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Microlocal Analysis and Calculations on Some
Relatively Invariant Hyperfunctions Related
to Zeta Functions Associated with the
Vector Spaces of Quadratic Forms

By

Masakazu MURO*

Introduction

In this paper, we shall give explicit formulas of the Fourier
transforms of some relatively invariant hyperfunctions on the vector
spaces of quadratic forms and some similar Hermitian forms. These
calculations are applicable to the calculations of the functional equa-
tions and residues of zeta functions associated with each vector spaces.
(See Sato-Shintani [5] and Shintani [21]). Sato-Shintani [5] and
Shintani [21] has calculated some of them in a classical way, but, in
this paper, we shall give more results by making use of a different
way.

Let V& be the real vector space consisting of nXn symmetric matrices
over R. The real linear algebraic group Gr=GL(n, R)* acts on this
vector space Vgp by

(g, x)—>g-x-'g, (geGr and x Vp),

and it is a rational representation of G on V. Then Vi decomposes
into a finite number of orbits, and each orbit is parametrized by its
signature. We denote by S7 the orbit consisting of the points whose
signature is (n—i—j, j). If i=0, then S{ is an open orbit in Vg and
there exists a unique relatively invariant hyperfunction corresponding
to the character % (g)°*=det(g)*(sC) which depends on s meromor-
phically and is supported on S§. The calculations of the Fourier trans-
forms of such relatively invariant hyperfunctions with a meromorphic
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parameter s&C is equivalent to the computations of the functional
equations of the zeta functions associated with quadratic forms which
is denoted by & (s, L) in Shintani [21]. If i=1, then S/ is a locally
closed orbit and its dimension is less than the dimension of Vg. We
shall show that there exists a unique SL (n, R)-invariant measure on
each 8% and that it is extended as a tempered distribution on Vg
supported on Si and compute the Fourier transform of it. By using
the Poisson’s summation formula, we can compute some contributions to
the residues of §” (s, L) in terms of the explicit computations of the
Fourier transforms. But, so far, we can not compute all the contributions
by our results. For details, see Sato-Shintani [5] and Shintani [21].
Similarly, for the vector space Vg of complex Hermitian forms, we
shall compute the same things. In such cases, we can compute the
residues of the zeta functions associated with them completely from
our calculations by making use of the method of Sato-Shintani [5].

In this paper, we start with the applications of the arguments in
Sato-Kashiwara-Kimura-Oshima [6], which we abbreviate S-K-K-O,
to the cases we shall deal with in this paper (§1). S-K-K-O [6]
gave a method to examine a holonomic system of relatively invariant
hyperfunctions. In §2, we restrict the holonomic systems to the real
form Vx and investigate the real structures of them. The main result
of this section is an application of Kashiwara’s theorem to our cases
(Proposition 2.11). Kashiwara’s theorem (Theorem 2.8) was proved
in Kashiwara and Miwa [8]. In Chapter II, we regard relatively
invariant hyperfunctions as solutions of the holonomic systems which we
shall investigate in Chapter I. We shall compute the Fourier trans-
forms of |det x#|° (Theorem 3.6) and construct the hyperfunctions
T i(x) whose support is contained in a closure of Gg-orbit S% and
which is a relatively invariant measure on §} (Theorem 4.1). More-
over, we compute the Fourier transform of T%(x) (Theorem 4.3).
Among the above results, the Fourier transforms of |det x|° have
been computed by some authors. Above all, T. Suzuki [37] has
computed them by utilizing microlocal analysis.

The main results of this paper are concentrated in §4. In almost all
parts of the explanations on microlocal analysis are due to M. Kashiwara
(Kashiwara-Miwa [8]) but the author added some complementaries
for our computations.
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Notations

We denote by Z,Q,R and C, the ring of rational integers, the
rational number field, the real number field and the complex number
field, respectively. For any ring F, we denote M(n, m, F) (resp.
M(n, F)) the set of nXxXm (resp. nXn) matrices, We denote by
GL (n, F) the group of invertible elements in M(n, F). For any
finite dimensional real vector space V, & (V) is the space of rapidly
decreasing functions on V.

Chapter I. Holonomic Systems

In this chapter, we shall examine the microlocal structures of
relatively invariant hyperfunctions by analyzing the holonomic systems
and holonomy diagrams.

§1. Holonomic Systems of Relative Invariants,
(Reviews from the S-K-K-O [6] theory)

The contents of this section is essentially due to S-K-K-O [6] and
T.Kimura [24]. For the details, see S-K-K-O [6] and T. Kimura[24].
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Let (G¢, 0, V¢) be a regular prehomogeneous vector space, which
is one of the followings.

(1.1) 1) Ge=GL(n,C),

Ve=Sym(n,C):={xeM @, C); ‘x=x},
p(9); x——g-x-'g, (§EGc, xE Vo).

2) G¢=GL(n,C)XGL(n,C),
VC=M(n7 C),
p(Q); x——gx'%, (&= (8,8) EGc, x€ Vo).

3) Ge=GL(21,C),
Ve=Alt(2n,C);={xM (2n,C); ‘x=—x},
0(8); x——g-x-'g, (g€ Gc,xE Vo).

Irreducible relative invariants P(x) are by definition
(1.2) 1) P(x) =(detx),

2) P(x) =(detx),

3) P(x)=(Pffx),
respectively. Here (det x) means the determinant of a matrix x
and (Pff x) means the Pffafian of an alternative matrix x. The
corresponding characters g, i.e., P(o(g)x) =x(g) P(x), are

) x(g) =(detg)?’,

2) x(g) =(det &) (det gy,

3) x(g) =det g
respectively. The inner products < , > on V¢ are defined by
(1.3) <x,p>=tr(x),
and we identify V¢ and its dual space V§ by(1.3). The contragredient

representation p* of p defines a prehomogeneous vector space having
the same relative invariant P(x), whose corresponding character is

1@
Let % ¢ be the Lie algebra of G¢, dp the infinitesimal representation

of p and 0y the infinitesimal character of y. Then we have the
equation,

(Zdp(d)x, D,>—s03(A)) P*(x) =0 (AEF o).
Here P*(x) means a generator of 9, C~Module, where Dy, is the sheaf

of differential operators on V¢, not a function. We consider the system
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of differential equations,
1.4 M,; (<dp(4)x, D,>—s0y(4))u=0 (A€ Fc).

We shall examine the system of differential equation (1.4) following
to the arguments in S-K-K-O [6].
The characteristic variety of M, is by definition,

(1.5) {(%,9) € T* Ve: <dp(d) x,5>=0, AE % c}

and we denote it by ch(,) or for simplicity, by € We identify
T*V§ and Ve x Vi, Then the group Ge acts on T* Ve naturally.
The characteristic variety € is an invariant subvariety under the actions
of G¢ because

<dp(A) p(g)x, p*(Qy>=<p(g) dp(4)p(g)x, y>>,
and

do(A)——p(g) "'dp(4) 0 (9
defines an automorphism of do(%¢). Therefore, the sets{(x,) € T* V¢;
<dp(A)x,y>=0, AE G ¢} and {(x,y) € T*V¢;<dp(4)p(®)x, p* (Qy>
=0, A€ %} coincide with each other. The characteristic variety €
decomposes into several Gc-orbits in T'* V. In fact, we can construct
€ as a union of a finite number of G¢-orbits in T* Ve. In order to
write it down, we begin with the orbital decomposition of V.

The vector space Ve=Sym (n, C) decomposes into (n+1) GL(n, C)-
orbits S,c={xeSym(n,C); rank(x) =n—i}, (¢=0,1,..,n). The
orbit S is generated by x;= E_I""" 0}. Similarly, the vector space
Ve=M(n,C) (resp. Alt(2n,C)) decomposes into (n+1)GL(n, C) X
GL(n,C)-(resp. GL (2n, C)-)orbits S;c={x&M(n,C); rank(x) =n—i}
(resp. Sic= {x€ Alt 2n, C) ;rank (x) =2(n—14)}), (:=0,1,..,n). The orbit

Sic is generated by x,-:[l"“' 0:' (resp. xiz[—l,,_,- fi . ]). Here
—~k~ 2i
1k=[1' . 1]. The dimension of Vg is n(n+1)/2 (resp. n, n(2n—1))
and we denote it by n’,and the dimension of Si¢is (n(n+1) —i(i+1))/2
(resp. n®—%, n(2n—1) —i(2i—1)) when Ve=Sym(n,C) (resp. V¢=
M (n,C), Ve=Alt(2n,C)). The orbit Syc is an open dense orbit in
V¢ and coincides with the set Vo— {x& V¢; P(x) =0}. The other orbits
S;c (1= 1) are contained in the set {x& V;P(x) =0}. The Zariski closure

S,-c Of S,-c iS S;c ] S';+1c U...u S,,c.
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We identify T*V§ and VX V§ in the same way as the identification
of T*V and VX V§. We denote by m(resp. #*) the projection map

(1.6) T3 Ve X VE—— V¢ (resp. n*; Ve X VE—VE).
The maps = and =* are compatible with the action of Ge.

Let A be a non-singular subvariety in V,. We define the conormal
bundle of A by

(1.7) T4V, =x:j{(x,y) eVexV§;<a,y>=0 for all ac T, A4},
which is clearly a non-singular subvariety of dimension »’. If A is
irreducible, then 7%V, is also irreducible. So the conormal bundle
T3, Ve is an irreducible variety, and hence T3 Ve is irreducible.  We
denote Aiczm Moreover we have z(4;) =S.. In the same way,
by defining Afczm, we have A% is an irreducible subvariety
whose dimension is equal to n’, and =* (4%) =8,.

Let X;;c be a Ge-orbit in VX V§ generated by

(1.8) (K I"_J:De Vex V2,

when Ve=8Sym(n,C) or V=M (n,C), and
-]n—-i OZj ‘| *
a.9 (= 0, [ g, e vex e,

2i_]
when Vo=Alt(2n,C). Here, J’*:[—I 1"}, and n=i=0,2=j=0 and
k
i+j=n. Then we have the orbital decompositions,

(1.10)  T§Ve= U Zie, T§ VE=\JZjiic,

jzn—i 4 izi
—_— * —
Aic= U Zine, Mi_ic= \J Zyue,
B2 B2
m=n—i m=n—i

and hence A;c=4}_;c. From the definition of the characteristic variety

€, € is a closed set and coincides with \JT;‘EVC, and hence
=0

@:UT:;, Vc:UT§i Vc.

i=0 20

Proposition 1. 1. 1) A;c ZA::_,'(;, and @:UA,'(;-

i20

2) The varieties Aic and A;p1¢ have an intersection of dimension (n” —1)
and it contains a Ge-orbit of dimension (n’—1). In a neighborhood of a
point p of the (n"—1)-dimensional orbit, A;c and A;.,1c are smooth varieties and
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(1 .1 1) TpAiC N TpAi-l-IC = Tp (AiC n Ai+10) .

Here, T,X is the tangent space of X at p.
3) dic and Ajc have no (n' —1)-dimensional intersection if j—i=2.

The proof would be found in S-K-K-O [6].
We put W, the Zariski closure of the set
(1.12) {(x,s.grad,log P(x)) €V X VE; x€Ve—S¢, s€C},

and a conormal bundle 4, is called a good Lagrangian subvariety if it
is contained in W, and contains an open dense orbit in it. (See
S-K-K-O [6], Definition 4.2, 4.5 and 4. 14). Furthermore, for a good
Lagrangian subvariety 4, the order of M is defined and is given by

(1.13) ord,,lC () =50y (Ay) =7, do* (4y) + é dimg¢ V;‘i R

where 4, is an element of % ¢ satisfying do(4,) x; =0 and dp* (4y)y;: =;
for an element (x;,7,) €2, ,-ic. Let p be a point in €. We say that
M, is a simple holonomic system at p if:

(1.14) 1) dim¢€=n and € is non-singular.
2) the O rv,-ideal generated by {(<do(A)x, y> ;A= %} isa
reduced ideal,
in a neighborhood of p. We say that two Lagrangian subvarieties
Aic and A;c have a good intersection ¥ if
(1.15) 1) ¥ is a Ge-orbit in A, of dimension n’-1,
2) A, A;c and W, are non-singular in a neighborhood of

any point p& 2.
3) TyAeNT,djc=T,2 for any pci.

Proposition 1.2. 1) The variety A;c are all good Lagrangian subvarieties.
2) The order of M, on Ay is

_# (Ve=Sym(n,C)),
(1.16) ord A;C(EmS) = _i‘g-—é‘ (chM(ﬂg C))s
_2@i=D oy Akm, ©)),

—1s 9

3) The Lagrangian subvarieties A;c and A ,c have a good intersection.
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The proof would be found in S-K-K-O [6]. Now, by applying
Theorems 6. 3, 6.6 and 8.3 in S-K-K-O, we have the following normal
form of holonomic system near the point 2EZ;1 ,-ic.

Theorem 1.3. Let 22,1 ,_ic. By a suitable quantized contact trans-
Sormation, M, is transformed to the following holonomic system in a neighbor-
hood of z.

(1.17) (01D, —Hu=0,
(xszz—y)u=0, D,,suz. . =Dxnu=0,
with
(1.18) Aiyie={(x, ) eT*Veimy=x,=&=... =£,=0}
Aie={(x,86)eT*Ve;x=6=6=... =§,=0}

it wmic =Aipae N Aic,
z2=0(0,dx,) € T*V,

p=ord,,, (M) —ord,, (M)~ %

i+1C

s+;; (Vo=Sym(n,C)),

sti (Ve=M(,C)),
s+2  (Ve=Alt(2n,C)).

From those mentioned above, we have known the microlocal struc-
tures of holonomic systems M, on T*V,. It is simple on all the
Lagrangian subvarieties and all the intersections of codimension one
are good intersections.

Let 3, be a holonomic system on an n’-dimensional complex
manifold Xc. We write a circle O to represent an irreducible Lag-
rangian component of ch(,) in T*X,. We connect some of them by
a line if and only if they have the same connected n’-1 dimensional
variety. We call the diagram thus obtained the complex holonomy
diagram of M,. We write the codimension of the projection of a
Lagrangian subvariety in the circle. We write its order beside the
good Lagrangian subvariety. When two Lagrangian subvarieties have
a good intersection, we write (#+1), which is defined in (1.18),
beside the line connecting the two Lagrangian subvarieties.

Following to this definition, we have the complex holonomy dia-
grams in Figure 1.
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0 0 0
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S el Vi l) (n—-l)(2n—3)
n+1
(“+ (s+m) (s+2n—1)
A @ _,l‘,_ﬂ%ill G _,,5_%2 @ s n(2n2—l)
Ve =Sym(n, C) Ve=M (n,C) Ve=Alg(2n,C)
Figure 1.

The microlocal structure of the holonomic system is completely
determined by the difference of orders when two Lagrangian subvarieties
have an intersection of codimension one. From the method of the
calculations of s-functions in S-K-K-O[6], we have the b-function
of P(x).

Proposition 1.4. 1) There exists a polynomial b(s), which we call a
b-function, satisfying P(D,) P (x)""t'=b(s)-P(x)".
2) (M. Kashiwara) The roots of b(s) are negative rational numbers.

The proofs of this Proposition is found in Sato-Shintani[5] and
S-K-K-O[6] and Kashiwara[36].



404 MASAKAZU MURO

Proposition 1.5. The b-functions of P°(x) are

D o) =H(s +157), (Ve=Spm(, €)),
2) b<s>=1i11<s+j>, (Vo=M(n,C)),

3) b(s) =IL(s+2j—1), (Ve=Alt(2n,C)),

modulo constant multiples.

Though the proof of this Theorem is possible by the direct com-
putation, we obtain these by drawing the complex holonomy diagrams
Figure 1. (See S-K-K-O[6], T.Kimura[24]).

§2. Real Forms of Holonomic Systems and Principal Symbols
(Applications of Kashiwara’s Result)

The main purpose of this section is essentially an application of
Kashiwara’s theory in [8] to some concrete examples. The results
from Definition 2.1 to Theorem 2.6 may have been done in his
computations [37]. The explanations after Theorem 2.6 to Theorem
2.12 are quoted from Kashiwara-Miwa[8] in a slightly different form
for our use.

In this section, we shall consider the real forms of (G¢, o, V¢) and
examine the holonomic system on the real locus.

We say that (Gg,p, V) is a real form of (Ge¢,p, Ve) if Gr is a
real form of the complex Lie group e, Vi is a real form of V¢ and
the restriction of p on Gy is a representation of Gg on Vi. We denote
by &% the connected component of G containing the neutral element.
We shall deal with (G, 0, Vz) in place of (Gg,p, V) as a real form
of (G¢,p, Vi) if Gr is not connected.

The followings are real forms of (Gg,p, V¢) in (1.1).

2.1) 1) Ge=GL(,C), Vo=Sym(n,C)
(real symmetric bilinear forms)
G =GL(n,R)*>¢
Ve=Sym(n,R) = {x&M (n, R) ;'x=x}
p(8) sx—g-x-'g
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2) Ge=GL(n,C)XGL(n,C), Vc=M (n,C)
(complex Hermitian forms)
Gr=GL(n,C)>¢g
Ve=Her(n,C)={x&M (n,C) ;'zx=x}
p(g) s x——gx°'g

3) Gc=GL(2n,C), Vo=Alt(2n,C)
(quaternion Hermitian forms)
Gr=GL(n,H)>g
Ve=Her(n,H)={xeM (n, H) ;'T=x}
0(8) sx——gx+'g

Here H stands for the quaternion field over R. We regard the real
Lie group Gg (resp. the real vector space V) as a sugroup of G¢
(resp. as a vector subspace of V¢) in the following way.
2.2) 1) GL(n,R)—GL(n,C)

u U

g — g

Sym (n, R) —Sym (n, C)
W U

X — X

2) GL(n,C)—GL(n,C) XGL(n,C)

w W
g — (g2
Her (n,C)——M (n, C)
W W
x — x
3) GL(n,H)——GL(2n,C)
w W
g — (2
Her (n, H)—— Alt 2n, C)
W W
x = (x)/,

Here ¢ is the map H=——M(2,C) defined by

(2.3) £3xg0 1 —l—xlel—i—xzez—f—xaelezn-—)[xo_}—‘/_1 #, —xp =V —1 xﬂ
R xo“\/‘l X1

where é=éi=—1, e1e,= —ese;, and J, is the 2nX2n alternative matrix

defined by ¢(—1I,). We define the determinant of x&M (n, H) by
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det x=Pf(c(x)-],).

The inner product { , > on Vg are defined by

(2.4) 1) <xp>=tr(xYy) (x,yE8ym (n, R))
2) x> =tr(x'y) (x,yEHer (n, C))
3) x> =tr(x'y) (x,yEHer (n,H))

Note that the restrictions of the inner products by (2.3) coincide
with the inner products in (2.4) up to constant multiples. We identify

% and Vg by the inner products. Then Vrx Vi is a real form of
the complex vector space Vo X Vi on which Gj operates by o@®p*
and the triple (G%, p*, V&) is a real form of (G, p*, Vo).

Let x be a point in Vg The real locus p(G¢) xN Vg is a G-
invariant set and consists of a finite number of G%-orbits. Each orbit
is characterized by the signature of the orbit which is defined by the
following.

Definition 2. 1. (Signatures of forms)

Let x be an element of Vrp=Sym(n, R) (resp. Her (n,C), Her (n,
H)). We say that a pair of non-negative integers (k,m) is the
signature of x, and denote is by sign(x) if there exist a basis yi,..,
2.€R" (resp. C", H*) of the real vector space R* (resp. the complex
vector space C”, the left quaternion vector space H") satisfying
'9;0x09;=60;; with =1, —1 or 0 for 1<i<k,k+1<i<k+mor i=Zk+
m+1, respectively (d;;;Kroneker’s d). In particular, we say that
k (resp.m) is the positive (resp. negative) signature of x.

The following Proposition 2.2 is well know and Proposition 2. 3 is
easily verified.

Proposition 2.2. (Orbital decompositions)

The real vector space Vp=Sym(n,R) (resp. Her(n,C), Her (n, H))
decomposes into GL(n, R)*-orbits (resp. GL (n, €)-orbits, GL (n, H)-
orbits),

(2.5) Si={xeSym(n,R) (resp. xHer(n,C), xHer(n,H));
sign(x) =(j,n—i—j)}, @G=0,1,..,n,j=0,..,n—1).
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7

(

The orbit Siis generated by x{? :[I,,_ 0. }E Vg, where Iﬁjziz[lj I ]
1 n—=i—jJ

The real locus S;N Ve= v Si.

0sjsn—i

In particular, among these G%-orbits, ${(j=0,..,n) are open orbits
in V. We denote by V¢ instead of S{. If i>0, then S is contained
in the singular set {x& Vg;P(x) =0}. We denote it by Sg. We have

(2.6) Voyuveu.. U VP =Ve—Skg,
SR= US{R, Silg: Y S{.

n2izl n—i=j=0

Since the dual space V} is identified with Vg, and hence Vi has the
same decomposition. We denote them by

@7 VEPUVERU... U VE®=Vi—Sh,
S;é: US:);?’ ?Rz 2 Si*jr

nzizl n—i=j=0

when we have to distinguish Vg from Vi. We say that V{” are open
orbits, and that S? are singular orbits.

Proposition 2.3. Let Si be the Gi-orbit defined in (2.6). Then we
have

(2.8) Si= v Si.

n—i=p=

Min{7, )ongMax(o.j—nHH:)

Now, consider the holonomic system I, in (1.4) and the hyperfunc-
tion solutions to MM,. Then the singular spectrum of the solution is
contained in €g=ch(M,) N T*Vx. We may regard the solution as a
microfunction whose support in contained in €g. From Proposition

1.1, we have €=\Ud,c and
i=0
Aic= U F,;c (disjoint union),
jzn—i

k2i

where %,;c is the Ge-orbit in Ve X VE generated by

<[1 OJ, [0,- In_]:De Ve x Vi.

Among the orbits in 4, the orbit 2, ;c is an open dense subset in
A;c and any point in &; ,_,c does not contained in any other Lagrangian
subvariety 4;c (j#i). Especially, we deonote by A the G¢-orbit
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2 .—ice We note that
Aie=(\V o) U (T, 0mic),
j jzi

and that /i\,-c is an open dense non-singular subvariety of Ag. (See
Proposition 1.1). We have the following theorem on the real loci
of the orbits Xjjec.

The following Proposition 2.4 is fundamental in order to draw the
real holonomy diagrams of ..

Proposition 2.4. 1) The real locus X;;p=2;c N VeXV§ decomposes
into (n—i+1) X (n—j+1) Gk-orbits. The generators of Gi-orbits in X;;p
are

2, 770, . 0<p<n—i
(2.9 ([ OJ,[ qu_)J)e Vox Vi <o gé’ §n~j>'

We denote by X%, the Gg-orbits generated by (2.9). Especially, for
Ag =2, in, each connected component is a real Lagrangian submanifold.
We denote Zli.p by Al (0=p=n—i, 0=¢=i).

2) The real locus AA{R://I\,-CH (Vex V%) is a non-singular subvariety.
The intersection /i-RﬂA/:-HR consists of (n' —1)-dimensional Gg-orbits and
it 15 Zip1mine

3)

(2.10) A0 (AN Aiprg) = ZHomie U B in
A%n (2i—1R N /fm) =20 e U ke
Here we set 2% =¢ when p>n—i or g >n—j.

Proof. 1) Let u be a point in ¥;;z. Since 7(u) €S, 7(u) is reduced
to one of the points

@ 11) w7 ospsai,

by the actions of G%. On the other hand, from the definition of i,
we have ue Tg‘i"RVR and hence #*(u) is contained in the conormal
vector space V,’; (p) of Sig at %P, Let Gxi (p) be the isotropy subgroup
of G§ at x¥. Then G,,i(p) acts on V;‘:, (p) by the contragredient
representation, and the action p (p) (¢) is given in the following

way.



MICROLOCAL ANALYSIS 409

A TP, =T,

4 B - .. deGL(n—1i, K),
(2.12) Gxi(f’)‘[o C]e"l‘(”'m“%eM(n—i,i,m

CEGLG, K)
viw={§ Ylevixemin, x-x,
. 0 07 [0 0
p"i (ﬁ) (g) ’LO XJ'—'>I:O tC—1‘¥C~1]’

with gz[f;l g}eG,i .

Here, K is the field B (resp. C,H) when V,=8Sym(n,E) (resp.
Her(n,C), Her(n, H)). From the assumption, the matrix[g g(} is an

element of S¥ and hence X is of rank n—j. Therefore it is reduced

to the matrix,

0. ..
2.13 [ it ]
( ) L2;

Thus we have that any point in 2, is reduced to one of the points,

I®, 0; . 0<p<n—i
(2. 14) ([ o,:l'[ i I;q_)jDe Vex Vi, <0 éé’ = _j).

Next we shall show that the Gj-orbits generated by the points
(2.14) differ from one another. Let u and » be the points in X
given by

(2. 15) u=<[m)i oi:l’[()j Iff-),-])’
=% 0 ", )

We assume that p#r or ¢#s. Then we have that =(u) and =(v) are
not contained in the same Gg-orbit or that z*(x) and #n* (v) are not
contained in the same G#-orbit. Therefore, GE-u and GE-v are not
the same.

9) Since Ay is a non-singular variety, it is evident that Aig is
non-singular. The second statement follows from that AA,-cﬂA?iHC:

Sin—i+lC'
3) First we shall show that

(2. 16) AED Z 1 in U T .
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Let x be a point in 3?4, ;. Then x is reduced to the point

Igtp-zi—l On—i
(™ 0} s ] e poine == - H D
i+l i 0;41 I®

is an element in A% if €0, and converges to a point in X,-ir
when ¢—>0, Thus we have,

(2.17) AED I, ip.

IS,
In the same way, xgzq € J,[O"’i ng)iDEAﬁ’,% for ¢>0, and
0; :

x. converges to a point in F?7_,, when e—0. Then we have
(2.18) AED I .
Thus (2.16) is obtained.
Next we shall show that
2.19) AN Z18, _ir=0, if f#p, p—1 or g#q.
In fact, we have

W(Zflg) Cg n.(z'r(»ln —iR S{+1’

and

* (A )CS:E,, T* (Ez+1n—tﬂ) :S:Ez
From Proposition 2.3, we have 82N 8%,=¢ if f#p, p—1 and SN
S*.=¢ if g#¢, and hence (2.19) is followed. Thus we have

(2' 20) Afl% m (AzR ﬂ A1+1R) zR m Z’z-}-ln—zk
- Zz-\‘-ln—tR U Z;+1n—1R7

and hence the first line of (2.10) is obtained.

By taking
Wi ~ [0, _
(2.21) xe={| 7 e edi (>0,
- =l i1
and

, Wi = [0.— -
=7 LT e edty (>0),

L . (CEY)
L%

and bringing ¢ to zero, x, and x, converges to a point in %71, and
in %%k, respectively. On the other hand, we have

(2' 22) qumzm—x+1R_'¢ if g:'éq7 q—l or f:'&ﬁ)
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because

T (Eflg) - g T (‘Z’m—z+1R) = S{

T* (/1 )CS:'IH m* (ZT8 iar) =SHEin

and

Srn 8 =g, if f#p,
SHNSkHa=¢, if g#q, q—

Thus we have
(2. 23) qu D Sm—t+1R U ‘Sipr:l—HlR’

and hence we obtain the second line of (2.10). g-e.d.

From Proposition 1.2, 4, and 4;;;c have a good intersection
2ii1a—ic. By restricting 2,1, to the real domain, the real locus
211,z decomposes into (n—i) X (i+1)-GE-orbits 2, e
0=p=n—i—1, 0=¢=i). From Proposition 2.4-3), The GfE-orbits in
A;x which contains 3%, are A% and A%, and the Gj-orbits in
A, 1 which contains ¥?%,, ;p are A2{i and Alz. Thus we have the
following proposition.

Proposition 2.5. Let z=(x,y) be a point of Z!,_;p. Then there
exists a neighborhood U, of z in T*Vy such thai
(2. 24) E]z N @R: (/LR u A;+11{) n l]z
= ((AlFU A2 U 2%, _ip U (L3 U A1) N UL,
in U,

We write the Lagrangian subvarieties satisfying the conditions of
Proposition 2.5 as

+1
/L"ﬁm

l
(2.25) A0 # A%
2

‘ ;+1n—1R
O
¢1
+

and call, it a real holonomy diagram.
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In the complex holonomy diagram, we write (O to represent an
irreducible Lagrangian component. But,in the real holonomy diagram,
it means a connected component of the real locus of 4,c. In our cases,
each O is a Gf-orbit. By the diagram (2.25), we express the intersec-
tion in (Figure 2).

Zip-zln—ik

’/Agim
Figure 2.
—i=1i —i=2 i+1 i
AR O AR O AE5RO
. g | s %
Az 'O , O f O— O
TR @) A%1zO
gx—i—li—l n—i—2 i—1 0i—~1
) iR iR iR
A7 70 O @ O— o—O
e O e A%Te
. A?Ei_l i=2 A?Ei—z i—-2 ?;{—2
Az 2O O T O— & O
|
) A:_z};'i—l 0 :;R—i—z 0 (3%
A7 O O— ®- @)
—-i—=10 —f 00
irir AFE° A45%::0O

Figure 3. Real holonomy diagram of the intersection of Aig and Ai+1r
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The complete real holonomy diagram of intersections between Az
and 4. is (Figure 3).

In Theorem 1.3, we have shown that, in a neighborhood of a
point of X;,1,-;c, the holonomic system IR, is transformed to a holonomic
system (1.17) by a suitable contact transformation. This contact
transformation gives a real contact transformation in T*V, and it
transforms IR, in the real locus.

Theorem 2.6. Let zE3%%, ix. By a suitable real quantized contact
transformation, MM, is transformed to the following form in a neighborhood
of z.

{(xlDﬁ—l)u=0,

(2. 26)
(x2D;,— pu=0, D,,au=D,4u= co=D, u=0,

With

(2.27) A= 1{(x,8) ET*Vy;m=x,=&=--=¢,=0, §>0}
Alp= {(x, E ET* Ve m=x=§=--=£,=0, §<0}
A= {(x,8) ET* Vg =5=85=--=§,=0, x,>0}
A= {(x,8) ET* Vg, x,=6,=&="--=¢§,, =0, x,<0}
2 ir= {00, ) ET* Vg m=x,=65=6§= - =¢§,=0}

s+ (Va=Sym(n, B))

s+ (Ve=Her(n,C))
s+2i (Ve=Her(n, H))

2=(0,dx) ET*Vy, =

Proof. In the following proof, we shall always consider all things
in a sufficiently small neighborhood of z. The proof of the existence of
the contact transformation of the holonomic system 9%, to the normal
form (2.26) can be carried out in the same way as the proof of
Theorem 1.3. In fact, our holonomic system 9, has an involutory
basis of micro-differential operators with real valued real analytic co-
efficients on T*V,, and hence the contact transformation in 7%V,
defined in Theorem 1.3 preserves T*V,. Thus, there exists a contact
coordinate transformation ¥ which transforms 9, to (2.26). That is
to say, we can write,

(2.28) U(hisrp) = 1(%,8) ET*Vy; m=x,=§=--=¢,=0},
U(dig) ={(x,8) €ET*Vyg; x,=6=E=--=,=0},
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W(Z) = (0, dxg) (S T* VR’
and the holonomic system It is written as (2.26). Thus we have
only to show that if ¥ (A% =¥ (4;p) N {x,>0}, then ¢(AHR) =
¢ (Aiap) N {E:>0}.
Let f, g be real analytic, real valued functions such that
(2.29) df(2) %0, {f=0} DA,
dg(2) %0, {g=0} D4
It is obvious that such functions exist. The Poisson bracket {f, g} ()
does not vanish and we may assume that {f,g} (¢) >0 by taking
—g instead of g if necessary. Then we have
(2.30) 1) f],,m has a zero of order one on A;zN 4;.1z, and does not
vanish on AiR—(AiRnAi+1R)'
2) g],,Hm has a zero of order one on A;;N A4;,,; and does not
vanish on AiR_(AiRﬂAi+1R)'
Then we have

(2.31) (the signature of f on Ai™)
X (the signature of g on Az

does not depend on the choice of f,g. In fact, let f’, g’ be other real
analytic, real valued functions satisfying (2.30) and {f’, g’} (2) >0.
Then there exist real valued, real analytic functions a, & which do
not vanish at z and satisfy

(2.32) Vi l"m:a'f]"ix’ g lthmzb'glA‘.HR-
We have
(2.33) {f, &} (2 ={af,bg (2) =a(2)b(2) {f, g} (2.

Therefore if {f7, g’} (z) >0, then a(z)b(z) >0 and hence we have ab>0
in a neighborhood of z. Thus we obtain that the signature of (2.31)
is the same as the signature of (2.31) calculated by wusing f,g’
instead of f,g.

We may take

(6208 .
2.34) 2= ([I wi) 0.-+1]’ [0"-' ,g,,,]) STV,

Setting
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12, 0
(2.35) A0 =<{ : 0“ ,5@])
0._.
(e
R N

(2.36) &) €A, (1) E A, if 20,
$1(0) =, (0) ==z.
We can take f,g satisfying

2.37)  f(g®) =t, g((®)=t,

On-—i—l
42 =<[ I H 0 ]>=<x1,sl>eT:<T*VR>
0, |

On—i—l )
dg(z)=<[ 0 ]{ 1 D=(xz, &) €T (T*Ve).
0:

Then we have ({f,g} (2) ={{x, &> —<{x, 60} =1>0, and hence f,g
satisfy {f, g} () >0. We have

(2.38) f|4p+1 ;>0 and g!Ap 7110,
iR i+1R

we have

On the other hand, by the contact transformation, we may take
(2.39) f=x; and g=§,.

In fact {f,g ¥ (2))=1>0. We have

(2. 40) %2 |ty pn a0 >0,

€2 oty 00 >0
From (2.38) and (2.40), if
(A =7 (4ir) N {x>0},
then

V(45 =V (4:) N {x,<0},

W(A,-Piﬁé :w(Ai+1R) n {§z>0} ’

U (Afhr) =¥ (di1r) N {£:<<0}.
Thus we have the result.
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In order to consider the hyperfunction solutions on Vy to the
holonomic system N, by “lifting up” M, on T*V,, we introduce the
real principal symbol of the microfunction solution. First, remember
the definition of the principal symbol of a simple holonomic system.
Let X be a real analytic manifold of dimension n and let X be its
complex neighborhood. Let 9% be a holonomic system of differential

equations on X¢. It defines naturally & x& I of microdiffe-

@
rential equations on T*X,. We also denote it by 9)5?, if there is no
fear of confusion.

We denote by ch(I) the characteristic variety of I. Let 4¢ be
an irreducible component of ch (M), and let 4¢ be the open subset
of A¢ consisting of non-singular points in ch(M). We suppose that
M is simple characteristic at any point of Ag.

Now, remember the definition of complex principal symbols of I
on A¢. As in the definition 3. 11. in S-K-K-O [6], we correspond a
local holomorphic section of 2F/72®22;** on Ac at each point to the
holonomic system 9. Here, 2, o and 0, are the sheaves of holomor-
phic n-forms on A; and on X, respectively. We call it the (complex)
principal symbol of I on Ac. It is defined as a solution of a system
of differential equations and it is defined modulo constant multi-
ples. In other words, for a simple holonomic system I} on 4g, we
have a locally constant sheaf of rank one which is a subsheaf of
QF2@L2* and the principal symbol is a local section of it. There
does not always exists a global non-trivial section on Ae.

We consider the hyperfunction or microfunction solutions to a
holonomic system IN. Let #x be the sheaf of hyperfunctions on X.
We denote by Supp(f(x)) the support of a section f(x) EZx on X.
We denote by S.S. (f(x)) the singular spectrum of f(x) on T*X-X.
Namely; for a section f(x) € #4, the section sp(f(x)) of the sheaf of
microfunctions on T*X-X is defined. We denote it by f(x) for sim-
plicity. Then the support of f(x) on T*X-X is the singular spectrum
on T*X-X. Moreover, f(x) is naturally considered as a section on
T*X by corresponding f(x) on X and sp(f(x)) on 7T*X-X. This
section f(x) on T*X is called a microfunction on T*X. By this
correspondence, any hyperfunction is naturally viewed as a microfunc-
tion on T*X. We denote by S.S. (f(x)) the support of the microfunc-
tion f(x) on T*X. If f(x) is a solution of a holonomic system IR,
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then

(2.41) S'S. (f(x)) Cch (D).

For any hyperfunction f(x), we have
(2.42) Supp (f(x)) =x(S.8. (f())),

where 7; T*X—X is the projection map.

Let A; be an irreducible component of ch(IM). We suppose that
A=A;NT*X is areal Lagrangian subvariety in T*X. Let 2y= (%,)
be a point in A°=4;N T*X and let v be a microfunction solution to
IR supported on A° defined near z,. We suppose that, in a neighborhood
of x in X, a(A’) ={%#=---=%=0} by a local coordinate (&, .., &,
Fii1y+ s %n), and A is an open set in TF,Ve=1{(%8) ET*Vygif=--=
#=0, §,1=--=§,=0}. By using a microdifferential operator of frac-
tional order (defined in $-K-K-O[6] §2 as £7(2) P=3 Pi-y(#', D))
defined in a neighborhood of (x,%), we have an e;(pression of u
near (o, ),

u—g 5 Py (7, €00, (V= T, 5 +i0)) do(§)

Ga-n "

This is the plane wave expansion of microfunction u with respect to
the coordinate (x’,&’). Here, we set;

1) x~,: (x~1’ ey x~k) 9 J?,'”: (-’Ek+ly ooy x~n)
é’,: (él; ey gk) 9 él,: (ék+11 °ey é'n) °

2) 0,(2) =I'(») (—2)~* This function is defined for —z+e<arg(z)
<m—e and we take the branch satisfying @,(—1) =I"(4).

3) do(&") —Z(—l)’E d&i . . N\dE;_iNdE /. . /\dE,, is the measure

on (k—l) dimensional sphere {|§’|=1}.

Let |24 (resp. |2%|) be the line bundle of the volume element
on A (resp. X). We can regard |2x| as the line bundle on 4, whose
transition function is defined by pulling back the transition function
on X by the projection map .

Definition 2. 7. (Kashiwara) Let u be a local section of a micro-
function solution on A° defined near z, expressed as (2.41). We

define a local section o,(u) of V[2,]XV[2]|* by
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(2.43) o,(w) = @m)MP; (2, ) [dx" N\dE' | /V [dx],

and call it the real principal symbol of u. This definition does not
depend on the choice of the local coordinate (%, &) on T*X.

The real principal symbol (2.43) is obtained as a restriction of a
complex principal symbol. Namely, let z, be a point in 4° and
let A be a non-trivial local section of complex principal symbol of
the simple holonomic system 9% defined near z,. Then, for any
microfunction solution u defined near z, we have o,(u) =c « A|4 with
a constant ¢. This is easily verified by proving that o,(u)V|dx]
satisfies the differential equation for the principal symbol.

Conversely, let 4 be a local section of a principal symbol on 4°
defined near z,, Then there exists a unique microfunction solution
u defined near z, such that A=0,(x). In fact, let Sol (M) ., be the
vector space of microfunction solutions of M near 2, and let Symbol (M) .,
be the vector space of principal symbols of M near z. ThenSol (M),
and Symbol () s, are one dimensional vector spaces over C because
I is simple characteristic. Moreover,

opu —>  o,4(w)

m m
Sol (M) ,,——Symbol (M) . ,

is a linear isomorphism. Thus, for a point z,&4°, if

(2.44) A is written as the conormal bundle of the non-singular
subvariety 7(4) in a neighborhood of z,

then we have a one to one correspondence between Sol(im),,0 and

Symbol(im),0 through the map ¢, Henceforth, we suppose that

(2.45) for any point zE4°, the condition (2.44) is satisfied.

Let A'U...UA4*=4° be the connected component decomposition.,
Let Sol(IN) (A) be the vector space of global sections of microfunction
solutions on 4 and let Symbol (IN) (4*) be the vector space of global
sections of principal symbols on 4. Since 4 is connected, Sol(IN) (4)
and Symbol(IN) (4*) are at most one-dimensional and there exists a
one to one correspondence between them by the linear isomorphism
o4 for each i. Therefore any microfunction solution z on A4°=
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A'U... U4 is determined by the global section of the real principal
symbol o,4(u) on A°. Namely, we have the following proposition.

Proposition 2.8, Let I be a holonomic system of differential equations
with the characteristic variety ch (M) =\Ud;c with Aic an irreducible component.

For each irreducible component Ac, we denote by A the subset consisting
of nonsingular points in ch(IM). We suppose that IN is simple on each A
and the condition (2.45) is satisfied on A;=A;eNT*X. We put A U...

UA;? be the connected component decomposition of A Let u(x) and v(x)
be two hyperfunction solutions to M. If their principal symbols o, (u(x))

and o4, (0(%)) coincides with each other on every connected component A,

then u(x) coincides with v(x) as a microfunction on the subset \JA;C

ch (M) .

Remark 2.9. 1) It is not yet proved that u(x) coincides with
v(x) as a hyperfunction on X. Later, we will prove that u(x) actually
coincides with v(x) in some special cases. See Theorem 2. 14.

2) Let 9% be a holonomic system and let 4 be an irreducible
component of ch(M). For a microfunction solution u(x) on A4°, we
do not yet have defined the real principal symbol ¢,(u(x)) at the
point z,€A4°—4;,,. Here, A, is the subset of the points satisfying the
condition (2.44). Then 4, is an open dense subset of 4°. In fact,
we can not extend the real principal symbol on 4, as a real analytic
section on 4° in general. In order to correct the section on ;g so
as to be extendable real analytically to 4°, we have to multiply a locally
constant function on A4, which is written by Maslov index. See for
detail Kashiwara-Miwa [8].

Now, we go back to the case of the holonomic system I%,:
(Kdp(4) %, D,y —s0y(A4))u=0.
Each Lagrangian subvariety 4;c in ch (%) is an irreducible component
of ch(M,) and A;;=2;,_;c is the subset of A, consisting of the

non-singular points in ch(I,). From Propositions 4.12 and 4. 14 of
S-K-K-O [6], we have

Proposition 2.10. The locally constant sheaf of complex principal
symbol of M, on A is generated by the nonzero section,
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Pio VooV,

with
PAic:P°”/‘7MAi [0
=t
w4, = (dx) /\do‘ / do|y,
Here,
o={x,9>/n,
T T*Ve=Ve X VEDWe——V§  (the projection map)
U] w
(%,9)——x

dx=dx,;/\.../\dx, with a linear coordinate (xy,...,%.),

Ha;
and my, and 4. are the constants such that ——m,,is—~—2~‘— is the order of
M, on A.

Next, consider I, in the real domain. The real locus Az =4 N T* V5
is a real Lagrangian subvariety satisfying the condition (2.45), and
has the connected component decomposition,

0=j=n—i
UAtRa (Oéjkél >’

(see Proposition 2.4,1)). On each connected component A%, |P,,‘,|s
and \/Iw—,,iI are a real analytic function and a real analytic half-volume
element, respectively. Here, P,,‘_ and w,, are the restrictions of Py,
and @y, to A;z. Then the section ]P,,ils\/lw—,,',l gives a non-zero real

analytic section of V|2, | defined on 4.
Proposision 2.11. On each connected component Ak,

(2. 46) [Py, |V @y |/V]dx],

is a basis of the vector space Symbol (M) (Afg) of global sections of real
principal symbols. Therefore, for any microfunction solution u of M., the
real principal symbol,

UA#;(“) :G|PA,- ]‘\/]ﬂ)Ai l,
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with a constant c.

Definition 2.12. (the coefficient or the associated number)
For a microfunction solution of I,, we put

(2. 47) 71940 =0 g | Pa, ' T, T V15T,

and we call the constant ¢ a4 the coefficient or the associated number of
u on A with respect to the basis [Py, |’ \/iw,, [/V]dx]|. The constant

term ¢ ,, depends on the solution u, so we often denote it by ¢, (w).
iR iR

Now, we have the following distinguished relations between the
associated numbers. This theorem is obtained by an adaptation of
the relation formula of real principal symbols in Kashiwara-Miwa [8]
(p. 139, formula (3.5)).

Theorem 2.13. (Relations of the coefficients)

0"{4-111]5“_‘ I
(2. 49) — (32:&'-1—1)
l_cdij:ll}% i
Fexp( — =V —1(s—si11) ), exp( oV —1(s—sis1) )]
| P < 2 : > *P ( 2 : )
exp(5V=TG s ) exp(—EA =TG50 )|
" 'exp<—Z—\/——l (1—2k) v) ] CA.’}%
i exp<——%\/_—7 (i—2k) y> =
where
—(1+i)/2 (Ve=Sym(n, R))
(2.50) ;= —1 (Ve=Her(n,C))
—2i+1 (VR=Her(n,H))
1 (Ve=S8Sym (n, R))
v=1{ 2 (Ve=Her(n,C))
4 (Ve=Her(n, H)).

Here, for s=(s;;,—k) (£k=0,1,2,...) the matrix in (2.49) is not
well defined because the I'-function has a pole. However, by computing
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the inverse matrix of it, we have,

(2.51)
_CXP<%\/——I(1 +5i41—5) >a exp<~—g—\/—-_l(l +5i+1_5)>
r( +Sin —)
V27 cxp(—%\/:T(l +s;+1—-s)>, exp(‘—g V=11 +s,~+1—s)>
CA{I%§+1 _CXP<—47E~\/—_1 (i—Qk) Z)>, CA{E
X = ,
it || exp(—-z-\/:—l (i—2%) v> ¢ i

For the number s=(s;;1—k) (£=0,1,2,...), (2.51) is well defined
and we interpret the relation matrix (2.49) as the relation matrix
(2.51). Then the relations among the coefficients f{c A{}‘;} are well
defined for all s=C.

Let {¢%*} be a set of the coefficients on {4k} which are compatible
with the relation matrices (2.49), i.e., {c?*} satisfies the relations
defined by (2.49). Then, by Proposition 2.8, there exists a unique
microfunction solution u(x) on QA?Cch(EDQS)R whose coefficients
¢ Affz(u(x)) on Ak are . Howev;*o, this statement does not give
guarantee for the existence of the microfunction solution to I, on
ch (M) Rzi\nJO A4; whose coefficients on Aik are ¢, If the existence of

the microfunction solution globally defined on ch(IM,)r is proved,
then it means the existence of the hyperfunction solution on Vg. In
the next section, we shall show the global existence of the hyperfunction
solution on Vp.

We conclude this section by showing the unigueness of the hyper-
function solution, i.e., if there exists a hyperfunction solution u(x)
such that ¢ Al (u(x)) =c¥*, then such hyperfunction solution is uniquely

determined. Namely, we have the following theorem.

Theorem 2.14. Let uwy(x) and u,(x) be two hyperfunction solutions
to the holonomic system M. Then the following three conditions are
equivalent.

(2.52) 1) u(x) =uy(x).
it) The real principal symbol 4, (w1 (%)) and 04, (U (%)) coincides
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with each other on every connected component Alf.
i11) ”4!27;,(”1(”)) zcdjlke(uz(x)) Sor every Ak

Proof. The conditions ii) and iii) are appearently equivalent.
The condition i) clearly implies ii). = We shall show the converse
ii)=>1i). Note the following lemma.

Lemma 2.15. (Holmgren’s type theorem) Let X be a real analytic
manifold and let u(x) be a hyperfunction defined near a point x,=X.
Let p(x) be a real valued real analytic function defined near x, such that
p(x) =0 and dp(xy) #0. We suppose that

(2.53) 1) Supp@@)={p(x) =0},
i) S.8. (u(x) 3 (x0, dp(x0)) or S. 8. (u(x)) P (0, —dp(x0)).

Here, S.S. (u(x)) means the singular spectrum of wu(x) in T*X—X,
Then we have u(x) =0 near x,.

The proof of this lemma is given in S-K-K [7] p. 471 Proposition
2. 1.3 and the next remark,

Corollary 2.16. Let X be a real analytic manifold and let Y be a
non-singular real analytic subvariety in X near x,€X. Let u(x) be a
hyper function defined near x,. We suppose that

1) Suppu(x)EY.

2) S.S. () 2(T¥X—-X) Nz (x).

Here m is the projection map T*X —->X. Then u(x) =0 near x,.

Proof. There exists a local coordinate (py,...,p,) difined near x,
such that Y={p=---=p, =0}, and p;(x) =0. From the condition 2),
there exists a point (xo, yo) € (T*y X —X) such that (xp, %) &8S. S. (u(x)).

We can take p(x) zf]lc;p,- (x) with ¢;€R such that dp(x) =y, Then
the condition (2.53) 1), ii) are satisfied. Thus we have the result.

Now we go to the proof of the theorem. We put v(x) =u;(x) —
u;(x). Since v(x) is a hyperfunction solution to I,, we have
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.5, @() € (ch (W) N T*V) = V=" (TG Va— Vi),

by (2.41). On the other hand, »(x) =u;(x) —u(x) =0 on Vz—Sg
because 0, (1 (x)) =0, (uz(x)) on Vp—SpXx {0} C T*Vg  Therefore,

Supp (U(x)) Cﬂ'(:{A,) ZSR =S11§ U SZR U... U SnRs

by (2. 42).
We shall prove that v(x) =0 by induction. Suppose that
(2.54)  Supp@(®)) c8Siz=8zU... US,z.

Then, for any point % &Sz, Sz is a non-singular subvariety near
%, Since the real principal symbol o,,((x)) =0 on A;, we have

S.S. (v(x)) N4;=¢.
The variety 4; is an open dense subset of 4;=73 Ve and hence

S.8.(0(x)DTE,Ven 7 () DA N7 (%)

Thus, by Corollary 2.16, we have v(x) =0 near x,, and hence we
have

(2.55)  Supp@()) C€8Si1z=Sis1rU... US,z.

Then, by induction on i, we have Supp (@ (x)) =¢,i.e., v(x) =0 on Vg.
g.e.d.

Chapter II. Constructions of Relatively Invariant
Hyperfunctions and the Fourier Transforms

The purpose of this chapter is to construct some hyperfunction
solutions to M, and to calculate the Fourier transforms of them. The
results of the Fourier transforms in §3 were first computed by M. Sato
and T. Shintani [5] and T. Shintani [21] by another method when
Ve=Her(n,C) and Vp=Sym(n, R), respectively. As far as the results
in Theorem 3.9, T. Suzuki has obtained them by using Kashiwara’s
method. But he did not state nothing about the results after Theorem
3. 10.

The coeflicients of real principal symbols on a Lagrangian subvariety
is always with respect to the basis in (2. 47). In this chapter, we shall
always deal with the real forms, so we often omit R beside the notations.
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For example, we denote simply V instead of V.

§3. The Hyperfunctions |P|j(x) and Their Fourier Transforms

We begin with the definition of tempered distributions with
meromorphic parameter s€C.

Definition 3.1. Let 2 be a domain in C and let X be a finite
dimensional real vector space.

1) We say that u,(x) is a tempered distribution with a holomorphic
parameter s&8 if

i) For any s€, u,(x) is a tempered distribution on X.

ii) For any fe¥(X), Ts(f)zgus(x)f(x)dx is holomorphic in

sef.

2) We say that u,(x) is a tempered distribution with a meromorphic
parameter s if u,(x) is written as m(s) XA,(x) where m(s) is a
meromorphic function on £ and 4,(x) is a tempered distribution with
a holomorphic parameter s&£2. We say that u,(x) has a pole at s=s,
if m(s) has a pole at s, and u,(x) is not a tempered distribution with
a holomorphic parameter at s=s,.

Then we have the following propositions.

Proposition 3.2. Let £ be a domain in C and let X be a finite
dimensional real vector space.

1) Let u,(x) and v,(x) be two tempered distributions on X with a
meromorphic parameter s€ 8. If u,(x) =uv,(x) for any s in an open subset
2'C 8, then u,(x) =0v,(x) for any s 8.

2) Let u,(x) be a tempered distribution on X with a meromorphic
parameter s€8. Then the Fourier transform d,(x*) with respect to the
variable x€ X is a tempered distribution on X* (the dual vector space to X )
with a meromorphic parameter s&8 whose poles are located at the same
place as us(x).

3) Let u,(x) be a tempered distribution on X with a meromorphic
parameter s8 and let P(s, x, D,) be a differential operator on X whose
coefficients are polynomials with respect to x and holomorphic with respect
to s. Then P(s, x, D)u,(x) is a tempered distribution on X with a
meromorphic parameter s 8 and the set of the locations of the poles of
P(s, x, D.) is contained in the set of the locations of the poles of u,(x).
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Progf. 1) It is trivial from the uniqueness of the analytic
continuation.

2) We denote by @(p) the Fourier transform of a tempered
distribution u(x). First, we suppose that u,(x) is a tempered distribu-
tion with a holomorphic parameter s&€£2. We have to show that

f— 1) =Sds(y)f(y)dy (fe# (X*),

defines a tempered distribution for any s=£, and that T,(f) is
holomorphic with respect to s€£ for any fe&%(X*). In fact,
’f’s(f) =Ts(f) by definition and f———>f is a linear continuous isomor-
phism from & (X*) to & (X). Therefore,

f'_>Ts(f) :TS(f):

defines a tempered distribution on X* and Ts(f) is holomorphic with
respect to s€ 2 for any fe & (X*). Thus 4,(y) is a tempered distribu-
tion with a holomorphic parameter s& 4.

Next, consider the case of u,(x) with a meromorphic parameter
s€8£. From the definition, u,(x) =m(s) Xov,(x) with m(s) a meromor-
phic function on £ and v,(x) a tempered distribution on X with a
holomorphic parameter s&£2. The Fourier transform is ,(y) =m(s)
X 9,(») and hence 4,(y) is a tempered distribution with a meromorphic
parameter s&£ whose poles are located at the same place as u(x).
In fact, if 4,(») does not have a pole at s=s, then u,(x) does not
have a pole at s=s, i.e., holomorphic, because it is the inverse
Fourier transform of #.(y).

3) First, we suppose that u,(x) is a tempered distribution with
a holomorphic parameter s€£. Let

P(s,x,D,)=73; a,(s, x) D2, (a finite sum),

where a,(s,x) is a polynomial whose coefficients are holomorphic
functions in s€£. Namely, we have

4y (5, %) =23 ap(s) %%, (a finite sum),
2

with a,s(s) a holomorphic function in s&42. Therefore we have to
show that v, (x) =a,,(s) x*D%u,(x) is a tempered distribution with a
holomorphic parameter s€£2. Apparently, v,5(x) is a tempered distri-
bution for any fixed s&£. Consider the integral
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T pse () = gvaﬂxx)f(x) dx= Saa,; () (¥ D, () ) f () dx

= (=1)'a,,(s) Sus<x> (D2 (6 (%)) dx.

Here, f(x) €& (X). Then D2(x*f(x)) €& (X) and hence T,s(x) is
holomorphic in s&£2. Thus v, (x) is a tempered distribution with a
holomorphic parameter s&42.

Next, consider the case that u;(x) is a tempered distribution with
a meromorphic parameter s&£. However, it is evident from the
definition that P(s, x, D,)u,(x) is a tempered distribution with a
meromorphic parameter s&£2, because

P(Ss %, D) us(x) =P (s, x, D,) (m(s) Xv,(x))
=m(s) X P (s, x, D;)vs(x),
where m(s) is a meromorphic function on £ and v,(x) is a tempered
distribution with a holomorphic parameter s&£. The locations of the
poles of P(s, x, D)u,(x) is continued in those of m(s) and we have
the result. g.e. d.
Let us consider some examples of tempered distributions with a

meromorphic parameter. Recall the connected component decomposition
of ¥Vg—Sg in the preceding section;

3.1 VoUVEU... UV =Ve—Sk

where V(™ is the connected component of Vp—Sg consisting of the
elements of signature (i,n—i). We define the hyperfunction,

[P(x) |® if xe VP,

0 if x& Vi,

This hyperfunction |P|{(x) is a continuous function when s has a
sufficiently large real part and is a tempered distribution on V3 with
a holomorphic parameter s€2,= {s&€C; Re(s) >k}. Here we put &

to be sufficiently large so as that |P|;(x) is a continuous function on
Vg In fact, if s€4,, then

(3.2) 1Pl =]

s— 1Pl o (€ (Vi)

is convergent and defines a tempered distribution on Vz. ~We shall
continue |P|j(x) as a tempered distribution with a meromorphic
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parameter s&€C in the following way. When s€£,, the tempered
distribution |P[i(x) is a continuous function on V. By Proposition 1. 4,
we have, modulo constant multiples,

P(D,) |P(x) |i*'=b(s) |P(x) [},
where b(s) is the b-function of P*(x). When ¢(x) €& (V), we have

(3.3) S |P]; (%) ¢(x)a’x=gb(s) HP(D,) |PitH(x) p(x)dx

=57 1P () (P~ D $ (),

and hence |P(x)|{ is defined by this formula for s€£,.,. We can
define |P|i(x) for s€4£,_,, inductively by

@4 (1P =T oG+ 1P () (P~ D) "g ()

Thus |P|i(x) is well defined as a tempered distribution with a
meromorphic parameter s€C. The poles of |[P|;(x) with respect to
s are located in the set,

(3.5) {seC; s is a root of b(s+j) =0 with some j=0, 1,2,..}.

Definition 3.3 (critical points). We say that s€C is a critical
point for P(x)* if
(3.6) s€{s;—jeC; s; is a root of b(s) =0 and j=1,2,3,...},
and we denote by Crit(P(x)®) the set of critical points for P(x)°.

The hyperfunction |P|i(x) is well defined for any s&Crit(P(x)°) and
has a possible poles at the points in Crit(P(x)°®).

Proposition 3.4. 1) Let s be a point in the complement of
Crit(P(x)%). Then the hyperfunction |P|i(x) is a solution to the holonomic
system M, 1.e., ({dp(A)x, D,>—s0x(A)) |P|i(x) =0 for any AS D p.

2) Let I')(s) =l_];Iq1 I'(s—s;). Here s; is the roots of the b-function,
which is defined in (2.50) explicitly. Then I,(s)7|pli(x) G=0,1,...,n)
is a tempered distribution with a holomorphic parameter s in the domain
{s&C;Re(s) >sp}.  In particular, when q=n, I,(s)|P|i(x) is a
tempered distribution with a holomorphic parameter s in C. Moreover, if
Re(s) >s,41 (resp. s€C), then I, (s)7|P|5(x) (resp. I',(s) 7 |PI5(x)) is
a solution to the holonomic system IN..
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Proof. 1) Let A= %, Then exp(t4) €GE for sufficiently small
teR. We have

3.7 |P1i(o(exp (¢4) x) =y (exp(t4)) [ P[i(x),
for any s&€C with a sufficiently large real part since [P[i(x) is a

continuous function on Vj. By differentiating (3.7) with ¢ and by
putting ¢=0, we have
(3.8) Kdp(A) x, D> | P|i(x) =s0y(4) |Pi(x),
for s&C with a sufficiently large real part so as that |[P|i(x) is C'-
class. Thus, |P[i(x) is a solution of MM, for any s&C with a
sufficiently large real part. Since |Pli(x) is continued to the complex
plane as a tempered distribution with a meromorphic parameter s€C,
both hands of (3.8) are tempered distributions with a meromorphic
parameter s€C by Proposition 3.2. The equation (3.8) holds for
any s€C-Crit(P(x)°) by the analytic continuation.

2) Note that,
3.9 b()b(s+1)...b(s+m)-|Pli(x),
is a tempered distribution with a holomorphic parameter s in £2_,,
={seC;Re(s)>—m—1}. In fact, if |P|i(x) is holomorphic with
respect to s in £, then (3.9) is holomorphic with respect to s in
2, .. We take m a sufficiently large integer. All the zeros of
b(s), b(s+1),...,b(s+m) are contained in Re(s) < —1, hence |P|i(x)
actually does not have a pole in Re(s) >—I,i. e, holomorphic.
Similarly, all the zeros of b(s+1), b(s+2),...,b(s+m) are contained
in R(s)=<—2, and hence &(s) |P|i(x) does not have a pole in
Re(s) = —2. Moreover, since all the zeros of b6(s+k), b(s+k+2),
...,b(s+m) are contained in Re(s) <—(k+1),

(3.10) b(s)b(s+1)...b(s+k—1) |P|i(x),
is holomorphic in Re(s) >—(k+1).

Next we consider I',(s) '[P |i(x). I'1(s)'=I"(s—s)* has a simple
pole at s=s;,—k (k=0, 1, 2,...). Namely, among the poles of
8.11) b(s+k)r=(—s1F+E)Hs—s+k) .. (s—s,+k) 7Y
the first pole (s—s;+4)7" is canceled by I'(s—s,) .. Therefore, for
any integer m=0, the poles of

i) ()b (+1D ™. b(s+m) 7,
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are located in Re(s) <s, since s; >, >s3... >s5,. Similarly, among the
poles of (3.11), the poles (s—s;+k)7Y (s—s+b) ..., (s—s+k)™
are canceled by I, (s) '=I"(s—s) Y (s—$) ... I'(s—s,)"%. Then, for
any integer m=0, the poles of

(8.12) I'y() %) B+ o(s+m)?

is located in Re(s) <s,,;. In particular, if g=n, then all the poles
of (8.11) are canceled by I',(s) !, and hence I",(s) % (s) o (s+1) 7 ..
b(s+m)~' is an entire function for any integer m=0. Therefore,

(3.13) rq<s>-1|P1:<x>=Fq<s>-1ﬁiob<s+j>-l(§b<s+j>>|Ps:<x>,

is a tempered distribution with a holomorphic parameter s in {s&€C;
Re(s) >max{—m—1,s5,.1}}, for any integer m=0, and hence it is
holomorphic in Re(s) >s,41. In particular, if g=n, then (3.13) is
holomorphic in £_,_; for any integer m=0, and hence it is entire

with respect to s.
Lastly, we shall show that I',(s) '|P]i(x) is a solution to IR, for

any s in Re(s) >s,1. In fact, since

(3.14) (o (4) %, D, —s33(4)) Ty ()] P |2 (x) =0,

for any s&C with a sufficiently large real part, we have the result
by an analytic continuation to {s&€C;Re(s) >s,.1} (Proposition 3.2, 1)).

In particular, if ¢=n, then (3.14) is valid for any s&C.
g.e. d.

We introduce the Euclidean measure dx on Vi by
(3.15) 1) dx= |(/'l\1dxii)/\(/\dx;j) |, when Viy=Sym(n, R).
i= i<j
2) dx=|(A\drs) (/\(@Re(x) AdIm(x)) |, when
i= i<j
Ve=Her(n,C).
8) di=|(N\dw) (\(dels N Ad A\d) |, when
i= i<j

Ve=Her(n, H). Here, we write x;;=x};+x%e;+xde,
+xijee; with x5, €R and ed=ck=—1, eie,= —es01.

We define the Fourier transform of u(x) €& (Vg) by

(3.16) a(y) =Su(x) exp (201 —1<x, ) dx,
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and the inverse Fourier transform for u(y) €% (V%), by
(3.17) & (%) =Su( ) exp(—22{=T<x, ) dy.
Thus, as a well known result, we have
(3.18) g(x) =97 nn=Dv/2y (3) and ;(y) =2 nn=bolZy (9),

where v=1 (Vpo=8Sym(n, R)), 2 (Vp=Her(n,C)) and 4 (Viy=Her
(n, H)).

Recall the holonomic system
M.; (Kdp(4) x, D> —s0x(4))u(x) =0.

Here, do and 0Jy are the infinitesimal representation of p and the
infinitesimal character of y; <, > is the bilinear form on VgX Vi
defined in (2.4); s is a complex number. We define the “dual”
holonomic system on Vi of I, by

(3.19) M5 (Kdp*(A)yp, Dyp —soy(4))v(y) =0.

Here, dp* is the infinitesimal representation of the contragredient
representation of p. Then we have the following propositions.

Proposition 3.5. 1) If we identify Vg and Vi by the inner product
{x,y) defined in (2.4), then the holonomic systems M, and INE, are the
same.

2) We denote by Sol(IN,),,, the tempered disiribution solution space to
the holonomic system M. Then we have

(3.20) (D) u(x) ESol(M) om © () ESOLMME (wr/my) toms
(2) v(p) ESOL(ME) tem © 0(x) ESOLWM s ar/my) teme

(3.21) (1) u(x) ESol(My) 1w © ulx) is a tempered distribution on
Ve and u(p(g)x) =x(g)u(x) for all gEGY.

(2) v(y) €SOl 1. © v(y) is a tempered distribution on
Vi and v(p*(9)y) =3(@)v(y) for all g=GH.

3) Let u(x) €Sol(M) pm(resp. v( ) ESOL(ME usm) tem) . Then u(x)
(resp. v(p)) 1is real analytic on Vg —Sg(resp. Vi—8S3) and

(3.22) (D) u(®) lyg-s,=2:a: |1 P1; (%) Iy p-sp

) v»(» IV;;__S;E: b | P IFS'“"”" (») lv;‘;-s}"z’
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with some constants a;EC (resp. b;EC).

Progf. 1) Note that we identify Vi and V3 by the inner product
{x,y>=tr(x'y). Then the Lie algebra % is naturally identified with
a Lie subalgebra in gl(Vy) =gl(V%) by do and dp*. However, the
images of % by dp and dp* coincides with each other by the automor-
phism ¢;4— —'4. In fact, we have
(3.23) do(A)x=Ax+x'A, do*(A)x=-'Ax—x4,

0y (4) = —dy(—'4) =5y (*4).
Therefore, we have
(8.24) {<dp(A)x, D,>—s0y(A); AS Z g}

= {Kdo*(A)x, D,>+s0y(CA); A€ Fg}.
Thus we have the result.

2) First we shall show that (3.21) (l). Then (3.21) (2) is
evident by 1). Let u(x) €Sol(IM,)s,,- Then, for any f(x) EFL (Vg),
we have

(3.25) Su (x) <dp(A) x, D>*f (x) dx =563 (A) Su (x)f (%) dx.
Here, {do(A4)x, D,>* stands for the formal adjoint operator of <{dp(4)=x,

D,>. Since

{do(A)x, D.y*=—<D,, do(4) x>
= —{dp(A)x, D,>—tr(dp(4))
= —<{dp(A)x, D,>— (n'/n)dy(4),

we have
(3.26) Su (x) (—=<dp(4A)x, D,>) f(x)dx= (s + (n’/n)) 0y (A4) gu(x)f(x) dx.

On the other hand, for a sufficiently small ¢{=R, the element
g=exp(t4) €G3 is defined and

oo

(3.27) 2 (" /m!) (=<dp(Ad)x, D)™ f(x) =f(p(g) %),

:Z:O(t'”/m!) (s+ (”'/”>)”‘5X(A)”‘ f(x) =x(g)’+(""”’f(x),

are convergent in & (V;). Thus we have

(3.28) Su () f (0(g) %) dx
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e Z@m/mt) (—<doyx, DY dx

I

Su () T em/m1) G5+ (n'/m)) "0 (A) " () d

(@ o mfdx.
Since
ROV CERDE
~fuo@ns@ie@n =10 (ue@nrxe,
we have
329 (uo@nsmd=r@ u@rmai,

for all f(x) ¥ (Vg). Thus we have
(3.30) u(p(g)x) =39 ulx),

with g=exp({4) for sufficiently small t€/&. Any element gEGx

written as
(3.3D) g=exp(H4y)...exp (L4,

with {,€R and A;= %g. Therefore (3.30) is valid for all g=G;.
Conversely, if (3.29) is valid, then (3.28) is also true.

433

is

By

differentiating (3.28) by ¢ and by putting =0, we have (3.26).

Thus, we have u(x) €Sol (IMNs) 1m
Next we shall show (3.20), (1). We have to show that

(3.32)  u(p(@x) =x@ulx)ea(p*(@y) =x@ "™ (y).
We suppose that u(p(@)x) =yx(@)*u(x). Then we have

(3.33) Sd(p* @Nf(dy= Sa(y)f (0* (9 ) d(p* (@) ™)
=2 a0 F* @) dx
~fueofo@ 0 dx
=Su(p<g>x>f”<x>d<p<g> x) = x<g>s+<"'/">gu<x>f‘<x> dx,

because,
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—_— R
Fio* @) ={ £o* @ mexp ol =1<x 3Dy
={ O exp @RI =T¢x, s @29 (o (01)

=2~ f(Dexp@r(=To(&) 75,2
=2(8) """ f(0(g) 7).

Thus we have

4(p*(9») =x@*""a(y).
The converse is shown in the same way. For (3.20), (2), the proof
is the same.

2) In fact, I, is an elliptic system on Vr—Sg, and hence u(x) is
real analytic on Vg—Sg. Moreover, since I, is a simple holonomic
system on Vp—Sg and |P|j(x) is a basis of the solution on V{, we
have (3.22), (1). For (3.22), (2), we can show it in the same way.

q.e.d.

Proposition 3.6. Let s&Crit(P(x)®). Then we have
[P(x) |* if i=j,

0 if i,
v}*‘(,o( [Pi(x)) = (2m)ms+/BQntn=D/2

B.38) 0,0, (IPLE®)={

(3.35)

ag
{0} x
\ _ -
< PO TN |,
7

Here, {0} X V™ (resp. VX {0}) is the Lagrangian subvariety A% (resp.
4.

Proof. (3.34) is evident by definition, because |P|i(x) is a real
analytic function on V{ (Definition 2.7).
Now we consider the tempered distribution

(3.3 1P = 1Pl exp@nl=Tx ) dy (@)

\4
The distribution |P|i{(y) is a homogeneous distribution on Vi of
degree —sn—n'. In fact, it is proved by that |P|;(x) is a homogeneous
distribution on Vg of degree sn.  Therefore, we can view
\4 \4 \4
VAHE)) IV*_(O) as a distribution |P|i(re) =r™"|Pli(w) on (r,w)&E
R

R, X8 where §”! is the unit sphere in V% by the map
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(8.37) (r,w) — ro
m m
R, x8" 1> V§— {0}

Moreover, we can extend this as a distribution on RXS"~! by
\% \% ,
(3.38) |P;(r@) = | P | (@)rz™™™,

where 777 is a tempered distribution that is equal to ™™™ on
r>0 and is equal to 0 on r<{0. (Of course such distribution is not
uniquely determined.) The distribution (3. 38) is naturally a tempered
distribution on V% by

(3.39)  f(x) ,——?S”’S L Pl @ 77 f (r0) 1 drdo,

with f(x) €& (V). Here dw is the rotation invariant measure on

S$*-1, The tempered distribution (3.39) coincides with ]];/|§(y)
except for the origin. Therefore, we have
PG =, 1Pl (rmemtexp @nl = Trx, 03 dn) do
+0(x),

where O(x) is a real analytic function on ¥j. In fact, the Fourier
transform of any compactly supported distribution is an entire function.
Note that the Fourier transform of 4 (A&C) is calculated to be

(3. 40) Sf riexp (/= Tro)dr —exp( %+ —1(14—1)>F(1+l)(0+10) -1-1
+0(0)
(3.41) =0,,,(V—=1(c+i0)) +0 (o).

Here O(o) is a real analytic function in ¢ and D,.,(—=1(a+i0)) is
well defined for any 2&C as a microfunction whose singular support
is (0, do) and the meaning of the expression (3.41) is a hyperfunction

which coincides with @,,;(Y—1(s+i0)) modulo real analytic functions.
(For the definition of @,, see §2, and for the proof, for example, see
Gelfand-Shilov [3].) Thus we have

(3.42) |Pli(x) = S@_,,s (V=12alx, @) +i0)) |P\|/f (0)dw - (27~D0/2)
+0(x)
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— (2m)™. zn(n—bvﬂg 1P]3 (@) @_,s (V=1 ({x, 0> +i0) ) do
0 (x).

Therefore, the microfunction |P|i(x) is expressed on {0} X ¥V by the
integral (3.42) since |P|j(w) is real analytic on V}. Thus, from the
definition of the real principal symbol, we have

3.43) o, .(IPL()
— (27-5) ®//2)+ns Qn(n=1)v/2 IP\I/: ((1)) r—ns—n‘/W/‘/W Iv;k

= (2m) e 21 P )V dy | VT |
J
g-e. d.

Proposition 3. 7.

Tow = 1K VK] 1P )VTd ],

(3.44) |P

AU' l AO‘

n(n Dy

where Ky=1 and K,=

Proof. Note that 4,= {0} X V* and that
W =Zariski closure of
{(x,s-grad-log P(x)) € T*V; s&€R, det(x) #0},
=Zariski closure of
{(s-grad-log P(y), ») €V X V*; s&R, det(y)+#0},
=Zariski closure of

{(s97L,)) EV X V*; sER, det(p) #0}.

Hence from (2.44), we have

g %> _ syThyy st (7))
n n

n
We have
° n -1
P, = P nTL' I, _S (det_)) )=det(y) -1
n G n 5
and
0, n*(d:)’/\da /d , "(”2'—1)". d(s-_)/)'l
n n Sn

a(n—1)

—9™ T (det(3)) r dy
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Thus we have the result. g.e.d.

Let ¢{?(s) be the coefficient of |P|;(x) on 4)/= {0} X V7™, We have
the following formula of the Fourier transforms by (3.35) and (3.44).

ns?/  nr=lv

(3.45) @527 Pl (y) lyx_sz

-1Dv ’

n  nn —s=
=22 T B IPl; (.

Thus we have

Theorem 3.8 (Formulas of Fourier transforms). Let s Crit(P(x)°).
Then we have,

(3. 46) S |PI: () exp(— 20V = 1<%, 7)) dx | oo

n’ n(n=Dy

—ns— Ld vV o_s-n
=Q@m) " 2.2 * ;065?)(5) [Pl; = (),

i

1 (V=Sypm(n, R))
where n’=dim V and v=12 (V =Her(n, C)).
4 (V =Her(n, H))

The calculation of the Fourier transform is reduced to the
calculation of the coefficient ¢;;(s). By the formula (2.49) (Chapter
I Proposition 2. 13), we have the relations of the coefficients on 4,
and those on 4;,;, Thus we can compute the relations between the
coefficients on 4, and those on 4, inductively.

Now, we shall calculate ¢{? (s). Let ¢ be a variable, and we set

cA;(,:t". Then we have
0

(8.47) € 40i :;;: P (s) "€ 400 =267 (s) -,

i=1
n n
Conversely, from the relation ¢ Aaj=i21 ¢ (s) ¢, we have € pj= Z}f%’ (s)e 49
- S =
for arbitrary coefficients. On the other hand, when we give the
associated numbers ¢ 0= i we have € k6 - =11 I. This is proved
1 i

0
by induction on z using the relation matrix (2.49), which does not

depend on j. Therefore we have from (2.49).
(3.48) Cdg:llknzpﬁ(s)ﬁ,,{;-u

¢ i-u=Fz(s)c ;_u
415 ! 4}
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with
(3.49)

Fi(s) =%Q<exp<—1\/-—l (s—s-+1)> ( —1(2k—1) z))t

+exp< V=1(s—s; 1)>ex< 2k)v>>

Fiz(s) =%<exp<7\/ 1(s— s,-+1)>exp( 4 —1(2k— z)v)t

+ exp( — %\/—_I (s —S8;i41) >exp< — %Vﬁ (i—2k) v))

»h]ﬁ -h]

Then we have
(3.50) € g0 =F1-1() Flgia(8) o o 50 (8)
XF i 0()F_jn(s) ... Fo(s) 6 0
(38.51) Fii ;a9 Fig j—5(s) .o Fij o (s)
XFj10(8) Frjmao(8) o . Fi(9)

is equal to;

(8.52) (‘/2—”>_"F(5+1)F<S+%)...F(s+ ”“)

2
X }ill exp(—%\/—_lﬁxt-exp(—%\/?l_s)
(- 1)ﬁexp<g\/——ls>>
X Ejexp(%\/—_l@(t -exp(%\/?h‘) +(=1) qexp( — %,/—_ls»

when V=Sym(n, R);

(3.53) (20 I(s+1)I'(s+2)...[(s+m) (—D)=(—1)"7"
X <t . CXP( —%J——ls> - exp(%\/—_ls>>j
X (t-exp(%\/—_ls>_exp<_ % \/——ls>>"_j,

when V=Her(n,C);

(8.54) (2m)"I'(s+1)I(s+3)...[(s+2n—1)(/=1)"

X (t . exp( ——%\/——ls> — exp(%y/—_ls»j
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T o — \\"/
X <t -exp<?\/ — 1s> —exp<—7\/ — ls>>
when V =Her (n, H).

Theorem 3.9 (Explicit computations of ¢;;(s)).
1. In the case of V=Sym(n, B).

Putting
(3.55) ¢ () = (2) 2‘I=I < s I)exp(%\/?l(—g—~i>(n+l)>
x exp<§\/ 12 +2—n) s>a(") )
we have

(3.56) If n=1 (mod.2), then:
min((G~1)/2, (=1)/2)
1) (n) (_S‘) — ( _ 1) (n+37—2)/2
I=max(0, (j+i—n—1)/2)
i—1, n—1i
2 2 _ _
X ) exp (—4ay —1ls)exp (—2zy —1s)
RUAvASLEY
2
if i=1 and j=1 (mod. 2).
min(j/2, i—1)/2)
2) az(rf) (s) — (_ 1) (n+j+1)/2
! 1=maz(0, (j+i—n)/2)
i—1, n—1i
2 2 -
X ) exp (—4m—1ls)
J
l 5 l

if i=1 and j=0 (mod.?2).
min((=1)/2.i/2)
3)  a®(s) = (—1)a+i-nn
H I=maz(0, (j+i—n)/2)
i n—i—1

2 2 _—
X ) exp(—4ny—11s)
1\J—1 -1
2
if i=0 and j=1 (mod.2).

i min(j/2,i/2)
4)  af(s) = (—1)writvr

1=maz(0, (j+i—n=1)/2)
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1, ,n—i—1

2 2 -
X( )( ) )exp(—‘tm/—lls)
AN

if i=0 and j=0 (mod.2).

57) If n=0 (mod.2), then:
. min(j/2,i/2)

1) a®(s)=(—1)w+n

1=max(0, (j—n+i)/2)

i n—i

2\ 2 -
X . exp (—4m/ —1ls)
l)(g—z)

if i=0 and j=0 (mod. 2)
2) aff(s)=0
if i=0 and j=1 (mod. 2)
min(j/2, (i-1)/2)

3) aff(9) = (=D

I1=maxz(0, (j+i—3)/2)
1—1 n—i—1

2 2 _
X( )(( ) )exp(—Qm/—ls) —(
I 174—1

X exp (—4m{ —1ls)
if i=1 and j=0 (mod. 2)

) min((G=1/2. i=1)/2)
4) afP(s) =(—1)+i"v2

I1=max(0, (j—n+i)/2)

i—1, n—i—1

2 2 _
X ) (exp (zV —1s)
( z )(ﬂ~z)

2

+exp(—nV—1s))exp (—4m| —1 Is)
if i=1 and j=1 (mod. 2)

2. In the case of V=Her(n,C).

58) o (s) = (2m) ~2I1 I'(s+p) exp<—’1v——1( —r+2n j)>
p=1 2

n

—2
S
—1

J
2

i—1
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T o — . . min(j,i)
><exp<—2—\/—l(2]-i—22—n)s .

1=max(0, j+i—n)

X (— l)"<]l.><'.1 :Jl.>exp (—2zxly —1s).

1

3. In the case of V=Her(n, H).

(3.59) ¢ (s) = (21) LI (s + (2p— 1 ))exp<_’25\/—_1 (n—2j)>
p=1

T o— . minGi, §)
Xexp<7\/— 1(2j+2—n) s)

1=max(0,i+j—n)

X (— 1)"+:'<Jl'><;Z :Jl)exp( —9m{—1ls)

Theorem 3.10. Let seeCrit (P (x)°) (resp. —s— (n’/n) Crit(P(x))).

1) Let u(x) (resp. v(p)) be a hyperfunction solution to M, on Ve— Sk
(resp. to ME, urmy on Vi —S5). Then, u(x) (resp. v(p)) is uniquely extended
to Ve(resp. V) as a hyperfunction solution.

2) The hyperfunction |P|i(x) (resp. [P~ (y)) (=1,...,n)
Jorms a basis of the hyperfunction solution to M, on Vi (resp. to M i
on V§).

Proof. 1) Let u(x) be a hyperfunction solution on Vz—Sgto I,
with s&Crit(P(x)®). From Proposition 3.5,3), we have

u(x) =2 ai [P1(%) lyp-sg

Since seCrit(P(x)*), 2 a;|P|i(x) is well defined as a tempered distri-
bution on Vi by Pro;;osition 3.4,1), and hence u(x) is extendable
to Vr as a solution of IN..

Next, we shall show the uniqueness of the extension. Since u(x)
is a solution of the linear differential equation IR, we have to show
that if u(x) ],,R_SR—:O, then u(x) =0 on Vg.

If u(x) ]VR_SR:O, then the coefficients on V{ x {0}, € (u(x)) are
7

x {0}
zero for any j. Note that the matrices in (2.49) is well defined for

any se&Crit(P(x)*), and for any 0=<i=<n—1. Then we have
¢ g (u(x)) =0,

for any 0<j=rn—1 and 0<i=<1 by the matrix (2.49) with =0,
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Moreover, since the coefficients of u(x) on 4; are determined by
those on 4;_; by the matrices (4.29) with i=[, we have that the
coeflicients of u(x) on 4; are all zero if the coefficients of u(x) on 4,
are all zero. Thus, by induction on [/, we have that all the coeflicients
C it (u(x)) are zero. Therefore, by Theorem 2.4, we have u(x) =0.

‘ By Proposition 3.5,1) this theorem is true for the solution 2(»)
to MM m on Vi.

2) Any solution u(x) to I, on Vg is written as

u(x) ,VR—SR:Z a; |P i (x) IVR-SR5
by Proposition 3.5,3) and hence, by 1), we have
u(x) =25a; |P|i (x),

on Vi Thus we have the result. Similarly, we can prove the theorem
for a solution v(p) to MM um.

g.e.d.

Theorem 3.11. The formulas of Fourier iransforms in Theorem 3.8
are valid not only on Vi—S% but also on Vi and not only for
seECrit(P(x)®) but also for all s&€C. That is to say, we have

(3. 60) S |P3(x)exp (—2ny —1<x, y>>)dx
— (27) —ns—(ﬂ’/2)2—n(n—l)v/4ict§r;) () |P |79 (),
j=o0

Sor any s€C by considering |P|i(x) to be a tempered distribuiion with
a meromorphic parameter s&C. Here, we use the same notations as in

Theorem 3. 8.

Proof. We suppose that seCrit(P(x)") and —s—(n'/n) &
Crit(P(x)*). Then both [P|i(x) and |[P|7*~®/”(y) are well defined,
and the formula (8.60) is valid on Vi—S% However, the left hand
side of (3.60) is a solution to the holonomic system IN&.,., on Vi
by Proposition 3.5,2), and the right hand side of (3.60) is a solution
to My sy on VE—SE. Therefore, since —s— (n’/n) €Crit(P(x)%),
the right hand side is extended uniquely as a solution to ¥ ., on
Vi by Theorem 3.10. Thus the formula (3.60) is valid for any s in

(8.61) A={seC;s&Crit(P(x)%) and —s— (n’/n) &Crit(P(x)%)}.
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Since A is the complement of a discrete set in €, (3.60) is valid
for any s&C by the analytic continuation of Theorem 3.2,1).
g-.e. d.

§4. Invariant Measures on Singular Orbits
and Their Fourier Transforms

In this section, we use the term associated numbers instead of
coefficients in order to avoid confusions.

Theorem 4.1. Let Si={xeV;sign(x) =(j,n—i—j)}. There exist
hyperfunctions Ti,(x) 1=0,1,.., n, j=0,1,.., n—i) with meromorphic
parameter s€ C satisfying the following properties.

@1 1) Ti(e@x) =x@Ti(x).
2) For iz, the support of T, (x) is contained in Si and T, (%)
dx gives a non-zero measure on Si.
3) The associated number of T{si(x) on A* is 1.

Proof. We define T%(x) by induction on i. First, we set
(4-2) Tés(x):IP”(x) (j:()alv'”"n)-

Then T37%(x) is a hyperfunction whose support is ¥®,. Suppose that
we have defined T%(x) for :=0,1,..,¢9 and j=0,1,..,2—i. We
define

(4.3) Ti115 (%) =0, (5) (b (8) TEF (%) —by ()3TH* (%) +. ..
R G S O Ly s 1))

for j=0,1,..,n—¢—1. Here, we set
4.4) a,(8) =V2r I'(s—s5,41) 7%,

b, (s) =exp<%\/—_1 (5 —Sg41) >exp<—%\/_——lq°v )
where

Il (V=Sym(@n,R))
v=1 2 (V=Her(,C))
4 (V=Her(n H)).
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From the definition, 7% (x) is a linear combination of |P|;(x) with
entire function coeflicients on s&C. Therefore 7% (x) is a hyperfunction
solution of M., and hence satisfies the condition 1).

Lemma 4.1.1. Let clﬂ-k(T},ZS (x)) be the associated number of T3,(x)
on A%*. Then, for p=1, we have

4.5 D e u(Th@) lmy=0 if  i<p.

9 q . I, j=¢,
) @) ey ={

3 6@ (T5)) lias, =0 if i>p and j<qg—(i~p)
or if i>p and j>q.

Proof. First, in order to prove (4.5), we shall show that the
associated numbers of T%,(x) on A% are entire functions in s and
that they vanish at s=s, if i<{p. We shall show these by induction
on p. Consider the hyperfunction a,(s) |P|;(x) (¢=0,1,..,n). Their
associated numbers on A4(j=0,1,..,n) are

{ao (s) (g=pn,

0 (g#)).

They all vanish at s=s; because a,(s) is an entire function with the
zero of order 1 at s=s,. Therefore the associated numbers of T% (x)
also vanish on all A4 because b,(s) is an entire function. The
associated numbers on 4% (j=0,1,..,n—1,k=0,1) are all entire
functions on s&C, since they can be written as a,(s). I'(s—s) X
(an entire function) from the relations of the associated numbers (2. 49).
Thus we obtain that our assertion is valid for p=1I.

(4.6)

Suppose that

(4.7) 1) The associated numbers of 7% (x) on A% are entire func-
tion on s€C when i<p,

2) They vanish at s=s, if i<p.

Consider the hyperfunction a,(s)7T%;(x). Since a,(s) is an entire
function with a zero of order 1 at s=s,,;, the associated numbers
on all A*(i<p) are entire functions in s€C and vanish at s=s,,.
Moreover, the associated numbers on A%, are entire functions in s
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because they can be written as a,(s) I (s—s,41) X (an entire function).
Since 77%.;(x) are written as a linear combination of a,(s)7%(x)
(g=0,..,n—p) with coeflicients of entire functions, we obtain that

(4.8) 1) The associated numbers of 7%.;(x) on A* ((<p+1) are
entire functions on s&C.
2) They vanish at s=s,,,; if i<p.

Thus the assertion (4.5) 1) has been proved by induction.
Next we shall show that

(4.9) The associated numbers ¢, w(Th(x)) [s=sp (0=k=p) coincide
)
with one another.
Note that F(s—sp)cAj+1k(T§,s(x)) and F(s-sp)cAjkl(Tgs(x)) are holomo-
p=1 -

rphic at s=s,. We denote by 4 and a, the values of them at s=s,,
respectively. From the relation matrix of associated numbers (2,49),
we have

(410) i (TH() Liws, =0, (T () L,

= (\/2—7f) -1 (01+az) .
Thus we have that cAik(Tgs(x)) |s=sp (0=k=p)coincide with one another.
We shall show that
L, j=g¢,
0, Jj#q.
by induction on p. When p=0, it is evident from the definition.

We assume that (4.11) is valid for an integer p. Then the associatep
numbers ¢ ;,(T}) are all identically zero if £=j+1, and CA{’H;,(T;’?S)

(4.11) ¢ (T5()) ={

are all identically zero if k=j+42. Therefore we have
(4.12) ¢ yip+1(Th41)
P+l
L (=510 <_£ 1(s— > <TE —1 >
= exp 2\/ 1(s—s,41) Jexp ?\/ 1po
Xy ()b ()¢ 110 (TH)
Oyt (TEH =1,

and

(4.13) ¢ (T =0 for k<,
p+1



446 MasakAZU MURO

from the induction hypothesis. For £>>j, the associated number of
Tj.1 on Ai%! are determined by the associated numbers on A%*'? and
4. We have

(4.14) cAkp+1(T£+ls)
p+1

L0 (exp(— 2= (=sy00) Jexp (= Tpw) (= D+
Xay(5)b,(s) 2k_2j+104§+1p (T3
-f—exp(g\/—_l(s —Sp41) >exp<— %\/—_lpv> (—1)r-it
Xa, (s) bp (s) Zk_zj—lcdgp (T;s) )
= (= Dby () H (e g1y (T — 3 (Th)
=0,
for £>j. Thus we have
1 k=)
0 k#j.

Thus we complete the proof by induction. By (4.9) and (4.11),
we have the assertion (4.5) 2).

Now we shall show (4.5) 3) by induction on i. From (4.5)
2) and the relation matrix of associated numbers, we have

(4.16) CA}',L(T'%S) s=sp=03

(4.15) CAkp+1(Tf;+1s) = {
1

if j<<¢—1 or j>gq. Suppose that for a fixed i, cA{,,(Tgs(x)) |s=5p=0
if j<{g—i+p or j=>>q. Then, the associated number cA{il(Tgs(x)) i’=sp
(G<g—(@+1—p) or j=>q) are written as linear combinations of the
associated numbers on A#(j<g— (i—p) or j>>¢). Then we have

(4.17) E“{"il (Tjés (x)) }s=sP=0:

if j<g—(i+1—p) or j>>¢q. Thus by induction we have (4.5) 3).
Lemma 4.1.1 q.e.d.

From Lemma 4. 1.1, the singular spectrum of 773 (x) is contained

in

n—p b+i .
V(v (VA5H).
i=0 izj=0 k=0
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Therefore the support of 7% (x) is contained in

@18 =GO (Oa54)) =85U (S5, US5D U U (5D

i=0 i=j20
— S
b

by Proposition 2.3. Thus we have Supp(T}’,sP(x)) cS? by (2.42).

Lemma 4.1.2. Let p be a point in V and let K be a non-singular
variety in V of codimension m defined in a neighborhood of p. Suppose
that a hyperfunction u(x) defined in a neighborhood of p satisfies
Supp (u(x)) =K.

Let A be a Lagrangian variety TEV, and we denote by Ac its complexi-
Sfication. We suppose that the hyperfunction u(x) satisfies a holonomic
system whose characteristic variety contains Ac, and the holonomic system is
simple on Ac and the order of u(x) is m/2. Then there exists a local
coordinate system (xi,..,%,) near p satisfying
4.199 1) K={xn=..=x,=0}.

1) 2(x) =P Kpi1ye e, X,)0(x1)..0(%x,,), where P(Xpyye oy X,) 1S

a non zero real analytic function.

Proof. Since the hyperfunction u(x) satisfies simple holonomic
system on A¢, we can write as a microfunction u(x) =P (x, D,)d(xy)..
0(x,) on A by using a local coordinate system (x,..,%,) satisfying
K={x=..=x,=0}, and a microdifferential operator of fractional
order P(x,D,). We may assume that P(x, D,) is written as P (%,415- -,
Zory Dy o vy D,m) and it is uniquely determined by this expression (see
the definition of real principal symbol (2.43)). Since the support of
u(x) is contained in K, P(x,D,) is a proper differential operator,
i.e., without any terms of order less than —1 and with terms of
integer order. The order of u(p) on 4 is ord(¢(P)) —f—%, and hence

P is of order 0, i.e., an analytic function. Therefore we obtain the
expression
u(x) :P(xm+17 ) xn)a(xl) .o 5(xm)’

with some analytic function in a neighborhood of p.
Lemma 4.1.2 g.e.d.
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We apply this Lemma to T3:,(x). Let 2€84. Then 8% is a non-

singular subvariety in a neighborhood of z, and the codimension is

p(p+1)/2 (resp. p% p(@2p—1)) when V=Sym(n,R) (resp. V=

Her(n,C), V=Her(n,H)). The order of Tgsp(x) on T3, Vis—ps,—
b

[J([J—;f—l) -<resp. —psp—éf, —psp—p(Qp—l)> and hence coincides with

a half of the codimension of §%. Therefore Lemma 4.1.2 can be
applied, and hence we have the result (4.1) 2).
g-e. d.

We define the hyperfunction
(4.20) Ti(x): =T}, (x).

This hyperfunction is relatively invariant and its support coincides
with §% and it defines a G'-invariant measure on S That is to say,
we have the following theorem.

Theorem 4.2. There exists a G-invariant measure dvi on Si and
satisfies

@2 | @ Tiwd= sl i,

Jor any f(x) €Cy (V) such that fIS,:EC(T(Sf).
Conversely, for any G'-invariant measure dvi on S,

(4.22) szflsi; (%) dv}(x)

is absolutely convergent and coincides with
(4.23) (const.)g ) Ti(x) dx,
14

Sor any f(x)eL (V).

Proof. In this proof, we denote G™' and V™ instead of G* and
V, respectively for the later convenience.
The formula (4.21) is the direct consequence of Theorem 4. 1.

Namely, T%(x) is a hyperfunction on ¥V, whose support is contained
in §i. Therefore,

=\ f@Tiwd, (feCs (V) flyscssh),
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gives a measure on Si. It follows from that 7% (p(9)x)d(p(g)x) =
Ti(x)dx (g=G™?) that this measure is a &G™'-invariant measure.
Next we shall show the converse.
We consider the relatively invariant measure dx™ on V¢. By
Sato-Shintani [5] p.138, there exists a G™'-invariant n’—1 form
,(x) on V™ such that

(4.24) [d(P(x)) N\w,(x) | =dx™,
Here, n’ is the dimension of V® and P(x) is the restriction of the

relative invariant defined in (1.2). Then, for any f(x) €& (V®),
we have

(4.95) Svi“’ FCx) |P(x) [Pdx®

:So tsdtg(xelfi(");ldet(x)l=1]f(x)w"(x),
and they are absolutely convergent when Re(s) >—1.
Let f(x)e# (V™). We put

~\_/mn'léTUﬂ‘"))“’
where U™ is the compact group @ (n, R) N G (resp. U(n, C), U(n, H))
in the case of V®=8Sym(n, B) (resp. Her(n,C), Her(n, H)), and dg
stands for a U™-invariant measure. Then f“(x) also belongs to
F(¥®), and { o) dx = f)dxeo.

We put

4.26)  /om =\ . flo@wndgx

LeSym(n—i, R) (resp. Her(n, C),
(4.27)  ME— ((1;3 8) Her(n, H)), |p(L)| =t, sign (L)

=, n—i—=j).
Then there exists a G™'-invariant measure ,; on M{? given by
(4.21). We put

(4.28) MED = (g M 'g; g& U™},
We can regard M9 as
(4_ 29) U(n)/( =i x U(i)) n U™ x M?‘j).

Here U™ ?X U® is a subgroup of U™ by

(4. 30) {(64 g); A€ U, Be U<f>},
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There exists a U™-invariant measure @ on U®/(U* X UP) N U™

and we introduce a measure @,_; on M{? by

(4.31) @i =0 N\0,_;|.
Note that
(4.32) Si=\UM¢?,

>0

Lemma 4.2.1. The measure
(4'- 33) ,ajn—i/\t—llzdt l (”517- I(on—i/\dt ', Id)n—i/\t dt ])

is a G™-invariant measure on S’.

Proof. We put (4,B) =<64 g)eG(")l. Then, by the action of

(4, B), the volume form |@,_;/\dt| is multiplied by the factor
|det 4| (resp. 1, |det 4]|%). Therefore, |@,-;/\dt] is invariant by the
action of (4,B). From the definition, it is invariant under the
actions of U™. Since any point in S% is reduced to the point

(I,’,—i 0) by the actions of an (4,B) and an element in U®, and
since there exists a G™'-invariant measure on S4 the measure
|@,-;/\t°dt | with a=—1/2 (resp.a=0,a=1) is a G™'-invariant measure
on Si,

g-e.d. of Lemma 4.2.1

Now let fe# (V™) and define f*(x) by (4.26). Then f*(x)
is invariant by the actions of U™ and

@30 (gon 00,0 {300 00,
:VO].( U‘(n)/( U(u-i) X U(i)) n U(n))

X SMt(i,j) S | -y @pi ()«

Here, by the inclusion map

x 0
(4, 35) xl—>(0 0),
m m
V(n—i) V(n)

V@9 can be viewed as a subspace of V™. The restriction of f°(x)
on V* ™ is an element of & (V®»®) and it is U“ ?-invariant.
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Lemma 4.2.2. Let f€ S (V™). Then,

(4. 36) fio= S(xev§"’;|r<z)1=:)f(x) @ (%)
is a C=-function on t>0 and rapidly decreasing at infinity. Moreover,
(4.37) f:(0) =1irglf,~(t)

>

exists and is finite.

Proof. In fact, f;() is absolutely convergent for ¢>0, and

(4. 38) 2w :(ﬁf) @
ot oP(x)" /i~ "’
where
4.39)  —2 = |grad P(») |'2<grad P, 2.
oP (x) > 0x

Since 7;% f(x) is a C=-function except at the origin and since

2 5
P f(x) is rapidly decreasing at infinity, (T(x)ﬁi(t) is absolutely

convergent for ¢>0, and hence it is continuous in ¢ and rapidly
decreasing at infinity. In the same way, we can show that (—%) fi@®

is continuous on ¢>0 and rapidly decreasing at infinity.

Now we shall show (4.37) by induction on n. Suppose that
(4.37) is proved for n<k. We put n=k+1. From the definition,
l}_gx fi(®) coincides with

(4.40) R OO

where dv, is a G%**P-invariant measure on the orbit of codimension
one S;= {x&€ V*; P(x) =0, rank (x) =k} which is naturally induced by
@, the (k+1)"—1 form defined by (4.24). From Lemma 4.2.1 and

(4. 34), the integrability of S si F(x)dv] is reduced to the integrability
1
of

(4.41) S:t"dtSMta. 27 x) |, @ (%),

with a=—1/2 (resp.a=0, a=1). From the induction hypothesis,
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SM§1.]'> SO @) 1, o (%) = (fcfo(\x)/ )@

is a bounded C~-function which is rapidly decreasing at infinity.
Hence (4.40) is integrable.
g-e. d. of Lemma 4.2, 2

From Lemma 4.2.1 and (4.34), the integrability of gs_jf(x)dv{- is
reduced to the integrability of

(4.42) e 02 ) | eoams 0,

where a=—1/2 (resp. a=0, a=1). From Lemma 4.2.2,

(fw (%) V(n—i)) i= th(i,j) S ]V(n—i)wn—i (x)

is a bounded C~-function on ¢>0 and rapidly decreasing at infinity,
hence (4.42) is absolutely integrable. Thus,

(4.43) S\ f @ i) (feF (T

defines a hyperfunction which is also a tempered distribution with
support Si. We put it 7% (x). From (4.1) 1), 2), the hyperfunction
Ti(x) dx defines a G“-invariant measure on S%, and hence
T(x) =Ti(x) =T (x)

is a hyperfunction whose support is contained in Si—Si Moreover
T(x) is a solution of EIRSi because we have Ti(o(g)x) zx(g)s"T{(x).
If T(x) is not zero, the singular spectrum of 7'(x) is contained in

Lemma 4.2.3. Let u(x) be a hyperfunction solution to M. Suppose
that Supp(u(x)) €81 Then u(x) =0.

Progf. Since u(x) is a hyperfunction solution to ., it is deter-
mined by the associated numbers on A4*. (Theorem 2.14). From the
assumption, the support of u(x) is contained in S;,;, and hence u(x)
is zero on the real Lagrangian subvariety 4; for 0<j<i. Therefore,
the associated numbers cAJ,.,,(u(x)) =0 for 0<j=<i and for any £,/. On
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the other hand, the relation matrix (2.49) is well defined if s>s5;.4.
Since s5; >s;01, (2.49) is well defined for s=s;, and hence we have

(4.44) €M, (u(x)) =0,

for any £,{. Next, consider the matrix (2.49) substituting i+1 to
i. Then, it is well defined for s=s; because s;>s5;,,. Hence we have
CAik—il-Z (u(x)) =0 for any £,/ by (4.44). Similarly, by induction, we
have cA,'z,(u(x))zo for any j and for any £,[. After all, we have
u(x) =Ojby Theorem 2. 14.

g-e. d.

Note that T (x) satisfies the condition of Lemma 4.2.3. In fact,
‘S_{_S'ZC‘S_':+1:
by Proposition 2.3, and hence the support of 7'(x) is contained in S;.
Then, by applying Lemma 4.2.3, we have 7'(x) =0. Therefore we
have
Ti(x) =T% (x).
Thus we have the result.

q.e.d.

The hyperfunction 7%(x) is a solution of a holonomic system M.

When we give associated numbers on A; of a solution, then we can
calculate the associated numbers on 4;,;, and inductively we know
the associated numbers on A4;,,..,4,. In order to calculate these
associated numbers, we set ¢*=¢’/, where ¢%* is the associated number
on A#* Then we have

(4. 45) ¢l =1 @' >1),
inductively. We define F§,(s) as defined in (3.29). We have
(4. 46) ¥ =FlL ()™ 'z,

s PACH R A C=1)

from the relation matrix of associated numbers (2. 49).
Therefore we have

(4.47) e =F 1 (50) oo Fo(8) Frlpmno (55) = = < Fig (53) o6

n—i L. n—=i i X
= Z;.) ahtic! = _ZO ake?, (k<n—1).
j= j=
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=Fryoa(8;) o o e Fipopyi (83) ¥4
:nz:l‘ i t]cok—ﬂ'!-l Zl a; c;k—n+t (]CZTZ—Z) .
j=0 j=0

Here af, is the coefficient of ¢/ of the polynomial
Flia1(s) o o Fliao (5:) Frpm10(5) < =« Fig (5)

if k<<n—1, or
F n—1k—1 (S) xk—n+£ (.S')
if k=n—i.

The support of T%(x) is contained in Si and the associated
numbers on A#* (k=0, 1,.., n) are all 1. The associated numbers on
A#(j'+#j) are all zero, i. e., there are no singular spectrums. Therefore,
the principal symbol on 4% is given by

(4.48) Udgk(T{:(x)) =aj, !PA(;k V] ‘UA%| )

with k=0, 1,..., n
Thus, as in the same way of Theorem 3. 8, we have the formula
of the Fourier transforms,

(4. 49) ST’ () exp (— 2/~ 1<, D)l o

n+1

i9—n(a=Do/t ZI aj|det y| J

—n’/2—ns,

= (2n)
where n’, v are defined in (3.46) and s; is defined in (2.50).

- —ns _n(n—l)v

By computing af, explicitely and by putting b/ = (2z) 2 4
al, we have the following formula of the Fourier transforms of Ti(x).

Theorem 4.3. 1. In the case of V=Sym(n, R).

(4. 50) ST{-’ () exp (=20 = 1<, y))dx| s
R “R
=5 bipii det |7
k=0
where

(4.51) 1) n—i=0, j=0 (mod. 2)
b = (27) B+D E=m/AQ=ntn—1/4 'ﬁi (p/2)

xexp( T \/—l((n—z)(n—2k+21)+2y)>((nj72i)/2>
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2) n—i=0, j=1 (mod. 2)
bpi=0
3) n—i=l, j=1 (mod. 2)
@i = (27r) D G~/ —nu=D/4 'ﬁi I'(p/2)
»=1

X exp(%\/j((n —i) (n—2k+2i) +2i(j+ 1)))(}’221)—/22)/2)
4) n—i=1, j=0 (mod. 2)
bpi = (2m) D @-mg=n=D TT ["(p/2)
% exp(-;:—\/——u (n—i) (n—2k+23) +2i(j+1) +4k—2) )((”j72i‘2)/2)
9. In the case of V=Her(n,C).
4.52)  (Tiexp (=200 =T<x,90)dal o _yo = 3 627 det 15
where

(4.53) bPi=(2m) ~@C-2+n=/29—ntn=D/2 "f_f I'(p)
p=1

Xexp(%\/—_l((n—i) (2k—n) +2(G+ l)j))<nj-i>

3. In the case of V=Her(n, H).
(.50 {Tieexp( —20=T<w 90 dal o _yo = 3 b33 det 5|37
E=
where

(4.55) bpi=(27) "('"”"'1”%2—7‘("—1) "Z—;i[' @p) (—1) (i+1)(n—i)<n Ti>
p=1 J

Lastly, we shall give a relation formula between the G™'-invariant
measure dvi on S! and the invariant measure dg™' on G™. From
now on, we denote by G® or G™! instead of G or G, respectively
and Vg is denoted by V@,

The G™'-orbit S’ is a homogeneous space. The integration on
G™! by a G™-invariant measure dg™' is divided into the integration
on S by the G™! invariant measure and the integration on the
fiber G™' (x87%) by the left invariant measure. We shall determine
the measure on G{! naturally defined by determining the measure
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on Si.
Let x{?=I{. Then x, is a generic point of the G™-orbit V.
We can identify V{ and G"”/Gig% where Gi:(]‘}) is the isotropy

subgroup of G® at x{’. There exists the G™-invariant measure
| P(x) |”""dx™ on V—S. Here n’=dim V® and dx™ is the Euclidean
volume element on V™ which is defined in (3.6). Then we have

(4.56) | P(x)|™"dx® | _p=|/\dXy,

i<j
(resp. = | (AdX) A\ @XENIXED) |,
1= i<j
= (AdXi) AN\ @XENIXENXENXE) D),
i= i<j
with
X = (X,']') ESym (n, R) = Txéj) V(") i
(resp. x=(X;;) EHer(n,C) =T ;, V™
0
and Xij:Xij‘f“\/:—lXij (Z<J))a
X = (X;j) EHer (ﬂ, H) = Tx(j) V(n)
0
and X;,-:X,-Ij‘f—ﬁ izj_f_er?j_i_eleZX?j (l<]))
Thus, there exists a left invariant measure dg'), on the isotropy

7
%5

subgroup G, satisfying
0

@51 {r@de = rrmdegy ) 1P| ax,
(feCs(6)),

where dg® is a G-invariant measure on G and x€G”/GH=VP.
0

Let ™ be the Lie algebra of G™, which is identified with the
tangent space of G™ at the neutral element e€G®. We normalize
the G™-invariant measure dg” on G™ by

(4.58) dg™(e) = I1 /\ d4;;| with (4;;))€e% =M (n, R)
<i,j<n
(resp. dg™ (e) = I;sf}sﬂ (dA}; N\d4E) |
with (45+V—14)e%® =M@, C),
dg™ () = fl AN\ (dAiN\dA% N\dAE N\dAY;) |

si jsa

with (4} +ed}+eadd+eaad)eg =M, H)).



MICROLOCAL ANALYSIS 457

The vector space g‘”’/f&,‘,ﬁ’ is identified with T,OV("’ for x,€V-—S.
Then dx™ is regarded as the volume form on % /%™ and hence

we have,

(4.59)  dg™ () =1dx™ (x0) Ndg (&) |,

by normalizing dg suitably. Especially, for x=1I;”, the isotropy

subgroup is Q(j,n—j, R) (resp. U(,n—j, C), U, n—j, H)). The
Lie algebra #{ is written as

(4.60) Cf,(,g) ={AesM (n, B); Ax,+xi4=0}.
(resp. ¢ ={A€EM (n, C); Axy+xA=0},
G ={AcM (0, H); Ax,+x4=0}.)

We define the volume form dgf’ (¢) on % by the relation (4.39) and

0

denote it by dA{, i.e., dg™ (¢) =|dx NdAY | with A€ g .

. W . S
We put xi(J):[l S ] The tangent space of Si at x{ is written
i

as

rX: X1 XHES, —i, R
(4.61) Txgj)SJ;::{ 1 2i|; 1ESym (n—1, )1

X, 0, 1 X,eM (n—i, i, R))
- X, Xz]_ X,€ Her (n—i, C)}
X, 0, X,eM(n—i,i,C))’
X, X Xi€EHer(n—i, H)
Lt X, 0,.] } )

(I‘CSp. Tx-(j)S{; = {

’

X,EM (n—i,i, H)

T ;Si= {

We define the volume form |dX;/AdX,| on Txi(,-)S’; by
(4.62) dXy=/\ dX with X,=(X;) € Spm(n—i, ).
(resp. 42, = (\ dX;) A\ (/\(@XRAAXE)),
with (X;,) € Her (n—i, C) and X;=X}+{—1X%,
4X= (7 dX,) AN\ @XBAXGAIXLNIXL)
with (X;,) € Her (n—i, H) and Xj; =X} +6,.X% + 6, X% +eae,XY)

and
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(4.63) dX,=AdX; with X,=(X;) EM(n—i, i, R).
(resp. dX,=/\ (X} N\dX%
with (Xp+V—1X,) €M (n—i,i, C),
dX,= N\ (dX5XN\dX%NdAX3 N\dXYE)
with (Xh+aXi+eaXh+eaeXy)eM (n—i,i, H).).

Then, for the G™'-invariant measure dvi on S defined in Theorem
4. 2, we have

Lemma 4. 4.

i(i+1)
4

(4.64) dvi(x?) = (2x) |dX,/\dXz]|.

i2
(resp. dvi(x{) =(2x)2|dX;/\dX:|,

i(2i~1)

di(x?) = @) T |dX,\dX,])

Proof. We shall prove this lemma only in the case of V=
Sym (n, R). Similar proofs are possible in the cases of V=Her(n, C)
and V=Her(n, H).

fn—i\l i
We denote I: ,xl ——@—]E V.,

X3 X3

We put Sit= {[15‘12" xa]; % ESym (i, R)}.
Then, S# intersects with S7 at x{¥ transversally, and
T,,i<j)SfL= {[O”'i XJ; X, Sym (i, R)}.
We take a coordinate system #= (u4,)1<r<m<: Which satisfies
(4. 65) Upm | sit = Xn—ithn—itm 'S_Zj_l_s
and
Si={u4,=0 for all 1<k=<m<i},
in a neighborhood of x{. Then
Aty (27) =d X357,
where X;= (Xi™).
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Let dy be the G™!-invariant measure on S’ normalizing by
dp(x?) =|dXy/\dX,|. When we regard dy as a measure on V@,
we can write it as

(4. 66) dpr=1 () T10 (i) | du N Nl

by using a local coordinate system (u, %1, X;) in a neighborhood of x{?,
where f(x) is an analytic function with f(x{) =1, and du=\dupm,
dxy= N\ dxp, and dx,= )\  dx,. Moreover, by regarding (4. 66)

1=k<m<i 18kSn—i
n—i+l<m=n

as a hyperfunction on V®, the principal symbol is by definition

_ 1@+ [ R
(4.67) (2m) T f( V[ du*| V| dul,
where (uf,) i1s the dual coordinate of (u,,) and du*=/A\du},.
k=m

Therefore, the principal symbol at x is

(4,68) @m) T \/ldu*l/‘/ldull o

— @)~ \/IdX*I/\lldXsl,

where |dX§| is the volume form[/\ d(X5)wm| on the cotangent
vector space T (;»S? by the dual coordlnate XF=((X$)w) of X,

On the other hand, the measure dvi on S is also a G™'-invariant
measure. The principal symbol of the measure dvi, regarding as a
hyperfunction on V™ defined near x{?, is

(4.69) | Pl S [ /N [dx®]

from (4.1). Here 4 is the conormal bundle of §i.. In order to
write (4.69) by using the coordinate system (u,), we restrict (4.69)
to Sit. We have P(x) lsjlzdet(ukm). Therefore we have

(4.70) W N T*Si=The Zariski closure of
{(u, 0 grad,log(det(u)) €T*S#; det u+0, s=R}.
Let = be the projection map from WnN T*S# to S Then,
4.71) Py=Porn/d*|,,
_m* (du) /\dxl/\dxz/\do' / do|

in T*S where i’=dim V"')=Li2+—l).
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By a similar calculations in (3.24), we have

|Pal “VTeodl N 1daT | o ggo =cSet Tdu®| /V [du],

with

¢o=| (det u) -det(grad,log(detu)) | =1,
and

¢;=| (det u) ¥/, (Hess,log (det u) | =1,
and hence

4.72)  [Pa"NVwal N1dal | o =V 1dXT| N 1dXs].
Thus we have
4.73) dv{(x,f’))—(Q;z) 1 dy(x‘f’)

= (275) IXm/\dXz l.
q. €. d.

We can identify §i and G™'/G%;. Let ™' be the Lie algebra
of G™. We can write
(4.74) gM={4eg™; Re(Tr(4)) =0},

and ™! is regarded as the tangent space of G™' at the neutral
element e. We denote the invariant measure on G™' by dg*' and
suppose that it is normalized by

(4.75) dg™(e) = |( )/\( )dAijl )
(resp. dg™(e) ~l /(\ (dAi;/N\d4%/N\dAE, |,
dg‘"’l(e)—] /(\ (dA};/\dA% N\d A3 N\dAY)

ANCZH n/\dAmz/\dAnn) .

Let ¢ "8} be the Lie algebra of G(’@} Then @™/ ?"(‘}} is identified

with the tangent space of S at x’. The volume form |d X, /\dX,|
on T ,S’ is regarded as that on % ®!/ ?‘”’1 Note that ¥ ™= ?“”1(—9

g w1/ @ @3, There exists a left invariant measure dg“{}} on G(")1 nor-
i

malized by
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(4.76) dg™!(e) = | (dXiNdXy) \dg5 (0) |-

We can write the Lie algebra ?(’8} as

[A B} Ae g (’('J')’)BEM(n—i, i, R)
(4.77) g 0= [

L0 C_ CeM (G, R), Tr(4) +Tr(C) =

A B'\ Aew ((])"BEM(n—z, i, C)
(resp. "8}— {
L0 C_ ceMG,C),Re(Tr(4) +Tr(C)) =0
4 B A€ 9 GOBEM (n—iyi, H)
g;"ﬁ—‘ )
0 ¢l ceMG, H),Re(Tr(4) +Tr(C)) =0

with x{?=I1%,. Then we have

Lemma 4. 5.

(4.78) dg 3 (e) = |dAG;" NIBANAC

Here, dA(’(‘,')” is the volume form dx“ P (x{") defined by (4.59), dB is the
volume form defined by /\dB;; and dC is the volume form dg®' in (4.75).

Proof. Let h—[A g]e % ™1 and put dD= AdD;;. Then dg™'(e) =
|dANdBAAC/A\dD|. The action of & to x{” is
AID, 19, 4 [,‘,L’,-’D} I:Xl Xz]
= t

479  do(h m—[ , o .
(.79 do(h)x DI, 0, X o,

So we have

(4. 80) d4= a’Xl/\dA('(‘,“)" and dD=dX,.

Therefore we have
(4.81) dg™(e) =| (dX1/\dX,) \ (dA;g,-;“/\dB/\dC) [

and hence we have the result. q.e.d.

Let dv ;, be the left invariant measure on G{' normalized by
(4.82)  dg™(e) =|dvi(x") Ndv i () ].

Then we have from (4.64),
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(4. 83) dv g = @r) " dgL.
1
(resp. dv D= (2x) ng('(‘jl,
_i@i-1
dyz.(f) =2 % (n)l L).
1
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