Derivations in Covariant Representations of C*-algebras

By

Akio IKUNISHI*

Abstract

Let α be an action of a locally compact abelian or compact group G on a C*-algebra \mathscr{A} and π a representation of \mathscr{A} which induces an action $\tilde{\alpha}$ of $\overline{\pi(\mathscr{A})}$ from α . If δ is a locally bounded (in a sense) *-derivation in \mathscr{A} defined on \mathscr{A}_F , then there exists a locally σ -weakly continuous *-derivation $\tilde{\delta}$ in $\overline{\pi(\mathscr{A})}$ defined on $\overline{\pi(\mathscr{A})_F}$ such that $\tilde{\delta} \circ \pi \Box \pi \circ \delta$.

Let α be an action of a locally compact abelian group G on a C*-algebra. Let δ be a *-derivation in \mathscr{A} which is defined on \mathscr{A}_F and bounded on each spectral subspace $\mathscr{A}^{\alpha}(K)$ of α corresponding to a compact subset K of the dual group \hat{G} of G, where \mathscr{A}_F denotes the union of all spectral subspaces of α corresponding to compact subsets of \hat{G} .

Then the second adjoint α^{**} of α does not necessarily continuously act on the second dual \mathscr{A}^{**} of \mathscr{A} , and δ is not necessarily σ -weakly closable in \mathscr{A}^{**} . Nevertheless, denoting by \mathscr{B} the norm closure of the union of all σ -weak closures $\overline{\mathscr{A}^{\alpha}(K)}$ of spectral subspaces $\mathscr{A}^{\alpha}(K)$ with K compact, α^{**} strongly continuously acts on \mathscr{B} and δ can be extended to a *-derivation $\delta_{\mathscr{B}}$ in \mathscr{A}^{**} which is defined on \mathscr{B}_{F} and σ -weakly continuous on $\mathscr{B}^{\alpha**|\mathscr{B}}(K)$ for any compact subset K of \hat{G} . If, in addition, a representation π induces an action $\tilde{\alpha}$ on the weak closure \mathscr{M} of $\pi(\mathscr{A})$ from α , then, from $\delta_{\mathscr{B}}$ the canonical extension $\tilde{\pi}$ of π onto \mathscr{A}^{**} induces a *-derivation $\tilde{\delta}$ in \mathscr{M} defined on \mathscr{M}_{F} , namely $\bigcup_{\substack{K:compact\\K:compact}} \mathscr{M}^{\alpha}(K)$, such that $\tilde{\delta} \circ \tilde{\pi} = \tilde{\pi} \circ \delta_{\mathscr{B}} \supset \pi \circ \delta$ and $\tilde{\delta}$ is σ -weakly continuous on $\mathscr{M}^{\alpha}(K)$, for any compact subset K of \hat{G} . This remains valid even if G is compact.

Communicated by H. Araki, October 19, 1985.

^{*} Department of commercial science, Senshu University, Kanagawa 214, Japan.

In [3] Kishimoto showed the above when G is locally compact abelian and π is irreducible and α -covariant. Moreover, he proved there that δ is a pregenerator if there exists a faithful family of α covariant irreducible representations of \mathscr{A} . We generalize this and [1, Theorem 3.1] also.

If, in particular, $G = \mathbf{R}$ and δ is defined on the domain of the generator δ_0 of α , then δ is relatively bounded with respect to δ_0 [4], and hence is bounded on $\mathscr{A}^{\alpha}(K)$ for any compact subset K of \hat{G} . The relative bound of $\tilde{\delta}$ with respect to the generator of $\tilde{\alpha}$ does not exceed that of δ with respect to δ_0 , in virtue of the Kaplansky's density theorem and the functional calculus for *-derivations [2]. However we obtain a more precise estimate concerning the relative boundedness of $\tilde{\delta}$.

Throughout the whole, let a group G be either locally compact abelian or compact, α an action of G on a C*-algebra \mathscr{A} , and π a representation of \mathscr{A} which induces the action $\tilde{\alpha}$ of G on the weak closure \mathscr{M} of $\pi(\mathscr{A})$ such that $\tilde{\alpha}_i \circ \pi = \pi \circ \alpha_i$. Let δ be a *-derivation in \mathscr{A} which is defined on \mathscr{A}_F and bounded on $\mathscr{A}^{\alpha}(K)$ (resp., $\mathscr{A}^{\alpha}(\gamma)$) for any compact subset $K \subset \hat{G}(\gamma \in \hat{G})$, when G is abelian (compact). When G is compact, let $\mathscr{A}^{\alpha}(\gamma)$ and $\mathscr{M}^{\alpha}(\gamma)$ denote the spectral subspaces of α and $\tilde{\alpha}$ corresponding to $\gamma \in \hat{G}$, and \mathscr{A}_F and \mathscr{M}_F the unions of these, respectively.

Theorem 1. If G is abelian, then there exists a unique *-derivation $\tilde{\delta}$ in \mathcal{M} such that $\tilde{\delta}$ is defined on \mathcal{M}_F , $\tilde{\delta} \circ \pi \supset \pi \circ \delta$ and $\tilde{\delta}$ is σ -weakly continuous on $\mathcal{M}^{\alpha}(K)$ for any compact subset K of \hat{G} . Furthermore we have

$$||\delta| \mathscr{M}^{\alpha}(K)|| \leq \inf ||\delta| \mathscr{A}^{\alpha}(K+V)||,$$

where V runs over all compact neighbourhoods of 0 in \hat{G} .

Even if G is compact, the above consequences hold, provided that $\mathscr{A}^{\alpha}(K)$ and $\mathscr{M}^{\alpha}(K)$ should be replaced with $\mathscr{A}^{\alpha}(\gamma)$ and $\mathscr{M}^{\alpha}(\gamma)$ corresponding $\gamma \in \hat{G}$ respectively, and the inequality becomes as follows:

$$||\delta|\mathscr{M}^{lpha}(\gamma)|| \leq ||\delta|\mathscr{A}^{lpha}(\gamma)||.$$

Proof. First assume that G is abelian. Let \mathscr{B} denote the norm closure in \mathscr{A}^{**} of the union of all $\sigma(\mathscr{A}^{**}, \mathscr{A}^{*})$ -closures $\overline{\mathscr{A}^{\alpha}(K)}$ of

528

 $\mathscr{A}^{\alpha}(K)$ with K compact, so that \mathscr{B} is an α^{**} -invariant C*-subalgebra The mapping $G \ni t \mapsto \alpha_t | \mathscr{A}^{\alpha}(K)$ is uniformly continuous, of *A***. and so does $t \mapsto (\alpha_t | \mathscr{A}^{\alpha}(K))^{**}$. Identifying $\mathscr{A}^{\alpha}(K)^{**}$ with $\overline{\mathscr{A}^{\alpha}(K)}$, $t \mapsto \alpha_t^{**} | \overline{\mathscr{A}^{\alpha}(K)}$ is also uniformly continuous, and hence the restriction $\alpha^{**} | \mathscr{B}$ is a strongly continuous action of G on \mathscr{B} .

For any compact subset K of \hat{G} , we shall show that

$$\overline{\mathscr{A}^{\alpha}(K)} \subset \mathscr{B}^{\alpha * * | \mathscr{B}}(K) = \bigcap_{V} \overline{\mathscr{A}^{\alpha}(K+V)},$$

where V runs over all compact neighbourhoods of 0 in \hat{G} ; then note that $\mathscr{B}^{\alpha**|\mathscr{B}}(K)$ is $\sigma(\mathscr{A}^{**}, \mathscr{A}^{*})$ -closed. For any $f \in L^1(G)$ we have

$$\begin{aligned} (\alpha^{**} | \mathscr{B}) (f) | \overline{\mathscr{A}^{\alpha}(K)} &= (\alpha^{**} | \overline{\mathscr{A}^{\alpha}(K)}) (f) = (\alpha | \mathscr{A}^{\alpha}(K))^{**} (f) \\ &= (\alpha (f) | \mathscr{A}^{\alpha}(K))^{**} = \alpha (f)^{**} | \overline{\mathscr{A}^{\alpha}(K)}, \end{aligned}$$

and hence $(\alpha^{**}|\mathscr{B})(f) = \alpha(f)^{**}|\mathscr{B}$, which implies the $\sigma(\mathscr{A}^{**}, \mathscr{A}^{*})$ continuity of $(\alpha^{**}|\mathscr{B})(f)$. Therefore we have $\overline{\mathscr{A}^{\alpha}(K)} \subset \mathscr{B}^{\alpha^{**}|\mathscr{B}}(K)$. Moreover, if $f \in L^1(G)$, Supp $\hat{f} \subset K + V$ for a compact neighbourhood V of 0 and $\hat{f}(\gamma) = 1$ on some neighbourhood of K, then it follows from the above that

$$\mathcal{B}^{\alpha**|\mathcal{B}}(K) \subset (\alpha^{**}|\mathcal{B})(f)(\mathcal{B}) = \alpha(f)^{**}(\mathcal{B}) \subset \overline{\alpha(f)(\mathcal{A})} \\ \subset \overline{\mathcal{A}^{\alpha}(K+V)} \subset \mathcal{B}^{\alpha**|\mathcal{B}}(K+V),$$

so that $\mathscr{B}^{\alpha**|\mathscr{B}}(K) = \bigcap_{V} \overline{\mathscr{A}^{\alpha}(K+V)}$. Similarly we have $\mathscr{M}^{\tilde{\alpha}}(K) = \bigcap_{V} \overline{\pi(\mathscr{A}^{\alpha}(K+V))}$.

Let $\tilde{\pi}$ be the canonical representation of \mathscr{A}^{**} onto extending π , so that $\tilde{\alpha} \circ \tilde{\pi} = \tilde{\pi} \circ \alpha^{**}$. Let (e_{ι}) be an approximate identity of ker $\tilde{\pi} \cap \mathscr{B}$; we may assume that $e_{\iota} \in \mathscr{B}^{\alpha * * | \mathscr{B}}(K')$ for some compact subset K', because, if $f \ge 0$, $\int f \, dt = 1$ and Supp $\hat{f} \subset K'$ then $((\alpha^{**} | \mathscr{B}) (f) (e_i))$ is an approximate identity of ker $\tilde{\pi} \cap \mathscr{B}$. Since $\mathscr{B}^{\alpha**}(K')$ is $\sigma(\mathscr{A}^{**}, \mathscr{A}^{*})$ closed, (e_i) σ -weakly converges to the identity e of ker $\tilde{\pi} \cap \mathcal{B}$, and hence e belongs to the fixed point algebra $\mathscr{B}^{\alpha**|\mathscr{B}}$ and is a central projection of \mathscr{A}^{**} . Therefore, for any compact subset K of \hat{G} , $\mathscr{B}^{\alpha**|\mathscr{B}}(K)(1-e)$ and $\tilde{\pi}(\mathscr{B}^{\alpha**|\mathscr{B}}(K))$ are isometrically isomorphic and σ -weakly homeomorphic under $\tilde{\pi}$, because these are σ -weakly closed. Since $e \in \mathscr{B}^{\alpha * * | \mathscr{B}}$,

$$\begin{split} \tilde{\pi}(\mathscr{B}^{a**|\mathscr{B}}(K)) &= \tilde{\pi}(\bigcap_{V} \mathscr{A}^{\alpha}(K+V)) \subset \bigcap_{V} \overline{\pi}(\mathscr{A}^{\alpha}(K+V)) \\ &\subset \bigcap_{V} \tilde{\pi}(\mathscr{B}^{a**|\mathscr{B}}(K+V)) = \bigcap_{V} \tilde{\pi}(\mathscr{B}^{a**|\mathscr{B}}(K+V) \ (1-e)) \\ &= \tilde{\pi}(\bigcap_{V} (\mathscr{B}^{a**|\mathscr{B}}(K+V) \ (1-e))) \end{split}$$

Akio Ikunishi

$$\subset \tilde{\pi}(\bigcap_{u} \mathscr{B}^{\alpha**|\mathscr{B}}(K+V)) = \tilde{\pi}(\mathscr{B}^{\alpha**|\mathscr{B}}(K)),$$

where V runs over all compact neighbourhoods of 0. Thus $\mathscr{B}^{\alpha**|\mathscr{B}}(K)(1-e)$ is isometrically isomorphic and σ -weakly homeomorphic to $\mathscr{M}^{\alpha}(K)$ under π .

Now, since $\delta | \mathscr{A}^{\alpha}(K)$ is bounded for a compact subset K of \hat{G} , its second adjoint is a bounded linear mapping of $\overline{\mathscr{A}^{\alpha}(K)}$ into \mathscr{A}^{**} with the same norm. Hence there exists a *-derivation $\delta_{\mathscr{B}}$, namely $\bigcup (\delta | \mathscr{A}^{\alpha}(K))^{**}$, in \mathscr{A}^{**} extending δ and defined on \mathscr{B}_{F} . Put $\tilde{\delta} = \frac{\pi \circ \delta_{\mathscr{B}^{\circ}}(\tilde{\pi} | \mathscr{B}_{F}(1-e))^{-1}$. Then $\tilde{\delta}$ is a *-derivation in \mathscr{M} which is defined on \mathscr{M}_{F} and σ -weakly continuous on $\mathscr{M}^{\alpha}(K)$ for any compact subset K of \hat{G} . Moreover we have

$$\begin{aligned} ||\tilde{\delta}|\mathscr{M}^{\alpha}(K)|| &= ||\delta_{\mathscr{B}}| \mathscr{B}^{\alpha**|\mathscr{B}}(K) (1-e)|| \leq \inf_{V} ||\delta_{\mathscr{B}}| \overline{\mathscr{A}^{\alpha}(K+V)}|| \\ &= \inf_{V} ||\delta| \mathscr{A}^{\alpha}(K+V)||, \end{aligned}$$

where V runs over all compact neighbourhoods of 0 in \hat{G} . Since e is a central projection, $\delta_{\mathscr{B}}(e) = 0$ and $\delta_{\mathscr{B}}(x(1-e)) = \delta_{\mathscr{B}}(x)(1-e)$ for any $x \in \mathscr{B}_F$. Therefore we have, for any $x \in \mathscr{B}_F$,

$$egin{aligned} & ilde{\delta} \circ ilde{\pi}(x) = ilde{\pi} \circ \delta_{\mathscr{B}} \circ (ilde{\pi} \mid \mathscr{B}_F(1-e))^{-1} \circ ilde{\pi}(x) = ilde{\pi} (\delta_{\mathscr{B}}(x(1-e))) \ &= ilde{\pi} (\delta_{\mathscr{A}}(x)(1-e)) = ilde{\pi} \circ \delta_{\mathscr{A}}(x). \end{aligned}$$

When G is compact, put $P_{\gamma} = \int \dim \gamma \operatorname{Tr} \gamma(t)^{-1} \alpha_t dt$ for $\gamma \in \hat{G}$. Then P_{γ} is a projection onto $A^{\alpha}(\gamma)$. By using P_{γ} instead of $\alpha(f)$, we obtain the consequences similarly. Thus we complete the proof of the theorem.

Remark 2. Let E denote the set of $\phi \in \mathscr{A}^*$ such that $t \mapsto \alpha_t^* \phi$ is continuous in norm. Then the polar E° of E in \mathscr{A}^{**} is a σ -weakly closed α^{**} -invariant ideal of \mathscr{A}^{**} , and hence there is a σ -weakly continuous action on the von Neumann algebra \mathscr{A}^{**}/E° induced from α^{**} , and \mathscr{A} may be imbedded in \mathscr{A}^{**}/E° . By Theorem 1 we obtain a *-derivation in \mathscr{A}^{**}/E° extending δ , as in Theorem 1. However, directly it can be obtained; clearly existence of such a *-derivation in \mathscr{A}^{**}/E° implies Theorem 1. Indeed, for any compact subset K of \hat{G} , $\delta | \mathscr{A}^{\alpha}(K)$ is $\sigma(\mathscr{A}, E)$ -continuous and $E/\mathscr{A}^{\alpha}(K)^\circ \cap E$ is isometrically isomorphic to $\mathscr{A}^*/\mathscr{A}^{\alpha}(K)^\circ$, because for any $\varepsilon > 0$ there is an element $f \in L^1(G)$ such that $\hat{f}(\gamma) = 1$ on some neighbourhood of K, Supp \hat{f} is compact and $||f||_1 \leq 1 + \epsilon$. Consequently there exists a $\sigma(\mathscr{A}^{**}/E^{\circ}, E)$ -continuous extension of $\delta | \mathscr{A}^{\alpha}(K)$ onto the σ -weak closure of $\mathscr{A}^{\alpha}(K)$ in $\mathscr{A}^{**}/E^{\circ}$ with the same norm as it.

The following corollary is an immediate consequence of a series of lemmas in [3] and Theorem 1 because u_t^{ι} and u_s^{ι} as below commute, and generalizes [3, Theorem] and [1, Theorem 3.1].

Corollary 3. Suppose that G is abelian. Suppose that there exist a faithful family (π_i) of representations of \mathscr{A} and a family (α') such that α' is an action of G on $\overline{\pi_i(\mathscr{A})}$, $\alpha'_i \circ \pi_i = \pi_i \circ \alpha_i$ and each α'_i is implemented by a unitary u'_i fixed by α' .

Then δ is closable and its closure is a generator. Furthermore, for any finite measure μ on G with $\hat{\mu}(0) = 0$, the *-derivation δ_{μ} on \mathscr{A}_{F} , defined by

$$\delta_{\mu} = \int \alpha_t \circ \delta \circ \alpha_{-t} \mathrm{d} \mu(t),$$

is bounded and $||\delta_{\mu}|| \leq \inf_{V} ||\delta| \mathscr{A}^{\alpha}(K+V)||||\mu||$, where V runs over all compact neighbourhoods of 0 in \hat{G} .

Proposition 4. Suppose $G = \mathbb{R}$ and let δ_0 and $\tilde{\delta}_0$ be the generators of α and $\tilde{\alpha}$ respectively.

Suppose that $||\delta(x)|| \leq a||x|| + b||\delta_0(x)||$ on \mathscr{A}_F for real numbers $a, b \geq 0$. Then there exists a unique *-derivation $\tilde{\delta}$ in \mathscr{M} defined on $D(\tilde{\delta}_0)$ such that the mapping $(x, \tilde{\delta}_0(x)) \mapsto \tilde{\delta}(x) \ (x \in D(\tilde{\delta}_0))$ is σ -weakly continuous and $||\tilde{\delta}(x)|| \leq a||x|| + b||\tilde{\delta}_0(x)||$ on $D(\tilde{\delta}_0)$.

Proof. Let E be as in Remark 2 and I the polar of E in \mathscr{A}^{**} ; then the canonical extension $\tilde{\pi}$ of π to \mathscr{A}^{**} is contained in the canonical homomorphism of \mathscr{A}^{**} onto \mathscr{A}^{**}/I , and hence we may assume without loss of generality that $\tilde{\pi}$ is the canonical homomorphism of \mathscr{A}^{**} onto $\mathscr{A}^{**}/I = \mathscr{M}$. Since $\tilde{\pi} | \mathscr{B}$ is isometric, where \mathscr{B} is the C*-subalgebra of \mathscr{A}^{**} in the proof of Theorem 1, we may regard as $\mathscr{B} \subset \mathscr{M}$. Let p denote the central projection such that $I = \mathscr{A}^{**}p$.

Identify δ_0 with the subalgebra $\left\{ \begin{pmatrix} x & \delta_0(x) \\ 0 & x \end{pmatrix} | x \in D(\delta_0) \right\}$ of $\mathscr{A} \otimes M_2$, where M_2 denotes the 2×2 matrix algebra, and equip it with the norm defined by $||x|| = a||x|| + b||\delta_0(x)||$. Then the second dual δ_0^{**} of δ_0 can be identified with the σ -weak closure of δ_0 in $\mathscr{A}^{**} \otimes M_2$, and so is an algebra.

First we shall show that

$$\left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} | x \in \mathscr{A}^{**} \right\} \frown \delta_0^{**} = \left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} | x \in I \right\}$$

and

$$\left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} | x \in I, y \in I \right\} \frown \delta_0^{**} = \left\{ \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} | y \in I \right\}.$$

If $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \in \delta_0^{**}$, then $(1-\delta_0)^{-1**}x = 0$, and hence $x \in I$, because $\tilde{\pi} \circ (1-\delta_0)^{-1**} = (1-\tilde{\delta}_0)^{-1} \circ \tilde{\pi}$. Since $(1-\delta_0)^{-1*}\phi = \int_0^\infty e^{-i}\alpha_i^*\phi \, dt \in E$ for all $\phi \in A^*$, we have for any $x \in I$ and $\phi \in \mathscr{A}^*$

$$\langle (1-\delta_0)^{-1**}x, \phi \rangle = \langle x, (1-\delta_0)^{-1*}\phi \rangle = 0,$$

and hence $(1-\delta_0)^{-1**}x=0$ and $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \in \delta_0^{**}$. We have thus $\begin{pmatrix} 0 & \mathscr{A}^{**} \\ 0 & 0 \end{pmatrix}$ $\frown \delta_0^{**} = \begin{pmatrix} 0 & I \\ 0 & 0 \end{pmatrix}$. If $x, y \in I$ and $\begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \in \delta_0^{**}$, then $x = (1-\delta_0)^{-1**}(x-y)$. Since $x-y \in I$, we have x=0. Thus we have $\begin{pmatrix} I & I \\ 0 & I \end{pmatrix} \frown \delta_0^{**} = \begin{pmatrix} 0 & I \\ 0 & 0 \end{pmatrix}$.

Second we shall show that the σ -weakly closed subalgebra $\left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \in \delta_0^{**} | yp = 0 \right\}$ of $\mathscr{A}^{**} \otimes M_2$, denoted by \mathcal{A} , is σ -weakly homeomorphic to $\tilde{\delta}_0$ as a σ -weakly closed subalgebra of $\mathscr{M} \otimes M_2$ under $\tilde{\pi} \otimes id$. By $\begin{pmatrix} I & I \\ 0 & I \end{pmatrix}$ $\cap \delta_0^{**} = \begin{pmatrix} 0 & I \\ 0 & 0 \end{pmatrix}$, $\tilde{\pi} \otimes id | \mathcal{A}$ is injective. For $x \in D(\tilde{\delta}_0)$ there is a bounded filter \mathscr{F} on $\delta_0 \sigma$ -weakly converging to $\begin{pmatrix} x & \tilde{\delta}_0(x) \\ 0 & x \end{pmatrix}$, because of the boundedness of $(1 - \tilde{\delta}_0)^{-1}$ and the Kaplansky's density theorem. Since $\begin{pmatrix} y & \delta_0(y) & (1-p) \\ 0 & y \end{pmatrix} \in \mathcal{A}$ for $y \in D(\delta_0)$, $(\tilde{\pi} \otimes id | \mathcal{A})^{-1} \mathscr{F}$ is a bounded filter base on \mathcal{A} , and hence it has a cluster point $z \in \mathcal{A}$. Since $\tilde{\pi} \otimes id$ is σ -weakly continuous, $(\tilde{\pi} \otimes id) z$ is a cluster point of \mathscr{F} and so $\begin{pmatrix} x & \tilde{\delta}_0(x) \\ 0 & x \end{pmatrix} = (\tilde{\pi} \otimes id) z$. Thus $(\tilde{\pi} \otimes id) \mathcal{A} = \tilde{\delta}_0$. Since \mathcal{A} and $\tilde{\delta}_0$ have preduals, $\tilde{\pi} \otimes id | \mathcal{A}$ is a homeomorphism.

Now, consider δ as a linear mapping from δ_0 into \mathscr{A} with the norm smaller than 1; then its second adjoint δ^{**} is a σ -weakly continuous linear mapping from δ_0^{**} into A^{**} with the norm smaller than 1 such that

DERIVATIONS IN COVARIANT REPRESENTATIONS

$$\delta^{**}\left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \begin{pmatrix} z & w \\ 0 & z \end{pmatrix} \right\} = \delta^{**}\left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \right\} z + x \delta^{**}\left\{ \begin{pmatrix} z & w \\ 0 & z \end{pmatrix} \right\}$$

if $\begin{pmatrix} x & y \\ 0 & x \end{pmatrix}$, $\begin{pmatrix} z & w \\ 0 & z \end{pmatrix} \in \delta_0^{**}$. Therefore we have for $x \in D(\delta_0)$ and $y \in I$ $\delta^{**}\left\{\begin{pmatrix} 0 & xy \\ 0 & 0 \end{pmatrix}\right\} = \delta^{**}\left\{\begin{pmatrix} x & \delta_0(x) \\ 0 & x \end{pmatrix}\begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}\right\} = x\delta^{**}\left\{\begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}\right\}.$

Tending x to p, $\delta^{**}\left\{\begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}\right\} = p\delta^{**}\left\{\begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}\right\} \in I$ for all $y \in I$. Define $\tilde{\delta}$ by

$$\tilde{\delta}(x) = \tilde{\pi} \circ \delta^{**} \circ (\tilde{\pi} \otimes id | \mathcal{\Delta})^{-1} \left\{ \begin{pmatrix} x & \tilde{\delta}_0(x) \\ 0 & x \end{pmatrix} \right\}, \ x \in \mathcal{D}(\tilde{\delta}_0);$$

then $\tilde{\delta}$ is a *-derivation in \mathscr{M} and the mapping $(x, \tilde{\delta}_0(x)) \mapsto \tilde{\delta}(x)$ is σ -weakly continuous. Moreover

and

$$\begin{split} ||\tilde{\delta}(x)|| &\leq ||\pi|| ||\delta^{**}||||(\tilde{\pi} \otimes id |\mathcal{\Delta})^{-1} \left\{ \begin{pmatrix} x & \tilde{\delta}_0(x) \\ 0 & x \end{pmatrix} \right\} ||\\ &\leq ||\binom{x & \tilde{\delta}_0(x) (1-p)}{x}|| \leq a ||x|| + b ||\tilde{\delta}_0(x)||, \ x \in \mathscr{B}_F = \mathscr{M}_F. \end{split}$$

Let (f_i) be an approximate identity of $L^1(\mathbb{R})$ with Supp f_i compact. We have then for any $x \in D(\tilde{\delta}_0)$

$$egin{aligned} &|| ilde{lpha}(ilde{a}(f_\iota)(x))|| \leq a || ilde{lpha}(f_\iota)(x)|| + b || ilde{\delta}_0(ilde{lpha}(f_\iota)(x))|| \ &= a || ilde{lpha}(f_\iota)(x)|| + b || ilde{lpha}(f_\iota)(ilde{\delta}_0(x))|| \ &\leq a ||x|| + b || ilde{\delta}_0(x)||. \end{aligned}$$

Since $x = \lim_{i} \tilde{\alpha}(f_{\iota})(x)$ and $\tilde{\delta}_{0}(x) = \lim_{i} \tilde{\delta}_{0}(\tilde{\alpha}(f_{\iota})(x)), \ \tilde{\delta}(x) = \lim_{i} \tilde{\delta}(\tilde{\alpha}(f_{\iota})(x))$ (x)) and hence $||\tilde{\delta}(x)|| \leq a||x|| + b||\tilde{\delta}_{0}(x)||$. Thus $\tilde{\delta}$ is as desired.

We do not know whether δ and δ in Theorem 1 are normclosable and σ -weakly closable, respectively. However we obtain the following:

Lemma 5. Suppose that G is abelian. Let $\tilde{\delta}$ be as in Theorem 1.

AKIO IKUNISHI

For a finite measure μ on G with Supp $\hat{\mu}$ compact, we put $\delta_{\mu} = \int \alpha_t \circ \delta \circ \alpha_{-t}$ $\mathrm{d}\mu(t)$ and $\tilde{\delta}_{\mu} = \int \alpha_t \circ \tilde{\delta} \circ \alpha_{-t} \mathrm{d}\mu(t)$. Then δ_{μ} is norm-closable and $\tilde{\delta}_{\mu}$ is σ -weakly closable.

Proof. It suffices to show that δ_{μ} is σ -weakly closable in $\mathscr{A}^{**}/E^{\circ}$, or equivalently that the domain of the adjoint of δ_{μ} in E is dense in norm, where E is the norm-closed subspace of \mathscr{A}^* in Remark 2.

For any $f \in L^1(G)$ with Supp \hat{f} compact, we have

$$\alpha(f) \circ \delta_{\mu} = \int ds \alpha_{s} \circ \delta \circ \int d\mu(t) f(s-t) \alpha_{-t}, ||\alpha(f) \circ \delta_{\mu}|| \leq ||\mu||||f||_{1} ||\delta| \mathscr{A}^{\alpha}(\operatorname{Supp} \widehat{f} - \operatorname{Supp} \widehat{\mu})||,$$

and

$$\alpha(f) \circ \delta_{\mu} \circ \alpha_t = \alpha(f(\cdot - t)) \circ \delta_{\mu(\cdot + t)}$$

Consequently the domain of the adjoint of δ_{μ} in E contains $\phi \circ \alpha(f)$ for any $\phi \in E$ and $f \in L^1(G)$ with Supp \hat{f} compact, and so is dense in Ε.

Proposition 6. Suppose $G = \mathbb{R}$, and let δ_0 and $\tilde{\delta}_0$ be the generators of α and $\tilde{\alpha}$ respectively. Let ϕ be an α -invariant state of A and (π, H, ξ) the α -covariant representation associated with ϕ .

Suppose that there exists a directed family $(u')_{i \in I}$ of unitary representations of G satisfying the following four conditions:

- (i) $u_t \in D(\tilde{\delta}_0)$ for any $t \in I$ and $t \in G$;
- (ii) $\lim ||Ad u_t^{t}(x) \tilde{\alpha}_t(x)|| = 0$ for any $x \in \pi(\mathcal{A})$ and $t \in G$;
- (iii) $\sup_{\substack{\iota,t\\(iv) \ \lim \ ||\omega_{\xi} \circ \operatorname{Ad} u_{t}^{\iota} \omega_{\xi}|| = 0 \text{ for any } t \in G,}$

where Ad $u_t^{\iota}(x) = u_t^{\iota} x u_t^{\iota *}$ and $\omega_{\xi}(x) = (x \xi | \xi)$ for $x \in \mathcal{M}$.

Furthermore, suppose that δ is relatively bounded with respect to δ_0 .

Then there exists a self-adjoint element $h \in \mathscr{M}$ such that $ilde{\delta} - \delta_{ih}$ commutes with $\tilde{\alpha}$, where $\delta_{ih}(x) = i[h, x]$ for $x \in \mathcal{M}$. Moreover $\tilde{\delta} \mid \pi(\mathcal{A})$ is norm-closable and σ -weakly closable, and its closures are generators in $\pi(\mathcal{A})$ and *M* respectively.

Proof. Let f be an element of $L^1(G)$ with Supp \hat{f} compact. Then, by Lemma 5 and Proposition 4, $\tilde{\delta}_f$ is σ -weakly closable and its closure

 $ilde{\delta}_f$ is relatively bounded with respect to $ilde{\delta}_0$, and hence $\sup_{t} || ilde{\delta}_f(u_t^t)|| \leq 1$ $c||f||_1$ for some positive number c. Therefore, by [1, Lemma 3.5], there exists a family $(h'_f)_i$ of self-adjoint elements in $\overline{co} \{ \tilde{\delta}_f(u'_i) u'^*_i | i \in G \}$ such that $\overline{\delta}_f(u_t^{\iota}) = i[h_f^{\iota}, u_t^{\iota}]$ for any $\iota \in I$ and $t \in G$, and $\sup ||h_f^{\iota}|| \leq c ||f||_1$. Hence $\overline{\delta}_{f} - \delta_{ih'_{c}}$ commutes with Ad u'_{t} , that is, for any $x \in \mathcal{M}_{F}$ (*) $\overline{\delta}_{f}(\operatorname{Ad} u_{t}^{\iota}(x)) = \operatorname{Ad} u_{t}^{\iota}((\overline{\delta}_{f} - \delta_{ih_{f}^{\iota}})(x)) + \delta_{ih_{f}^{\iota}}(\operatorname{Ad} u_{t}^{\iota}(x)).$

On the other hand, it follows that $\lim_{t \to a_t} ||\psi \circ (\operatorname{Ad} u_t^{\iota} - \tilde{\alpha}_t)|| = 0$ for $\psi \in \mathcal{M}_*$ and $t \in G$, and hence (Ad $u_t^{\iota}(x)$), σ -strongly converges to $\tilde{\alpha}_t(x)$ for any $x \in \mathcal{M}$. Indeed, for any $x \in \mathcal{M}$ and any $y, z \in \pi(\mathcal{A})$,

$$\begin{aligned} &|\omega_{y\xi,z\xi}(\operatorname{Ad} \ u_{t}^{t}(x) - \tilde{\alpha}_{t}(x))| \\ &\leq |\omega_{\xi}(\operatorname{Ad} \ u_{t}^{t}(\operatorname{Ad} \ u_{-t}^{t}(z^{*}) x \operatorname{Ad} \ u_{-t}^{t}(y) - \tilde{\alpha}_{-t}(z^{*}) x \tilde{\alpha}_{-t}(y)))| \\ &+ |\omega_{\xi}((\operatorname{Ad} \ u_{t}^{t} - \tilde{\alpha}_{t}) (\tilde{\alpha}_{-t}(z^{*}) x \tilde{\alpha}_{-t}(y)))| \\ &\leq (||\operatorname{Ad} \ u_{-t}^{t}(z^{*}) - \tilde{\alpha}_{-t}(z^{*})||||y|| + ||z^{*}||||\operatorname{Ad} \ u_{-t}^{t}(y) - \tilde{\alpha}_{-t}(y)|| \\ &+ ||\omega_{\xi} \circ \operatorname{Ad} \ u_{t}^{t} - \omega_{\xi}||||z^{*}||||y||)||x||, \end{aligned}$$

and hence by (ii) and (iv) we have $\lim ||\omega_{y\xi,z\xi}\circ (\operatorname{Ad} u_t^{\iota}-\tilde{\alpha}_t)||=0.$ Since $\{\omega_{y_{\xi,z_{\xi}}}|y, z \in \pi(\mathscr{A})\}$ is total in \mathscr{M}_{*} , $\lim_{t \to \infty} ||\phi \circ (\operatorname{Ad} u_{t}^{t} - \tilde{\alpha}_{t})|| = 0$ for any $\phi \in \mathcal{M}_*$.

Thus, taking a cluster point h_f of $(h_f^{\iota})_{\iota}$, $\tilde{\alpha}_t((\bar{\delta}_f - \delta_{ih_f})(x)) +$ $\delta_{ih_f}(\tilde{\alpha}_t(x))$ is a cluster point of the right hand side of the equality (*). Therefore it follows from the σ -weak closability of $\tilde{\delta}_f$ that $\tilde{\delta}_f - \delta_{i_{hf}}$ commutes with $\tilde{\alpha}$.

Put $f_{\varepsilon}(t) = \varepsilon^{-1} f(\varepsilon^{-1}t)$ for $\varepsilon > 0$. If $\int f dt = 1$, then $(\tilde{\delta}_{f_{\varepsilon}}(x)) \sigma$ -weakly converges to $\tilde{\delta}(x)$ as $\varepsilon \to 0$ for any $x \in \mathcal{M}_F$, because the function $t \mapsto$ $\tilde{\alpha}_t \circ \tilde{\delta} \circ \tilde{\alpha}_{-t}(x)$ is σ -weakly continuous and bounded in virtue of Theorem 1. Taking again a cluster point h of (h_{f_c}) , we conclude that $\tilde{\delta} - \delta_{ih}$ commutes with $\tilde{\alpha}$. Then the remaining consequences follow from a series of lemmas in [3].

Remarks 7. (1) In Quantum statistical mechanics, condition (ii) is fulfilled for models with bounded surface energy. If $u_t^{\iota} = e^{ith_{\iota}}$, $ilde{\delta}_0(u_t^{\iota}) = \delta_{ik_{\iota}}(u_t^{\iota})$ and $\sup ||k_{\iota} - h_{\iota}|| < +\infty$, then

$$\sup ||\tilde{\delta}_0(u_t^{\prime})|| = \sup ||\delta_{i(k_{\iota}-h_{\iota})}(u_t^{\prime})|| \leq 2 \sup ||k_{\iota}-h_{\iota}|| < +\infty.$$

(2) If ϕ is an α -KMS state at $\beta \in \mathbb{R} \setminus \{0\}$ and $u_i^t \in \mathscr{M}^{\alpha}$, then ω_{ξ} is invariant under Ad u'_i . In this case δ need not be relatively bounded with respect to δ_0 to get the conclusion.

(3) For a general locally compact abelian group G, if (i) and (iii) are replaced by $u_t^{\epsilon} \in \mathcal{M}_F$ and $\sup_{\iota,s,\iota} ||\tilde{\delta}(\tilde{\alpha}_s(u_t^{\epsilon}))|| < +\infty$, in particular, by $u_t^{\epsilon} \in \mathcal{M}^{\tilde{\alpha}}$, then the consequences in Proposition 6 remain valid.

In the same way as the proof of the above proposition, for any $f \in L^1(G)$ with Supp \hat{f} compact there exists a self-adjoint element h_f of \mathscr{M} such that $\tilde{\delta}_f - \delta_{ih_f}$ commutes with $\tilde{\alpha}$. Since the set of such f is dense in $L^1(G)$, this remains valid for any $f \in L^1(G)$. Since there is a directed family (f_{κ}) such that $||f_{\kappa}||_1 \leq 1$ and $g(0) = \lim_{\kappa} \int f_{\kappa}gdt$ for any bounded continuous function g on G, it follows that $\tilde{\delta} - \delta_{ih}$ commutes with $\tilde{\alpha}$ for some self-adjoint element h of \mathscr{M} .

References

- Batty, C. J. K. and Kishimoto, A., Derivations and one-parameter groups of C*dynamical systems, J. London Math. Soc., to appear.
- [2] Ikunishi, A., Ground states and small perturbations for C*-dynamical systems, Proc. Amer. Math. Soc., 96 (1986), to appear.
- [3] Kishimoto, A., Derivations with a domain condition, Yokohama Math. J., 32 (1984), 215-223.
- [4] Longo, R., Automatic relative boundedness of derivations in C*-algebras, J. Funct. Anal., 34 (1979), 21-28.