Radonification Problem for Cylindrical Measures on Tensor Products of Banach Spaces

Ву

Neven Elezović*

Abstract

An operator $w_1 \otimes w_2$ is said to be *p*-Radonifying if it maps every cylindrical measure of type *p*, defined on the tensor product $E \otimes F$ of two Banach spaces, into a Radon probability cf order *p* on the completion of some normed product $G \otimes_{\alpha} H$. In this paper we prove that $w_1 \otimes w_2$ is *p*-Radonifying, $1 , if and only if it is <math>\tilde{p}$ -summing.

§1. Introduction

The Radonification problem for cylindrical measures on Banach spaces has been studied by A. Badrikian, S. Chevet, B. Maurey, Y. Okazaki, L. Schwartz and others, cf. e.g. [1], [11], [12] and in the references stated there. In the Schwartz's approach to this problem one try to find all operators w: $E \rightarrow G$ which map every cylindrical measure on E of type p into a Radon probability on G of order p. Such operators are called p-Radonifying. The main result is: for 1 , w is p-Radonifying if and only if it is p-summing. $For <math>0 \le p \le 1$, the situation is more complex.

B. Maurey considered in [5] a class of *F*-cylindrical probabilities on $E \otimes F$, which lies somewhere between cylindrical measures on $E \otimes F$ and probabilities on some completion of this space (nearer to the first ones). He tries to find (p, F)-Radonifying operators $W: E \otimes F \rightarrow G \otimes F$ of the form $W = w \otimes 1_F$, which map every *F*-cylindrical probability on $E \otimes F$ of type (p, F) into a Radon probability on some completion $G \otimes_{\alpha} F$ of the space $G \otimes F$. It turns out that (p, F)summing operators are (p, F)-Radonifying for 1 , under some addi $tional assumptions on the norm <math>\alpha$ and on the space F (cf. [5], Exposé II, Théoréme 2). As an example, it is shown that if $w: E \rightarrow G$ is *p*-summing, then $w \otimes 1_F$:

Communicated by S. Matsuura, September 24, 1985.

^{*} Elektrotehnički fakultet, Unska 3, P.B. 170, 41001 Zagreb, Yugoslavia.

 $E \otimes F \to G \hat{\otimes}_{\mathfrak{g}} F$ is (p, F)-summing. Also, if w is p-left-nuclear, then $w \otimes 1_F$: $E \otimes F \to G \hat{\otimes}_{d_p} F$ is (p, F)-summing (cf. [2], Proposition 5 and [3]. Theorem 3).

In this paper we give an analogous result for the class of cylindrical measures on $E \otimes F$ of type p. It will be shown that \tilde{p} -summing operators of the form $w_1 \otimes w_2$ are p-Radonifying, for 1 .

Let 1 . By classical methods it is easy to obtain that an operator $of the form <math>1_E \otimes w: E \otimes F \rightarrow E \otimes H$, where $w: F \rightarrow H$ is *p*-summing, maps every cylindrical measure on $E \otimes F$ of type *p* into an *H*-cylindrical probability on $E \otimes H$ of type (p, H). Thus, Maurey's result shows that the tensor product $w_1 \otimes w_2$ of two *p*-summing operators is *p*-Radonifying, from $E \otimes F$ into $G \otimes_{\mathfrak{g}} H$, under additional assumption of reflexivity of the space *H*.

The direct approach which we use in this paper gives something more. Namely, [2] Theorem 3 shows that the product $w_1 \otimes w_2$ of two *p*-summing operators is \tilde{p} -summing from $E \otimes F$ into $G \otimes_{\alpha} H$, whenever α satisfies $\alpha \leq /d_p$ or $\alpha \leq g_p \setminus$. Thus, Theorem 6.3 states that such operator is *p*-Radonifying from $E \otimes F$ in $G \otimes_{\alpha} H$, $\alpha \leq /d_p$ or $\alpha \leq g_p \setminus$, without assumption on the reflexivity of the space *H*.

§2 is preparatory. In §3 we define cylindrical measures on $E \otimes F$ and establish the connection between them and probabilities on some completion $E \otimes_{\alpha} F$. Other necessary notions (type, convergence, Fourier transform, image of cylindrical measure by an operator of the form $w_1 \otimes w_2$, etc.) are introduced in §4 and §5. The main theorem, announced before, is proved in §6.

§2. Notation and some Preliminary Results

Throughout this paper E, F, G, H will denote real Banach spaces, E', F', G', H' their topological duals. $\mathcal{L}(E, G)$ stands for the space of all continuous linear operators: $E \rightarrow G$. By $[u, x'] \in F$ we denote the action of an element $u \in E \otimes F$ on vectors in E'. The element $u \in E \otimes F$ induces a finitedimensional linear operator $\hat{u}: E' \rightarrow F$ by $\hat{u}x':=[u, x']$. $\langle \cdot, \cdot \rangle$ will always denote the canonical pairing, in various settings, e.g., for $x' \in E', y' \in F'$ and $u \in E \otimes F$ it holds $\langle u, x' \otimes y' \rangle = \langle [u, x'], y' \rangle = \langle \hat{u}x', y' \rangle$.

Let $\{x_j\}$ be a sequence in E. By $N_p(x_j)$ we denote the number, finite or not

$$N_{p}(x_{j}) := \begin{cases} \{\sum_{j} ||x_{j}||^{p}\}^{1/p} & , \ 1 \leq p < \infty \\ \sup_{j} ||x_{j}|| & , \ p = \infty \end{cases}$$

and by

$$M_{p}(x_{j}) := \sup \{N_{p}(\langle x_{j}, x' \rangle), ||x'|| \leq 1\}$$

For $\{u_i\} \subset E \otimes F$ (and similarly for $\{v_i\} \subset \mathcal{L}(E, G)$) we denote

$$Q_{p}(u_{j}):= \sup \{N_{p}(\langle u_{j}, x' \otimes y' \rangle), ||x'|| \leq 1, ||y'|| \leq 1\}$$
$$S_{p}(u_{j}):= \sup \{N_{p}([u_{j}, x']), ||x'|| \leq 1\}$$

Linear operators $w: E \rightarrow G$, $W: E \otimes F \rightarrow G$ for which it exists a constant $C \ge 0$ such that

$$N_p(wx_j) \leqslant C \ M_p(x_j) \tag{2.1}$$

$$N_p(W(u_j)) \leqslant C \ S_p(u_j) \tag{2.2}$$

$$N_p(W(u_j)) \leqslant C \ Q_p(u_j) \tag{2.3}$$

for all finite sets $\{x_1, \dots, x_n\}$ in E or $\{u_1, \dots, u_n\}$ in $E \otimes F$, are called p-summing, (p, F)-summing and \tilde{p} -summing (respectively). The infimum of all constants C in (2.1)-(2.3) is denoted by $\pi_p(w)$, $\pi_{p,F}(W)$, $\tilde{\pi}_p(W)$, respectively.

It is known that \tilde{p} -summing operators: $E \otimes F \rightarrow G$ are (p, F)-summing, and also a *p*-summing from $E \otimes_{\alpha} F$ into *G*, for arbitrary reasonable norm α (cf. [2], Proposition 1) and hence continuous from $E \otimes_{\alpha} F$ into *G*, with the norm

$$||W|| \leqslant \tilde{\pi}_{b}(W) \tag{2.4}$$

(ϵ denotes the least reasonable crossnorm).

§3. Cylindrical Measures on $E \otimes F$ and Radon Probabilities on $E \otimes_{\alpha} F$

By FC(E) we denote the family of all closed subspaces in E of the finite codimension. The canonical projection $E \rightarrow E/N$, $N \in FC(E)$ is denoted by π_N , the projections $E/N_1 \rightarrow E/N_2$, $N_1 \subset N_2$ by $\pi_{N_2N_1}$. A cylindrical measure on E is a projective system $\{\lambda_N, \pi_N, N \in FC(E)\}$ of Radon probabilities on finite-dimensional quotients of the space E; for $N_1 \subset N_2$ it holds $\lambda_{N_2} = \pi_{N_2N_1}(\lambda_{N_1})$. It is well known that such system defines a finitely additive measure λ on the algebra of cylindrical sets in E, by

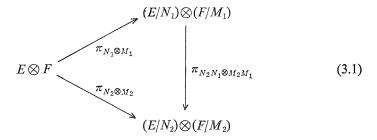
$$\lambda(B) := \lambda_N(B_N)$$

where $B = \pi_N^{-1}(B_N)$, and B_N is a Borel set in E/N. We denote $\lambda = (\lambda_N)$.

For convenience, we denote $\pi_{N\otimes M}$:= $\pi_N \otimes \pi_M$: $E \otimes F \rightarrow (E/N) \otimes (F/M)$, $N \in FC(E)$, $M \in FC(F)$, and by $\pi_{N_2N_1\otimes M_2M_1}$:= $\pi_{N_2N_1}\otimes \pi_{M_2M_1}$: $(E/N_1)\otimes (F/M_1) \rightarrow (E/N_2) \otimes (F/M_2)$, $N_1 \subset N_2$, $M_1 \subset M_2$.

The following is obvious:

Proposition 3.1. If $N_1 \subset N_2$, $M_1 \subset M_2$ are closed subspaces of the finite codimension, then the following diagram commutes:



Definition. A cylindrical measure λ on $E \otimes F$ is a projective system $\{\lambda_{N \otimes M}, \pi_{N \otimes M}, N \in FC(E), M \in FC(F)\}$ of the Radon probabilities on finite dimensional spaces $(E/N) \otimes (F/M)$.

 $\mathcal{M}^{e}(E \otimes F)$ stands for the space of all cylindrical measures on $E \otimes F$.

The cylindrical algebra on a vector space X depends only on the dual pair (X, X'), and remains the same if the original topology on X is replaced by another which gives the same dual. More generally, if (X, Y) is a pair of vector spaces in duality, such that Y separates points in X, then the cylindrical algebra on X depends only on the space Y.

 $(E \otimes F, E' \otimes F')$ is a pair of vector spaces in separated duality. Hence, we can define the cylindrical algebra on $E \otimes F$ not introducing any topology on $E \otimes F$. A cylinder is a set of the form

$$C = \{ u \in E \otimes F : (\langle u, u'_j \rangle)_{1 \leq j \leq n} \in B \}$$

$$(3.2)$$

where $n \in \mathbb{N}$, $u'_1, \dots, u'_n \in E' \otimes F'$ and B is a set in the Borel algebra $\mathcal{B}(\mathbb{R}^n)$.

It is not quite obvious that cylindrical measure can measure the cylinders! Namely, sets C of the form (3.2) need not be of the form $\{u \in E \otimes F : \pi_{N \otimes M}(u) \in B\}$ for some $N \in FC(E)$, $M \in FC(F)$, so we must prove that $\lambda(C)$ is (well) defined. For the sequel, it will be sufficient to prove

Proposition 3.2. Let λ be a cylindrical measure on $E \otimes F$. For $u' \in E' \otimes F'$ and $B \in \mathcal{B}(\mathbb{R})$, the measure

$$u'(\lambda)(B):=\lambda\{u\in E\otimes F:\langle u,u'\rangle\in B\}$$

is well defined.

Proof. Take a representation $u' = \sum_{j=1}^{n} \xi'_{j} \otimes \eta'_{j}$ where *n* is minimal with this property. Then, $\{\xi'_{1}, \dots, \xi'_{n}\}$ and also $\{\eta'_{1}, \dots, \eta'_{n}\}$ are linearly independent

(cf. [10], Lemma 1.2). Denote N^0 :=span { ξ'_1, \dots, ξ'_n } $\subset E', M^0$:= span { η'_1, \dots, η'_n } $\subset F'$, and let N:= $(N^0)^0 \subset E, M$:= $(M^0)^0 \subset F$ be their polars. By Auerbach lemma, there exists a basis { x'_1, \dots, x'_n } for N^0 and a basis { $\bar{x}_1, \dots, \bar{x}_n$ } for $E/N \simeq (N^0)'$ such that $\langle x'_i, \bar{x}_j \rangle = \delta_{ij}$ (cf. [6], p. 22). Similarly, there exists { y'_1, \dots, y'_n } $\subset M^0$ and { $\bar{y}_1, \dots, \bar{y}_n$ } $\subset F/M$ with the same properties. Then it holds $\pi_N = \sum_{j=1}^n x'_j \otimes \bar{x}_j, \pi_M = \sum_{k=1}^n y'_k \otimes \bar{y}_k$, and u' has a representation $u' = \sum_{j,k=1}^n t_{jk}$ $x'_j \otimes y'_k$.

Define now $\rho: (E/N) \otimes (F/M) \to \mathbb{R}$ by $\rho(\bar{x}_j \otimes \bar{y}_k) := t_{jk}$. ρ is continuous linear mapping, and it holds

$$egin{aligned} &(
ho \circ \pi_{N \otimes M}) \left(u
ight) =
ho (\sum\limits_{j,k} ig< u, \, x'_j \otimes y'_k ig> ar{x}_j \otimes ar{y}_k) \ &= \sum\limits_{j,k} t_{jk} ig< u, \, x'_j \otimes y'_k ig> = ig< u, \, u' ig> \end{aligned}$$

for every $u \in E \otimes F$. Thus, $u'(\lambda) = (\rho \circ \pi_{N \otimes M})(\lambda) = \rho(\lambda_{N \otimes M})$ is well defined probability on \mathbb{R} .

In the classical situation, every probability (normed σ -additive measure on the Borel σ -algebra $\mathcal{B}(E)$) on a separable Banach space defines a cylindrical measure (finitely additive measure on the smaller cylindrical algebra) in the unique way. Moreover, for a given cylindrical measure λ on the cylindrical algebra $\mathcal{A}(E)$, there exists at most one probability μ such that $\mu | \mathcal{A}(E) = \lambda$. The necessary and sufficient condition for the existence of μ is the σ -additivity of λ . The reason for this uniqueness lies in the fact that $\mathcal{B}(E)$ is the σ -algebra generated by $\mathcal{A}(E)$. Even in the non-separable case, a cylindrical measure defines at most one Radon probability on E ([11], p. 174), the tightness property of Radon probabilities becomes now essential.

The connection between cylindrical measures on $E \otimes F$ and Radon probabilities on some completion $E \bigotimes_{\alpha} F$ of this space is more complex. If we wish to obtain an one-to-one correspondence between them, we need some additional conditions on the norm α . Namely, the cylindrical algebra on $E \otimes F$ is far away from the cylindrical algebra on $E \bigotimes_{\alpha} F$, the first one is considerably smaller.

Let us suppose that α satisfies

$$|\langle u, x' \otimes y' \rangle| \leqslant \alpha(u) ||x'|| ||y'|| \tag{3.3}$$

for all $x' \in E'$, $y' \in F'$ and $u \in E \otimes F$. If ψ denotes the canonical embedding $E \otimes_{\mathfrak{g}} F \to \mathcal{L}(E', F)$, then (3.3) ensures that ψ is continuous, with the norm ≤ 1 . Hence, it can be extended by continuity to the completion, $\hat{\psi} : E \otimes_{\mathfrak{g}} F \to \mathcal{L}(E', F)$. Let μ be a Radon probability on $E \hat{\otimes}_{\alpha} F$. It is natural to put $\mu_{N \otimes M} := \pi_{N \otimes M}(\mu)$ in order to obtain a cylindrical measure on $E \otimes F$, but first we must be sure that the operator $\pi_{N \otimes M} : E \otimes F \rightarrow (E/N) \otimes (F/M)$ has a continuous prolongation to the space $E \hat{\otimes}_{\alpha} F$.

We can identify an element $\pi_{N\otimes M}(u) \in (E/N) \otimes (F/M)$ with the operator

$$(\pi_{N\otimes M}(u))^{\uparrow} = \pi_{M} \circ \hat{u} \circ^{t} \pi_{N} \colon (E/N)' \to F/M$$

Therefore, we can write $\pi_{N\otimes M} = \rho_{N,M} \circ \psi$ where $\rho_{N,M} \colon \mathcal{L}(E', F) \to \mathcal{L}((E/N)', (F/M))$ is defined by

$$\rho_{N,M}(w) := \pi_M \circ w \circ^t \pi_N$$

Thus, since α satisfy (3.3)

$$\hat{\pi}_{N\otimes M}(u)$$
: = $(
ho_{N,M}\circ\hat{\psi})(u)$

defines a mapping from $E \hat{\otimes}_{\alpha} F$ into $(E/N) \otimes (F/M)$ which prolongues $\pi_{N \otimes M}$.

Hence, if α satisfies (3.3) and μ is a probability on $E\hat{\otimes}_{\alpha}F$, then μ defines a cylindrical measure on $E\otimes F$ by

$$\mu_{N\otimes M} := \hat{\pi}_{N\otimes M}(\mu)$$

We denote this cylindrical measure by $\check{\mu} = (\mu_{N \otimes M})$.

The inverse connection is more interesting for us.

Definition. Cylindrical measure λ on $E \otimes F$ is a Radon probability on $E \hat{\otimes}_{\alpha} F$ if there exists a unique Radon probability μ on $E \hat{\otimes}_{\alpha} F$ such that $\check{\mu} = \lambda$.

The condition on uniqueness is essential. Namely, if it exists a probability μ on $E\hat{\otimes}_{\omega}F$ such that $\lambda = \check{\mu}$, it cannot be assumed a priori that μ is unique (as in the classical case). A sufficient condition for this is due by Prohorov (cf. [11], Theorem 22, p. 81): it is sufficient that the mappings $\{\hat{\pi}_{N\otimes M}, N \in FC(E), M \in FC(F)\}$ separate points of $E\hat{\otimes}_{\omega}F$.

Proposition 3.3. The following conditions are equivalent:

- (i) { $\hat{\pi}_{N\otimes M}$, $N \in FC(E)$, $M \in FC(F)$ } separate points of $E \hat{\otimes}_{\alpha} F$.
- (ii) $\{u \mapsto \langle u, x' \otimes y' \rangle, x' \in E', y' \in F'\}$ separate points of $E \hat{\otimes}_{\alpha} F$.
- (iii) $\{u \mapsto [u, x'], x' \in E'\}$ separate points of $E \bigotimes_{\alpha} F$.
- (iv) $\hat{\psi}: E \hat{\otimes}_{\alpha} F \rightarrow \mathcal{L}(E', F)$ is one-to-one

Proof. Let us prove only (i) \Rightarrow (ii). Take $u \in E \hat{\otimes}_{\sigma} F$, $u \neq 0$, and $N \in FC(E)$, $M \in FC(F)$ for which holds $\hat{\pi}_{N \otimes M}(u) \neq 0$, i.e. $\pi_M \circ \hat{u} \circ {}^t\pi_N \neq 0$. There exist $x'_N \in (E/N)'$, $y'_M \in (F/M)'$ such that

Cylindrical Measures on Tensor Products

$$\langle (\pi_M \circ \hat{u} \circ t \pi_N) (x'_N), y'_M \rangle \neq 0$$

Define $x' := {}^{t}\pi_{N} x'_{N}, y' := {}^{t}\pi_{M} y'_{M}$. Then it holds $\langle u, x' \otimes y' \rangle \neq 0$.

In the sequel we will assume that α satisfies (3.3) and

$$\hat{\psi}: E \hat{\otimes}_{\alpha} F \to \mathcal{L}(E', F) \text{ is one-to-one}$$
 (3.4)

Thus, from the well known conditions for the fulfilment of (3.3) and (3.4) we obtain

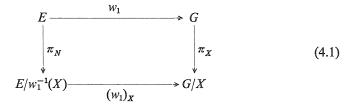
Proposition 3.4. Let α be a reasonable norm and λ a cylindrical measure on $E \otimes F$. If E or F have the metric approximation property, and if it exists a probability μ on $E \hat{\otimes}_{\alpha} F$ for which holds $\check{\mu} = \lambda$, then μ is unique.

We will denote such probability by $\hat{\lambda}$. Hence, in this case we have $(\hat{\lambda})^{\check{}} = \lambda$, $(\check{\mu})^{\hat{}} = \mu$.

§4. Fourier Transform and Image of Cylindrical Measure

Let λ be a cylindrical measure on $E \otimes F$, and $w_1: E \to G$, $w_2: F \to H$ continuous linear operators. Denote $W:=w_1 \otimes w_2$. First we define the image $W(\lambda)$.

Take $X \in FC(G)$. Then $N := w_1^{-1}(X) \in FC(E)$ and all the operators in the following commutative diagram are continuous:



If we take now $Y \in FC(H)$, then $M := w_2^{-1}(Y) \in FC(F)$ and the Radon probability $\lambda_{N \otimes M}$ on the space $(E/w_1^{-1}(X)) \otimes (F/w_2^{-1}(Y))$ is well defined. Denote $W_{X \otimes Y} := (w_1)_X \otimes (w_2)_Y$.

Definition. The *image* $(w_1 \otimes w_2)(\lambda)$ of a cylindrical measure λ is a cylindrical measure on $G \otimes H$ defined by

$$(w_1 \otimes w_2) (\lambda)_{X \otimes Y} := W_{X \otimes Y} (\lambda_{N \otimes M})$$

$$(4.2)$$

The Fourier transform of a cylindrical measure is defined similarly as in the classical case: for $u' \in E' \otimes F'$ and $s \in \mathbb{R}$ we define

$$\mathcal{F}(\lambda) (s u') := \mathcal{F}(u'(\lambda)) (s) \tag{4.3}$$

where $u'(\lambda)$ is a probability on **R**, defined in Proposition 3.2.

Proposition 4.1. For $w_1 \in \mathcal{L}(E, G)$, $w_2 \in \mathcal{L}(F, H)$ it holds

$$\mathcal{F}((w_1 \otimes w_2)(\lambda))(u') = \mathcal{F}(\lambda)(({}^t w_1 \otimes {}^t w_2)(u'))$$

Proof. Let $u' = \sum x'_j \otimes y'_j$ be a representation of u'. We have

$$u' \circ (w_1 \otimes w_2) = (\sum x'_j \otimes y'_j) \circ (w_1 \otimes w_2)$$

= $\sum (x'_j \circ w_1) \otimes (y'_j \circ w_2)$
= $\sum t' w_1 x'_j \otimes t' w_2 y'_j = (t' w_1 \otimes t' w_2) (u')$

and the Proposition follows.

The Fourier transformation establishes a one-to-one correspondence between cylindrical measures on Banach (more generally, locally convex) space E and functions on E' of positive type, whose restrictions to the finite dimensional subspaces are continuous. This is an easy consequence of Bochner theorem (see [1], p. 19). The same proof gives:

Proposition 4.2. A function $\phi: E' \otimes F' \rightarrow C$ is the Fourier transform of a cylindrical measure λ on $E \otimes F$ if and only if ϕ satisfies

(i) $\phi(0) = 1$

(ii) ϕ is of positive type, i.e., for all $n \in \mathbb{N}$, $u'_1, \dots, u'_n \in E' \otimes F'$ and $\zeta_1, \dots, \zeta_n \in \mathbb{C}$ it holds

$$\sum_{i,j=1}^{n} \zeta_{i} \overline{\zeta}_{j} \phi(u_{j}' - u_{i}') \ge 0$$

(iii) The restriction of ϕ to finite dimensional subspaces of $E' \otimes F'$ is continuous.

Lemma 4.3. For a cylindrical measure λ on $E \otimes F$, the following is equivalent:

(i) $(x', y') \mapsto \mathcal{F}(\lambda) \ (x' \otimes y') \text{ is continuous on } E' \times F'.$ (ii) If $(x'_j)_{\gamma} \to x'_j \text{ and } (y'_j)_{\gamma} \to y'_j \ (j=1, \dots, n), \text{ then}$

$$\mathcal{F}(\lambda) \left(\sum_{j=1}^{n} (x'_{j})_{\gamma} \otimes (y'_{j})_{\gamma} \right) \to \mathcal{F}(\lambda) \left(\sum_{j=1}^{n} x'_{j} \otimes y'_{j} \right)$$

Proof. Denote $\phi := \mathcal{F}(\lambda)$. From the classical inequality

$$|\phi(u_1') - \phi(u_2')|^2 \leq 2|1 - \phi(u_1' - u_2')|$$

we obtain

$$|\phi(\sum_{j=1}^{n} u_{j}') - 1| \leq \sum_{k=1}^{n} |\phi(\sum_{j=1}^{k} u_{j}') - \phi(\sum_{j=1}^{k-1} u_{j}')| \leq \sqrt{2} \sum_{k=1}^{n} |1 - \phi(u_{k}')|^{1/2}$$

Thus, it holds

$$\begin{aligned} |\phi(\sum_{j=1}^{n} (x'_{j})_{\gamma} \otimes (y'_{j})_{\gamma}) - \phi(\sum_{j=1}^{n} x'_{j} \otimes y'_{j})|^{2} \leq 2 |1 - \phi\{\sum_{j=1}^{n} ((x'_{j})_{\gamma} - x'_{j}) \otimes (y'_{j})_{\gamma} \\ + \sum_{j=1}^{n} x'_{j} \otimes ((y'_{j})_{\gamma} - y'_{j})\}| \leq 2\sqrt{2} \sum_{k=1}^{n} \{|1 - \phi[((x'_{k})_{\gamma} - x'_{k}) \otimes (y'_{k})_{\gamma}]|^{1/2} \\ + |1 - \phi[x'_{k} \otimes ((y'_{k})_{\gamma} - y'_{k})]|^{1/2} \} \end{aligned}$$

which converges to 0 if (i) is satisfied. The converse is obvious.

§5. Type and Approximability

A probability μ on a Banach space G is of order p (0) if

$$||\mu||_p := \{ \int_G ||z||^p d\mu(z) \}^{1/p} < \infty$$

Let λ be a cylindrical measure on $E \otimes F$. For $x' \in E'$, $y' \in F'$, the image $(x' \otimes y')(\lambda)$ is a probability on \mathbb{R} . We say that λ is of type p (0 if

$$\|\lambda\|_{p}^{*}:=\sup\{\|(x'\otimes y')(\lambda)\|_{p}, \|x'\|\leq 1, \|y'\|\leq 1\}<\infty$$

 λ is of type 0 if for every $\eta > 0$ it exists R > 0 such that

$$\sup \{ [(x' \otimes y')(\lambda)] (]R, \infty[), ||x'|| \leq 1, ||y'|| \leq 1 \} < \eta$$

The set of all cylindrical measures on $E \otimes F$ of type p is denoted by \mathcal{M}_p^c $(E \otimes F)$.

It is evident that a cylindrical measure of type p_1 is also of type p_2 , for $p_1 > p_2$.

The following proposition is obvious:

Proposition 5.1. Let λ be a cylindrical measure of type p > 0 on $E \otimes F$, $w_1 \in \mathcal{L}(E,G)$, $w_2 \in \mathcal{L}(F,H)$ and $W = w_1 \otimes w_2$. Then $W(\lambda)$ is a cylindrical measure of type p on $G \otimes H$, and

$$||W(\lambda)||_{p}^{*} \leq ||w_{1}|| ||w_{2}|| ||\lambda||_{p}^{*}$$
(5.1)

We say that a linear operator W is *p*-Radonifying if it maps every cylindrical measure on $E \otimes F$ of type p into a Radon probability of order p.

The following lemma establishes a connection between the type of a cylindrical measure and the continuity of its Fourier transform. The proof is identical to the classical one (cf. [1], p. 26) so we omit it:

Lemma 5.2. A cylindrical measure λ on $E \otimes F$ is of type 0 if and only if

the mapping $(x', y') \mapsto \mathcal{F}(\lambda)$ $(x' \otimes y')$ is continuous on $E' \times F'$.

Definition. A net $\{\lambda_{\gamma}, r \in \Gamma\}$ of cylindrical measures converges \otimes -cylindrically to $\lambda \in \mathcal{M}^{c}(E \otimes F)$ if $(\lambda_{\gamma})_{N \otimes M}$ converges to $\lambda_{N \otimes M}$ weakly, for every $N \in FC(E)$, $M \in FC(F)$.

The notion of \otimes -cylindrical convergence has also the sense for Radon probabilities on $E \hat{\otimes}_{\alpha} F$:

Proposition 5.3. On $\mathcal{M}(E \hat{\otimes}_{\alpha} F)$ we have

- (i) If $\mu_{\gamma} \rightarrow \mu$ weakly, then $\mu_{\gamma} \rightarrow \mu \otimes -cylindrically$
- (ii) If $\mu_{\gamma} \rightarrow \mu \otimes$ -cylindrically, then μ is unique.

Proof. (i) is immediate. If $\mu_{\gamma} \rightarrow \mu \otimes$ -cylindrically, then $\check{\mu}_{\gamma} \rightarrow \check{\mu} \otimes$ -cylindrically, and thus $(\mu_{\gamma})_{N\otimes M} \rightarrow \mu_{N\otimes M}$ weakly. Let us suppose $\mu_{\gamma} \rightarrow \nu \otimes$ -cylindrically. Then $\nu_{N\otimes M} = \mu_{N\otimes M}$ for all $N \in FC(E)$, $M \in FC(F)$ so that $\check{\nu} = \check{\mu}$ and hence $\nu = \mu$, since α satisfies (3.4).

Proposition 5.4. If $w_1 \in \mathcal{L}(E, G)$, $w_2 \in \mathcal{L}(F, H)$ and $\lambda_{\gamma} \rightarrow \lambda \otimes$ -cylindrically, then $(w_1 \otimes w_2) (\lambda_{\gamma}) \rightarrow (w_1 \otimes w_2) (\lambda) \otimes$ -cylindrically.

Proof. Denote $W=w_1\otimes w_2$. Let $W_{X\otimes Y}$ be the continuous linear operator defined in (4.1). By definition, $(\lambda_{\gamma})_{N\otimes M} \to \lambda_{N\otimes M}$ weakly, where $N=w_1^{-1}(X)$, $M=w_2^{-1}(Y)$. Then,

$$(W(\lambda_{\gamma}))_{X\otimes Y} = W_{X\otimes Y}((\lambda_{\gamma})_{N\otimes M}) \to W_{X\otimes Y}(\lambda_{N\otimes M}) = (W(\lambda))_{X\otimes Y}$$

The following lemma represents an essential step in the Radonification problem:

Lemma 5.5. Suppose E' and F' have the metric approximation property. If λ is a cylindrical measure on $E \otimes F$ of type p > 0, then there is a net $\{\lambda_{\gamma}\}$ of Radon probabilities on $E \otimes F$ (each of them is concentrated on some finite-dimensional subspace) such that $\{\lambda_{\gamma}\}$ converges \otimes -cylindrically to λ , and

$$||\lambda_{\gamma}||_{p}^{*} \leqslant ||\lambda||_{p}^{*} \tag{5.2}$$

Proof. There exist finite dimensional operators $p_{\gamma}: E' \to E'$ and $q_{\gamma}: F' \to F'$ which converge pointwise to the identities, and it holds $||p_{\gamma}|| \leq 1$, $||q_{\gamma}|| \leq 1$. We can further suppose that p_{γ} and q_{γ} are weakly*-continuous [9]. Thus, there exist finite-dimensional operators ${}^{t}p_{\gamma}: E \to E, {}^{t}q_{\gamma}: F \to F$.

Define $\lambda_{\gamma} := ({}^{t}p_{\gamma} \otimes {}^{t}q_{\gamma}) (\lambda)$. λ_{γ} is a Radon probability, concentrated on some finite-dimensional space. Moreover, Proposition 5.1 gives

338

$$||\lambda_{\gamma}||_{p}^{*} \leq ||^{t}p_{\gamma}|| \cdot ||^{t}q_{\gamma}|| \cdot ||\lambda||_{p}^{*} \leq ||\lambda||_{p}^{*}$$

It remains to prove that $\lambda_{\gamma} \rightarrow \lambda \otimes$ -cylindrically.

It is sufficient to obtain that $\mathcal{F}((\lambda_{\gamma})_{N\otimes M})$ converges to $\mathcal{F}(\lambda_{N\otimes M})$ uniformly on compact sets. Let $u' \in ((E/N) \otimes (F/M))'$. Then

$$\begin{aligned} \mathscr{F}((\lambda_{\gamma})_{N\otimes M}) (u') &= \mathscr{F}(\pi_{N\otimes M}({}^{t}p_{\gamma}\otimes {}^{t}q_{\gamma}) (\lambda)) (u') \\ &= \mathscr{F}(\lambda) \left((p_{\gamma}\otimes q_{\gamma}) ({}^{t}\pi_{N\otimes M} (u')) \right) \end{aligned}$$

Take a representation ${}^{t}\pi_{N\otimes M}(u') = \sum_{j=1}^{r} t_{j}x'_{j}\otimes y'_{j}$, where $\{x'_{j}\otimes y'_{j}\}$ is a basis of the space ${}^{t}\pi_{N\otimes M}[((E/N)\otimes (F/M))'] \subset E'\otimes F'$. x'_{j} and y'_{j} can be taken such that $||x'_{j}|| = ||y'_{j}|| = 1$ holds.

Denote $(x'_j)_{\gamma} := p_{\gamma} x'_j, (y'_j)_{\gamma} := q_{\gamma} y'_j$. Then $(x'_j)_{\gamma} \to x'_j$ and $(y'_j)_{\gamma} \to y'_j$.

By assumption, λ is of type p>0, hence also of type 0. By Lemma 5.2, $\mathcal{F}(\lambda)$ is continuous on $E' \times F'$. Hence, by Lemma 4.2

$$\mathcal{F}(\lambda) \left(\sum t_j(x'_j)_{\gamma} \otimes (y'_j)_{\gamma} \right) \to \mathcal{F}(\lambda) \left(\sum t_j x'_j \otimes y'_j \right)$$

uniformly on bounded $\{t_j\}$. The lemma is proved.

§6. Cylindrical Measures and \tilde{p} -summing Operators

Let $(\mathcal{Q}, \mathcal{\Sigma}, P)$ be a probability space, and $f: \mathcal{Q} \to E \hat{\otimes}_{\mathfrak{e}} F$ such that $\omega \mapsto \langle f(\omega), x' \otimes y' \rangle$ is measurable function, for all $x' \in E', y' \in F'$. Define

$$||f||_p^* := \sup_{\substack{||x'|| \leq 1 \\ ||y'|| \leq 1}} \{ \int_{\mathcal{Q}} |\langle f(\omega), x' \otimes y' \rangle|^p dP(\omega) \}^{1/p}$$

and denote by $L_{\rho}^{*}(\mathcal{Q}, \Sigma, P; E \hat{\otimes}_{\varepsilon} F)$ the space of all such functions for which it holds $||f||_{\rho}^{*} < \infty$.

Proposition 6.1. Let $f \in L_p^*(\mathcal{Q}, \Sigma, P; E \hat{\otimes}_{\mathfrak{e}} F)$. If $W: E \otimes F \to G$ is \tilde{p} -summing, then

$$\{\int_{\Omega} ||W(f(\omega))||^{p} dP(\omega)\}^{1/p} \leqslant \widetilde{\pi}_{p}(W)||f||_{p}^{*}$$
(6.1)

Proof. Denote by K_1 the unit ball of the space E', with the weak topology $\sigma(E', E)$, similarly for $K_2 \subset F'$. By Pietsch Majorization theorem for \tilde{p} -summing operators (cf. [2], Theorem 1), there exists a Radon probability μ on the compact space $K := K_1 \times K_2$, such that for every $u \in E \otimes F$ it holds

$$||W(u)|| \leq \widetilde{\pi}_{p}(W) \{ \int_{K} |\langle u, x' \otimes y' \rangle|^{p} d\mu(x', y') \}^{1/p}$$
(6.2)

Take $u \in E \hat{\otimes}_{\epsilon} F$, and $\{u_k\} \subset E \otimes_{\epsilon} F$, $u_k \to u$. Then W(u) is well defined, since

a \tilde{p} -summing operator can be extended by continuity on $E\hat{\otimes}_{\mathfrak{e}}F$. Moreover, since the ε -norm topology on $E\otimes F$ is stronger than the weak topology $\sigma(E\otimes F, E'\otimes F')$, it holds $\langle u_k, x'\otimes y' \rangle \rightarrow \langle u, x'\otimes y' \rangle$ and, by Dominated Convergence theorem

$$\int_{K} |\langle u_{k}, x' \otimes y' \rangle|^{p} d\mu(x', y') \to \int_{K} |\langle u, x' \otimes y' \rangle|^{p} d\mu(x', y')$$

Thus, (6.2) holds for all $u \in E \hat{\otimes}_{\mathfrak{g}} F$.

By Foubini's theorem, we have

$$\begin{split} \{ \int_{\mathcal{Q}} ||W(f(\omega))||^{p} dP(\omega) \}^{1/p} \\ &\leqslant \widetilde{\pi}_{p}(W) \{ \int_{\mathcal{Q}} \int_{K} |\langle f(\omega), x' \otimes y' \rangle|^{p} d\mu(x', y') dP(\omega) \}^{1/p} \\ &= \widetilde{\pi}_{p}(W) \{ \int_{K} \int_{\mathcal{Q}} |\langle f(\omega), x' \otimes y' \rangle|^{p} dP(\omega) d\mu(x', y') \}^{1/p} \\ &\leqslant \widetilde{\pi}_{p}(W) \sup_{\substack{||x'|| \leq 1 \\ ||y'|| \leq 1 \\ ||y'|| \leq 1 \\ ||y'|| \leq 1 \\ ||x'|| \leq 1 \\ ||y'|| \leq 1 \\ ||y'|| \leq 1 \\ ||x'|| \leq 1 \\ ||y'|| \leq 1 \\ ||x'|| \leq 1 \\ ||y'|| \leq 1 \\ ||y'||$$

which proves (6.1).

Take now $\mathcal{Q} = E \hat{\otimes}_{\mathfrak{g}} F$, $P = \mu$, $f: \mathcal{Q} \to E \hat{\otimes}_{\mathfrak{g}} F$ identity. Then $||f||^* = \sup \int \int |\langle u, x' \otimes u' \rangle |^2 du(x', u') |^{1/2} = ||u|$

$$||f||_{p}^{*} = \sup_{\substack{||x'|| \leq 1 \\ ||y'|| \leq 1}} \{ \int_{\Omega} |\langle u, x' \otimes y' \rangle|^{p} d\mu(x', y') \}^{1/p} = ||\mu||_{p}^{*}$$

Thus, Proposition 6.1 gives:

Corollary 6.2. If $W: E \otimes F \rightarrow G$ is \tilde{p} -summing, μ a Radon probability on $E \otimes_{\mathfrak{g}} F$ of type p, then

$$||W(\mu)||_{p} \leqslant \widetilde{\pi}_{p}(W)||\mu||_{p}^{*} \tag{6.3}$$

Remark. The main difficulty in the proof above is crossing to the completion $E \otimes_{\mathfrak{e}} F$. This is necessary since the notion "Radon measure on $E \otimes F$ " has no sense ($E \otimes F$ has no topology). But, if μ is concentrated on some finite dimensional space, and has the type p (thus, $\mu \in \mathcal{M}_p^c(E \otimes F)$), then Corollary 6.2 remains true. We will apply this corollary only for such measures.

We are ready to prove the main result:

Theorem 6.3. Let E, F, G, H be Banach spaces, $1 and <math>\alpha$ a norm on $G \otimes H$ which satisfies (3.3) and (3.4). $W := w_1 \otimes w_2 : E \otimes F \rightarrow G \otimes_{\alpha} H$ is p-Radonifying if and only if it is \tilde{p} -summing, and for $\lambda \in \mathcal{M}_p^c(E \otimes F)$ it holds Cylindrical Measures on Tensor Products

$$||W(\lambda)||_{\mathfrak{p}} \leqslant \widetilde{\pi}_{\mathfrak{p}}(W)||\lambda||_{\mathfrak{p}}^{*} \tag{6.4}$$

Remark. If $w_1 \otimes w_2$ is \tilde{p} -summing, it is known that w_1 and w_2 must also be *p*-summing, and it holds $\tilde{\pi}_p(W) = \pi_p(w_1)\pi_p(w_2)$; moreover, if w_1 and w_2 are *p*-summing, then $w_1 \otimes w_2$ is \tilde{p} -summing whenever the \otimes -norm α satisfies $\alpha \leq /d_p$ or $\alpha \leq g_p \setminus$ (cf. [2], Theorem 3). See [7] for description of the norm $/d_p$ and $g_p \setminus$.

Another example of \tilde{p} -summing operators of the form $w_1 \otimes w_2$ gives (cf. [2], Corollary 1):

Corollary 6.4. Let $w_1: E \to G$ be p-left-nuclear, and $w_2: F \to H$ p-summing, $1 . Then <math>w_1 \otimes w_2: E \otimes F \to G \hat{\otimes}_{d_p} H$ and $w_2 \otimes w_1: F \otimes E \to H \hat{\otimes}_{g_p} G$ are p-Radonifying, and for $\lambda \in \mathcal{M}'_{p}(E \otimes F)$ it holds

$$||W(\lambda)||_{p} \leq g_{p}(w_{1})\pi_{p}(w_{2})||\lambda||_{p}^{*}$$
(6.5)

Proof of Theorem 6.3: The only if part follows as in the classical case, cf. [12], Théorème 3.4, p. 196. It is sufficient to take a sequence $\{c_n\}$ of positive number of the sum 1 and $\{u_n\} \subset E \otimes F$ such that $Q_p(u_n) < \infty$. Denote by δ_n the Dirac measure in the point $c_n^{-1/p}u_n$ and define $\lambda := \sum c_n \delta_n$. λ is obviously a cylindrical measure on $E \otimes F$ of type p:

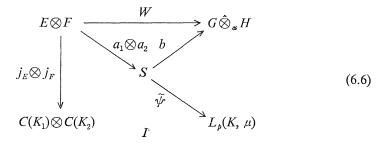
$$\|\lambda\|_{p}^{*} = \sup_{\substack{\|x'\| \leq 1 \\ \|y'\| \leq 1}} \{\sum c_{n} |\langle x' \otimes y', c_{n}^{-1/p} u_{n} \rangle|^{p} \}^{1/p} = Q_{p}(u_{n})$$

Since W is p-Radonifying, $W(\lambda)$ is a Radon probability on $G\hat{\otimes}_{\alpha} H$ of order p.

$$||W(\lambda)||_{p} = \{\int ||W(u)||^{p} d\lambda(u)\}^{1/p} = \{\sum c_{n} ||c_{n}^{-1/p} W(u_{n})||^{p}\}^{1/p} = N_{p}(W(u_{n}))$$

Thus, $Q_p(u_n) < \infty$ implies $N_p(W(u_n)) < \infty$ and W is \tilde{p} -summing.

Let us prove the sufficiency. The operator W, being \tilde{p} -summing, has the factorization of the form (cf. [2], Theorem 2 and Theorem 3):



341

 K_1, K_2, K are defined in the proof of Proposition 6.1, μ_1 and μ_2 are the Pietsch measures, and $\mu := \mu_1 \otimes \mu_2$. The space $L_p(K, \mu)$ is obtained as the completion $L_p(K_1, \mu_1) \hat{\otimes}_{s_p} L_p(K_2, \mu_2)$, where s_p is one of the norm $g_p \setminus \text{ or } / d_p$ which coincides on the space $L_p \otimes L_p$ (cf. [8], Corollaire 4). S is a closed subspace of $L_p(K, \mu)$, obtained as the closure of the space $S_1 \otimes S_2$ in the norm s_p , where S_1 and S_2 are closed subspaces of $L_p(K_1, \mu_1)$ and $L_p(K_2, \mu_2)$, respectively. $\hat{\psi} = \psi_1 \hat{\otimes} \psi_2$ is the canonical embedding, b a continuous linear operator, with $||b|| \leq \tilde{\pi}_p(W)$ and $a_1 \otimes a_2$ a \tilde{p} -summing operator. j_E (and similarly j_F) is defined by $j_E x := (x' \mapsto \langle x, x' \rangle)$. I is defined by

$$I(\sum f_k \otimes g_k) := ((x', y') \mapsto \sum f_k(x')g_k(y'))$$

Let λ be a cylindrical measure on $E \otimes F$ of type p. By Proposition 5.1 $\tilde{\lambda}:=(j_E \otimes j_F)(\lambda)$ is a cylindrical measure on $C(K_1) \otimes C(K_2)$ of type p. Since $C(K_1)'$ and $C(K_2)'$ have the metric approximation property, by Lemma 5.5 there exists a net $\{\lambda_{\gamma}\}$ of Radon probabilities on $C(K_1) \otimes C(K_2)$ (each of them is concentrated on some finite-dimensional space) which converges \otimes -cylindrically to λ and

$$||\lambda_{\boldsymbol{\gamma}}||_{\boldsymbol{p}}^{*} \leqslant ||\tilde{\lambda}||_{\boldsymbol{p}}^{*} = ||(j_{E} \otimes j_{F}) (\lambda)||_{\boldsymbol{p}}^{*} \leqslant ||j_{E}|| ||j_{F}|| ||\lambda||_{\boldsymbol{p}}^{*} = ||\lambda||_{\boldsymbol{p}}^{*}$$

The mapping *I* is \tilde{p} -summing, with $\tilde{\pi}_p(I) \leq 1$ (cf. [2], Lemma 1). Thus, Corollary 6.2 gives for the Radon probabilities $I(\lambda_\gamma)$ on $L_p(K, \mu)$:

$$||I(\lambda_{\gamma})||_{p} \leq \widetilde{\pi}_{p}(I)||\lambda_{\gamma}||_{p}^{*} \leq ||\lambda||_{p}^{*}$$

Let $L_p(K, \mu)_{\sigma}$ be the space $L_p(K, \mu)$ with the weak topology. We can observe $I(\lambda_{\gamma})$ as a Radon measure on $L_p(K, \mu)_{\sigma}$. By a version of Prohorov's theorem, see e.g. [4] Proposition 4, $\{I(\lambda_{\gamma})\}$ is relatively compact in the topology of the weak convergence of probability measures. Hence, it exists a Radon probability ν on $L_p(K, \mu)_{\sigma}$ which lies in the closure of $\{I(\lambda_{\gamma})\}$. We may suppose $I(\lambda_{\gamma}) \rightarrow \nu$ weakly, and hence also a \otimes -cylindrically. By Phillips theorem ([11], Theorem 3, p. 162) (weak and strong topology on a Banach space are Radon-equivalent), ν is a Radon probability on $L_p(K, \mu)$.

On the other hand, $I(\tilde{\lambda})$ defines a cylindrical measure on $L_p(K_1, \mu_1) \otimes L_p(K_2, \mu_2)$. Since L_p -spaces have the metric approximation property, by Proposition 3.4 there exists at most one Radon probability $I(\tilde{\lambda})^{\uparrow}$ on $L_p(K, \mu) \simeq L_p(K_1, \mu_1) \hat{\otimes}_{d_p} L_p(K_2, \mu_2)$. Since it holds $I(\tilde{\lambda}) = \lim I(\lambda_{\gamma})$, Proposition 5.3 ensures $\nu = I(\tilde{\lambda})^{\uparrow}$, i.e. $I(\tilde{\lambda}) = \check{\nu}$. Hence, $I(\tilde{\lambda})$ is a Radon probability on $L_p(K, \mu)$. We must show that ν is concentrated on S.

Let $\subseteq \mathcal{V}$ be a topology on $L_p(K, \mu)$ with the following basis of neighborhoods of zero:

$$V = \{h \in L_{p}(K, \mu) : |\langle h, f'_{i} \cdot g'_{j} \rangle| < \varepsilon, \quad \varepsilon > 0, \\ f'_{1}, \dots, f'_{n} \in L_{p'}(K_{1}, \mu_{1}), g'_{1}, \dots, g'_{m} \in L_{p'}(K_{2}, \mu_{2})\}$$

Since $f'_i \cdot g'_j \in L_{p'}(K_1 \times K_2, \mu_1 \otimes \mu_2)$, the topology \mathcal{O} is weaker than the weak topology on $L_p(K, \mu)$. But, the converse is also true: take $h' \in L_{p'}(K, \mu)$. Since $L_{p'}(K, \mu)$ is isometrically isomorphic to the space $L_{p'}(K_1, \mu_1) \otimes_{sp'} L_{p'}(K_2, \mu_2)$, h' can be approximated in $L_{p'}$ -norm by functions of the form $\sum_{i=1}^{n} f'_i \otimes g'_i$, $f'_i \in L_{p'}(K_1, \mu_1), g'_i \in L_{p'}(K_2, \mu_2)$, i.e., by the functions $(x, y) \mapsto \sum_{i=1}^{n} f'_i(x)g'_i(y)$, and our statement follows easily.

Consider the space $S := S_1 \hat{\otimes}_{s_p} S_2$. Let $N \in FC(L_p(K_1, \mu_1)), M \in FC(L_p(K_2, \mu_2))$ be arbitrary. The norm s_p satisfy (3.3), thus $\pi_{N\otimes M}$ can be extended to a continuous linear operator $\hat{\pi}_{N\otimes M} : L_p(K, \mu) \to (L_p(K_1, \mu_1)/N) \otimes (L_p(K_2, \mu_2)/M)$. Also, the Radon probability ν on $L_p(K, \mu)$ defines a unique cylindrical measure $\check{\nu}$ on $L_p(K_1, \mu_1) \otimes L_p(K_2, \mu_2)$. It holds $\hat{\pi}_{N\otimes M}(\nu) = \check{\nu}_{N\otimes M} = \pi_{N\otimes M}(\check{\nu})$, and commutative diagram (6.6) shows that $\hat{\pi}_{N\otimes M}(\nu)$ is concentrated on $\pi_{N\otimes M}(S_1 \otimes S_2)$.

Suppose that ν is not concentrated on S. Then it exists $h^0 \notin S$ which lies in the support of ν . Since S is closed in the weak topology of the space $L_p(K, \mu)$, we can choose $\eta > 0, f'_1, \dots, f'_n \in L_{p'}(K_1, \mu_1), g'_1, \dots, g'_m \in L_{p'}(K_2, \mu_2)$ such that it holds

$$|\langle h-h^0, f_i' \otimes g_j' \rangle| \leqslant \eta \tag{6.7}$$

for all *i*, *j* and $h \in S_1 \otimes S_2$.

Define $N \in FC(L_p(K_1, \mu_1))$ by

$$N := \{f: \langle f, f'_i \rangle = 0, i = 1, \cdots, n\}$$

and similarly $M \in FC(L_p(K_2, \mu_2))$. Suppose $\hat{\pi}_{N\otimes M}(h^0) \in \pi_{N\otimes M}(S_1 \otimes S_2)$. Then $\hat{\pi}_{N\otimes M}(h-h^0)=0$ for some $h \in S_1 \otimes S_2$, hence $h-h^0 \in N \otimes L_p(K_2, \mu_2)+L_p(K_1, \mu_1) \otimes M$ which contradicts (6.7). Since $\hat{\pi}_{N\otimes M}(h^0)$ belongs to the support of $\hat{\pi}_{N\otimes M}(\nu) \subset \pi_{N\otimes M}(S_1 \otimes S_2)$, we get a contradiction again. Thus, ν is a Radon probability on S.

Finally, $W(\lambda) = b(\nu)$ is a Radon probability on $G \hat{\otimes}_{\alpha} H$, for which it holds

$$||W(\lambda)||_{p} \leq ||b|| ||\nu||_{p} \leq \widetilde{\pi}_{p}(W)||\lambda||_{p}^{*}$$

The proof is complete.

Corollary 6.5. Let $1 , <math>\lambda \in \mathcal{M}_p^c(l_1 \otimes l_1)$ and $i: l_1 \rightarrow l_2$ be the canon-

ical injection. Then $(i \otimes i)$ (λ) is a Radon probability on the space $HS(l_2, l_2)$ of Hilbert-Schmidt operators.

Proof. By Grothendieck's result, $i: l_1 \rightarrow l_2$ is *p*-summing, for all p>1. By Theorem 6.3, $i \otimes i: l_1 \otimes l_1 \rightarrow l_2 \hat{\otimes}_{g_p} l_2$ is *p*-Radonifying. This space coincides with the space of all *p*-summing operators: $l_2 \rightarrow l_2$ (cf. [7], p. 91). The corollary follows since *p*-summing operator between Hilbert spaces is Hilbert-Schmidt operator—this is a known result of Pietsch-Pelczyński.

References

- [1] Badrikian, A., Séminaire sur les Fonctions Aléatoires Linéaires et les Mesures Cylindriques, Lecture Notes in Mathematics 139, Springer-Verlag, 1970.
- [2] Elezović, N., \tilde{p} -summing operators defined on tensor products of Banach spaces, to appear.
- [3] ———, On some classes of nuclear operators defined on tensor products of Banach spaces, to appear.
- [4] Maurey, B., Probabilités cylindriques, type et ordre. Applications radonifiantes, Séminaire Maurey-Schwartz 1972/73, Exposé I, 12p.
- [5] ———, Rappels sur les operateurs sommants et radonifiants, Séminaire Maurey-Schwartz 1973/74, Exposé I-II, 9+10p.
- [6] Pietsch, A., Operator ideals (in Russian), Mir, Moscow, 1982.
- [7] Saphar, P., Produits tensoriels d'espaces de Banach et classes d'applications lineaires, Studia Math., 38 (1970), 71-100.
- [8] —, Applications p-decomposantes et p-absolument sommantes, Israel J. Math., 11 (1972), 164–179.
- [9] Simons, S., If E' has the metric approximation property then so does (E, E'), Math. Ann., 203 (1973), 9-10.
- [10] Schatten, R., On direct product of Banach spaces, Trans. Amer. Math. Soc., 53 (1943), 195–217.
- [11] Schwartz, L., Radon measures on arbitrary topological spaces and cylindrical measures Oxford University Press, Bombay, 1973.
- [12] ———, Probabilités cylindriques et applications radonifiantes, J. Fac. Sci. Univ. Tokyo, Sec. I, A, 18 (1971), 139–286.

344