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Radonification Problem for Cylindrical
Measures on Tensor Products
of Banach Spaces

By

Neven ELEZOVIC*

Abstract

An operator w,@w, is said to be p-Radonifying if it maps every cylindrical measure of
type p, defined on the tensor product EQF of two Banach spaces, into a Radon probability
cf order p on the completion of some normed product GQ,H. In this paper we prove that
w,@w, is p-Radonifying, 1<p<eo, if and only if it is p-summing.

§1. Imtroduction

The Radonification problem for cylindrical measures on Banach spaces
has been studied by A. Badrikian, S. Chevet, B. Maurey, Y. Okazaki,
L. Schwartz and others, cf. e.g. [1], [11], [12] and in the references stated there.
In the Schwartz’s approach to this problem one try to find all operators w:
E—G which map every cylindrical measure on E of type p into a Radon prob-
ability on G of order p. Such operators are called p-Radonifying. The main
result is: for 1<p<<oo, w is p-Radonifying if and only if it is p-summing.
For 0< p<1, the situation is more complex.

B. Maurey considered in [5] a class of F-cylindrical probabilities on EQF,
which lies somewhere between cylindrical measures on £®F and probabilities
on some completion of this space (nearer to the first ones). He tries to find
(p, F)-Radonifying operators W: EQF—GQF of the form W=w®]1;, which
map every F-cylindrical probability on EQF of type (p, F) into a Radon prob-
ability on some completion G <& of the space GQF. It turns out that (p, F)-
summing operators are (p, F)-Radonifying for 1<<p<<co, under some addi-
tional assumptions on the norm @ and on the space F (cf. [5], Exposé II, Théo-
réme 2). As an example, it is shown that if w: E—G is p-summing, then wQ®1,:
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EQF—GQ,F is (p, F)-summing. Also, if w is p-left-nuclear, then w@®1;:
E ®F—>G®,,I,F is (p, F)-summing (cf. [2], Proposition 5 and [3]. Theorem 3).

In this paper we give an analogous result for the class of cylindrical mea-
sures on EQF of type p. It will be shown that p-summing operators of the
form w,@w, are p-Radonifying, for 1 <p<co.

Let 1<<p<<oo. By classical methods it is easy to obtain that an operator
of the form 1;Qw: EQF—FEQH, where w: F—H is p-summing, maps every
cylindrical measure on EQF of type p into an H-cylindrical probability on
EQH of type (p, H). Thus, Maurey’s result shows that the tensor product
w1 ®w;, of two p-summing operators is p-Radonifying, from EQF into GRH,
under additional assumption of reflexivity of the space H.

The direct approach which we use in this paper gives something more.
Namely, [2] Theorem 3 shows that the product w,Qw, of two p-summing
operators is p-summing from EQF into GQ ,H, whenever « satisfies e</d, or
e<g,\. Thus, Theorem 6.3 states that such operator is p-Radonifying from
EQF in GQH, a< /d, or a<g,\, without assumption on the reflexivity of
the space H.

82 is preparatory. In §3 we define cylindrical measures on EQF and
establish the connection between them and probabilities on some completion
EQ® F. Other necessary notions (type, convergence, Fourier transform, image
of cylindrical measure by an operator of the form w,@w,, etc.) are introduced
in 84 and §5. The main theorem, announced before, is proved in §6.

§2. Notation and some Preliminary Results

Throughout this paper E, F, G, H will denote real Banach spaces, E’,
F', G', H' their topological duals. _L(E, G) stands for the space of all con-
tinuous linear operators: E—G. By [u, x']&F we denote the action of an
element u EQF on vectors in E’. The element ucEQF induces a finite-
dimensional linear operator #: E'—F by #x':=[u, x']. <-, -> will always de-
note the canonical pairing, in various settings, e.g., for x'€E’, y’eF’ and
u€EQF it holds <u, x’Q y'>={[u, x'], y >={tx’, y">.

Let {x;} be a sequence in E. By N,(x;) we denote the number, finite
or not
Skl 1<p<e

Ny(x)): = {Slj}p 1 p—oo

and by
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M (x;): = sup {N,(xj, xD), [Ix'[| <1}
For {u;} CEQF (and similarly for {v;} C.L(E, G)) we denote
0,(u;): = sup {N,(Ku;, x’ @y, lIx'II<1, [IY'lI<1}
Sy ;) = sup {N,([u;, xD), |Ix"l|<1}

Linear operators w: E—~G, W: EQF—G for which it exists a constant
C >0 such that

Ny(wx)<SC My(x;) 2.1)
N,(Wu)<C Syu;) 2.2)
N (Wu)<C 0,u;) @3

for all finite sets {x,, -+, x,} in E or {uy, +--,u,} in EQF, are called p-summing,
(p, F)-summing and p-summing (respectively). The infimum of all constants
C in (2.1)~(2.3) is denoted by =,(W), =, (W), #,(W), respectively.

It is known that p-summing operators: EQF—G are (p, F)-summing,
and also a p-summing from EQ,F into G, for arbitrary reasonable norm @
(cf. [2], Proposition 1) and hence continuous from EQ.F into G, with the norm

W <7,(W) @4

(e denotes the least reasonable crossnorm).

§3. Cylindrical Measures on £QF and Radon Probabilities on E@,,F

By FC(E) we denote the family of all closed subspaces in E of the finite
codimension. The canonical projection E—~E/N, N FC(E) is denoted by
wy, the projections E/N,—E[N,, NyCN, by zy,y. A cylindrical measure
on E is a projective system {2, 7y, NEFC(E)} of Radon probabilities on
finite-dimensional quotients of the space E; for N C N, it holds 2y, =z y,y (Ay,).
It is well known that such system defines a finitely additive measure 2 on the
algebra of cylindrical sets in E, by

XB): = Iy(By)

where B=rny'(By), and By is a Borel set in E/N. We denote 1=(2y).
For convenience, we denote mygy: =7y Qmry,: EQF—(E/N)Q (F/M),
N e FC(E), M € FC(F), and by 7y, y @uom, " =7y, @ Taroar,: (E/N)Q(F/My)—>
(E/N)Q(F|M,), NyC Ny, MiC M,
The following is obvious:
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Proposition 3.1. If NyCN,, M,CM, are closed subspaces of the finite
codimension, then the following diagram commutes:

(E/N)Q(F/My)

EQF TNy N ®M2M, (3-1)

TN®3a

(E/N)Q(F| M)

Definition. A cylindrical measure 2 on EQF is a projective system {Ayguss
7 yeous N EFC(E), M e FC(F)} of the Radon probabilities on finite dimensional
spaces (E/N)Q(F/M).

M (EQRF) stands for the space of all cylindrical measures on EQF.

The cylindrical algebra on a vector space X depends only on the dual
pair (X, X’), and 1emains the same if the original topology on X is replaced by
another which gives the same dual. More generally, if (X, Y) is a pair of
vector spaces in duality, such that Y separates points in X, then the cylindrical
algebra on X depends only on the space Y.

(EQF, E'QF’) is a pair of vector spaces in separated duality. Hence,
we can define the cylindrical algebra on EQF not introducing any topology
on EQF. A cylinder is a set of the form

C = {ucEQF: u, UDh<j<n EB} (3.2)

where nEN, uf, -+, u,EE'QF and B is a set in the Borel algebra B(R").

It is not quite obvious that cylindrical measure can measure the cylinders!
Namely, sets C of the form (3.2) need not be of the form {#EEQF: zygy, )
€B} for some NEFC(E), M € FC(F), so we must prove that A(C) is (well)
defined. For the sequel, it will be sufficient to prove

Proposition 3.2. Let 2 be a cylindrical measure on EQF. For u'€F'
QF' and B B(R), the measure

u' () (B): = A {ucEQRF: {u, u'>EB}
is well defined.
Proof. Take a representation u’:i‘, &' Q@n’ where n is minimal with this
J=1

property. Then, {¢1, -+, &7} and also {1, -+, 72} are linearly independent
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(cf. [10], Lemma 1.2). Denote N°:=span{&{, ---, £/} CE’, M": =span{y],
o, }CF, and let N:=(N°CE, M:=(M°®CF be their polars. By
Auerbach lemma, there exists a basis {x{, -+, x;} for N°and a basis {X,, ---, X,}
for E/N==(N°)" such that <{x{, X;>=0;; (cf. [6], p. 22). Similarly, there exists
{y1, =+, yi}ycM® and {y, ---, y,} CF/M with the same properties. Then

it holds ”N’—‘i xX;QX%;, anﬁ 1:QJ¥,, and 4’ has a representation u’=zn‘; L
x§®y£. i=1 k=1 5k=1

Define now o: (E/N)Q(F/M)— R by o(%;Q,):=t;. p is continuous
linear mapping, and it holds

(007 yey) () = P(g {u, x?@)’@@@f’k)
= ?.E 1, X;Q iy = u, u

for every u€ EQF. Thus, u'(Q)=(0cmyey) (D=0(Ayesy) is well defined prob-
ability on K.

In the classical situation, every probability (normed o-additive measure
on the Borel o-algebra B(E)) on a separable Banach space defines a cylindri-
cal measure (finitely additive measure on the smaller cylindrical algebra) in
the unique way. Moreover, for a given cylindrical measure 2 on the cylindrical
algebra J(E), there exists at most one probability « such that «| A(E)=24. The
necessary and sufficient condition for the existence of x is the o-additivity of Z.
The reason for this uniqueness lies in the fact that B(E) is the o-algebra gen-
erated by J(E). Even in the non-separable case, a cylindrical measure defines
at most one Radon probability on E ([11], p. 174), the tightness property of
Radon probabilities becomes now essential.

The connection between cylindrical measures on EQF and Radon prob-
abilities on some completion EQ,F of this space is more complex. If we
wish to obtain an one-to-one correspondence between them, we need some
additional conditions on the norm «. Namely, the cylindrical algebra on
EQF is far away from the cylindrical algebra on E ®wF, the first one is con-
siderably smaller.

Let us suppose that @ satisfies
[<e, x'@y > <a@|lx'|l 1yl (3.3)

for all x’€FE’, y’eF and uc EQF. If ¢ denotes the canonical embedding
EQ.F—_L(E', F), then (3.3) ensures that ¥ is continuous, with the norm <1.
Hence, it can be extended by continuity to the completion, v: EQ F —_[(E',F).
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Let « be a Radon probability on E®F. It is natural to put iyey:=
7yeu(#) in order to obtain a cylindrical measure on EQF, but first we must
be sure that the operator zygy: EQF—(E/N)Q(F/M) has a continuous pro-
longation to the space E ® oF-

We can identify an element zyg,/ () E(E/N)Q(F/M) with the operator

(TveuW)” = myotto'zy: (E/N) — F/M

Therefore, we can write zygy=py,,°¥ Where oy ,: L(E', F)—_L((E/N)',
(F/M)) is defined by

on u(W): = myowo'ny
Thus, since a satisfy (3.3)

Zyeu(): = (pN,Mo'l/}) (»)

defines a mapping from EQ® F into (E/N)®(F/M) which prolongues z ygy,.
Hence, if a satisfies (3.3) and # is a probability on EQF, then x defines
a cylindrical measure on EQF by

Uy = ﬁN@M(ﬂ)

We denote this cylindrical measure by 2=(4yeu).
The inverse connection is more interesting for us.

Definition. Cylindrical measure 2 on EQF is a Radon probability on
EQ®,F if there exists a unique Radon probability # on EQ F such that ji=2.

The condition on uniqueness is essential. Namely, if it exists a prob-
ability # on EQ ,F such that 2=/, it cannot be assumed a priori that # is unique
(as in the classical case). A sufficient condition for this is due by Prohorov
(cf. [11], Theorem 22, p. 81): it is sufficient that the mappings {7ygy, N E
FC(E), M €FC(F)} separate points of EQ F.

Propesition 3.3. The following conditions are equivalent:

(i) {Zyey, NEFC(E), M =FC(F)} separate points of EQ F.

(i) {u—<u, x’Qy">, x' €E’, y' €F'} separate points of EQ ,F.

(i) {ur[u, x'], x' EE’} separate points of EQ,F.

(iv) ¥: EQ F—_L(E', F) is one-to-one

Proof. Let us prove only (i)=>(ii). Take u€EQF, u=0, and N € FC(E),

M eFC(F) for which holds #yg,(#)=0, i.e. zyofio'zy=0. There exist xj &
(E/N)', yyy=(F/M)’ such that
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L(myotro'ny) (xi), yirp=+0
Define x":='myx}, y' :="'m, y4%. Then it holds <u, x'® y'>=0.
In the sequel we will assume that o satisfies (3.3) and
v: EQF— _L(E', F) is one-to-one 3.4

Thus, from the well known conditions for the fulfilment of (3.3) and (3.4)
we obtain

Proposition 3.4. Let a be a reasonable norm and 2 a cylindrical measure
on EQF. If E or F have the metric approximation property, and if it exists
a probability 1 on EQ ,F for which holds k=2, then p is unique.

We will denote such probability by 2. Hence, in this case we have (2)\’:2,
(2" =wn.

§4. Fourier Transform and Image of Cylindrical Measure

Let 2 be a cylindrical measure on EQF, and w,: E—~G, w,: F—H con-
tinuous linear operators. Denote W:=w,Q@w,. First we define the image
W(2).

Take X&€FC(G). Then N:=wi(X)EFC(E) and all the operators in
the following commutative diagram are continuous:

w
E ! G
Y Tx 4.1
v v
E/wi{(X) G/X
(W)x

If we take now YEFC(H), then M:=w;(Y)&FC(F) and the Radon prob-
ability Ayg, on the space (E/wi'(X))Q(F/wz'(Y)) is well defined. Denote
Wxer:=W)x@(Wy)y.

Definition. The image (w;@w,) (1) of a cylindrical measure 2 is a cylin-
drical measure on GQ H defined by

(" ®@w2) Nxer: = Wxer(Anvewu) (4.2)

The Fourier transform of a cylindrical measure is defined similarly as in
the classical case: for u'€E'QF' and s R we define
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FRA) (su): =F@'Q) (s) 4.3)
where u'(2) is a probability on R, defined in Proposition 3.2.
Proposition 4.1. For w,e_L(E, G), w,&_L(F, H) it holds
F(mQ@wy) (1) () = F () (W ®"w,) (1)
Proof. Letu'=3] x;Q y} be a representation of #’. We have
u'o(m@wy) = (X x;® yP)o(m@wy)
=21 (xjow)@(yiow,)
= 31 'wxiQwyyi = (‘w,@%wy) (1)
and the Proposition follows.

The Fourier transformation establishes a one-to-one correspondence
between cylindrical measures on Banach (more generally, locally convex)
space E and functions on E’ of positive type, whose restrictions to the finite
dimensional subspaces are continuous. This is an easy consequence of Bochner
theorem (see [1], p. 19). The same proof gives:

Proposition 4.2. A function ¢: E'QF'—C is the Fourier transform of
a cylindrical measure 2 on EQF if and only if ¢ satisfies

(i) ¢(0)=1

(ii) ¢ is of positive type, i.e., for all nEN, uf, -+, uy EE'QF and ¢, -+,
¢, €C it holds

é {iCio(u;—ul)>0
i,j=1

(iii) The restriction of ¢ to finite dimensional subspaces of E'QF' is con-

tinuous.

Lemma 4.3. For a cylindrical measure 2 on EQF, the following is equiva-
lent:
(i) (', y)>FQ) (x'Qy’) is continuous on E' X F'.
(i) If (x3)y—xj and (yy—y; (j=1, -+, n), then
F@) (3} (DB = F @) (3 ¥/ )
Proof. Denote ¢:=5F(2). From the classical inequality
[B(u)) —b(3)|*<2|1—o(u{ —ub)|

we obtain
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155 )11 <2 16C3 uD o )| <V 2 33 | 1—0() |
Thus, it holds
|33 (D@ () —9(33 @ ¥9) [P< 2| 1433 (s —D@
+ 33 @O —yHF <2V 23 {1 -Gy —xH@ (0]
+ [1—=¢[xi @)y —yD] "}

which converges to 0 if (i) is satisfied. The converse is obvious.

§5. Type and Approximability

A probability # on a Banach space G is of order p (0<<p<<oo) if
lally: = <] NellpduGe)p o <oo

Let 2 be a cylindrical measure on EQF. For x'€E’,y'’F’, the image (x’
® ") (2) is a probability on B. We say that 2 is of type p (0<p<<oo) if

12113 : = sup{[I(x' @ ¥") W, [IxII< L, [1y']|<1} <eo
2 is of type 0 if for every >0 it exists R>0 such that
sup{[(x'®»") (D] (R, o), [Ix"[|<L, [[VI<1} <7
The set of all cylindrical measures on EQF of type p is denoted by M}
(EQF).
It is evident that a cylindrical measure of type p, is also of type p,, for

P> D

The following proposition is obvious:

Proposition 5.1. Let 2 be a cylindrical measure of type p>0 on EQF,
w,EL(E,G), wy,e_L(F,H) and W=w,Qw,. Then W() is a cylindrical measure
of type p on GQH, and

I <IIwill [lwll A3 (CRY

We say that a linear operator W is p-Radonifying if it maps every cylin-
drical measure on EQF of type p into a Radon probability of order p.

The following lemma establishes a connection between the type of a cy-

lindrical measure and the continuity of its Fourier transform. The proof is
identical to the classical one (cf. [1], p. 26) so we omit it:

Lemma 5.2. A cylindrical measure 2 on EQF is of type 0 if and only if
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the mapping (x', y )= FQ) (x'Q y') is continuous on E' X F'.

Definition. A net {2y, r&I'} of cylindrical measures converges Q-cy-
lindrically to A€ M (EQF) if (2y)yeu converges to Ayg, weakly, for every N
EFC(E), M FC(F).

The notion of ®-cylindrical convergence has also the sense for Radon
probabilities on EQ ,F:

Proposition 5.3. On H(EQR ,F) we have
(i) If uy—u weakly, then py—u Q-cylindrically
(i) If uy— 1 Q-cylindrically, then v is unique.

Proof. (i) is immediate. If zy—>x ®-cylindrically, then y—2 ®-cylin-
drically, and thus (¢#y) yeu—>4yen Weakly. Let us suppose #,—>v ®-cylindrically.
Then vygy==~4yeu for all NEFC(E), M & FC(F) so that v=4 and hence v=g,
since a satisfies (3.4).

Proposition 5.4. If w,e_L(E, G), w,=_L(F, H) and 24— Q-cylindrically,
then (w,Qw,) (Ay) = (W, Qw,) (1) Q-cylindrically.

Proof. Denote W=w,Qw,. Let Wygy be the continuous linear operator
defined in (4.1). By definition, (Ay)yeyx—Aney Weakly, where N=wi'(X),
M=wzYY). Then,

W) xer = Wxer(2y)yewu) = Wxer(Aven) = (W(2)xey

The following lemma represents an essential step in the Radonification
problem:

Lemma 5.5. Suppose E' and F' have the metric approximation property.
If 2 is a cylindrical measure on EQF of type p>>0, then there is a net {4} of
Radon probabilities on EQF (each of them is concentrated on some finite-dimen-
sional subspace) such that {Ay} converges @-cylindrically to 2, and

(1213 < 12113 (5.2)

Proof. There exist finite dimensional operators py: E'—E’ and gy: F'—F’
which converge pointwise to the identities, and it holds ||py[|<<1, |lgyl|<SL.
We can further suppose that py and g, are weakly*-continuous [9]. Thus,
there exist finite-dimensional operators ‘py: E—E, 'qy: F—F.

Define 2,:=(py®%gy) (1). 2y is a Radon probability, concentrated on
some finite-dimensional space. Moreover, Proposition 5.1 gives
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23113 <IEpyll = Fgull - 11115 <1211

It remains to prove that 2,—2 @-cylindrically.
It is sufficient to obtain that F((2y)yes) converges to F(Ayg,) uniformly
on compact sets. Let u'€((E/N)Q(F/M))’. Then

F((y)veu) @) = F(zyeu(P+®'qy) () ()
=) (7 Qgy) (zyen @)
Take a representation ’zN@,M(u'):i t;x;@y}, where {x;@yj} is a basis of
=1
the space ‘myeu[((E/N)QF/M))1CE'QF'. x} and y’ can be taken such
that ||x}||=|| y}||=1 holds.
Denote (xj)y:=pyxj, (¥)y:=¢yy;. Then (xj)y—>x] and (y))y—yj.
By assumption, 4 is of type p>0, hence also of type 0. By Lemma 5.2,
$F(2) is continuous on E' X F’. Hence, by Lemma 4.2

A (2 Q) = F() (X 1;x5Q y7)

uniformly on bounded {;}. The lemma is proved.

86. Cylindrical Measures and p-summing Operators

Let (2, 5, P) be a probability space, and f: 2 = E®,F such that w—
{f(w), x’®y"> is measurable function, for all x'€E’, y’EF’. Define

I115: = sup <] 1< f@), x@ 7> 2P
i<t

and denote by L¥(®2, 3, P; EQ.F) the space of all such functions for which
it holds || || <ceo.

Proposition 6.1. Let fL¥(2, 5, P; EQ,F). If W: EQF—G is p-
summing, then

{SQH W(f(@)|PdP(o)}? <7 (WIS I} (6.1)

Proof. Denote by K the unit ball of the space E’, with the weak topology
o(E’, E), similarly for K,CF'. By Pietsch Majorization theorem for p-sum-
ming operators (cf. [2], Theorem 1), there exists a Radon probability # on the
compact space K: =K, X K,, such that for every u€ EQ F it holds

I <, W)A|_1<u, '@ y'>1Pdutx’, y 62)

Take u€EQR,F, and {u,} CEQ.F, u,—>u. Then W(u) is well defined, since
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a p-summing operator can be extended by continuity on EQ.F. Moreover,
since the e-norm topology on EQF is stronger than the weak topology ¢(EQF,
E'QF’), it holds <u;, x'®y'>—=<u, x’® y’> and, by Dominated Convergence
theorem

[, 1< x@y>12dutr, ) = [ 1< x'@ 7> 19dut', )

Thus, (6.2) holds for all uc EQ F.
By Foubini’s theorem, we have

{ IImnirap)y e
< w1 [ 1<), ¥ @y 12dutx’, yrap@) e
=7, [ 1<), x @y 1ap@)dut, yye

< 7,07 sup 4] 1<), x@y'>|raP@)}
1<t

= m,(MIfIIF

which proves (6.1).
Take now 2=EQ®, F, P=u, f: £ - EQ®,F identity. Then

11 = sup 4] 1< @ y>1Paute’, yOr = Ilal
<1

Thus, Proposition 6.1 gives:

Corollary 6.2. If W: EQF—G is p-summing, # a Radon probability on
EQ.F of type p, then
W, <7z, (W)l|ell} (6.3)
Remark. The main difficulty in the proof above is crossing to the com-
pletion EQ),F. This is necessary since the notion “Radon measure on EQF”
has no sense (EQF has no topology). But, if « is concentrated on some finite
dimensional space, and has the type p (thus, #E HEQF)), then Corollary
6.2 remains true. We will apply this corollary only for such measures.

We are ready to prove the main result:

Theorem 6.3. Let E, F, G, H be Banach spaces, 1 <p<<oo and a a norm
on GQH which satisfies (3.3) and (3.4). W:=w,Qw,: EQF—>G® ,H is p-Rado-
nifying if and only if it is p-summing, and for A& M EQF) it holds
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W, <z, (W1l (6.4)

Remark. If w,®w, is p-summing, it is known that w; and w, must also
be p-summing, and it holds #,(W)==,(w;)7,(w,); moreover, if w; and w,
are p-summing, then w;®w, is p-summing whenever the @-norm @ satisfies
ae</d, or a<g,\ (cf. [2], Theorem 3). See [7] for description of the norm
/d, and g,\.

Another example of p-summing operators of the form w,Qw, gives (cf.
[2], Corollary 1):

Corollary 6.4. Let w,: E—G be p-left-nuclear, and w,: F—H p-summing,
l<p<eco. Then w,@w,: EQF—>GQ,H and w,Qw,;: FQ E—H®,,G are
p-Radonifying, and for A& M EQF) it holds

I, < gwi)m s (wlI AL (6.5)

Proof of Theorem 6.3: The only if part follows as in the classical case,
cf. [12], Théoréme 3.4, p. 196. It is sufficient to take a sequence {c,} of posi-
tive number of the sum 1 and {u,} CEQF such that Q,(u,)<<co. Denote by
8, the Dirac measure in the point ¢;*?u, and define 2:=>1¢,8,. 4 is obviously
a cylindrical measure on EQF of type p:

1Al = sup {53 € [<X'® ', e 1211 = 0, )
i<t

Since W is p-Radonifying, W(2) is a Radon probability on GQ,H of order p.
W@, = {SIIW(u)H"dl(u)}l”’ = {2 cllea P W(u,)| 1P} 7
= N,(W(u,))
Thus, Q,(u,)<<oo implies N,(W(u,))<<co and W is p-summing.

Let us prove the sufficiency. The operator W, being p-summing, has the
factorization of the form (cf. [2], Theorem 2 and Theorem 3):

w .
GRH
Xl@:az /
S

v
C(K)RC(K) I L p(K: 7

EQF

Je® i 66)
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K, K,, K are defined in the proof of Proposition 6.1, #, and u, are the Pietsch
measures, and #:=ux#,Qu, The space L,(K, #) is obtained as the completion
L,(K,, ﬂ;)@sPL,(Kz, 4,), where s, is one of the norm g,\ or /d, which coincides
on the space L,QL, (cf. [8], Corollaire 4). S is a closed subspace of L,(K, u),
obtained as the closure of the space $;®.S, in the norm s,, where S, and S,
are closed subspaces of L,(K;, #,) and L,(K,, u,), respectively. Y=y @,
is the canonical embedding, b a continuous linear operator, with [|b]|<7,(W)
and ¢,Qa, a p-summing operator. j (and similarly j») is defined by jzx:=
(x'+=<x, x"). [Iis defined by

(X /®g):= (', y) = X fulx)g:(y")

Let 2 be a cylindrical measure on EQF of type p. By Proposition 5.1
2:=(jz®jr) () is a cylindrical measure on C(K;)QC(K,) of type p. Since
C(K,)' and C(K,)" have the metric approximation property, by Lemma 5.5
there exists a net {1y} of Radon probabilities on C(K,)®@C(K,) (each of them
is concentrated on some finite-dimensional space) which converges ®-cylin-
drically to 4 and

[1A11F <UA1F = 11G® je) WIF<I el el 1A = 11411

The mapping 7 is p-summing, with #,([)<<1 (cf. [2], Lemma 1). Thus, Corol-
lary 6.2 gives for the Radon probabilities 7(2y) on L,(K, #):

QI <7, (DI 21[F < AI1F

Let L,(K, »), be the space L,(K, #) with the weak topology. We can observe
I(2y) as a Radon measure on L,(X, #),. By a version of Prohorov’s theorem,
see e.g. [4] Proposition 4, {[(2,)} is relatively compact in the topology of the
weak convergence of probability measures. Hence, it exists a Radon prob-
ability » on L,(K, #), which lies in the closure of {/(4,)}. We may suppose
I(2y) —v weakly, and hence also a @-cylindrically. By Phillips theorem ([11],
Theorem 3, p. 162) (weak and strong topology on a Banach space are Radon-
equivalent), » is a Radon probability on L,(X, x).

On the other hand, (%) defines a cylindrical measure on L,(K;, #,)®
L,(K;, #,). Since L,-spaces have the metric approximation property, by Prop-
osition 3.4 there exists at most one Radon probability I(2)" on L,(K, #)=
LKy, 1), ,Ls(Ky, 145). Since it holds (2)=lim I(2,), Proposition 5.3 ensures
v=I(2)", i.e. I(Q)=V. Hence, I(2) is a Radon probability on L,(K, x). We
must show that v is concentrated on S.
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Let €UV be a topology on L ,(K, «) with the following basis of neighborhoods
of zero:

V=1{heLK, p): [<h,fi-gi>|<e, >0,
f{, “'afllle-Lp’(Kl, ﬂl): g{a "ty g;nELp’(KZ’ /"2)}

Since f}-gi€ L (K, XK, 1,Qu,), the topology ¢/ is weaker than the weak
topology on L,(K, #). But, the converse is also true: take h'EL, (K, »).
Since L,/(K, ) is isometiically isomorphic to the space L ,(K;, #)®, Lo (Kss 15),
h' can be approximated in L,-norm by functions of the form él Qg
fiEeL (K, 1), 8i€ELy(K;, 1), ie., by the functions (x,y)+— i}fﬁ(x)g{(y),
and our statement follows easily. ,-=1

Consider the space S: =8, 52 Let NEFC(Ly(Ky,1)), M € FC(L (K5, 15))
be arbitrary. The norm s, satisfy (3.3), thus zyg, can be extended to a con-
tinuous linear operator #ygy: Ly(K, #)— (L,(K;, #)/N)Q(Ly(K,, ,)/M). Also,
the Radon probability » on L,(K, #) defines a unique cylindrical measure ¥
on Ly(Ky, #)QL (K, #,). Tt holds 7 yey(¥)=V yey =7 yeu(¥), and commutative
diagram (6.6) shows that #yg,(v) is concentrated on 7y, (S;®.S,).

Suppose that v is not concentrated on S. Then it exists A°¢ES which
lies in the support of v. Since S is closed in the weak topology of the space

L,(K, #), we can choose >0, f1, -+, fLEL(K,, ), g1, -, gh ELy(K;, 15)
such that it holds

[<h—10 fi®gi>| <7 (6.7)
for all i, j and hES,Q.S,.
Define N € FC(L (K, #,)) by
N:= {f <f;f:> :05 i = 15 Tty I’I}

and similarly M e FC(L,(K,, #,)). Suppose 7yeu(h’)Enyey(S;QS,). Then
Zyeu(h—h")=0 for some hES,QS,, hence h—h*eNQL,(K,, 1,)+L,(Ky, 1)
® M which contradicts (6.7). Since 7 yg,,(h°) belongs to the support of 7 yg,,(¥)
Cryeu(S:®S,), we get a contradiction again. Thus, v is a Radon prob-
ability on S.

Finally, W(2)=b(») is a Radon probability on G&, H, for which it holds

I, <ol <7 (WO
The proof is complete.

Corollary 6.5. Let 1<p<<oo, 2& My(,R!,) and i: l,—1, be the canon-
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ical injection. Then (i®i) () is a Radon probability on the space HS(,, 1)
of Hilbert-Schmidt operators.

Proof. By Grothendieck’s result, i: /,—/, is p-summing, for all p>1.

By Theorem 6.3, i®i: [,QL,— L® g\l 1 p-Radonifying. This space coincides
with the space of all p-summing operators: l,— 1/, (cf. [7], p. 91). The corollary
follows since p-summing operator between Hilbert spaces is Hilbert-Schmidt

operator—this is a known result of Pietsch-Pelczynski.

{11
[2
B31
[4]
(31

(6]
M

(8l
9]
(101
[11]

f12]

References

Badrikian, A., Séminaire sur les Fonctions Aléatoires Linéaires et les Mesures Cylind-
riques, Lecture Notes in Mathematics 139, Springer-Verlag, 1970.
Elezovié, N., p-summing operators defined on tensor products of Banach spaces, to ap-
pear.

, On some classes of nuclear operators defined on tensor products of Banach
spaces, to appear.
Maurey, B., Probabilités cylindriques, type et ordre. Applications radonifiantes,
Séminaire Maurey-Schwartz 1972/73, Exposé I, 12p.

, Rappels sur les operateurs sommants et radonifiants, Séminaire Maurey-
Schwartz 197374, Exposé I-11, 9+410p.
Pietsch, A., Operator ideals (in Russian), Mir, Moscow, 1982,
Saphar, P., Produits tensoriels d’espaces de Banach et classes d’applications lineaires,
Studia Math., 38 (1970), 71-100.

, Applications p-decomposantes et p-absolument sommantes, Israel J.
Math., 11 (1972), 164-179.
Simons, S., If E’ has the metric approximation property then so does (E, E’), Math.
Ann., 203 (1973), 9-10.
Schatten, R., On direct product of Banach spaces, Trans. Amer. Math. Soc., 53
(1943), 195-217.
Schwartz, L., Radon measures on arbitrary topological spaces and cylindrical measures
Oxford University Press, Bombay, 1973.

, Probabilités cylindriques et applications radonifiantes, J. Fac. Sci. Univ.
Tokyo, Sec. I, A, 18 (1971), 139-286.



