^ — ^-.
k\

The first point is that all our discussion works well not only for C but
also for any field k of characteristic zero.

The next point is that all our discussion works well also for the topological
case. It means that if A is a unital topological ring, then our discussion works

if we replace A[X] by <S(N)®A and A[X,X~~l] by <S(Z)®A. In this case, our

formula for S(Z)®A is interpreted as a special case of Kiinneth formula with
one of the variables C°°( T1) and our example in Section 4 gives the homology
o(TN.
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Note added: While this paper was being typed, R. Staffeldt let the author know of the
preprint

Kassel, C, Cyclic homology, comodules and mixed complexes, in which a Kiinneth type
exact sequence for cyclic homology is proved and the formulas which are analogous to ours
are proved. The author is grateful to R. Staffeldt for his notice.

The author also received the preprint
Burghelea, D., Kiinneth formula in cyclic homology, in which the same kind of result

as above was obtained.




