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Passive Quasi-free States of the CAR
Algebra with Discrete Hamlltonlans

By

Charles J8 K8 BATTY*

Abstract

The spectrally passive, gauge -invariant, quasi-free stases a) on the C*-algebra of anti-
commutation relations with respect to a one-parameter quasi-free action T are described.
If the one-particle Hamiltonian H is discrete, the precise condition on the one-particle
density Q of ca is combinatorial, but if the Connes spectrum of r is non-zero, it implies that
Qj= (7+g/3CH+r))~1 for some j8>0 and some operator T of bounded trace norm, apart from
some degenerate possibilities. If H has both discrete and continuous parts, these results can
be combined with those of de Canniere for the purely continuous case.

§ 1. Introduction

The notion of spectral passivity of an invariant state co of a C*-
algebra 21 with respect to a one-parameter group of automorphisms
of ?l was introduced by de Canniere [3] as a part of the KMS
condition,, Thus CD is spectrally passive if

a)(x*x)<a>(xx*) (1. 1)

for all x in the spectral subspace R( — oo, 0) of 81. All KMS states
at inverse temperature ft, where 0</3<oo? are spectrally passive.,
Conversely, the condition

implies that co is a KMS state at some 0</3<oo (see [1] for a short
proof). The condition (1.1) is closely related to the condition of
passivity, as defined by Pusz and Woronowicz [7] based on the
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Second Law of Thermodynamics. Passive states are spectrally passive

[3], and there is no known example of a spectrally passive state

which is not passive (see [1] for some partial results).

Now de Canniere [4] has investigated the condition (1.1) in the

specific context of a (gauge-invariant) quasi-free state and quasi-

free automorphisms on the CAR algebra 21 (Jf) associated with a

one-particle Hilbert space Jf (or the gauge-invariant part 2l(Jf)(0)).
Thus 21 (Jf) is generated by annihilation and creation operators <z(/) ,

a*(g) (f9 g£=<^) satisfying the canonical anticommutation relations

«(/>(£)+a(g)a(/)=0

*(/)**fe) +«*(£)*(/)=(/, g)L

These conditions, together with linearity of a* and the relation 0*(jO

— (#(/))*» determine 2t(Jf) uniquely up to isomorphism. The quasi-
free one-parameter group of automorphisms is given by

r,(f l(/))=fl(*«*/) (1.2)

where eitH is a unitary group on Jf with one-particle Hamiltonian H.

The gauge action is the quasi-free one-parameter action with H=L

The gauge-invariant quasi-free states o) are in one-to-one corres-

pondence with the positive contractions Q on ffl, the correspondence

being given by

o>(a*(gl) a* (&)*(/„) flC/i)) =det[(/ff £&)]. (1. 3)

The operator Q, is known as the one-particle density of co. Invariance

of co under r corresponds to Q^ commuting with H. All these, and

other, properties of 2l(Jf) may be found in [2,5.2].

It was shown in [4] that if H has no eigenvectors then co is

spectrally passive on 2l(Jf)(0) if and only if either Q==P( — °°, //) for

some —oo<^<oo? where P is the spectral measure of H, or Q,= (/
_l_£/3#-^-i for some ^>Q and some —oo<^^<^oo. Furthermore, if co

is spectrally passive on 2l(Jf), then £ = P(—°°. 0) or Q=(I + e*H)-1.

Some partial results were given in [4] if H has some eigenvectors.

This paper continues this programme by considering all possible

combinations of eigenvalues of H. Thus a complete description is

given in Theorem 4.3 (see Corollary 5.2 for the converse result)

of all the one-particle densities Q, whose associated states are spec-

trally passive on 21 (Jf). If H is diagonalisable (so that H has a

complete orthonormal set of eigenvectors), then Q, is also diagonal-
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isable, and the eigenvalues of H, Q are paired in a certain combi-

natorial way (the "passive" pairs of § 3) . If the eigenvalues of H

are evenly spaced or of large multiplicity, this requires that Q,= (/
_l_^(#+r))-i for some ^3>0 and some operator T of trace class, apart

from some degenerate possibilities, The assumptions on the eigen-

values are essentially that the Gonnes spectrum r (T) of r should

not be (0), and the conclusion is that T=0 if F(r)=R and tr|!T|

<j if F(T) =?Z for some f>0. If H has some eigenvectors but is

not diagonalisable, then either Q,= (/ + ***) -1 or Q,(/-P(0)) =P(-oo,

0) or H has a direct sum decomposition H = Hi@H2 where HI is of

trace class and (— tr \Hi\ , tr HI ) is contained in the resolvent set of

H2, and Q = Qi@P2 ( — °° , 0), where (Hi, Q,i) is a passive pair and
P2 is the spectral measure of H2. In the final section, corresponding

results for 2T(^f)(0) are stated.

The techniques of proof in this paper are mostly derived from

[4], with certain extra combinatorial complications,,

§ 2e Exponentials of Trace Class Operators

In the sequel, it will be seen that spectral passivity of (o implies
inequalities of the form

a -(/,-, a/,) )^c no -(/,,&/,)) n (
i=l j = m+l i = l j = m + l

(2.1)

for certain constants c, integers 0<m<n and orthonormal sets {/,-:

\<i<n] with (fi,Q,fj)=Q for \<i<^j<n. The results in this section

describe some of the consequences of (2.1). For an operator T on

tf, let ||r|li = tr|r| if T is of trace class, ||r||i = oo otherwise0

Lemma 2e 1. Let Q be a positive contraction on ffl such that Q and

I — Q are invertible, and let b be a positive real number. The following are

equivalent :

(i) log (b (Qf1 — /)) is of trace class,

(ii) Q — bty + l}'1 I is of trace class,

(in) Q has a complete orthonormal set of eigenvectors [fa : a^A] with

eigenvalues pa,and there are constants 0<^i<l <c2<^°° such that

-\)<c2 (2.2)
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for all finite subsets B of A.
In this case,

-l)} (2.3)

= n b^-i)/ n b(P-l~v (2.4)

where the supremum in (2.3) is taken over all finite (disjoint) subsets

AI, A2 of A.

Proof. The equivalence of (i) and (ii) follows from the inequality

which is valid for e<t<l~s, 0<e<min(l,
The equivalence of (i) and (iii) follows from the fact that (2B 2)

is equivalent to the condition

This also establishes (2. 3) and (2. 4) .

Lemma 2.2. Let Q be a positive contraction on
1. Suppose that there is a constant c>\ such that (2. 1) is valid for all
integers Q<m<n and orthonormal sets {/t-: l<i<72} with

for l<i<^j<n. Then Q, ar*d /— Q, ^re invertible, and

log c.
2. Suppose that there is a constant c>\ such that (2.1) is valid for
n=2m>0, and for all orthonormal sets \f{: l<i<2m} with (fi,Qfj)
= 0 for l<i<j<2?7?. Then Q and I — Q are invertible 9 and there exists b

>0 such that ||log(KQ;1-^)ili<log c.
The conclusions of (1) and (2) remain valid if 3? has a complete orthonormal
set of eigenvectors for Q and (2. 1) is assumed only to hold when each f{

belongs to this set.

Proof. 1. Taking m = Q, n = l in (2. 1) shows that Q, is invertible
(and Q,> (s+1)"1/). Taking m = l, n = l shows that / — Q, is invertible
(and

Suppose that Q ——I is not compact. By spectral theory, there exist&
e>0 and an infinite orthonormal sequence {/J such that (fif Q,//) =
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, y + s

for all i. Putting m = 0 or m = ?z in (2. 1), it follows that

0 if i = 5 f c / f and either (/,., <£/,) £-- e for all i, or (/„£/,)

for all n. This contradiction shows that Q — -^-I is compact, and in
z*

particular Q has a complete set of eigenvectors [ga: a^A] with cor-
responding eigenvalues pa. If AI and A2 are finite disjoint subsets of
A, then (2. 1) gives

n *-1-! n - i < c

so lllogCQ,-1-/)!!!^^ £, by Lemma 2.1.
2. If Q were not injective, there would be orthonormal vectors fi9

/2 with Qfi=£Q, Q,/2 = 0. Applying (2. 1) with 77z = l, 72 = 2 would lead
to a contradictionB Similarly, / — Q is injective,,

Suppose that Q— VI is not compact for any V . By spectral theory ,

there exist 0<^i<i2
<Cl and infinite orthonormal sequences {/J and

{^y} such that

if ^j
for all f,j

for all i, .

Applying (2. 1) to {/1? .».fm,gi,*«* gm} ,

Since i2(l ~~W XI ~b2}bi, this is a contradiction, showing that Q — b'I
is compact for some bf , and Q has a complete orthonormal set of
eigenvectors [ha: a^A} with corresponding eigenvalues pa.

If Jf is infinite-dimensional, ix is unique, and 0<i'<l. Let 6 =
i 'Cl—i7)"1 . Let AI, A2 be finite disjoint subsets of -4 with cardinalities
m, n, respectively, and A3 be a subset of A\(Ai\jA2) of cardinality
|m — n| such that ^ is arbitrarily close to 6' for all a in A3« Apply-
ing (2.1) to {ha: a^A2\jA3\jAi} and taking a limit,

(bfr~n n pa n (i-pj^^i-^)^" n (i-^j n ^

or

n 6(fl-i-n/ n
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so \\log(b(d'1-l^\\1<log c, by Lemma 2.1.
If ffl is finite-dimensional, choose b' so that Q^ has equal numbers

of eigenvalues greater than (respectively, less than) b1', and let b —
i '(l—i')"1- In the argument above, consider all the eigenvectors
(except possibly one) simultaneously, and deduce that ||log(i(Q,""1~
/))||i<log c.

The proof of the final statement is included in the proof above. G

Remark. There are converse results to Lemma 2. 2, obtained by
applying the theory of trace class operators to log (b(Qjl~I})«
Thus (2,1) holds with £ = exp HlogCiCQ,"1 — /)) Ik for any orthonormal
set {/J, provided that m = n if 6=£l .

§ 3- Passive Pairs of Operators

Let H be a (possibly unbounded) self-adjoint operator on ffl
with spectral measure P, and Q, be a positive contraction on tf.
The pair (H, Q) will be said to be passive if ^ has a complete
orthonormal set [fa: a^A] of common eigenvectors for H, ££ with
eigenvalues Aa, pa respectively, and

n Pa n (i-^)< n (i~Pa) n Pa (3.1)
ae^j ae-^2 cce^L^ ae^g

for any finite (disjoint) subsets Alf A2 of A such that ^ (Ai) ^>^ (^42) ?
where A(B) = S ^ for a finite subset 5 of A.

a(=B

If ^ = 0 whenever /£a>0 and /oa = l whenever /ia<0, then (//, Q^)
is a passive pair. Such a passive pair will be said to be trivial,

If H has a complete orthonormal set of eigenvectors, then (H,
is a passive pair for any ^>0B

If (H, Q) is a passive pair, then (3. 1) gives

(3.2)

1 (3.3)

2 (3. 4)

+ ̂ 2<1 (3.5)

+ ̂ >1. (3.6)
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Lemma 3. 1. Suppose that (H9 Q) is a non-trivial passive pair, and

let Jf0 = P(0)Jf, QjQ = d\JffQ. Then Q^0 and I~QQ are invertible and

log (Q^o"1—/JTO) is of trace class on JfV Furthermore

n Pa n u-iO^expc-iliog cor1-/*,,) 110 n (i~Pa) n Pa
a^A^ cteA, a^A-^ aeA,

(3.7)

/or any finite subsets AI, A2 of {aEiA'. ^a^0) such that

Proof. Since (//, Q,) is non-trivial, there is some K in A such

that either ^K^>0 and pK^>0 or /^<^0 and pK<^l* Let c = p^1~l or c =

(I — ft.)"1 —1, respectively.

Let BI and B2 be finite subsets of [a^A: ^^O}. Applying (3. 1)

to Ai\jBl9 A2\jB2,

n i~T /-I \ TT TT /I N •• "FT / i \ | I TT x -j \ TT
/Oa 1 1 ( 1 — |0a) 11 pa 11 (1 — ftj < 11 (1 — jOa) 11 |0a 11 (1 — pa) 11 paa

Al A2 BI B2 AI A2 Bl B2

(3.8)

The special case when AI= [K] , ^42 = ^ or A1 = <?>, A2= [K] shows that

n Pa n (i-pj <c n (i -Pj n /?ao
1 2 1 2

By Lemma 2.2(1) applied to ^f0 and Q,0? Qo and I^Q~Qo are invert-

ible? and log(Q^S"1 — 7^) is of trace class. On rearranging (3.8) and
taking an infimum over all choices of Bi9 B2, (3. 7) follows. Q

The inequalities (3. 2), (3. 3) may now be strengthened to give

oa<(l+d)~l (3.9)

)~l<pa<l (3.10)

where d = t

Proposition 3e 28 L^^ (H, Q) be a non-trivial passive pair, and

suppose that either Q or I — Q is not injective* There is a decomposition

^ = ̂ ©^2, H = Hl@H29 a = Q.i0P2(-ooy 0), where P2 is the spectral

measure of H2, HI is of trace class, ( — ||//ii|i, H^/illi) is contained in the

resolvent set of H2y Q^ and Itf—Q,\ are invertible and (Hi, Q^) is a

passive pair.

Proof. Let AI= [a^A: 0<>a<lK A2=A\Al9 r=i
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By assumption, A2 is non-empty, so f is finite. It follows from (3. 2)
-(3.6) that

Since (H, Q) is non-trivial, it follows that 7>0. If 3f { is the closed
linear span of [fa: a^A{] then H=H1@H2, Q = Q^®P2 ( ~ °° , 0)
(using (3.2), (3.3)), ||//i||<f, (— f, p) is contained in the resolvent
set of //2, Q,i and I^ — Qi are injective, and (Hlf Qi) is a passive
pair.

Let Bl9 B2 be finite subsets of Alf and suppose that %(B^ —^(^2)
>?-. By definition of 7% there exists an index tc in ^42 such that \XK\
<^(5!)-^(52). Applying (3.1) to A, 52W {«} or to
(depending on whether ^^>0 or

since ^ = 0 or pK = \. This contradicts the definition of AI. Hence

v<r.
Let /= max {[4| : ae^J. It follows from (3. 4) -(3. 6) that

the right-hand side being finite since there are only finitely many
indices a. in AI with |/ia| — f, Q

Proposition 3. 2 reduces the problem of describing passive pairs to
the case when Q, and /— Q are injective. The aim is to show then that

for some /3>0 and some trace class operator T with ||!r||i bounded.
Thus the problem is to show that

(3.11)

is trace class (and to obtain a bound on its trace norm). Writing

B

for a finite subset B of A, (3. 1) becomes

l(AJ>l(AJ^*(AJ ><J(A2}9 (3. 12)

and the objective is to show that
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sup {a (A£ ~v(A2} -^(AJ -A(^2))}<ooe (3. 13)

The obstruction to (30 13) relates to the possibility of the quasi-
free action r on $t(3i?) associated with H having zero Connes spec-
trum,, Let r (H) be the set of all real numbers 7 such that there are
sequences of mutually disjoint finite subsets Anf Bn of A such that
A(An) — ̂ CBB) — >T*. Elementary combinatorial considerations show that
r (H) is a closed subgroup of R. In this case where H is diagonal-
isable, 21 (Jf) may be identified with (X)aeA M2 and r with

(g) Ad
r i 0 1
LO ^"aj

(see [2,5.2.5] and Section 5). It was observed in [6] that F (H)
is the Connes spectrum of this action.

If H is of trace class, then F (H) = (0) ; if H is compact, but not
of trace class, then F (H) = R', if H is bounded but not of trace class,
then /"*(//)=£(()) ; in general, F(H) contains all eigenvalues of infinite
multiplicity.

The first case when it is possible to establish (3= 11) is when H
itself is of trace class. This result may be applied to the pair (Hi,
Q,i) of Proposition 3. 2.

Proposition 3* 3* Let (H, Q) be a non-trivial passive pair, where
H is of trace class , and Q and /-Q, are infective . Then logCQ,"1 — /) is
of trace class, and, for any /3>0, Q= (/-f ^(H+r))~1 for some operator T
of trace class.

Proof. It is possible to consider separately the restrictions to

P(0)^f, P(-°o, 0)Jf and P(0, oo)^f0 The first of these is covered
by Lemma 3. 1, and the other two are similar to each other, so we
consider only the latter. Assume therefore that ^a^>0 for all a9 so that
tfa>0 by (3.2). Let Al be a finite subset of A such that

o - i , and A2 be any finite subset of A\Ai. Then ^(Al)^>/l(A2) 9 so

by (3.12) ff(A^>a(A2). Thus 2 aa<
<la(Al}9 as required. D

The next case is when

Proposition 3» 4. Let (H9 Q) be a passive pair, and suppose that
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and I~Q are infective.
1. // F(#) = TZ where r>0? then Q= (I + e*(H+T^ ~l for some /3>0 and

some operator T with \\T\\i<f.

2. // r(H)=R, then Qe=(I+eBHr1 for some /3>0.

Proof. Let 7*>0 be any member of F '(//) , and ^4M, 5B(«>1) be
disjoint finite subsets of ^4 such that l(An) -l(Bn)->?. By (3.12),
a(AJ~a(Bn)>Q for large rc.

Let a. be any index with 4>0. Choose wz so that a<£Am\jBm,
-}la. If a&An\jBn, n^m, then

+4

if w is large. By (3. 12)

ff(AJ +a(Bn} +aa>a(Bm)

Thus

If ^a^O? a similar argument shows that

Since H=£Q, choosing a so that 4=5^0, it follows in either case that
a(An)~a(Bn) is bounded. Passing to a subsequence, assume that
a (An) — a (Bn) converges to a limit £7-, where /3>00

Now let A0, BQ be disjoint finite subsets of A, and put
^CB0) =^0« If ro<0y let ^:>0 be the largest integer such that
For large n, the sets AQ, BQ, An, Bn, An+l, Bn+l, ..... are disjoint.
Let Cn=A,\jAn\j..0\jAn+k^ Dn = B^uBn\j. . . \jBn+k^. Then

for large n* By (3. 12)

as ^->ooa Hence

If ro>0. let &x>0 be the smallest integer such that &»ft? let CB =
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B*\jAn\j...\jAn+1t,-l, D'n = Av\jBn\j*aa\jBn+k,_lo For large n,
l(D'n), so <j(C'n}>a(D'n}a It follows that

(3. 15)

Together, (3. 14) and (3. 15) give (3. 13) and HT^^^ If F(H)
= ^Z9 the proof is complete. If r(H) =R, then H is not of trace
class, so the value of ft is independent of p. Letting 7*->0, it follows

that 7^ = 0, so Q,= (/ + «/ur)-1. D

Example 30 5* Suppose that H has a complete orthonormal
set of eigenvectors {/„: ?i=Q, 1, 2 . . .} with eigenvalues An = n. For

example, the harmonic oscillator Hamiltonian H=—(-——^--^-t2~l} on

L2(K) has eigenvectors

]JLne-u^2Hudu

[5, Lemma 78 12], Now ^C//) =2". If (H, Q) is a passive pair,
then fn is an eigenvector of Q,, and the eigenvalues /on satisfy either
(a) pn = 0 for all /z>3, or (b) 0<>re<l for all n (Proposition 3 B 2 ) 0

Indeed (H, Q) is a passive pair if and only if either

(a) Q/0 = ft/i, Q/i = ft/i
where l^^^^^^^

or

(b) Q,= (/ + ̂ (^+r))"1 for some /3>0 and some T with

The necessity of (b) if Q<^pn<^l follows from Proposition 3. 4 and the
sufficiency is established by verifying (3. 12) directly8 [j

If H is unbounded and jT(//)=(0), there may be passive pairs

(//, Q.) where Q^ and / — Q, are injective but T0 is not of trace class
for any /3>00

Example 38 60 Suppose that the index set .4^(0, 1, 2 ---- }, and
^ = 2". Then T(//) = (0), and (3.12) simplifies to

i=0

If Gn = 3n, for example, this condition is satisfied, but 2 l^w"^! — °°
for all 0. Thus if QJn= (1 +/")"1/,,, then (H, Q,) is passive, but T^
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is not of trace class.

§4. Spectrally Passive Quasi- free States

In this section, let H be a Hamiltonian on the one-particle Hilbert
space ffl , with associated quasi-free one-parameter action r on St(Jf)
given by (1.2). Let CD be a gauge-invariant quasi-free state of 21 (Jf)
with associated one-particle density Q,, so that (1.3) is satisfied.
Throughout this section, suppose that co is spectrally passive with
respect to r. In particular, a) is r-invariant, so ft commutes with H
and its spectral measure P.

Lemma 4. 1. Let 0<m<n be integers, and {/lf: \<i<n] be real
m n

numbers such that 2 ^»> ZI ^/» Let {/,•: l<i<n] be an orthonormal
i=i j=«+i

j*J, and suppose that f^P^ oo)^f (1 <i<m) , /yeP(-oo, ^.)

(/,f o/i) n (i-(/,, a/,-))<n (i-(/,, Q/,)) n (/,
j=m+l i=l j = m+l

(4.1)

(4.1) remains valid.

Proof, The proof is quite similar to [4, Lemma 3.8]. Consider

Then (1.3), the canonical anticommutation relations, the orthonor-
mality and the condition (fi9 Q,/,-) =0 give

0>(***) - ft (/;, Q/,) II (1 - (/y, ft/,) )

The condition (1.1) defining spectral passivity, gives (4. !)„
The final statement follows on perturbing 1{ slightly. Q

Now write tf = tfp®jP9 H = HP@H, Q, = Qp®(i9 where jfp is the
closed linear span of the eigenspaces of H, Identify Sl(jf) with the
C*-subalgebra of 21 ( Jf ) generated by [a (/) : /e Jf} . The restriction
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of a) to St(=5f) is the gauge-invariant quasi-free state with one-

particle density Q,, and it is spectrally passive for the restriction

of T to 2l(^f)e This restricted action is the quasi-free action with one-

particle Hamiltonian H, which has no eigenvectors,, The results of

de Ganniere [4] may therefore be applied to H9 Q. He proved (in

a slightly different formulation) that either Q = P( — co, //) for some

— oo^/*^00, or $,= (/+^J?~A|I)~I for some /3>0 and some — oo<^

<°°, where P is the spectral measure of H, and / is the identity
operator on 2$. He also stated without proof [4, Remark 3, 14] that

in fact Q,= P(-°o, 0) or Q,= (/+^)"1. This last fact is contained
in the following lemma, which also removes some superfluous con-

ditions from [4, Lemma 40 3]. The lemma could be proved in a

similar fashion to [4], using the known characterization of the KMS

states of quasi-free actions and the inequality

valid for KMS states w at inverse temperature /3 [3]. However, it is

no great hardship to give a proof from first principles,

Lemma 4e 28 Suppose that

L // d=P(-°o, fjf) for some -oo</*<oo? then &=P(-°°, 0).
2- If d=(/+^""f)~1/or some /3>0 and -oo<^<oo, then // = 0 and

L For unit vectors/ in P(0f oo)jf, g in P(-oo, 0)

Lemma 4. 1 with n = 1 gives

(/, a/) < i - (

The result follows immediately0

2B Let «S* be the set of all real numbers X such that (1— £, X) and

(A, ^+e) intersect the spectrum of H for all s>00 Then 5 is uncoun-

table and dense in itself, and generates a dense subgroup of R,

Let f0 be a normalised eigenvector of H with eigenvalue ^Oe For

any £>0, there exist integers Q<m<?i and distinct ^ in S ( l< i<w) ,

not equal to ^0, such that

2
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For 0<>?<min \— |^f — ̂ -| : 0<z<^/<w> , let /* be a unit vector in

P(*i, Ai + y ) j f (l<i<m) or in PC*,- 7, ^-) ^ (m<i<n). Applying
Lemma 4. 1,

But

- ~ exp (

SO

(/o, 0/o)exp{-/3
1=1

Letting

(/„,

< (1 - (/o,a/o)) exp {0(8-4,) + (n-2;n)^}. (4. 2)

A similar argument, excluding f0 and 4>» shows that

(«-2m) /«)>l.
j=l j=m+l

Since 61 is uncountable, one may find such ^£ with 2m — n arbitrary
(see [4, Lemma 3. 16]), and it follows that fjt = 0,

Now in (4. 2) , letting s->0,

C/o, Q/o)<d+/V1.

Similarly choosing 0<k<l, distinct //,- ( l<i</) in 5, not equal to

/4) — ̂ oy such that

and unit vectors gt in P (//,-, ^ + 57) J^(l <i<k) , ^ in P([ij — r], jJ.j

(k<j<l) where 0<^<min |_|^. — ̂ ;.|: 0<f<j<4. and applying

Lemma 4. 1 to ^, . . .gl9 fQ gives

Zj=k+i
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and hence (/„, Q/0) > (1+« °)~1- Thus Q,, = ( / *>+* O"1, so Q,= (/

Remark. If .#=£(()), the Connes spectrum of r is JR. (I am gra-
teful to A. Kishimoto for confirmation of this.) Thus Lemma 40 2(2;
is analogous to Proposition 3. 4(2).

Theorem 4.3, Le/ H be the one-particle Hamiltonian of a one-
parameter group T of quasi-free automorphisms of Sl(^f), P be the spectral
measure of H, and w be a gauge-invariant quasi-free state of SI(Jf) which
is spectrally passive for T. The one-particle density Q of co satisfies one
of the following conditions:

( ^ ) Q,= (I + e0H)~l for some ^>0,
(ii) QX/-P(0))=P(-oo, 0),
(iii) d and I — Q are injective, and (H9 Q) is a passive pair (in

particular, H and 0, are diagonalisable),

(iv) There is a decomposition 3? = ffli®ffl2, H = Hi®H2, Q, = Q,i©
P2(—ooy 0) where H\ is of trace class, ( — ||//i||i, ||//i||i) is
contained in the resolvent set of H2, Qi and I^ — Qi are invertible
and (Hi, Qj) is a passive pair. (Here, P2 is the spectral measure
of H2.)

Proof. By Lemma 4.2 and the preceding remarks, either Q= (I
_!_£/?#)-i jn ^^h case (i) is satisfied, or Q=P(~oo9 0). In the

remainder of the proof, assume that Q=P(— °°, 0). Assume also
that (ii) is not satisfied, so that there is a unit vector /0 in P(0, oo) jf
with (/0, QjT0) >0 or a unit vector gQ in P(~ooy 0) with (gQ, QgQ)<^l.
Let c=(f0, d/o)"1 — 1 or c=(l — (gQ, Qj'o))"1 — 1, respectively.

For real X, let Jf^ = P(X)J>f9 Q,^ = Q,|^« Let {/,-: \<i<2m] be an
orthonormal set in Jf^ such that (//, Qfj)=Q (\<i<^j<2m)0 Apply-
ing Lemma 4, 1 to /0, / l f.. ./Zw or fl9.. ,f2my g0, gives (2. 1) where n =
2m. By Lemma 2. 2(2), ^ has a complete orthonormal set of eigen-
vectors for Q^. It follows that tfp has a complete orthonormal set of
common eigenvectors for HP9 Qp, and Lemma 4. 1 shows that (HP9

Qp) is a passive pair. Since (ii) is not satisfied, the pair is non-
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trivial. By Proposition 3.2, there is a decomposition ^
Ht = H1®H39dP = dL@P3(-oo9Q)9 where (-|l#ilii, |l#il|i) is contained
in the resolvent set of H3, Ql and /j^ — Q,i are injective, and (Hi, Qj.)
is a passive pair. (Jf3 may be (0), in which case \\Hi\\i may be in-
finite.) If ^=(0), the proof is now complete, since either (iii)
applies (if ^f3=(0)) or (iv) applies with ^2 = ^^

If jp=£(0) let 7- = inf{|^| : tt-H is not invertible} . It suffices to
show that | !//!!!!< 7-, for then Jf2 may be taken to be Jf3©e?f. Sup-
pose, on the contrary, that there is an orthonormal set {/,-: !<£<
n] in Jfi, an integer Q<m<n, and scalars Ai9 pi such that

(l<i<n), l- S ^ = r'>r- There is a unit
1 = 1 J = l» + l

vector /o in P( — f, —~f) 2$ or a unit vector gQ in P(T*, ^7) «^« By

assumption (/o, Q*/o) = 1 or (gQ, Qjb) = 0- Applying Lemma 4.1 to
/o, /i, /2, - - >fn or to /!, /2,... /„, #0, gives

•A- -A-n ft. n (i-ft)<o.
This contradicts the fact that 0<ft<l. D

§5. Quasi-free States of Passive Pairs

This section is devoted to establishing that if Q satisfies any of
the conditions (i) — (iv) of Theorem 40 3, then the associated quasi-
free state CD is spectrally passive.

If condition (i) is satisfied, then w is the unique KMS state at
inverse temperature £ [2,5.2.23], and is therefore spectrally passive
[3]. If condition (ii) is satisfied, then CD is a ground state [2,5.3.
20], so that <o(x*x) =Q<(o(xx*) for x in R(—oo, 0). Thus a) is
spectrally passive.

The remaining conditions (iii) and (iv) are both covered by the
following result, where J^2 may be (0), in which case the resolvent
set of H2 is R9 and ||//i||i may be infinite (condition (iii) of Theorem
4.3).

Theorems. 1. Suppose that tf = tfl@tf2, H=Hl@H2, Q,=(?i©
P2(— oo ? 0) , where P2 is the spectral measure of H2, (Hi,Qj) is a passive
pair and (~\\Hi\\^ ||//i||i) is contained in the resolvent set of H2, Then
the gauge-invariant quasi-free state co with one-particle density Q is spec-
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trolly passive with respect to the one-parameter group of quasi-free auto-

morphisms of 21 (Jf) with one-particle Hamiltonian H«

Proof. First, suppose that Jfx is finite-dimensional with an ortho-
normal basis {f{\ \<i<n] of common eigenvectors for //1? Qi with

eigenvalues Ai9 p^ respectively. Let ^ be an orthonormal basis of Jf2B

There is a standard construction [2,5e205], by which 21 (^f2) is

identified with ®Af2 and 21 (^f) with (X) M2 and hence with the

C*-algebra of 2 r ax2n matrices with entries in 2I(Jf2)e Any integer

1<J<2" has a binary representation j = \ + 2 2r~1 for some subset Sj

of { I 9 e . . n } a The identification is made in such a way that

LK* (5. 1)

for any # = [#,•&] in Sl(^f), where r(2) is the one-parameter quasi-free

action on 21 (^2) with one-particle Hamiltonian H2* If 21 (^f2) is
identified with the C*-subalgebra of 21 (Jf) generated by [a(f) :

/e Jf 2} » then r(2) is the restriction of T, Furthermore

2"

=2

where

and ft)2 is the ground state for rz (the gauge-invariant quasi-free state
with one-particle density P2(~°°, 0)) e These facts may be verified
by induction on the dimension n of e^fi, using the results of [4, p. 142]

for n = 1.

It follows from (5. 1) that

x^R(-oo, 0) o ^ fce/2(-oo f JGW-^O) for all jf*. (5.2)

(The spectral spaces for r(2) are the parts of the spectral spaces for

T which are contained in 2l(^f2)«) It is therefore sufficient to show
that the condition (5,2) implies that

Considering one coordinate xjk at a time, it suffices to show that
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Qka)2(x*x)<0jo)2(xx*) for all x in /2(-oo,

(5.3)

If ^(Sfc) </KSy), (5.4) follows immediately from the fact that o>2

is a ground state. If ^(^)>^(^-) then #fe<#;- by (3.1) applied to

Sk\Sj9 Sj\Sk. Since 2(Sk) -*($;) <||#i||i, it suffices to show that

ft>2 (***)< ̂ 2 (***) for all x in R(-oo, \\Hd\J r\yt(tf2). (5.4)

Since ( — |l//i|!i, ||#i||i) is contained in the resolvent set of H2 and
a)2 is a ground state, it can be shown as in [4, p. 146] that

as required.
Next, suppose that 3?^ is infinite-dimensional with a complete

orthonormal set 2F of common eigenvectors for Hl9 Q^. For each finite
subset F of &, let tfF be the linear span of F\J^2. Then

is a r-invariant C*-subalgebra of SI(Jf), the restriction of T to

is the qausi-free action with one-particle Hamiltonian H\3i?F, and the

restriction of (o is the gauge-invariant quasi-free state with one-

particle density QJJfF. By the finite-dimensional case above, a)(x*x)

<co(xx*) for all x in R(-°°, Q)r\%(3ifF). Since R(-°°, 0) =[w
F

(R(—oo, 0)^§l(^fF))]~, it follows that cy is spectrally passive. G

Corollary 50 2. Let H be the one-particle Hamiltonian of a one-

parameter quasi-free action r on 21 (^f ) , and Q be the one-particle den-

sity of a gauge -invariant quasi- free state a) on Sl(Jf), and suppose that

any of the conditions (f) , (n) , (iii) and (j,v) of Theorem 4. 3 is satisfied,

Then a) is spectrally passive for r.

Proof. Cases (i) and (ii) were discussed at the beginning of this

section. Case (iii) follows from Theorem 5.1 with ^f 2=(0)- Case
(iv) is also covered by Theorem 5. 1. Q

§6. The Gauge-invariant CAR Algebra

The C*-algebra of primary concern in [4] was 2l(^f)(0), and the

corresponding results for 21 (^f) were merely stated. Here, detailed

arguments have been given for Sl(^f), but it is possible to modify
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them for the gauge-invariant part. The main technical difference is

that if w is merely assumed to be spectrally passive on Sl(^f)(0),

then (4, 1) can only be deduced if n = 2m. A correspondingly weaker

notion of passive pairs is needed.

The pair (H, Q) is weakly passive if Jf has a complete orthonor-

mal set of common eigenvectors with eigenvalues la, pa, and (3. 1)

holds for any finite subsets AI, A2 of A such that l(Al)^>^(A2) and

1,4x1 = \A2\ , where \B\ denotes the cardinality of Ba

The methods of Sections 4 and 5 now give the following modi-

fication of Theorem 40 3 and Corollary 5. 2.

Theorem 6- 1. Let H be the one-particle Hamiltonian of a one-para-

meter quasi-free action T, P be the spectral measure of H, and Q be the

one-particle density of a gauge-invariant quasi-free state a). The restriction

of co to 21 ( Jf ) (0) is spectrally passive with respect to the restriction of T

if and only if at least one of following conditions is satisfied:

(i) d=(I + e0H-ftIrl for some 0>0, -oo<^<ooy

(n) (£(/ — P(/*)) =P(— oo, ft) for some -— oo<//<oo,

(Hi) Q and I — Q, are injective, and (H, Q) is a weakly passive pair,

(iv) There exist — °o</4<//2<°° and a decomposition ffl = 3?i®

tf2, H = Hl®H2, Q, = Q,i0^2 (-°°, ft) such that Q^ and 1^-

Qi are injective , (Hi, Qj) is a weakly passive pair, (/^, //2) *s

contained in the resolvent set of H2y and the complete family {2a:

a^A] of eigenvalues of Hl satisfies

ft<^(^i)-^(^2)<ft (6.1)

for any finite subsets Ai9 A2 of A with \Ai\ = \A2\ +1.

(v) Q = cl for some Q<c<L

Remark. In case (iv), it can be assumed that /^ or //2 is finite

(otherwise, case (iii) applies). Then, if Jf\ does not have finite even

dimension, (6. 1) is equivalent to the condition that

for some //2 <//<//!. If Jfx has dimension 2m, and the eigenvalues of

HI are ^i<^2<... <A2m, then (6.1) is equivalent to the conditions

that

\\Hi- ZJlli^fr-tm and H/fi-^+i/jfIi^^+i-//!.
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Finally, with the help of Lemma 2. 2(2), the results of Section 3
can be modified to describe weakly passive pairs. Let /^(//)(0) be
the closed subgroup of R containing those p such that there are
sequences of mutually disjoint finite subsets An9 Bn of A such that
\An\ = \Bn\ and

Proposition 6. 2. Let (H, Q) be a weakly passive pair, and suppose
that Q and /— Q, are injective.
1. If H— II is of trace class for some real ^, but H=£%I, then

log(b(Qjl~ /)) is of trace class for some b^>Q, and for any jS^>0,
Q= (I + ePw+w-P1)-1 jor some real n and some operator T of trace

class.
2. // F(//)(0)=rZ for some r>0, then Q,= (/+^^+r>-^)"1 for some

/3>0, some real //, and some operator T with \\T\\i<f.
3. If r(H)^=R, then Q= (/ + ̂ ^1)"1 for some /3>0 and some real

Remark. If H is diagonalisable, 71 '(//)(0) is the Gonnes spectrum
of r|3I(jf)(0). If // is not diagonalisable, the Connes spectrum is
JR. (I am grateful to A. Kishimoto for confirmation of this. )
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