Passive Quasi-free States of the CAR Algebra with Discrete Hamiltonians

By

Charles J. K. BATTY*

Abstract

The spectrally passive, gauge-invariant, quasi-free stases ω on the C*-algebra of anticommutation relations with respect to a one-parameter quasi-free action τ are described. If the one-particle Hamiltonian H is discrete, the precise condition on the one-particle density Q of ω is combinatorial, but if the Connes spectrum of τ is non-zero, it implies that $Q = (I + e^{\beta(H+T)})^{-1}$ for some $\beta \ge 0$ and some operator T of bounded trace norm, apart from some degenerate possibilities. If H has both discrete and continuous parts, these results can be combined with those of de Cannière for the purely continuous case.

§1. Introduction

The notion of spectral passivity of an invariant state ω of a C^{*}algebra \mathfrak{A} with respect to a one-parameter group of automorphisms of \mathfrak{A} was introduced by de Cannière [3] as a part of the KMS condition. Thus ω is spectrally passive if

$$\omega(x^*x) \le \omega(xx^*) \tag{1.1}$$

for all x in the spectral subspace $R(-\infty, 0)$ of \mathfrak{A} . All KMS states at inverse temperature β , where $0 \le \beta \le \infty$, are spectrally passive. Conversely, the condition

$$x_i \in R(-\infty, \lambda_i), \sum_{i=1}^n \lambda_i \leq 0 \Rightarrow \prod_{i=1}^n \omega(x_i^* x_i) \leq \prod_{i=1}^n \omega(x_i x_i^*)$$

implies that ω is a KMS state at some $0 \le \beta \le \infty$ (see [1] for a short proof). The condition (1.1) is closely related to the condition of passivity, as defined by Pusz and Woronowicz [7] based on the

Communicated by H. Araki, October 11, 1985.

^{*} Department of Mathematics, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, Scotland, U.K.

Address from 1 October 1985: St. John's College, Oxford OX1 3JP, England.

Second Law of Thermodynamics. Passive states are spectrally passive [3], and there is no known example of a spectrally passive state which is not passive (see [1] for some partial results).

Now de Cannière [4] has investigated the condition (1.1) in the specific context of a (gauge-invariant) quasi-free state and quasi-free automorphisms on the CAR algebra $\mathfrak{A}(\mathscr{H})$ associated with a one-particle Hilbert space \mathscr{H} (or the gauge-invariant part $\mathfrak{A}(\mathscr{H})^{(0)}$). Thus $\mathfrak{A}(\mathscr{H})$ is generated by annihilation and creation operators a(f), $a^*(g)$ (f, $g \in \mathscr{H}$) satisfying the canonical anticommutation relations

$$a(f)a(g) + a(g)a(f) = 0$$

 $a(f)a^*(g) + a^*(g)a(f) = (f, g)I.$

These conditions, together with linearity of a^* and the relation $a^*(f) = (a(f))^*$, determine $\mathfrak{A}(\mathscr{H})$ uniquely up to isomorphism. The quasifree one-parameter group of automorphisms is given by

$$\tau_t(a(f)) = a(e^{itH}f) \tag{1.2}$$

where e^{itH} is a unitary group on \mathscr{H} with one-particle Hamiltonian H. The gauge action is the quasi-free one-parameter action with H=I. The gauge-invariant quasi-free states ω are in one-to-one correspondence with the positive contractions Q on \mathscr{H} , the correspondence being given by

 $\omega(a^*(g_1)\ldots a^*(g_n)a(f_n)\ldots a(f_1)) = \det[(f_i, Qg_j)].$ (1.3) The operator Q is known as the *one-particle density* of ω . Invariance of ω under τ corresponds to Q commuting with H. All these, and other, properties of $\mathfrak{A}(\mathcal{H})$ may be found in [2, 5.2].

It was shown in [4] that if H has no eigenvectors then ω is spectrally passive on $\mathfrak{A}(\mathscr{H})^{(0)}$ if and only if either $Q=P(-\infty, \mu)$ for some $-\infty \le \mu \le \infty$, where P is the spectral measure of H, or $Q=(I + e^{\beta H - \mu I})^{-1}$ for some $\beta \ge 0$ and some $-\infty < \mu < \infty$. Furthermore, if ω is spectrally passive on $\mathfrak{A}(\mathscr{H})$, then $Q=P(-\infty, 0)$ or $Q=(I+e^{\beta H})^{-1}$. Some partial results were given in [4] if H has some eigenvectors.

This paper continues this programme by considering all possible combinations of eigenvalues of H. Thus a complete description is given in Theorem 4.3 (see Corollary 5.2 for the converse result) of all the one-particle densities Q whose associated states are spectrally passive on $\mathfrak{A}(\mathcal{H})$. If H is diagonalisable (so that H has a complete orthonormal set of eigenvectors), then Q is also diagonalisable, and the eigenvalues of H, Q are paired in a certain combinatorial way (the "passive" pairs of §3). If the eigenvalues of Hare evenly spaced or of large multiplicity, this requires that $Q = (I + e^{\beta(H+T)})^{-1}$ for some $\beta \ge 0$ and some operator T of trace class, apart from some degenerate possibilities. The assumptions on the eigenvalues are essentially that the Connes spectrum $\Gamma(\tau)$ of τ should not be (0), and the conclusion is that T=0 if $\Gamma(\tau) = \mathbf{R}$ and tr $|T| \le \gamma$ if $\Gamma(\tau) = \gamma \mathbf{Z}$ for some $\gamma > 0$. If H has some eigenvectors but is not diagonalisable, then either $Q = (I + e^{\beta H})^{-1}$ or $Q(I - P(0)) = P(-\infty, 0)$ or H has a direct sum decomposition $H = H_1 \bigoplus H_2$ where H_1 is of trace class and $(-\text{tr } |H_1|, \text{tr } |H_1|)$ is contained in the resolvent set of H_2 , and $Q = Q_1 \bigoplus P_2(-\infty, 0)$, where (H_1, Q_1) is a passive pair and P_2 is the spectral measure of H_2 . In the final section, corresponding results for $\mathfrak{A}(\mathcal{H})^{(0)}$ are stated.

The techniques of proof in this paper are mostly derived from [4], with certain extra combinatorial complications.

§ 2. Exponentials of Trace Class Operators

In the sequel, it will be seen that spectral passivity of ω implies inequalities of the form

$$\prod_{i=1}^{m} (f_i, Qf_i) \prod_{j=m+1}^{n} (1 - (f_j, Qf_j)) \le c \prod_{i=1}^{m} (1 - (f_i, Qf_i)) \prod_{j=m+1}^{n} (f_j, Qf_j)$$
(2.1)

for certain constants c, integers $0 \le m \le n$ and orthonormal sets $\{f_i: 1 \le i \le n\}$ with $(f_i, Q, f_j) = 0$ for $1 \le i < j \le n$. The results in this section describe some of the consequences of (2.1). For an operator T on \mathcal{H} , let $||T||_1 = \operatorname{tr} |T|$ if T is of trace class, $||T||_1 = \infty$ otherwise.

Lemma 2.1. Let Q be a positive contraction on \mathcal{H} such that Q and I-Q are invertible, and let b be a positive real number. The following are equivalent:

- (i) $\log(b(Q^{-1}-I))$ is of trace class,
- (ii) $Q-b(b+1)^{-1}$ I is of trace class,
- (iii) Q has a complete orthonormal set of eigenvectors $\{f_{\alpha}: \alpha \in A\}$ with eigenvalues ρ_{α} , and there are constants $0 < c_1 \le 1 \le c_2 < \infty$ such that

$$c_1 \leq \prod_{\alpha \in B} b(\rho_{\alpha}^{-1} - 1) \leq c_2$$
 (2.2)

for all finite subsets B of A.

In this case,

$$\exp(||\log(b(Q^{-1}-I))||_{1}) = \sup\{\prod_{\alpha \in A_{1}} b(\rho_{\alpha}^{-1}-1) / \prod_{\alpha \in A_{2}} b(\rho_{\alpha}^{-1}-1)\} \quad (2.3)$$

$$= \prod_{\rho_{\alpha} < b(b+1)^{-1}} b(\rho_{\alpha}^{-1} - 1) / \prod_{\rho_{\alpha} > b(b+1)^{-1}} b(\rho_{\alpha}^{-1} - 1) \quad (2.4)$$

where the supremum in (2.3) is taken over all finite (disjoint) subsets A_1 , A_2 of A.

Proof. The equivalence of (i) and (ii) follows from the inequality $4 |t-b(b+1)^{-1}| \le |\log(b(t^{-1}-1))| \le \varepsilon^{-1}(1-\varepsilon)^{-1}|t-b(b+1)^{-1}|$

which is valid for $\varepsilon \le t \le 1-\varepsilon$, $0 < \varepsilon \le \min(1, b)/(b+1)$.

The equivalence of (i) and (iii) follows from the fact that (2.2) is equivalent to the condition

$$\sum_{\alpha \in A} |\log (b(\rho_{\alpha}^{-1} - 1))| \leq \log (c_2/c_1).$$

This also establishes (2.3) and (2.4).

Lemma 2.2. Let Q be a positive contraction on \mathcal{H} , $Q \neq 0$, I.

1. Suppose that there is a constant $c \ge 1$ such that (2.1) is valid for all integers $0 \le m \le n$ and orthonormal sets $\{f_i: 1 \le i \le n\}$ with $(f_i, Q, f_j) = 0$ for $1 \le i < j \le n$. Then Q and I - Q are invertible, and $||\log(Q^{-1} - I)||_1 \le \log c$.

2. Suppose that there is a constant $c \ge 1$ such that (2.1) is valid for $n=2m\ge 0$, and for all orthonormal sets $\{f_i: 1\le i\le 2m\}$ with $(f_i, Qf_j) = 0$ for $1\le i< j\le 2m$. Then Q and I-Q are invertible, and there exists b >0 such that $||\log(b(Q^{-1}-I))||_1\le \log c$.

The conclusions of (1) and (2) remain valid if \mathcal{H} has a complete orthonormal set of eigenvectors for Q and (2.1) is assumed only to hold when each f_i belongs to this set.

Proof. 1. Taking m=0, n=1 in (2.1) shows that Q is invertible (and $Q \ge (c+1)^{-1}I$). Taking m=1, n=1 shows that I-Q is invertible (and $Q \le c(c+1)^{-1}I$).

Suppose that $Q - \frac{1}{2}I$ is not compact. By spectral theory, there exist $\varepsilon > 0$ and an infinite orthonormal sequence $\{f_i\}$ such that $(f_i, Qf_j) =$

490

0 if $i \neq j$, and either $(f_i, Qf_i) \leq \frac{1}{2} - \varepsilon$ for all *i*, or $(f_i, Qf_i) \geq \frac{1}{2} + \varepsilon$ for all *i*. Putting m=0 or m=n in (2.1), it follows that

$$\left(\frac{1}{2}\!+\!\varepsilon\right)^n\!\leq\!c\!\left(\!\frac{1}{2}\!-\!\varepsilon\!\right)^n$$

for all n. This contradiction shows that $Q - \frac{1}{2}I$ is compact, and in particular Q has a complete set of eigenvectors $\{g_{\alpha} : \alpha \in A\}$ with corresponding eigenvalues ρ_{α} . If A_1 and A_2 are finite disjoint subsets of A, then (2.1) gives

$$\prod_{\alpha\in A_1} (\rho_{\alpha}^{-1}-1)/\prod_{\alpha\in A_2} (\rho_{\alpha}^{-1}-1) \leq c,$$

so $||\log(Q^{-1}-I)||_1 \le \log c$, by Lemma 2.1.

2. If Q were not injective, there would be orthonormal vectors f_1 , f_2 with $Qf_1 \neq 0$, $Qf_2 = 0$. Applying (2.1) with m=1, n=2 would lead to a contradiction. Similarly, I-Q is injective.

Suppose that Q-b'I is not compact for any b'. By spectral theory, there exist $0 < b_1 < b_2 < 1$ and infinite orthonormal sequences $\{f_i\}$ and $\{g_j\}$ such that

$$(f_i, Q, f_j) = (g_i, Qg_j) = 0$$
 if $i \neq j$
 $(f_i, g_j) = (f_i, Qg_j) = 0$ for all i, j
 $(f_i, Q, f_i) > b_2, (g_j, Q, g_j) < b_1$ for all i, j .

Applying (2.1) to $\{f_1, \ldots, f_m, g_1, \ldots, g_m\}$,

$$b_2^m (1-b_1)^m \le c (1-b_2)^m b_1^m$$

Since $b_2(1-b_1) > (1-b_2)b_1$, this is a contradiction, showing that Q-b'I is compact for some b', and Q has a complete orthonormal set of eigenvectors $\{h_{\alpha}: \alpha \in A\}$ with corresponding eigenvalues ρ_{α} .

If \mathscr{H} is infinite-dimensional, b' is unique, and 0 < b' < 1. Let $b = b'(1-b')^{-1}$. Let A_1, A_2 be finite disjoint subsets of A with cardinalities m, n, respectively, and A_3 be a subset of $A \setminus (A_1 \cup A_2)$ of cardinality |m-n| such that ρ_{α} is arbitrarily close to b' for all α in A_3 . Applying (2.1) to $\{h_{\alpha}: \alpha \in A_2 \cup A_3 \cup A_1\}$ and taking a limit,

$$(b')^{m-n}\prod_{\alpha\in A_2}\rho_{\alpha}\prod_{\alpha\in A_1}(1-\rho_{\alpha})\leq c(1-b')^{m-n}\prod_{\alpha\in A_2}(1-\rho_{\alpha})\prod_{\alpha\in A_1}\rho_{\alpha}$$

or

$$\prod_{\alpha \in A_1} b(\rho_{\alpha}^{-1} - 1) / \prod_{\alpha \in A_2} b(\rho_{\alpha}^{-1} - 1) \le c,$$

so $||\log(b(Q^{-1}-1))||_1 \le \log c$, by Lemma 2.1.

If \mathscr{H} is finite-dimensional, choose b' so that Q has equal numbers of eigenvalues greater than (respectively, less than) b', and let $b = b'(1-b')^{-1}$. In the argument above, consider all the eigenvectors (except possibly one) simultaneously, and deduce that $||\log(b(Q^{-1} - I))||_1 \le \log c$.

The proof of the final statement is included in the proof above. \Box

Remark. There are converse results to Lemma 2.2, obtained by applying the theory of trace class operators to log $(b(Q^{-1}-I))$. Thus (2.1) holds with $c = \exp ||\log(b(Q^{-1}-I))||_1$ for any orthonormal set $\{f_i\}$, provided that m=n if $b \neq 1$.

§ 3. Passive Pairs of Operators

Let *H* be a (possibly unbounded) self-adjoint operator on \mathscr{H} with spectral measure *P*, and *Q* be a positive contraction on \mathscr{H} . The pair (*H*, *Q*) will be said to be *passive* if \mathscr{H} has a complete orthonormal set $\{f_{\alpha}: \alpha \in A\}$ of common eigenvectors for *H*, *Q* with eigenvalues λ_{α} , ρ_{α} respectively, and

$$\prod_{\alpha \in A_1} \rho_{\alpha} \prod_{\alpha \in A_2} (1 - \rho_{\alpha}) \le \prod_{\alpha \in A_1} (1 - \rho_{\alpha}) \prod_{\alpha \in A_2} \rho_{\alpha}$$
(3.1)

for any finite (disjoint) subsets A_1 , A_2 of A such that $\lambda(A_1) > \lambda(A_2)$, where $\lambda(B) = \sum_{\alpha \in B} \lambda_{\alpha}$ for a finite subset B of A.

If $\rho_{\alpha}=0$ whenever $\lambda_{\alpha}>0$ and $\rho_{\alpha}=1$ whenever $\lambda_{\alpha}<0$, then (H, Q) is a passive pair. Such a passive pair will be said to be *trivial*.

If *H* has a complete orthonormal set of eigenvectors, then (*H*, $(I+e^{\beta H})^{-1}$) is a passive pair for any $\beta \ge 0$.

If (H, Q) is a passive pair, then (3.1) gives

$$\lambda_{\alpha} > 0 \Rightarrow 0 \le \rho_{\alpha} \le \frac{1}{2} \tag{3.2}$$

$$\lambda_{\alpha} < 0 \Rightarrow \frac{1}{2} \le \rho_{\alpha} \le 1 \tag{3.3}$$

$$\lambda_{\alpha_1} > \lambda_{\alpha_2} \Rightarrow \rho_{\alpha_1} \le \rho_{\alpha_2} \tag{3.4}$$

$$\lambda_{\alpha_1} + \lambda_{\alpha_2} > 0 \Rightarrow \rho_{\alpha_1} + \rho_{\alpha_2} \le 1$$
(3.5)

$$\lambda_{\alpha_1} + \lambda_{\alpha_2} < 0 \Rightarrow \rho_{\alpha_1} + \rho_{\alpha_2} \ge 1.$$
(3.6)

Lemma 3.1. Suppose that (H, Q) is a non-trivial passive pair, and let $\mathcal{H}_0 = P(0)\mathcal{H}, Q_0 = Q | \mathcal{H}_0$. Then Q_0 and $I - Q_0$ are invertible and log $(Q_0^{-1} - I_{\mathcal{H}_0})$ is of trace class on \mathcal{H}_0 . Furthermore

$$\prod_{\alpha \in A_1} \rho_{\alpha} \prod_{\alpha \in A_2} (1 - \rho_{\alpha}) \leq \exp\left(-\left|\left|\log\left(Q_0^{-1} - I_{\mathscr{H}_0}\right)\right|\right|_1\right) \prod_{\alpha \in A_1} (1 - \rho_{\alpha}) \prod_{\alpha \in A_2} \rho_{\alpha}$$
(3.7)

for any finite subsets A_1 , A_2 of $\{\alpha \in A : \lambda_{\alpha} \neq 0\}$ such that $\lambda(A_1) > \lambda(A_2)$.

Proof. Since (H, Q) is non-trivial, there is some κ in A such that either $\lambda_{\kappa} > 0$ and $\rho_{\kappa} > 0$ or $\lambda_{\kappa} < 0$ and $\rho_{\kappa} < 1$. Let $c = \rho_{\kappa}^{-1} - 1$ or $c = (1 - \rho_{\kappa})^{-1} - 1$, respectively.

Let B_1 and B_2 be finite subsets of $\{\alpha \in A : \lambda_{\alpha} = 0\}$. Applying (3.1) to $A_1 \cup B_1$, $A_2 \cup B_2$,

$$\prod_{A_1} \rho_{\alpha} \prod_{A_2} (1-\rho_{\alpha}) \prod_{B_1} \rho_{\alpha} \prod_{B_2} (1-\rho_{\alpha}) \leq \prod_{A_1} (1-\rho_{\alpha}) \prod_{A_2} \rho_{\alpha} \prod_{B_1} (1-\rho_{\alpha}) \prod_{B_2} \rho_{\alpha}.$$
(3.8)

The special case when $A_1 = \{\kappa\}$, $A_2 = \phi$ or $A_1 = \phi$, $A_2 = \{\kappa\}$ shows that

$$\prod_{B_1} \rho_{\alpha} \prod_{B_2} (1-\rho_{\alpha}) \leq c \prod_{B_1} (1-\rho_{\alpha}) \prod_{B_2} \rho_{\alpha}.$$

By Lemma 2.2(1) applied to \mathscr{H}_0 and Q_0 , Q_0 and $I_{\mathscr{H}_0} - Q_0$ are invertible, and $\log(Q_0^{-1} - I_{\mathscr{H}_0})$ is of trace class. On rearranging (3.8) and taking an infimum over all choices of B_1 , B_2 , (3.7) follows.

The inequalities (3.2), (3.3) may now be strengthened to give

$$\lambda_{\alpha} > 0 \Rightarrow 0 \le \rho_{\alpha} \le (1+\delta)^{-1} \tag{3.9}$$

$$\lambda_{\alpha} < 0 \Rightarrow \delta (1+\delta)^{-1} \le \rho_{\alpha} \le 1 \tag{3.10}$$

where $\delta = \exp(||\log(Q_0^{-1} - l_{\mathscr{H}_0})||_1)$.

Proposition 3.2. Let (H, Q) be a non-trivial passive pair, and suppose that either Q or I-Q is not injective. There is a decomposition $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$, $H = H_1 \oplus H_2$, $Q = Q_1 \oplus P_2(-\infty, 0)$, where P_2 is the spectral measure of H_2 , H_1 is of trace class, $(-||H_1||_1, ||H_1||_1)$ is contained in the resolvent set of H_2 , Q_1 and $I_{\mathscr{H}_1} - Q_1$ are invertible and (H_1, Q_1) is a passive pair.

$$Proof. \quad \text{Let } A_1 = \{ \alpha \in A \colon 0 < \rho_\alpha < 1 \}, \ A_2 = A \setminus A_1, \ \gamma = \inf\{ |\lambda_\alpha| : \alpha \in A_2 \}.$$

By assumption, A_2 is non-empty, so γ is finite. It follows from (3.2) -(3.6) that

$$|\lambda_{\alpha}| > \gamma \Rightarrow \alpha \in A_2.$$

Since (H, Q) is non-trivial, it follows that $\gamma > 0$. If \mathscr{H}_i is the closed linear span of $\{f_{\alpha}: \alpha \in A_i\}$ then $H = H_1 \oplus H_2$, $Q = Q_1 \oplus P_2(-\infty, 0)$ (using (3.2), (3.3)), $||H_1|| \leq \gamma$, $(-\gamma, \gamma)$ is contained in the resolvent set of H_2 , Q_1 and $I_{\mathscr{H}_1} - Q_1$ are injective, and (H_1, Q_1) is a passive pair.

Let B_1 , B_2 be finite subsets of A_1 , and suppose that $\lambda(B_1) - \lambda(B_2) > \gamma$. By definition of γ , there exists an index κ in A_2 such that $|\lambda_{\kappa}| < \lambda(B_1) - \lambda(B_2)$. Applying (3.1) to B_1 , $B_2 \cup \{\kappa\}$ or to $B_1 \cup \{\kappa\}$, B_2 (depending on whether $\lambda_{\kappa} > 0$ or $\lambda_{\kappa} < 0$,

$$\prod_{B_1} \rho_{\alpha} \prod_{B_2} (1-\rho_{\alpha}) \leq 0$$

since $\rho_{\kappa} = 0$ or $\rho_{\kappa} = 1$. This contradicts the definition of A_1 . Hence $||H_1||_1 \leq \gamma$.

Let $\gamma' = \max\{|\lambda_{\alpha}|: \alpha \in A_1\}$. It follows from (3.4)-(3.6) that

$$||Q_1^{-1}||, ||(I_{\mathscr{H}_1} - Q_1)^{-1}|| \le \max \{\rho_{\alpha}^{-1} \lor (1 - \rho_{\alpha})^{-1}: \alpha \in A_1, |\lambda_{\alpha}| = \gamma'\},$$

the right-hand side being finite since there are only finitely many indices α in A_1 with $|\lambda_{\alpha}| = \gamma'$.

Proposition 3.2 reduces the problem of describing passive pairs to the case when Q and I-Q are injective. The aim is to show then that

$$Q = (I + e^{\beta(H+T)})^{-1}$$

for some $\beta \ge 0$ and some trace class operator T with $||T||_1$ bounded. Thus the problem is to show that

$$T_{\beta} := \log (Q^{-1} - I) - \beta H \tag{3.11}$$

is trace class (and to obtain a bound on its trace norm). Writing

$$\sigma_{\alpha} = \log \left(\rho_{\alpha}^{-1} - 1 \right)$$
$$\sigma(B) = \sum_{B} \sigma_{\alpha}$$

for a finite subset B of A, (3.1) becomes

$$\lambda(A_1) > \lambda(A_2) \Rightarrow \sigma(A_1) \ge \sigma(A_2), \qquad (3.12)$$

)

and the objective is to show that

PASSIVE QUASI-FREE STATES

$$\sup_{A_1,A_2} \left\{ \sigma(A_1) - \sigma(A_2) - \beta(\lambda(A_1) - \lambda(A_2)) \right\} < \infty.$$
(3.13)

The obstruction to (3.13) relates to the possibility of the quasifree action τ on $\mathfrak{A}(\mathscr{H})$ associated with H having zero Connes spectrum. Let $\Gamma(H)$ be the set of all real numbers γ such that there are sequences of mutually disjoint finite subsets A_n , B_n of A such that $\lambda(A_n) - \lambda(B_n) \rightarrow \gamma$. Elementary combinatorial considerations show that $\Gamma(H)$ is a closed subgroup of \mathbb{R} . In this case where H is diagonalisable, $\mathfrak{A}(\mathscr{H})$ may be identified with $\bigotimes_{\alpha \in A} M_2$ and τ with

$$\otimes Ad \begin{bmatrix} 1 & 0 \\ 0 & e^{it\lambda_{\alpha}} \end{bmatrix}$$

(see [2, 5. 2. 5] and Section 5). It was observed in [6] that $\Gamma(H)$ is the Connes spectrum of this action.

If H is of trace class, then $\Gamma(H) = (0)$; if H is compact, but not of trace class, then $\Gamma(H) = \mathbb{R}$; if H is bounded but not of trace class, then $\Gamma(H) \neq (0)$; in general, $\Gamma(H)$ contains all eigenvalues of infinite multiplicity.

The first case when it is possible to establish (3.11) is when H itself is of trace class. This result may be applied to the pair (H_1 , Q_1) of Proposition 3.2.

Proposition 3.3. Let (H, Q) be a non-trivial passive pair, where H is of trace class, and Q and I-Q are injective. Then $\log(Q^{-1}-I)$ is of trace class, and, for any $\beta \ge 0$, $Q = (I + e^{\beta(H+T)})^{-1}$ for some operator T of trace class.

Proof. It is possible to consider separately the restrictions to $P(0)\mathcal{H}$, $P(-\infty, 0)\mathcal{H}$ and $P(0, \infty)\mathcal{H}$. The first of these is covered by Lemma 3.1, and the other two are similar to each other, so we consider only the latter. Assume therefore that $\lambda_{\alpha} > 0$ for all α , so that $\sigma_{\alpha} \ge 0$ by (3.2). Let A_1 be a finite subset of A such that $\lambda(A_1) > \frac{1}{2}||H||_1$, and A_2 be any finite subset of $A \setminus A_1$. Then $\lambda(A_1) > \lambda(A_2)$, so by (3.12) $\sigma(A_1) \ge \sigma(A_2)$. Thus $\sum_A \sigma_{\alpha} \le 2\sigma(A_1)$, as required.

The next case is when $\Gamma(H) \neq (0)$.

Proposition 3.4. Let (H, Q) be a passive pair, and suppose that Q

and I-Q are injective.

- 1. If $\Gamma(H) = \gamma \mathbb{Z}$ where $\gamma > 0$, then $Q = (I + e^{\beta(H+T)})^{-1}$ for some $\beta \ge 0$ and some operator T with $||T||_1 \le \gamma$.
- 2. If $\Gamma(H) = \mathbb{R}$, then $Q = (I + e^{\beta H})^{-1}$ for some $\beta \ge 0$.

Proof. Let $\gamma > 0$ be any member of $\Gamma(H)$, and A_n , $B_n(n \ge 1)$ be disjoint finite subsets of A such that $\lambda(A_n) - \lambda(B_n) \rightarrow \gamma$. By (3.12), $\sigma(A_n) - \sigma(B_n) \ge 0$ for large n.

Let α be any index with $\lambda_{\alpha} > 0$. Choose m so that $\alpha \notin A_m \cup B_m$, $\lambda(A_m) - \lambda(B_m) > \gamma - \lambda_{\alpha}$. If $\alpha \notin A_n \cup B_n$, $n \neq m$, then

$$\lambda(A_m \cup B_n \cup \{\alpha\}) = \lambda(A_m) + \lambda(B_n) + \lambda_\alpha$$

> $\lambda(B_m) + \lambda(A_n)$
= $\lambda(B_m \cup A_n)$

if n is large. By (3.12)

$$\sigma(A_m) + \sigma(B_n) + \sigma_{\alpha} \geq \sigma(B_m) + \sigma(A_n).$$

Thus

$$0 \leq \sigma(A_n) - \sigma(B_n) \leq \sigma(A_m) - \sigma(B_m) + \sigma_{\alpha}.$$

If $\lambda_{\alpha} < 0$, a similar argument shows that

$$0 \leq \sigma(A_n) - \sigma(B_n) \leq \sigma(A_m) - \sigma(B_m) - \sigma_{\alpha}.$$

Since $H \neq 0$, choosing α so that $\lambda_{\alpha} \neq 0$, it follows in either case that $\sigma(A_n) - \sigma(B_n)$ is bounded. Passing to a subsequence, assume that $\sigma(A_n) - \sigma(B_n)$ converges to a limit $\beta\gamma$, where $\beta \geq 0$.

Now let A_0 , B_0 be disjoint finite subsets of A, and put $\lambda(A_0) - \lambda(B_0) = \gamma_0$. If $\gamma_0 < 0$, let $k \ge 0$ be the largest integer such that $k\gamma + \gamma_0 < 0$. For large n, the sets A_0 , B_0 , A_n , B_n , A_{n+1} , B_{n+1} , are disjoint. Let $C_n = A_0 \cup A_n \cup \ldots \cup A_{n+k-1}$, $D_n = B_0 \cup B_n \cup \ldots \cup B_{n+k-1}$. Then

$$\lambda(C_n) - \lambda(D_n) = \gamma_0 + \sum_{i=n}^{n+k-1} (\lambda(A_i) - \lambda(B_i)) < 0$$

for large n. By (3.12)

$$0 \ge \sigma(C_n) - \sigma(D_n) = \sigma(A_0) - \sigma(B_0) + \sum_{i=n}^{n+k-1} (\sigma(A_i) - \sigma(B_i))$$

$$\rightarrow \sigma(A_0) - \sigma(B_0) + k\beta\gamma$$

as $n \rightarrow \infty$. Hence

$$\sigma(A_0) - \sigma(B_0) - \beta(\lambda(A_0) - \lambda(B_0)) \le -k\beta\gamma - \beta\gamma_0 \le \beta\gamma.$$
(3.14)

If $\gamma_0 \ge 0$, let k' > 0 be the smallest integer such that $k' \gamma > \gamma_0$, let $C'_n =$

 $B_0 \cup A_n \cup \ldots \cup A_{n+k'-1}, D'_n = A_0 \cup B_n \cup \ldots \cup B_{n+k'-1}.$ For large n, $\lambda(C'_n) > \lambda(D'_n)$, so $\sigma(C'_n) \ge \sigma(D'_n)$. It follows that

$$\sigma(A_0) - \sigma(B_0) - \beta(\lambda(A_0) - \lambda(B_0)) \le k'\beta\gamma - \beta\gamma_0 \le \beta\gamma.$$
(3.15)

Together, (3.14) and (3.15) give (3.13) and $||T_{\beta}||_1 \leq \beta \gamma$. If $\Gamma(H) = \gamma \mathbb{Z}$, the proof is complete. If $\Gamma(H) = \mathbb{R}$, then H is not of trace class, so the value of β is independent of γ . Letting $\gamma \rightarrow 0$, it follows that $T_{\beta} = 0$, so $Q = (I + e^{\beta H})^{-1}$.

Example 3.5. Suppose that H has a complete orthonormal set of eigenvectors $\{f_n: n=0, 1, 2...\}$ with eigenvalues $\lambda_n = n$. For example, the harmonic oscillator Hamiltonian $H = \frac{1}{2} \left(-\frac{d^2}{dt^2} + t^2 - 1 \right)$ on $L^2(\mathbf{R})$ has eigenvectors

$$f_n(t) = (n!)^{-1/2} 2^{n/2} i^{-n} \pi^{-3/4} e^{2/2} \int u^n e^{-u^2 + 2itu} du$$

[5, Lemma 7.12]. Now $\Gamma(H) = \mathbb{Z}$. If (H, Q) is a passive pair, then f_n is an eigenvector of Q, and the eigenvalues ρ_n satisfy either (a) $\rho_n = 0$ for all $n \ge 3$, or (b) $0 < \rho_n < 1$ for all n (Proposition 3.2). Indeed (H, Q) is a passive pair if and only if either

(a)
$$Qf_0 = \rho_0 f_0, Qf_1 = \rho_1 f_1, Qf_2 = \rho_2 f_2, Qf_n = 0 \quad (n \ge 3),$$

where $1 \ge \rho_0 \ge \rho_1 \ge \rho_2 \ge 0, \rho_0 + \rho_1 \le 1,$
 $(1 - \rho_0) (1 - \rho_1) \rho_2 \le \rho_0 \rho_1 (1 - \rho_2), \rho_0 (1 - \rho_1) \rho_2 \le (1 - \rho_0) \rho_1 (1 - \rho_2),$

or

(b)
$$Q = (I + e^{\beta(H+T)})^{-1}$$
 for some $\beta \ge 0$ and some T with $||T||_1 \le 1$

The necessity of (b) if $0 < \rho_n < 1$ follows from Proposition 3.4 and the sufficiency is established by verifying (3.12) directly.

If H is unbounded and $\Gamma(H) = (0)$, there may be passive pairs (H, Q) where Q and I-Q are injective but T_{β} is not of trace class for any $\beta \ge 0$.

Example 3.6. Suppose that the index set $A = \{0, 1, 2, ...\}$, and $\lambda_n = 2^n$. Then $\Gamma(H) = (0)$, and (3.12) simplifies to

$$\sigma_0 \ge 0$$
, $\sigma_{n+1} \ge \sum_{i=0}^n \sigma_i$.

If $\sigma_n = 3^n$, for example, this condition is satisfied, but $\sum |\sigma_n - \beta \lambda_n| = \infty$ for all β . Thus if $Q f_n = (1 + e^{\sigma_n})^{-1} f_n$, then (H, Q) is passive, but T_{β}

is not of trace class.

§4. Spectrally Passive Quasi-free States

In this section, let H be a Hamiltonian on the one-particle Hilbert space \mathscr{H} , with associated quasi-free one-parameter action τ on $\mathfrak{A}(\mathscr{H})$ given by (1.2). Let ω be a gauge-invariant quasi-free state of $\mathfrak{A}(\mathscr{H})$ with associated one-particle density Q, so that (1.3) is satisfied. Throughout this section, suppose that ω is spectrally passive with respect to τ . In particular, ω is τ -invariant, so Q commutes with Hand its spectral measure P.

Lemma 4.1. Let $0 \le m \le n$ be integers, and $\{\lambda_i: 1 \le i \le n\}$ be real numbers such that $\sum_{i=1}^{m} \lambda_i \ge \sum_{j=m+1}^{n} \lambda_j$. Let $\{f_i: 1 \le i \le n\}$ be an orthonormal set, and suppose that $f_i \in P(\lambda_i, \infty) \mathscr{H}$ $(1 \le i \le m)$, $f_j \in P(-\infty, \lambda_j) \mathscr{H}$ $(m < j \le n)$ and $(f_i, Qf_j) = 0$ $(1 \le i < j \le n)$. Then

$$\prod_{i=1}^{m} (f_i, Qf_i) \prod_{j=m+1}^{n} (1 - (f_j, Qf_j)) \le \prod_{i=1}^{m} (1 - (f_i, Qf_i)) \prod_{j=m+1}^{n} (f_j, Qf_j).$$
(4.1)

If $\sum_{i=1}^{m} \lambda_i > \sum_{j=m+1}^{n} \lambda_j$, and $f_i \in P[\lambda_i, \infty) \mathcal{H}$ $(1 \le i \le m)$, $f_j \in P(-\infty, \lambda_j] \mathcal{H}$ $(m \le j \le n)$, then (4.1) remains valid.

Proof. The proof is quite similar to [4, Lemma 3.8]. Consider $x=a(f_1)a(f_2)\ldots a(f_m)a^*(f_{m+1})a^*(f_{m+2})\ldots a^*(f_n) \in R(-\infty, 0).$

Then (1.3), the canonical anticommutation relations, the orthonormality and the condition $(f_i, Qf_j) = 0$ give

$$\omega(x^*x) = \prod_{i=1}^{m} (f_i, Qf_i) \prod_{j=m+1}^{n} (1 - (f_j, Qf_j))$$

$$\omega(xx^*) = \prod_{i=1}^{m} (1 - (f_i, Qf_i)) \prod_{j=m+1}^{n} (f_j, Qf_j).$$

The condition (1.1) defining spectral passivity, gives (4.1).

The final statement follows on perturbing λ_i slightly.

Now write $\mathscr{H} = \mathscr{H}_{p} \oplus \mathscr{H}$, $H = H_{p} \oplus \widetilde{H}$, $Q = Q_{p} \oplus \widetilde{Q}$, where \mathscr{H}_{p} is the closed linear span of the eigenspaces of H. Identify $\mathfrak{A}(\mathscr{H})$ with the C^{*} -subalgebra of $\mathfrak{A}(\mathscr{H})$ generated by $\{a(f): f \in \mathscr{H}\}$. The restriction

of ω to $\mathfrak{A}(\mathscr{H})$ is the gauge-invariant quasi-free state with oneparticle density \tilde{Q} , and it is spectrally passive for the restriction of τ to $\mathfrak{A}(\mathscr{H})$. This restricted action is the quasi-free action with oneparticle Hamiltonian \tilde{H} , which has no eigenvectors. The results of de Cannière [4] may therefore be applied to \tilde{H} , \tilde{Q} . He proved (in a slightly different formulation) that either $\tilde{Q} = \tilde{P}(-\infty, \mu)$ for some $-\infty \leq \mu \leq \infty$, or $\tilde{Q} = (\tilde{I} + e^{\beta \tilde{H} - \mu \tilde{I}})^{-1}$ for some $\beta \geq 0$ and some $-\infty < \mu$ $<\infty$, where \tilde{P} is the spectral measure of \tilde{H} , and \tilde{I} is the identity operator on \mathscr{H} . He also stated without proof [4, Remark 3.14] that in fact $\tilde{Q} = \tilde{P}(-\infty, 0)$ or $\tilde{Q} = (\tilde{I} + e^{\beta \tilde{H}})^{-1}$. This last fact is contained in the following lemma, which also removes some superfluous conditions from [4, Lemma 4.3]. The lemma could be proved in a similar fashion to [4], using the known characterization of the KMS states of quasi-free actions and the inequality

$$\omega(x^*x) \leq e^{\beta\lambda} \omega(xx^*) \qquad (x \in R(-\infty, \lambda)),$$

valid for KMS states ω at inverse temperature β [3]. However, it is no great hardship to give a proof from first principles.

Lemma 4.2. Suppose that $\mathscr{H} \neq (0)$.

- 1. If $\tilde{Q} = \tilde{P}(-\infty, \mu)$ for some $-\infty \le \mu \le \infty$, then $\tilde{Q} = \tilde{P}(-\infty, 0)$.
- 2. If $\tilde{Q} = (\tilde{I} + e^{\beta \tilde{H} \rho \tilde{I}})^{-1}$ for some $\beta \ge 0$ and $-\infty < \mu < \infty$, then $\mu = 0$ and $Q = (\tilde{I} + e^{\beta H})^{-1}$.

Proof. 1. For unit vectors f in $\tilde{P}(0, \infty) \mathscr{H}$, g in $\tilde{P}(-\infty, 0) \mathscr{H}$, Lemma 4.1 with n=1 gives

$$(f, Qf) \le 1 - (f, Qf)$$

 $1 - (g, Qg) \le (g, Qg).$

The result follows immediately.

2. Let S be the set of all real numbers λ such that $(\lambda - \varepsilon, \lambda)$ and $(\lambda, \lambda + \varepsilon)$ intersect the spectrum of H for all $\varepsilon > 0$. Then S is uncountable and dense in itself, and generates a dense subgroup of \mathbb{R} .

Let f_0 be a normalised eigenvector of H with eigenvalue λ_0 . For any $\varepsilon > 0$, there exist integers $0 \le m \le n$ and distinct λ_i in S $(1 \le i \le n)$, not equal to λ_0 , such that

$$0 < \lambda_0 + \sum_{i=1}^m \lambda_i - \sum_{j=m+1}^n \lambda_j < \varepsilon.$$

For $0 < \eta < \min \left\{ \frac{1}{2} |\lambda_i - \lambda_j| : 0 \le i < j \le n \right\}$, let f_i be a unit vector in $\tilde{P}(\lambda_i, \lambda_i + \eta) \mathscr{\tilde{H}}$ $(1 \le i \le m)$ or in $\tilde{P}(\lambda_i - \eta, \lambda_i) \mathscr{\tilde{H}}$ $(m < i \le n)$. Applying Lemma 4.1,

$$(f_0, Qf_0) \prod_{i=1}^m \frac{(f_i, Qf_i)}{1 - (f_i, Qf_i)} \leq (1 - (f_0, Qf_0)) \prod_{j=m+1}^n \frac{(f_j, Qf_j)}{1 - (f_j, Qf_j)}.$$

But

$$\frac{(f_i, Q, f_i)}{1 - (f_i, Q, f_i)} \ge \exp\left(-\beta(\lambda_i + \eta) + \mu\right) \quad (1 \le i \le m)$$

$$\frac{(f_j, Q, f_j)}{1 - (f_j, Q, f_j)} \le \exp\left(-\beta(\lambda_j - \eta) + \mu\right) \quad (m < j \le n),$$

SO

$$(f_0, Q f_0) \exp\{-\beta \sum_{i=1}^m \lambda_i + m(\mu - \beta \eta)\} \\ \leq (1 - (f_0, Q f_0)) \exp\{-\beta \sum_{j=m+1}^n \lambda_j + (n-m)(\beta \eta + \mu)\}.$$

Letting $\eta \rightarrow 0$,

$$(f_0, Qf_0) \le (1 - (f_0, Qf_0)) \exp \{\beta(\sum_{i=1}^m \lambda_i - \sum_{j=m+1}^n \lambda_j) + (n-2m)\mu\} \\\le (1 - (f_0, Qf_0)) \exp \{\beta(\varepsilon - \lambda_0) + (n-2m)\mu\}.$$
(4.2)

A similar argument, excluding f_0 and λ_0 , shows that

$$\lambda_i \in S \ (1 \le i \le n), \ 0 < \sum_{i=1}^m \lambda_i - \sum_{j=m+1}^n \lambda_j < \varepsilon \Rightarrow \ \exp(\beta \varepsilon + (n-2m)\mu) \ge 1.$$

Since S is uncountable, one may find such λ_i with 2m-n arbitrary (see [4, Lemma 3.16]), and it follows that $\mu=0$.

Now in (4.2), letting $\varepsilon \rightarrow 0$,

$$(f_0, Qf_0) \leq (1 + e^{\beta \lambda_0})^{-1}$$

Similarly choosing $0 \le k \le l$, distinct μ_i $(1 \le i \le l)$ in S, not equal to $\mu_0 = \lambda_0$, such that

$$0\!<\!-\lambda_{0}\!+\!\sum\limits_{i=1}^{k}\,\mu_{i}\!-\!\sum\limits_{j=k+1}^{l}\,\mu_{j}\!<\!arepsilon$$

and unit vectors g_i in $\tilde{P}(\mu_i, \mu_i + \eta) \mathscr{H}(1 \le i \le k)$, g_j in $\tilde{P}(\mu_j - \eta, \mu_j) \mathscr{H}(k < j \le l)$ where $0 < \eta < \min \left\{ \frac{1}{2} |\mu_i - \mu_j| : 0 \le i < j \le l \right\}$, and applying Lemma 4.1 to g_1, \ldots, g_l , f_0 gives

$$1 - (f_0, Qf_0) \le (f_0, Qf_0) \exp \{\beta (\sum_{i=1}^m \mu_i - \sum_{j=k+1}^l \mu_j)\}$$

 $\leq (f_0, Qf_0) e^{\beta(\lambda_0+\varepsilon)}$

and hence $(f_0, Qf_0) \ge (1 + e^{\beta \lambda_0})^{-1}$. Thus $Q_p = (I_{\mathscr{H}_p} + e^{\beta H_p})^{-1}$, so $Q = (I + e^{\beta H})^{-1}$.

Remark. If $\mathscr{R} \neq (0)$, the Connes spectrum of τ is \mathbb{R} . (I am grateful to A. Kishimoto for confirmation of this.) Thus Lemma 4.2(2) is analogous to Proposition 3.4(2).

Theorem 4.3. Let H be the one-particle Hamiltonian of a oneparameter group τ of quasi-free automorphisms of $\mathfrak{A}(\mathcal{H})$, P be the spectral measure of H, and ω be a gauge-invariant quasi-free state of $\mathfrak{A}(\mathcal{H})$ which is spectrally passive for τ . The one-particle density Q of ω satisfies one of the following conditions:

- (i) $Q = (I + e^{\beta H})^{-1}$ for some $\beta \ge 0$,
- (*ii*) $Q(I-P(0)) = P(-\infty, 0),$
- (iii) Q and I-Q are injective, and (H, Q) is a passive pair (in particular, H and Q are diagonalisable),
- (iv) There is a decomposition $\mathscr{H} = \mathscr{H}_1 \bigoplus \mathscr{H}_2$, $H = H_1 \bigoplus H_2$, $Q = Q_1 \bigoplus P_2(-\infty, 0)$ where H_1 is of trace class, $(-||H_1||_1, ||H_1||_1)$ is contained in the resolvent set of H_2 , Q_1 and $I_{\mathscr{H}_1} Q_1$ are invertible and (H_1, Q_1) is a passive pair. (Here, P_2 is the spectral measure of H_2 .)

Proof. By Lemma 4.2 and the preceding remarks, either $Q = (I + e^{\beta H})^{-1}$ in which case (i) is satisfied, or $\tilde{Q} = \tilde{P}(-\infty, 0)$. In the remainder of the proof, assume that $\tilde{Q} = \tilde{P}(-\infty, 0)$. Assume also that (ii) is not satisfied, so that there is a unit vector f_0 in $P(0, \infty) \mathcal{H}$ with $(f_0, Qf_0) > 0$ or a unit vector g_0 in $P(-\infty, 0)$ with $(g_0, Qg_0) < 1$. Let $c = (f_0, Qf_0)^{-1} - 1$ or $c = (1 - (g_0, Qg_0))^{-1} - 1$, respectively.

For real λ , let $\mathscr{H}_{\lambda} = P(\lambda) \mathscr{H}$, $Q_{\lambda} = Q | \mathscr{H}_{\lambda}$. Let $\{f_i: 1 \le i \le 2m\}$ be an orthonormal set in \mathscr{H}_{λ} such that $(f_i, Qf_j) = 0$ $(1 \le i < j \le 2m)$. Applying Lemma 4.1 to f_0, f_1, \ldots, f_{2m} or f_1, \ldots, f_{2m}, g_0 , gives (2.1) where n = 2m. By Lemma 2.2(2), \mathscr{H}_{λ} has a complete orthonormal set of eigenvectors for Q_{λ} . It follows that \mathscr{H}_p has a complete orthonormal set of common eigenvectors for H_p , Q_p , and Lemma 4.1 shows that (H_p, Q_p) is a passive pair. Since (ii) is not satisfied, the pair is non-

trivial. By Proposition 3.2, there is a decomposition $\mathscr{H}_p = \mathscr{H}_1 \oplus \mathscr{H}_3$, $H_p = H_1 \oplus H_3$, $Q_p = Q_1 \oplus P_3(-\infty, 0)$, where $(-||H_1||_1, ||H_1||_1)$ is contained in the resolvent set of H_3 , Q_1 and $I_{\mathscr{H}_1} - Q_1$ are injective, and (H_1, Q_1) is a passive pair. (\mathscr{H}_3 may be (0), in which case $||H_1||_1$ may be infinite.) If $\mathscr{\tilde{H}} = (0)$, the proof is now complete, since either (iii) applies (if $\mathscr{H}_3 = (0)$) or (iv) applies with $\mathscr{H}_2 = \mathscr{H}_3$.

If $\mathscr{H} \neq (0)$ let $\gamma = \inf\{|\lambda| : \lambda \tilde{I} - \tilde{H} \text{ is not invertible}\}$. It suffices to show that $||H_1||_1 \leq \gamma$, for then \mathscr{H}_2 may be taken to be $\mathscr{H}_3 \oplus \mathscr{H}$. Suppose, on the contrary, that there is an orthonormal set $\{f_i: 1 \leq i \leq n\}$ in \mathscr{H}_1 , an integer $0 \leq m \leq n$, and scalars λ_i , ρ_i such that $0 < \rho_i < 1$, $H_i f_i = \lambda_i f_i$, $Qf_i = \rho_i f_i$ $(1 \leq i \leq n)$, $\sum_{i=1}^m \lambda_i - \sum_{j=m+1}^n \lambda_j = \gamma' > \gamma$. There is a unit vector \tilde{f}_0 in $\tilde{P}(-\gamma', -\gamma) \mathscr{H}$ or a unit vector \tilde{g}_0 in $\tilde{P}(\gamma, \gamma') \mathscr{H}$. By assumption $(\tilde{f}_0, Q\tilde{f}_0) = 1$ or $(\tilde{g}_0, Q\tilde{g}_0) = 0$. Applying Lemma 4.1 to $\tilde{f}_0, f_1, f_2, \ldots f_n$ or to $f_1, f_2, \ldots f_n, \tilde{g}_0$, gives

$$\prod_{i=1}^m \rho_i \prod_{j=m+1}^n (1-\rho_j) \leq 0.$$

This contradicts the fact that $0 < \rho_i < 1$.

§ 5. Quasi-free States of Passive Pairs

This section is devoted to establishing that if Q satisfies any of the conditions (i) – (iv) of Theorem 4.3, then the associated quasi-free state ω is spectrally passive.

If condition (i) is satisfied, then ω is the unique KMS state at inverse temperature β [2, 5. 2. 23], and is therefore spectrally passive [3]. If condition (ii) is satisfied, then ω is a ground state [2, 5. 3. 20], so that $\omega(x^*x) = 0 \le \omega(xx^*)$ for x in $R(-\infty, 0)$. Thus ω is spectrally passive.

The remaining conditions (iii) and (iv) are both covered by the following result, where \mathscr{H}_2 may be (0), in which case the resolvent set of H_2 is **R**, and $||H_1||_1$ may be infinite (condition (iii) of Theorem 4.3).

Theorem 5.1. Suppose that $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$, $H = H_1 \oplus H_2$, $Q = Q_1 \oplus P_2(-\infty, 0)$, where P_2 is the spectral measure of H_2 , (H_1, Q_1) is a passive pair and $(-||H_1||_1, ||H_1||_1)$ is contained in the resolvent set of H_2 . Then the gauge-invariant quasi-free state ω with one-particle density Q is spec-

trally passive with respect to the one-parameter group of quasi-free automorphisms of $\mathfrak{A}(\mathcal{H})$ with one-particle Hamiltonian H.

Proof. First, suppose that \mathscr{H}_1 is finite-dimensional with an orthonormal basis $\{f_i: 1 \le i \le n\}$ of common eigenvectors for H_1 , Q_1 with eigenvalues λ_i , ρ_i respectively. Let \mathscr{G} be an orthonormal basis of \mathscr{H}_2 . There is a standard construction [2, 5. 2. 5], by which $\mathfrak{A}(\mathscr{H}_2)$ is identified with $\bigotimes_{\mathscr{G}} M_2$ and $\mathfrak{A}(\mathscr{H})$ with $\bigotimes_{(1,\ldots,n)\cup\mathscr{G}} M_2$ and hence with the C^* -algebra of $2^n \times 2^n$ matrices with entries in $\mathfrak{A}(\mathscr{H}_2)$. Any integer $1 \le j \le 2^n$ has a binary representation $j=1+\sum_{r\in S_j} 2^{r-1}$ for some subset S_j of $\{1,\ldots,n\}$. The identification is made in such a way that

$$\tau_{i}(x) = \left[\exp\left(it\left(\lambda(S_{j}) - \lambda(S_{k})\right)\right) \tau_{i}^{(2)}(x_{jk}) \right]_{1 \le j, k \le 2^{n}}$$
(5.1)

for any $x = [x_{jk}]$ in $\mathfrak{A}(\mathscr{H})$, where $\tau^{(2)}$ is the one-parameter quasi-free action on $\mathfrak{A}(\mathscr{H}_2)$ with one-particle Hamiltonian H_2 . If $\mathfrak{A}(\mathscr{H}_2)$ is identified with the C*-subalgebra of $\mathfrak{A}(\mathscr{H})$ generated by $\{a(f):$ $f \in \mathscr{H}_2\}$, then $\tau^{(2)}$ is the restriction of τ . Furthermore

$$\omega(x) = \sum_{j=1}^{2^n} \theta_j \omega_2(x_{jj})$$

where

$$\theta_j = \prod_{i \in S_j} \rho_i \prod_{i \in S'_j} (1 - \rho_i)$$

$$S'_j = \{1, \dots, n\} \setminus S_j$$

and ω_2 is the ground state for τ_2 (the gauge-invariant quasi-free state with one-particle density $P_2(-\infty, 0)$). These facts may be verified by induction on the dimension n of \mathscr{H}_1 , using the results of [4, p. 142] for n=1.

It follows from (5.1) that

$$x \in R(-\infty, 0) \Leftrightarrow x_{jk} \in R(-\infty, \lambda(S_k) - \lambda(S_j))$$
 for all j, k . (5.2)

(The spectral spaces for $\tau^{(2)}$ are the parts of the spectral spaces for τ which are contained in $\mathfrak{A}(\mathscr{H}_2)$.) It is therefore sufficient to show that the condition (5.2) implies that

$$\sum_{j,k}\theta_k\omega_2(x_{jk}^*x_{jk})\leq \sum_{j,k}\theta_j\omega_2(x_{jk}x_{jk}^*).$$

Considering one coordinate x_{jk} at a time, it suffices to show that

$$\theta_k \omega_2(x^*x) \le \theta_j \omega_2(xx^*) \text{ for all } x \text{ in } R(-\infty, \lambda(S_k) - \lambda(S_j)) \cap \mathfrak{A}(\mathscr{H}_2).$$
(5.3)

If $\lambda(S_k) \leq \lambda(S_j)$, (5.4) follows immediately from the fact that ω_2 is a ground state. If $\lambda(S_k) > \lambda(S_j)$ then $\theta_k \leq \theta_j$ by (3.1) applied to $S_k \setminus S_j$, $S_j \setminus S_k$. Since $\lambda(S_k) - \lambda(S_j) \leq ||H_1||_1$, it suffices to show that

$$\omega_2(x^*x) \leq \omega_2(xx^*) \text{ for all } x \text{ in } R(-\infty, ||H_1||_1) \cap \mathfrak{A}(\mathscr{H}_2).$$
 (5.4)

Since $(-||H_1||_1, ||H_1||_1)$ is contained in the resolvent set of H_2 and ω_2 is a ground state, it can be shown as in [4, p. 146] that

$$\omega_2(x^*x) = |\omega_2(x)|^2 \le \omega_2(xx^*)$$

as required.

Next, suppose that \mathscr{H}_1 is infinite-dimensional with a complete orthonormal set \mathscr{F} of common eigenvectors for H_1 , Q_1 . For each finite subset F of \mathscr{F} , let \mathscr{H}_F be the linear span of $F \cup \mathscr{H}_2$. Then $\mathfrak{A}(\mathscr{H}_F)$ is a τ -invariant C^* -subalgebra of $\mathfrak{A}(\mathscr{H})$, the restriction of τ to $\mathfrak{A}(\mathscr{H}_F)$ is the qausi-free action with one-particle Hamiltonian $H | \mathscr{H}_F$, and the restriction of ω is the gauge-invariant quasi-free state with oneparticle density $Q | \mathscr{H}_F$. By the finite-dimensional case above, $\omega(x^*x)$ $\leq \omega(xx^*)$ for all x in $R(-\infty, 0) \cap \mathfrak{A}(\mathscr{H}_F)$. Since $R(-\infty, 0) = [\bigcup_F (R(-\infty, 0) \cap \mathfrak{A}(\mathscr{H}_F))]^-$, it follows that ω is spectrally passive.

Corollary 5.2. Let H be the one-particle Hamiltonian of a oneparameter quasi-free action τ on $\mathfrak{A}(\mathcal{H})$, and Q be the one-particle density of a gauge-invariant quasi-free state ω on $\mathfrak{A}(\mathcal{H})$, and suppose that any of the conditions (i), (ii), (iii) and (iv) of Theorem 4.3 is satisfied. Then ω is spectrally passive for τ .

Proof. Cases (i) and (ii) were discussed at the beginning of this section. Case (iii) follows from Theorem 5.1 with $\mathscr{H}_2 = (0)$. Case (iv) is also covered by Theorem 5.1.

§6. The Gauge-invariant CAR Algebra

The C*-algebra of primary concern in [4] was $\mathfrak{A}(\mathscr{H})^{(0)}$, and the corresponding results for $\mathfrak{A}(\mathscr{H})$ were merely stated. Here, detailed arguments have been given for $\mathfrak{A}(\mathscr{H})$, but it is possible to modify

them for the gauge-invariant part. The main technical difference is that if ω is merely assumed to be spectrally passive on $\mathfrak{A}(\mathscr{H})^{(0)}$, then (4.1) can only be deduced if n=2m. A correspondingly weaker notion of passive pairs is needed.

The pair (H, Q) is weakly passive if \mathscr{H} has a complete orthonormal set of common eigenvectors with eigenvalues λ_{α} , ρ_{α} , and (3.1) holds for any finite subsets A_1 , A_2 of A such that $\lambda(A_1) > \lambda(A_2)$ and $|A_1| = |A_2|$, where |B| denotes the cardinality of B.

The methods of Sections 4 and 5 now give the following modification of Theorem 4.3 and Corollary 5.2.

Theorem 6.1. Let H be the one-particle Hamiltonian of a one-parameter quasi-free action τ , P be the spectral measure of H, and Q be the one-particle density of a gauge-invariant quasi-free state ω . The restriction of ω to $\mathfrak{A}(\mathcal{H})^{(0)}$ is spectrally passive with respect to the restriction of τ if and only if at least one of following conditions is satisfied:

- (i) $Q = (I + e^{\beta H \mu I})^{-1}$ for some $\beta \ge 0$, $-\infty < \mu < \infty$,
- (ii) $Q(I-P(\mu)) = P(-\infty, \mu)$ for some $-\infty < \mu < \infty$,
- (iii) Q and I-Q are injective, and (H, Q) is a weakly passive pair,

(iv) There exist $-\infty \le \mu_1 < \mu_2 \le \infty$ and a decomposition $\mathcal{H} = \mathcal{H}_1 \bigoplus$ \mathcal{H}_2 , $H = H_1 \bigoplus H_2$, $Q = Q_1 \bigoplus P_2(-\infty, \mu_2)$ such that Q_1 and $I_{\mathcal{H}_1} - Q_1$ are injective, (H_1, Q_1) is a weakly passive pair, (μ_1, μ_2) is contained in the resolvent set of H_2 , and the complete family $\{\lambda_{\alpha}: \alpha \in A\}$ of eigenvalues of H_1 satisfies

$$\mu_1 \leq \lambda(A_1) - \lambda(A_2) \leq \mu_2 \tag{6.1}$$

for any finite subsets A_1 , A_2 of A with $|A_1| = |A_2| + 1$. (v) Q = cI for some $0 \le c \le 1$.

Remark. In case (iv), it can be assumed that μ_1 or μ_2 is finite (otherwise, case (iii) applies). Then, if \mathscr{H}_1 does not have finite even dimension, (6.1) is equivalent to the condition that

$$||H_1 - \mu I_{\mathscr{H}_1}||_1 \le \min (\mu_2 - \mu, \mu - \mu_1)$$

for some $\mu_2 \leq \mu \leq \mu_1$. If \mathscr{H}_1 has dimension 2m, and the eigenvalues of H_1 are $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{2m}$, then (6.1) is equivalent to the conditions that

$$||H_1 - \lambda_m I_{\mathscr{H}_1}||_1 \le \mu_2 - \lambda_m \text{ and } ||H_1 - \lambda_{m+1} I_{\mathscr{H}_1}||_1 \le \lambda_{m+1} - \mu_1.$$

Finally, with the help of Lemma 2.2(2), the results of Section 3 can be modified to describe weakly passive pairs. Let $\Gamma(H)^{(0)}$ be the closed subgroup of R containing those γ such that there are sequences of mutually disjoint finite subsets A_n, B_n of A such that $|A_n| = |B_n|$ and $\lambda(A_n) - \lambda(B_n) \rightarrow \gamma$.

Proposition 6.2. Let (H, Q) be a weakly passive pair, and suppose that Q and I-Q are injective.

- 1. If $H \lambda I$ is of trace class for some real λ , but $H \neq \lambda I$, then $log(b(Q^{-1}-I))$ is of trace class for some b > 0, and for any $\beta > 0$, $Q = (I + e^{\beta(H+T) \mu I})^{-1}$ for some real μ and some operator T of trace class.
- 2. If $\Gamma(H)^{(0)} = \gamma Z$ for some $\gamma > 0$, then $Q = (I + e^{\beta(H+T) \mu I})^{-1}$ for some $\beta \ge 0$, some real μ , and some operator T with $||T||_1 \le \gamma$.
- 3. If $\Gamma(H)^{(0)} = \mathbb{R}$, then $Q = (I + e^{\beta H \mu I})^{-1}$ for some $\beta \ge 0$ and some real μ .

Remark. If H is diagonalisable, $\Gamma(H)^{(0)}$ is the Connes spectrum of $\tau | \mathfrak{A}(\mathscr{H})^{(0)}$. If H is not diagonalisable, the Connes spectrum is **R**. (I am grateful to A. Kishimoto for confirmation of this.)

References

- [1] Batty, C. J. K., The KMS condition and passive states, J. Functional Analysis, 46 (1982), 246-257.
- [2] Bratteli, O., and Robinson, D. W., Operator algebras and quantum statistical mechanics II, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
- [3] De Cannière, J., A spectral characterization of KMS states, Commun. Math. Phys. 84 (1982), 187-205.
- [4] ______, Passive quasi-free states of the non-interacting Fermi gas, J. Functional Analysis 58 (1984), 125-149.
- [5] Davies, E. B., One-parameter semigroups, Academic Press, London-New York, 1980.
- [6] Kishimoto, A., and Robinson, D. W., Derivations, dynamical systems, and spectral resolutions, Math. Scand. 56 (1985), 83-95.
- [7] Pusz, W., and Woronowicz, S. L., Passive states and KMS states for general quantum systems, Commun. Math. Phys. 58 (1978), 273-290.