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Abstract

An operator wl®w2 is said to be ^-Radonifying if it maps every cylindrical measure of
type p, defined on the tensor product E®F of two Banach spaces, into a Radon probability
cf order p on the completion of some normed product (?®#/f. In this paper we prove that
w>i®w>2 is p-Radonifying, l</?<°o5 if and only if it is ^-summing.

§ 1. Introduction

The Radonification problem for cylindrical measures on Banach spaces
has been studied by A. Badrikian, S. Chevet, B. Maurey, Y. OkazakI5

L. Schwartz and others, cf. e.g. [1], [11], [12] and in the references stated there.
In the Schwartz's approach to this problem one try to find all operators w:
E-*G which map every cylindrical measure on E of type p into a Radon prob-
ability on G of order p. Such operators are called />-Radonifying. The main
result is: for l</?<oo, w is p-Radonifying if and only if it is ^-summing.
For 0</><1, the situation is more complex.

B. Maurey considered in [5] a class of F-cylindrical probabilities on E®F,
which lies somewhere between cylindrical measures on E®F and probabilities
on some completion of this space (nearer to the first ones). He tries to find
(p, F)-Radonifying operators W: E®F-^G®F of the form W=w®lF, which
map every F-cylindrical probability on E®F of type (p, F) into a Radon prob-
ability on some completion G®^ of the space G(g)F. It turns out that (/?, F)-
summing operators are (p, F)-Radonifying for l<p<o°, under some addi-
tional assumptions on the norm a and on the space F (cf. [5], Expose II, Theo-
reme 2). As an example, it is shown that if w: E-*G is ̂ -summing, then w® 1F:
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E®F-^>G®EF is (j?? F)-summing. Also, if w is ^-left-nuclear, then w®lF:
E®F-*G®dpF is (p9 F)-summing (cf. [2], Proposition 5 and [3], Theorem 3).

In this paper we give an analogous result for the class of cylindrical mea-
sures on E®F of type p. It will be shown that ^-summing operators of the
form Wi®w2 are j?-Radonifying, for l<p<oo.

Let l</7<oo. By classical methods it is easy to obtain that an operator
of the form lE®w: E®F-*E®H, where w: F->H is /?-summing, maps every
cylindrical measure on E®F of type p into an £f»cylindrical probability on
E®H of type (p, H). Thus, Maurey's result shows that the tensor product
Wi® w2 of two /7-summing operators is ^-Radonifying, from E®F into G®SH,
under additional assumption of reflexivity of the space H.

The direct approach which we use in this paper gives something more.
Namely, [2] Theorem 3 shows that the product Wi®w2 of two ^-summing
operators is ̂ -summing from E®F into G®^H9 whenever a satisfies a </^ or
a^gp\- Thus, Theorem 6.3 states that such operator is /?-Radonifying from
E®F in G®aH, a^/dp or «<g/\, without assumption on the reflexivity of
the space H.

§2 is preparatory. In §3 we define cylindrical measures on E®F and
establish the connection between them and probabilities on some completion
E®JF* Other necessary notions (type, convergence, Fourier transform, image
of cylindrical measure by an operator of the form Wi®w2, etc.) are introduced
in §4 and §5. The main theorem, announced before, is proved in §6.

§28 Notation and some Preliminary Results

Throughout this paper E, F, G, H will denote real Banach spaces, Ef,
F', Gf, H' their topological duals. £(E, G) stands for the space of all con-
tinuous linear operators: E-+G. By [u, x']^F we denote the action of an
element u^E®F on vectors in Er, The element u^E®F induces a finite-
dimensional linear operator $: E'-*F by &x':=[u, x']. <% °> will always de-
note the canonical pairing, in various settings, e.g., for x'^E',y'^Ff and

u^E®F it holds <ii, *'®/>=<[*, xf], y'>=<fix'9 y'>.
Let {Xj} be a sequence in E. By NP(XJ) we denote the number, finite

or not

SUP \

and by
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MP(XJ): = sup {Np«xj9 *'>), ||*'||<1}

For {Uj} dE®F (and similarly for {vy} dX(E9 GJ) we denote

QP(UJ): = sup

S,(ny): - sup

Linear operators w: E-*G9 W: E®F->G for which it exists a constant
OO such that

MP(XJ) (2.1)

P(UJ) (2.2)

t(uf) (2.3)

for all finite sets {*1? • • - , xn} in £" or {ul9 •••,«„} in £®F3 are called ^-summing,
(/?, F)-summing and ^-summing (respectively). The infimum of all constants
C in (2.1)-(2.3) is denoted by TCP(W), nptF(W)9 7tp(W), respectively.

It is known that ^-summing operators: E®F-^G are (/?, F)-summing?

and also a /7-summing from E®aF into G, for arbitrary reasonable norm a
(cf. [2], Proposition 1) and hence continuous from £"®eFinto G, with the norm

\\W\\<?tt(W) (2.4)

(e denotes the least reasonable crossnorm).

§38 Cylindrical Measures on E®F and on E®^

By FC(E} we denote the family of all closed subspaces in E of the finite
codimension. The canonical projection E-*E/N, N^FC(E) is denoted by
TCN, the projections E/Nl-^E/N2, Nid.N2 by nN2Ni. A cylindrical measure
on E is a projective system {^ TT^, N^FC(E)} of Radon probabilities on
finite-dimensional quotients of the space E; for TV^cTVg it holds ZN2=KN2Nl(ZNl).
It is well known that such system defines a finitely additive measure /I on the
algebra of cylindrical sets in E9 by

where B=XN\BN~), and BN is a Borel set in E/N. We denote
For convenience, we denote TC NIS>M : = TCN (g) KM

N(EFC(E), M^FC(F), and by w

The following is obvious :
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Proposition 3010 If NidN2, MldM2 are closed subspaces of the finite
codimensiou, then the following diagram commutes:

(E/N2)®(F/M2)

Definitloiio A cylindrical measure 1 on £"®F is aprojective system
I N^FC(E), M^FC(F)} of the Radon probabilities on finite dimensional

spaces (E/N)®(F/M).

<3ttc(E®F) stands for the space of all cylindrical measures on E®F.
The cylindrical algebra on a vector space X depends only on the dual

pair (X, X'\ and lemains the same if the original topology on X is replaced by
another which gives the same dual. More generally., if (X, Y) is a pair of
vector spaces in duality, such that Y separates points in X, then the cylindrical
algebra on X depends only on the space Y.

(E®F, E'®Fr) is a pair of vector spaces in separated duality. Hence,
we can define the cylindrical algebra on E®F not introducing any topology

on E® F, A cylinder is a set of the form

C = {u^E®F: «ii, u^<J<u^B} (3.2)

where n<=N, u{, • • - , u'n^E'®F' and B is a set in the Borel algebra
It is not quite obvious that cylindrical measure can measure the cylinders !

Namely, sets C of the form (3.2) need not be of the form {u^E®F: XN®M(U)

e£} for some N&FC(E)9MGFC(F), so we must prove that l(C) is (well)
defined. For the sequel, it will be sufficient to prove

3o20 Let 1 be a cylindrical measure on E®F. For u'
®F' andB^<B(R), the measure

u'(X) (3): = l

is well defined.
n

Proof. Take a representation w'=2 <? J®^- where n is minimal with this
j=i

property. Then, {<?(, • • • , ££} and also {rj{, • • • , rif
n} are linearly independent
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(cf. [10], Lemma 1.2). Denote ^°:-span{<?(, — , £i}c£', M0:
— , ?i}cF, and let N:=(N°fc:E9 M:=(M°)°C1F be their polars. By
Auerbach lemma, there exists a basis {x{, •••, xf

n} for N° and a basis {#ls • • - , xn}
for E/N—(N°y such that <xj, */>=$,•,• (cf. [6], p. 22). Similarly, there exists
{/, •", /?}CM° and {yl3 • • - , yH}dF/M with the same properties. Then

it holds TUN=^ x'j®xjy 7uM=^yl®yky and u has a representation w' = S f,-A
y=i *=i y.*=i

Xj§Q yk-
Define now p: (E/N)®(F/M)-* R by p(xj®yk):=tjk. p is continuous

linear mapping, and it holds

for every u^E®F. Thus, w'(^)=(^07rJv®M) W=^°(^Ar®jif) is well defined prob-
ability on R.

In the classical situation, every probability (normed cr-additive measure
on the Borel a-algebra J$(E)) on a separable Banach space defines a cylindri-
cal measure (finitely additive measure on the smaller cylindrical algebra) in
the unique way. Moreover, for a given cylindrical measure 1 on the cylindrical
algebra <Jl(E)9 there exists at most one probability jn such that y, \ Jl(E)=X. The
necessary and sufficient condition for the existence of p. is the a-additivity of X.
The reason for this uniqueness lies in the fact that 1B(E) is the cr-algebra gen-
erated by Jl(E). Even in the non-separable case, a cylindrical measure defines
at most one Radon probability on E ([II], p. 174), the tightness property of
Radon probabilities becomes now essential

The connection between cylindrical measures on E®F and Radon prob-
abilities on some completion E®^ of this space is more complex. If we
wish to obtain an one-to-one correspondence between them, we need some
additional conditions on the norm a. Namely, the cylindrical algebra on
E®F is far away from the cylindrical algebra on E®^Fy the first one is con-
siderably smaller.

Let us suppose that a satisfies

K«,A-'®/>|<a(ii)|M| H/ l l (3.3)

for all x'^E', y'&F' and u^E®F. If T/T denotes the canonical embedding
E®SF—>^C(E', F), then (3.3) ensures that ^ is continuous, with the norm <L
Hence, it can be extended by continuity to the completion, -$
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Let M be a Radon probability on E®#F. It is natural to put JUN®M: =

7r#<g>M(/0 in order to obtain a cylindrical measure on E®F, but first we must
be sure that the operator XN®M

: E®F-^>(E/N)®(F/M) has a continuous pro-
longation to the space E®aF.

We can identify an element nN®M(u)^(E/N)®(F/M) with the operator

(****("))" = XM^KN' CW - F/M

Therefore, we can write ^N®M=PNtM
0^ where pNtM: -C(E'9 F)-*-C((EIN)'9

(F/M)) is defined by

Thus, since a satisfy (3.3)

defines a mapping from F®tfFinto (E/N)®(F/M) which prolongues
Hence, if a satisfies (3.3) and # is a probability on E®#F9 then ju, defines

a cylindrical measure on E®Fby

We denote this cylindrical measure by £=K
The inverse connection is more interesting for us.

Definition. Cylindrical measure A on E®F is a Radon probability on
E®#F if there exists a unique Radon probability ju on E®aF such that &=%.

The condition on uniqueness is essential. Namely, if it exists a prob-
ability ju on E®aF such that ^ =&, it cannot be assumed a priori that ju is unique
(as in the classical case). A sufficient condition for this is due by Prohorov
(cf. [11], Theorem 22, p. 81): it is sufficient that the mappings
FC(E\ M^FC(F)} separate points of E®aF.

Proposition 3.3. The following conditions are equivalent;

( i ) {XN®M> N^FC(E\ M^FC(F)} separate points ofE®aF.
(ii) {WF-»<W, x'®/>, Jt'e£"3 /eF'} separate points ofE®aF.
(iii) {wi->[w, x']9 x'^E'} separate points ofE®aF.
(iv) &: E®aF-»^(E', F) is one-to-one

Proof. Let us prove only (i)=Kii). Take u^E®aF, w=t=0, and TVeFC(F),
MeFC(F) for which holds ^aM^O^Oj i.e. ^060*^4=0. There exist x^e

, yf
M^(FIM)' such that
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Define X'I^TU^N, yr:=t^MyM' Then it holds <w, x'® j'

In the sequel we will assume that a satisfies (3.3) and

-» J2(E', F) is one-to-one (3.4)

Thus, from the well known conditions for the fulfilment of (3.3) and (3.4)
we obtain

Proposition 3A Let a be a reasonable norm and A a cylindrical measure
on E®F. If E or F have the metric approximation property, and if it exists
a probability ju on E^^Ffor which holds ]u=A9 then ju. is unique.

We will denote such probability by L Hence, in this case we have (^)v=^,

§4. Fourier Transform of Cylindrical Measure

Let /I be a cylindrical measure on E®F, and H^: E-*G, w2: F-*H con-
tinuous linear operators. Denote W:=w1®w2. First we define the image

Take XeFC(G). Then N:=wT\X)^FC(E) and all the operators in
the following commutative diagram are continuous:

E * G

(4.1)

/W'l '

If we take now Y^FC(H\ then M:=W2l(Y)<=FC(F) and the Radon prob-
ability &N®M on the space (E/wY1(XJ)®(F/w^\Y)) is well defined. Denote

Defieitioiio The image (wi®w2) (2) of a cylindrical measure /I is a cylin-
drical measure on G®H defined by

(w1®w2) (X)X9Y' = ^X®Y(^N®M) (4-2)

The Fourier transform of a cylindrical measure is defined similarly as in
the classical case: for u' ̂ E'®F' and s e R we define
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&(X)(su'):=3(u'(X»(S) (4.3)

where u'(X) is a probability on R, defined in Proposition 3.2.

Proposition 48L For w^J!(E,G), w2(=X(F, H) it holds

Proof. Let w'=2] *J® Jy be a representation of w'. We have

l/o(Wl®M>2) - (2 *}

- S (xJ'H

and the Proposition follows.

The Fourier transformation establishes a one-to-one correspondence
between cylindrical measures on Banach (more generally, locally convex)
space E and functions on E' of positive type, whose restrictions to the finite
dimensional subspaces are continuous. This is an easy consequence of Bochner
theorem (see [1], p. 19). The same proof gives:

Proposition 4.2e A function 0: E'®F'->C is the Fourier transform of
a cylindrical measure /I on E®F if and only if $ satisfies

(i) #(0) = 1
(ii) 0 is of positive type, i.e., for all n^N, u{9 • • • , uf

n^Er®F' and C1? • • • ,
it holds

(iii) The restriction of <f> to finite dimensional subspaces of E'®F' is con-
tinuous.

Lemma 4.30 For a cylindrical measure X on E®F, the following is equiva-
lent:

( i ) (xf, y')\-+ £F(^) (jc'® y') is continuous on E1 x Fr.

(ii) If(x^-+x'j and (y^-y'j (j=l, -, /i), then

y=i
Proof. Denote 0 : =9r(^). From the classical inequality

we obtain
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y=i &=i y=i y=i

Thus, it holds

y=i

which converges to 0 if (i) is satisfied. The converse is obvious.

§50 Type and Approximability

A probability ju, on a Banach space G is of order p (Q<p<o°) if

Let 2 be a cylindrical measure on E®F. For x'^E'.y'^F', the image (xr

(fy is a probability on M. We say that ^ is of type p (0<^<oo) if

is of type 0 if for every ??>0 it exists R>0 such that

The set of all cylindrical measures on E(g)F of type p is denoted by c_3f£
F).
It is evident that a cylindrical measure of type pl is also of type p29 for

2-

The following proposition is obvious:

Proposition 5.1. Let X be a cylindrical measure of type p>Q on E®F,

WiGE-CfEyG), w2€H~C(F,H) and W=w1®w2. Then W(X) is a cylindrical measure
of type p on G®H, and

We say that a linear operator W is p-Radonifying if it maps every cylin-
drical measure on E® F of type p into a Radon probability of order p.

The following lemma establishes a connection between the type of a cy-
lindrical measure and the continuity of its Fourier transform. The proof is
identical to the classical one (cf. [1], p. 26) so we omit it:

Lemma 5020 A cylindrical measure X on E®F is of type 0 // and only if
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the mapping (xf, y')\-*3?(X) (xf® y') is continuous on E' xF'.

Definition. A net {^ r^-H" of cylindrical measures converges ®-cy-
lindrically to AG<9Me(E®F) if (^)N®M converges to AN®M weakly, for every N

The notion of ® -cylindrical convergence has also the sense for Radon
probabilities on E®^F:

Proposition 5.3. On 3H(E®JF) we have
(i) If fjL^-^fj. weakly, then JUL^-^/LL ®-cylindrically

(ii) !/"%—>/« ®-cylindrically) then p. is unique.

Proof, (i) is immediate. If ^->ju ®-cylindrically, then £v-»/i ®-cylin-
drically, and thus (VT)N®M-*JUN®M weakly. Let us suppose p.^>v ®-cylindrically.

Then vN®M
=tJL

N®M f°r all N^FC(E), M^FC(F) so that v=y. and hence V=P.,
since a satisfies (3.4).

Proposition 5.4. If w^-Cfa G), wzeJ%F, H) and ^-*X ®-cylindrically,

then (w^Wg) (^)~^(^i®^2) (/I) ®-cylindrically.

Proof. Denote W=wl®w2. Let WX®Y be the continuous linear operator

defined in (4.1). By definition, (^)N®M-**N®M weakly, where N=w
M=W2\Y). Then,

The following lemma represents an essential step in the Radonification
problem :

Lemma 5a5. Suppose E' and F' have the metric approximation property.
If /I is a cylindrical measure on E®F of type />>0, then there is a net {^} of
Radon probabilities on E®F (each of them is concentrated on some finite-dimen-
sional sub space) such that {X^} converges ®-cylindrically to X, and

IWIJ<PI? (5-2)

Proof. There exist finite dimensional operators /?y: E'-*E' and q^: F'-^F'

which converge pointwise to the identities, and it holds | |^vll<l5 11^11^1-
We can further suppose that p^ and #v are weakly* -continuous [9]. Thus,

there exist finite-dimensional operators */?v
 : E-^E9 *q^ : F-*F.

Define ^i^p^&qy) (fy. ^ is a Radon probability, concentrated on
some finite-dimensional space. Moreover, Proposition 5.1 gives
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It remains to prove that /lv->/l ®-cylindrically.
It is sufficient to obtain that 2r((^v)jv®M) converges to 3(ZN®M) uniformly

on compact sets. LQtu'<=((E/N)®(F/M)y. Then

Y) W) OO

Take a representation ^jv®M(w')=5j tjx'j® y'J9 where {X;-®.y/} is a basis of

the space t7cN^M[((E/N)®(F/MJ)f]c:Ef®Ff. xj and j^- can be taken such

that ||*}||=IWII = 1 holds.
Denote (xj)v :=/>?*>» (yj)y:=qyy^ Then (*J)Y-**J and (;>})?-> >i
By assumption, /I is of type /?>0, hence also of type 0. By Lemma 5.2,

£F(/l) is continuous on E'xF'. Hence, by Lemma 4.2

(S OW)v®(7y)v) -> ̂ W (23 ^y® Jy)

uniformly on bounded {tj} . The lemma is proved.

§6- Cylindrical Measures p-siimmiiig Operators

Let ($, 2, P) be a probability space, and /: £-*E®sF such that
</(cy), x'®j'> is measurable function, for all x'^E'9y'^F'. Define

: = sup

and denote by Lj(J2, -21, P; E®^F) the space of all such functions for which
it holds ||/|U<oo.

Proposition 69L L^ /eLf(^, 21, P; ^®8F). // ^: E®F-^G is p-
summing, then

{(jl^(/(«))l|W(«)}^<^(^ll/ll? (6-1)
J j?

Proof. Denote by K± the unit ball of the space E', with the weak topology
o(E', E), similarly for K2dFf. By Pietsch Majorization theorem for ^-sum-
ming operators (cf. [2], Theorem 1), there exists a Radon probability ju. on the
compact space K:=K1xK2, such that for every u^E®Fit holds

,/)}17' (6.2)

Take u^E®zF, and {uk}CLE®zF, uk->u. Then FF(V) is well defined, since
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a ^-summing operator can be extended by continuity on E®^F. Moreover,
since the e-norm topology on E® F is stronger than the weak topology o(E®F,
E'®F')9 it holds (uk, x'®X>-><w, x'®yry and, by Dominated Convergence
theorem

Thus, (6.2) holds for all u<=E®sF.
By Foubini's theorem, we have

sup

which proves (6.1).

Take now ^=E®^F, P=jusf: ® -*E®E F identity. Then

X)}1/* = INI?

Thus, Proposition 6.1 gives:

Corollary 6.2. If W: E®F-*G is p-summing, y, a Radon probability on

E® g F of type p, then

Remark. The main difficulty in the proof above is crossing to the com-
pletion E®SF. This is necessary since the notion "Radon measure on E®F"
has no sense (E®F has no topology). But, if p. is concentrated on some finite
dimensional space, and has the type p (thus, ju^t3ttp(E®FJ).> then Corollary
6.2 remains true. We will apply this corollary only for such measures.

We are ready to prove the main result:

Theorem 6.3. Let E, F, G, H be Banach spaces, l<p<°° and a a norm

on G®H which satisfies (3.3) and (3.4). W'^w^w^. E®F-»G®0&H is p-Rado-

nifying if and only if it is p-summing, and for J,^Jttp(E®F) it holds
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Remark. If w^w2 is ^-summing., it is known that wl and w2 must also
be /7-summing, and it holds 7rp(W) = xp(w1)7rp(w2); moreover, if wx and w2

are ^-summing, then vi^®^ is ^-summing whenever the ®-norm CK satisfies
a^/dp or a<gp\ (cf. [2], Theorem 3). See [7] for description of the norm
/dp and gp\.

Another example of ^-summing operators of the form w^w2 gives (cf.
[2], CoroUary 1):

Corollary 6 A Let ny E->G be p-left-nuclear , and w2: F-*H p-summing,
l<p<oo. Then Wj®w2: E®F-*G®dpH and w2®Hy F®E-*H®gpG are
p-Radonifying, and for l<=3ttc

p(E®F) it holds

Proof of Theorem 6.3: The only if part follows as in the classical case,
cf. [12], Theoreme 3.4, p. 196. It is sufficient to take a sequence {cn} of posi-
tive number of the sum 1 and {un}dE®F such that Qp(un)<oo. Denote by
dn the Dirac measure in the point c~^l/pun and define %:=^cndn. A is obviously
a cylindrical measure on E® F of type p :

PI? = sup -E c.\<x'®y', c-^Oir7* = QP(ux)
\}X'\\<1 *

II^IKi

Since W is j^-Radonifying, W(X) is a Radon probability on G^aH of order p.

\\WW\\p =

Thus, Qp(un)<o° implies Np(W(unJ)<°° and PF is ^-summing.

Let us prove the sufficiency. The operator W, being ^-summing, has the

factorization of the form (cf. [2], Theorem 2 and Theorem 3):

W
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Kl9 K29 K are defined in the proof of Proposition 6.1, /^ and ju2 are the Pietsch
measures, and juL'.=^l®jm2. The space LP(K9 /*) is obtained as the completion
Lp(Kl9 /JL^®SpLp(K2, ju2), where sp is one of the norm gp\ or /dp which coincides
on the space Lp®Lp (cf. [8], Corollaire 4). 5 is a closed subspace of LP(K, ju),

obtained as the closure of the space S^®^ in the norm sp, where S1 and S2

are closed subspaces of LP(K19 JUL^) and Lp(K2, ju2), respectively. ^=
is the canonical embedding, b a continuous linear operator, with ||6|
and ^®a2 a ^-summing operator. jE (and similarly jF) is defined by jEx'- =
(x'i-> <;c, x'». / is defined by

/(S/*®g*):= ((x'9 /) H* Syi(*')**GO)

Let /I be a cylindrical measure on £®F of type p. By Proposition 5.1
!:— (/E® j» 00 is a cylindrical measure on C(K^)®C(K2) of type p. Since
C(K])' and C(K2Y have the metric approximation property, by Lemma 5.5
there exists a net {^} of Radon probabilities on C(K1)®C(K2) (each of them
is concentrated on some finite-dimensional space) which converges ®-cylin»
drically to ^ and

iwi?<n*ii? = \\(JE®JF) wiiKHAii \\JF\\ \m = \m
The mapping /is ^-summing, with 5?^(/)<l (cf. [2], Lemma 1). Thus, Corol-
lary 6.2 gives for the Radon probabilities 7(^v) on I^(^, //):

Let ^(^T, /Oo- be the space L^(^", #) with the weak topology. We can observe
/(/1Y) as a Radon measure on L/J£, ju)^ By a version of Prohorov's theorem,
see e.g. [4] Proposition 4, {/(^v)} is relatively compact in the topology of the
weak convergence of probability measures. Hence, it exists a Radon prob-
ability v on Lp(K, /Oo- which lies in the closure of {/(/̂ )} . We may suppose
/(^Y)-»y weakly, and hence also a ®-cylindrically. By Phillips theorem ([11],
Theorem 3, p. 162) (weak and strong topology on a Banach space are Radon-
equivalent), v is a Radon probability on Lp(K, //),

On the other hand, /(I) defines a cylindrical measure on LP(K19 ju^®
LP(K2, ju2). Since Z^-spaces have the metric approximation property, by Prop-
osition 3.4 there exists at most one Radon probability 1(1 f on Lp(K, ju)^

LP(K19 juL^®dpLp(K2, ju2). Since it holds /(I) =lim /(/lv), Proposition 5.3 ensures
^=7(3)^, i.e. I(X)=v. Hence, /(I) is a Radon probability on Lp(K, /*). We
must show that v is concentrated on S.
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Let CV be a topology on Lp(K9fji) with the following basis of neighborhoods

of zero :

Since /{-gJeLyO^xA^i®^)* tne topology ci/7 is weaker than the weak
topology on LP(K9 ja). But, the converse is also true: take h'^Lp'(K, //).
Since LP'(K9 v) is isometiically isomorphic to the space LP'(K19 /j,^®Sp,Lpr(K2, jLt2),

n

h' can be approximated in Ly-notm by functions of the form

/<e=L,/(*i»*i), g^Lp,(K2^z\ i.e., by the functions
and our statement follows easily.

Consider the spaces 1=8^ SpS2. LetN^FC&^
be arbitrary. The norm sp satisfy (3.3), thus XN®M can be extended to a con-
tinuous linear operator TCN®M'. Lp(K, tt)->(Lp(Kl9 fi^lN)®(Lp(K29 ^2)/M). Also,
the Radon probability v on LP(K9 ju) defines a unique cylindrical measure £

on Lp(K^ ^®Lp(Ky, y2). It holds ^®jif(i;)=^jv®jif =;rjv®jif(^)> and commutative
diagram (6.6) shows that nN®M(v) is concentrated on xN®M(S>i®$2)-

Suppose that v is not concentrated on S. Then it exists h°&S which
lies in the support of v. Since S is closed in the weak topology of the space
LP(K, ju), we can choose ?>0,/J, • • - , f'n^Lp'(Kl9 ^), g[3 • • - , gf

m^Lpf(K2, ju2}
such that it holds

J7 (6.7)

for all 1,7 and
Define Ne=FC(Lp(Kl9 vj) by

and similarly M^FC(Lp(K2, ju2)). Suppose rc^^/^e^^^®^). Then

^N®M(h-h°)=0 for some AeSi®^, hence h-h^N®Lp(K29fj^+Lp(Kl9^
®M which contradicts (6.7). Since nN®M(h°) belongs to the support of ^®M(y)
C7rJv®MG$i®^2)' we get a contradiction again. Thus, v is a Radon prob-

ability on 5.
Finally, W(X)=b(v) is a Radon probability on G®#H, for which it holds

The proof is complete.

Corollary 6.5. Let l<p<oo? X^JHp^®^) and /: /r->/2
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leal injection. Then (i®i) (/I) is a Radon probability on the space HS(129 /2)

of Hilbert-Schmidt operators.

Proof. By Grothendieck's result, i: Ii~*l2 is /7-summing, for all p>l.

By Theorem 6.3, i®i: /3®/i->/2®^\/2 is j!?-Radonifying. This space coincides

with the space of all ̂ -summing operators: /2-^/2 (cf- [7], p. 91). The corollary

follows since p-summing operator between Hilbert spaces is Hilbert-Schmidt

operator—this is a known result of Pietsch-Pelczynski.
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