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On Lie Algebras of Vector Fields
on Smooth Orbifolds

By

KOJUN ABE*

§0. Introduction

In the previous paper [1], we studied Pursell-Shanks type theorem
for orbit spaces of G-manifolds. The purpose of this paper is to
prove that this still holds for smooth orbifolds and for fibrations over
smooth orbifolds with compact generic fibre.

Let B and B’ be connected smooth orbifolds. Let ©(B) (resp.
X(B)) be the Lie algebra of all smooth vector fields (resp. strata
preserving smooth vector fields) on B with compact support.

Theorem 0.1. The following statements are equivalent.
(1) There exists a Lie algebra isomorphism @:D(B)—>D(B).
(2) There exists a Lie algebra isomorphism @:%(B) ->X(B’).
(3) There exisis a diffeomorphism o:B—B’.

E admits a natural orbifold structure. Let p:E—>B(resp. p":E’—B’)
be a fibration over B (resp. B’) with generic fibre F (resp. F), a
connected closed smooth manifold. Let D(E;p) (resp. X(E:p)) be the
subalgebra of ®D(E) (resp. X(£)) consisting of fibration preserving
vector fields (see §1). Using Theorem 0.1, we prove the following.

Theorem 0.2. The following statements are equivalent.
(1) There exists a Lie algebra isomorphism @:D(E;p)—>D(E;p’).
(2) There exists a Lie algebra isomorphism @:X(E;p) =X (E';p").
(3) There exists a fibration preserving diffeomorphism o:E—E’.
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Theorem 0.1 is a special case of Theorem 0.2, but we prove
Theorem 0.2 by using Theorem 0.1. Theorem 0.2 was proved by
Omori [6] for the case that £ and E’ are smooth fibre bundles.

The paper is organized as follows. In §1 we define smooth vector
fields on smooth orbifolds and on fibrations over smooth orbifolds. § 2
is devoted to preliminaries. In §3 and §4 we determine the maximal
ideals of X(B), X(E;p) and some subalgebras of X(E;p). In §5 we
prove that Theorem 0.2 (2) implies (3). In §6 and § 7 we determine
the maximal ideals of ©(B) and D (E;p), and prove Theorem 0.1 and
Theorem 0. 2.

The author would like to thank the referee for reading the paper
in detail and giving him valuable suggestions.

§1. Definitions

In this section we shall define smooth vector fields on smooth
orbifolds and fibrations over smooth orbifolds.

Definition 1.1 (See Satake [7] and Thurston [10])

A paracompact Hausdorff space M is called a smooth orbifold
if there exists an open covering {U;} of M, closed under (finite
intersections, satisfying the following conditions.

(1) For each U, there are a finite group I';, a smooth action
of I'; on an open set U, of R* and a homeomorphism ¢;:U;—
U,/rT..

(2) Whenever U;CU,, there is a smooth embedding ¢;;:U;—U;
such that the following diagram commutes:

U, #ij > U;
U./T; U,/T;
ot l e

Uc >Uj;

Remark. We can choose the finite group I'; such that the action
I';xU,—U, is effective, and then there is a unique injective group
homomorphism f;;:I';—I"; such that ¢;; is equivariant with respect
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to fi;.

Two coverings give rise to the same orbifold structure if they
can be combined consistently to give a larger cover still satisfying the
conditions.

Let F be a smooth manifold. A paracompact Hausdorfl space E
with a continuous map p:E—M is called a smooth fibrations over a
smooth orbifold M with generic fibre F if the following conditions
are satisfied.

(1) For each U, there exists a smooth [';-action on F such that
Y (U;) =U; X F/I'; and the following diagram commutes:

U;x F—p~™(U,)
y !
Uu, — U;

(2) Whenever U;CU;,, the reexists a smooth embedding gb,-,-:U',-X

F—U;XF such that the following diagram commutes:

OxF 29, ,xF
R 4
U;XF/I'; U;XF/T';
Il Il
pHU) = p7H(U)

Definition 1.2 (See [1],81) Let M be a smooth orbifold given
in Definition 1.1, A function f:M—R is said to be smooth if the
composition [7‘-—>[7,-/F,-=U,-—f—>R is smooth for any U; Let C*(M)
denote the algebra of all smooth functions on M. As in [1], §1 for
any b& M we can define a tangent space 7,(M). We define a smooth
vector field on M to be a real linear derivation on C=(M). Let
D(M) be the Lie algebra of all smooth vector fields on M with
compact support. A smooth vector field X on M is called strata
preserving if X preserves the ideals in C*(M) of smooth functions
which vanish on the strata of U,=U,/I'; for any U,(cf. [10], §2).
Let X(M) denote the Lie algebra of strata preserving vector fields on
M with compact support.

Let p: E—>M be a smooth fibration over a smooth orbifold M with
generic fibre F. Then E has a natural smooth orbifold structure.
Let XeX(E). X is said to be fibration preserving if (dp),,l(Xel) =

(dp).,(X,) for any bEM and ey, e,Ep~1(5). Let X(E;p) ={XSX(E); X
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is fibration preserving}. Let p’:E’—M’ be another smooth fibration
over a smooth orbifold M’ with generic fibre F'. We say a map
0:E—E’ is smooth if foe=(C~(E) for any feC~(E’), and ¢ is
diffeomorphic if ¢ and ¢7" are smooth. For a diffeomorphism ¢:E—E’,
let 04:X(E)>X(E’) be a Lie algebra isomorphism defined by o4 (X)
(f) (&) =X(foo) (67 (e)) for XX (E), f€C~(E"), ¢ecE’.

§2. Preliminaries

Let I" be a finite group and let I'xU—U be a smooth action
on an open set U of R". Let U=U/I" be the orbit space of U and
z: U—U the natural projection. In this section, we shall consider that
p:E—U is a smooth fibration with generic fibre F, a closed connected
smooth m-manifold, and E=UXF/I". Let %;(U) be the Lie algebra
of all [-invariant smooth vector fields on U with compact support.
Let E=UxF. Let =:E—E and j:E—U be the natural projections.

Lemma 2.1. The induced map Zy: %r(U)—%(U) is a Lie algebra
tsomorphism.

Proof. By Bierstone [2] and Schwarz [8], %4« is epimorphic. For
ac U, the isotropy subgroup I, at a acts on the tangent space 7,(0).

Let TG(U)F“ denote the set of I',-invaraint vectors of 7,(UJ). Let
XeX%r(0) such that #4(X)=0. Then X,cr,(0)"* for any acU.
Since (dr),:7,(U) -7, (U) is monomorphic on 7, (0) F", we have X,=0,
and this completes the proof of Lemma 2. 1.

Let %7(E;f) = {X€%,(E); X is fibration preserving}.

Lemma 2.2. The induced map #y: % (E;f) —>%(E;p) is a Lie algebra
isomorphism.

Proof. By Lemma 2.1, the map #4 is monomorphic. Let XX
(E;p). By Lemma 2.1, there exists a vector field YeX:(E) such
that #,(Y) =X. We shall prove that Y is fibration preserving. Let
&, &<F such that p(&) =p@&) =belU. Let b=n(b) and e¢;=%(&;) for
i=1,2. Then (dm);((dp),,(Y,))=(dp),,(X,) for i=1,2. Since X is
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fibration preserving, (dr);((dp) 5 (Ye)) = (dr) 5 ((dp) 5 (Y2)). Note that,
if I'; is a principal isotopy group, then (dn);:r;(ﬁ')r”-ﬁr,,(U) is
isomorphic, and (df), (Y;) =(dh),,(Y,). Since the set of principal
orbits of U is open dense in U, we see that Y is fibration preserving.
This completes the proof of Lemma 2. 2.

For ek, let (ViXiyeeey Xy D1s+++59m) be a local coordinate at &
such that (x,,...,x,) is a local coordinate of R" and (Jy1,...,%,) is
a local coordinate of the fibre . We can assume that V is a [~
invariant neighborhood of & Then we see that each X€& EF(E 0]
is described on ¥V as follows;

=¥ 0
X—,‘;l a,-(xl,... ,xn)a—xi
9
P;

where a; and b; are smooth functions on V.

+ 'Z:l bj(xh e !xm_yly LRC ,_ym)
i=

Lemma 2.3. If X€X:(E;f) satisfies (df),X,#0, then there exisis
a local coordinate (Wixy, .., %4915+« s0m) at & such that
(1)  (x1y+..,%,) is a local coordinate of U satisfying x;(&) =x;(&) for
beU and &, e,cp (b)) NW.
(2) x is a I';-invariant smooth function on W such that X :aix, .

B) (yyeeeyYm) is a local coordinate of the fibre F.

Proof. We can prove by easy computations.

Lemma 2.4. Let X%, (E;p) satisfying (df),X,#0. Then for any
YEX(E;p) with supp(Y) CW, there are a neighborhood W CW of &
and a vector field ZE X (E;f) such that [X,Z]=Y on W, where W is
a neighborhood of & as in Lemma 2. 3.

Proof. Let (Wix1, ..o, Xud15-++,0,) be a local coordinate at & as

Lemma 2.3. Let Y= i‘ a; (X1, oo, xﬂ)%—f— i‘ bi(X1y vy Xgy Visevos V)
i=1 ; i=1
0

on W. Put Zi= 5" aiGose x5+ S 56, m,
0 i=1 J—oo Ox ji=1 J—o

j i

Then Z, is a fibration preserving I';-invariant smooth

0
o ,_ym) dxl) ay] .



470 Kojun ABE

vector field on W. By using a I'-invariant partition of unity on £,
we can extend Z; to a ['-invariant smooth vector field on E with
compact support such that Z=Z, on a neighborhood W,CW of é.
Obviously, [X,Z]=Y on W, and this completes the proof of Lemma
2. 4.

Lemma 2.5. (cf. Omori [6], 10.7.1) If X satisfies X,#0 and
(dp) X, =0, then there exists a local coordinate (Wixiy ..., XusD1ye+esVm)
such that (y1,...,9s) is a local coordinate of the fibre F and

n 0 0
X:Z a; (1,0 ,xn)a—"l‘T
i=1 X V1

where the origin of the coordinate corresponds to the point é.

with a;(0,...,0) =0,

Moreover,

the coordinate can be chosen such that y, is I',~invariant.

Poof. We can show by easy computations.

§3. Maximal Ideals of X¥(B) and X(E;p)

Let B be a connected smooth orbifold. Let p:E—B be a fibration
over B with generic fibre F, a connected closed manifold. In this
section we shall determine the maximal ideals of X(Z;p).

Let G,(B) ={X=X%(B); X=0 on a neighborhood of & for b= B}.

Lemma 3.1 (cf. Koriyama, Maeda, Omori [4], Lemma 4.3) Let
M be a maximal ideal of %(B) such that MD[X(B), £(B)]. Then
there exists a unique point b B such that M>S,(B).

Proof. We give a metric on B. Let () ={X=X(B);X=0 on
an e-neighborhood of 4}. Assume that I+, (e) =¥ (B) for any b= B.
As in the proof of Koriyama, Maeda and Omori [4], Lemma 4.1, we
can prove that MoO[X(B), £(B)], contradicting the assumption for
M. Thus there exists a point b€ B with MG, (e).

Let A.={h€B;®,() cM}. It is easy to see that, if >4, then

A.Dcl(4;) (the closure of A). Then there exists b4, and we see
>0

that Mo G,(B). If b+#b’, then we can prove that G,(B) +G, (B)
=%X(B). Therefore such a point b must be unique and this completes
the proof of Lemma 3. 1.
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Let By={=B;X;=0 for any X&X(B)} and let B;=B—B,. From
[1], Lemma 3.9 and Proposition 3.10 we have the following.

Proposition 3.2. (1) For any point bEB,, there exists a unique
maximal ideal J(b) such that F(b) DG, (B), F®) D[X(B), X(B)] and
codim F(b) =oo.

(2) Let M be a maximal ideal of %(B) such that M>DS,(B) for
beB,. Then codim Moo,

Let B* be the space of all maximal ideals I of £(B) such that
MH[X(B), £(B)], with Stone topology (see [1], Definition 4.1).
Using Lemma 3.1, we define a map 7:B*—B such that #(M) =5 if
MoO®,(B). Let B} ={Me B*;codim M =00}.

From [l], Lemma 4.2 we have the following.

Proposition 3.3. 7:B}—B; is homeomorphic.

Let G,(E;p) ={XX(E;p); X=0 on a neighborhood of ¢ for e E}.
Then we have the following useful lemma.

Lemma 3.4. Let W be a subalgebra of X(E;p) such that fXEU for
any f€C=(E) and X€UN (Ker py). Let M be a maximal ideal of U
such that MDA, AT and p (M) =p(N). Then there exists a unique
point e E such that MO, (NA), where S, (A) =G, (E;p) NA.

Proof. Suppose that A=IM+S,(e;A) for any e=E, where G, (e; %)
={X&¥;X=0 on an ¢-neighborhood of ¢}. For any vector field X,
there exists a vector field YEM such that Z=X—-Ye&Ker py. For
each positive number ¢>0, Z can be written as finite sums Z=},7;
such that Z,€¥%N (Ker px) and diam (supp Z;)<e. Then as in the
proof of Koriyama, Maede and Omori [4], Lemma 4.1, [N (Ker py),
AN (Ker px)] is contained in M. Then [U,A] is contained in M,
contradicting the assumption for IR. Therefore there exists a point
e€E such that MDOG,(e;A). As in the proof of Lemma 3.1, there

exists a unique point e€E such that IMOS,(c;¥A), and Lemma 3.4
follows.
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Let Fo=p7'(d) for b=B, Put F;,={cF;;X,=0 for any XX
(E;p)} and put Fy =F,—F;,. Let X:(E;p) = {XEX(E;p); px(X) =0}.
For bEB,, ¢ F;, put J(e) ={X€X(E;p); ((@dY,)... (ad Y;) X),=0 for
any Y,€X:(E;p) and any integer £=0}, where (ad Y) (Z2) =[Y, Z]
for Y, Z€X(E;p).

Lemma 3.5. If bEB, and eEF, 1, then §(e) is an infinite codimen-
sional maximal ideal of X(E;p). Moreover 3(e) is a unique maximal
ideal containing &,(E;p), and J(e) D[Xr(E;p), Xr(E;p)].

Proof. There exist a finite group I', a smooth action of I' on
an open set U of R* such that U/I'=U is a neighborhood of b, and
there exists a smooth I'-action on the fibre F such that p7'(U) =
UXF/I". Put Ey=UxF/I" and Ey=UXxF. Let #:Ey—>FEy and §:Ey,
—U be the projections. By Lemma 2.2 #4:%r(Ey;f) =% (Ey;p) is a
Lie algebra isomorphism. Let & be a point of Ey such that z(&) =e,
and let (&) = (X€ X, (Fy; §); ((ad Yy). .. (ad Y) X), =0 for any Y, € %, »
(Ey; p) and any integer £=0}. Note that Xr(Fy; p) can be identified
with %(0) X%RF(E'U;ﬁ) as an R-algebra, where Xrr(Ey; p) ={XE %,
(Ey; p) ; pxX=0}. By easy computations we can see that (@) is an
ideal of %p(Eu;ﬁ). Since #71(J(e) N X (Ey;p)) 2«&5(6), J(e) is an ideal
of X(E;p).

Let I be a maximal ideal containing &,(E;p). Assume that there
exists a vector field X with X,#0. There exists X& %, (Ey;p)
such that 7 (X) =X on a neighborhood V of e. Since bEB,, (df),X,
=0. By Lemma 2.5, there exists a local coordinate (W;xy,..., %,
Yiyee«sVm) around e such that (p1,...,%,.) 1is a local coordinate for

a fibre F and X=3a,(xy,. .., %) 2+ with 4;(0,. .., 0) =0, where
i=1 3x,- 3}’1

the origin of the coordinate corresponds to the point & There is a

vector fields Xlexp,F(EU;ﬁ) such that Xlzyl—a% on a neighborhood
1

W,CW or & Note that X,=[X, Xﬂ:-% on Wy Put X,—[X,%,
- 1

(XD]1. Then X,eM. Let YEX(Ey;p) such that supp(Y)CV. Let

YE X%, (Ey; p) such that #,(Y) =Y. As in the proof of Lemma 2.4,

we can prove that there are a neighborhood W; of ¢ and a vector

field Ze %7(Ey;p) such that [X, Z]=Y on W,CW. Put Z=#.(2).
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Then [X,, Z]1€eM and [X, Z]=Y on a neighborhood of e. Since M
contains &,(E;p), M=%(E;p). This is a contradiction. Thus X,=0
for any XM, and we have M=J(¢). Therefore F(¢) is a unique
maximal ideal containing ®,(E;p). There are vector fields Y,E ¥,

(Eyif) (i=0,1,2,...) such that Yizyg-%

1
Put Y;=#%4(Y;). Then Y;&J(e), and J(e) is infinite codimensional.
Since [Y,, Yi1&3(), 3) DLX(E:p), Xp(E;p)]. This completes

the proof of Lemma 3.5.

on a neighborhood of é.

Let 5B, and ¢e=F,,. Let U=U/I" be a neighborhood of & as
in §2. For X€X%(E;p), there is YEX (U X F;f) such that #,(Y) =X
on a neighborhood W of ¢, where #:UxF—-UXF/I" is the natural
projection.

Choose a point e UxF with #(&) =e¢. Let Jj:(Y) denote the l-jet
of Y at & Note that ji(Y) defines an element of g[pé(rE(U'XF)),
where gfpg (z,(UX F)) denotes the set of all I",-invariant endmorphism of
the tangent space r,((UXF)) ate. Let Ji{(E;p) = {AEg[fg(re.(UX F);
dp),(A@)) =0 for any ver7,(UXF) with (df),() =0}, where f:U X
F—U is the natural projection. Since Y is fibration preserving, j:(Y)
EJHE;p). Let 1 X(E;p)—J.(E;p) be a map defined by jH(X) =j(Y).

Then it is easy to see the following.

Lemma 3.6. jL:X(E;p)—>J (E;p) is an onto Lie algebra homo-
morphism.

Lemma 3.7. Let M be a maximal ideal of X(E;p) such that py(IM)
=%(B) and MDOS,(E;p) for some point ecF;, with b&B, Then
M= (7)) (8) for some maximal ideal & of J:(E;p), and M is finite

codimensional.

Proof. Assume that j;(IM) =J(E;p). We use the same notations
as in the proof of Lemma 3.8. Take a vector field X9 such
that j2(X) is a unit matrix. There exists YEX,(UXF;f) such that
74 (Y) =X on a neighborhood of ¢. By Sternberg’s linearization theo-
rem [9], there exists a local coordinate (W;z,...,Z,+m) at e such

nt+m a
that Y——i;} z,-a—zi on W.
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Let ZEX(E;p) with j2(Z) =0. There exists Z€ X (UX F;f) such

that #4(Z) =Z on a neighborhood of e. Then j2(Z) =0. Let Z~1=SmAd
0

(exp tY) Zdt, where (Ad(exp tY)Z~),,=(d¢t) ¢?1<")Z~¢t—l<x>’ o, =exp tY (see

Koriyama, Maeda and Omori [5], §1). Z can be written in the form

~ nim a i aa. o
= , i _ _
i;la;(zh...,am) 5z °° W with 3zj(0’°"’0) 0 for i, j=1,...,
" nt+m
n+m. Then Ad(exptY)Z= Zlai (621 v vy e 2 € :Z. on W. Since

0a; .. o .
a—?(o, ...,0) =0, it is clear that S a; (€721, .., 07 2, m) €'dt exists. Hence
i 0

ZIJE X (UxF). We can see that exp s(Ad(exp tY) Z) =g¢,o¢,0¢;, where
¢,=exp sZ. Thus Z is fibration preserving, and Z,€ %, (UX F;f). Note
that [Y, Z]=2, and [X,#4(Z)]=Z on a neighborhood of ¢. Since
I contains G, (E;p), M contains the ideal Ker ji of X(E;p). But
JLHM) =JA(E;p), hence M=%(E;p). This is a contradiction. Thus
JEH(M) must be a proper ideal & of JL(E;p), and M= () 1(R).
Since Ji(E;p) is a finite dimensional Lie algebra, I is finite codimen-
sional. This completes the proof of Lemma 3.7.

Let E* be the space of all maximal ideals I of X(£;p) such that
MD[X(E;p), X(E;p)], with Stone topology. Let Ef = {IMEE*; codim
IM=oco}. Combining Proposition 3.2, Lemmas 3.4, 3.5 and 3.7, we
have the following.

Proposition 3.8. If MeE}, then
(1) M=p3'(M) for some M BE, or
(2) M=[(e) for a point e Fy, with bE B,.

Let E;=B,U (b\B/F,,,l) be a subspace of the disjoint union BUE.
€5y

Using Proposition 3.8 we can define a map 7:Ef—E; as follows.
(1) If M=p31(M) for some M Bf, then (M) =7(M).
(2) If M=J(e) for e€F;, with b&B,, then (M) =e.

Proposition 3.9. <¢:E}—E; is homeomorphic.

Proof. By Proposition 3.8, = is a bijection. It is enough to show
that z(CL(S)) =¢l(z(S)) for any subset S of Ef. Here CL and
¢l are closure operators of Ef and FE), respectively. Assume that
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(M) &cl(z(S)) for some MeCL(S). In the case that (M) =beB,,
we can find X€X(E;p) such that px(X),*0 and X=0 on a neigh-
borhood of ¢l(z(S)). Then we see that X& NgzesRTIM (cf. [1],
§4). Since px (M) =J(B), px(X);=0. This is a contradiction. In
the case that «(IN) =e=F;,(bEB,), we can find XX (E;p) such that
p%(X) =0, X,x0 and X=0 on a neighborgood of z(S§). Then
XE/\ NCM=S(e), and X,=0. This is a contradiction. Therefore
T(CL(S)) is contained in ¢/(z(S)).

If Xe M~ I, then px(X) =0 on z(8§) NBy, so px(X)=0 on

mesnz LBy

cl(z(S) N B;). Hence, for any XEf\ﬁD'é % (X) =0 on cl(z(S) NBy).
Then NI is an ideal of X(E;p) contalned in p*l(g(b)) for any

mes

becl(t(S)M\B;). Similarly, /'\SEDZ is contained in J(¢) for any e<cl
@S Np~*(By)). Thus /\SEIR is contained in N\ I, and = (CL(S))
me

(W El(z(S)
contains ¢/(z(S)). This completes the proof of Proposition 3. 9.

§4. Maximal Ideals of Some Subalgebras of X(E;p)

Let X(B);={XeX(B);X;=0} for b=B, and Wy=pz*(X(B);) be
a subalgebra of X(E;p). For b, b’'EB, let B ={esFy;X,=0 for
Xe¥,) and let £y =F,—F, Let I(),=%NJ(e) and let S,(Ay)
=W NG, (E;p) for ecE. As in the proofs of Lemmas 3.5 and 3.7,
we prove the following lemmas respectively.

Lemma 4.1. If ecE%, for ¥ €B, or b’ =b, J(e), is an infinite
codimensional maximal ideal of W,. Moreover J(e); is a unique maximal
ideal containing &,(Ws).

Lemma 4.2. Let I be a maximal ideal of Wy such that pye (M) =
%(B)y and MDG,(W;) for some e<Fi, with b’ B, or b’ =b. Then M
is finite codimensional.

Let A7 be the set of all maximal ideals I of %A; such that
MD[Us, U] and pye (M) =X (B) 5. Let A*= {IM; M AF for some b= B}.
We give the Stone topology on A*. Combining Lemmas 3. 4, 4.1 and
4,2 we have the following.

Proposition 4.3. If MeAf, then we have the following cases.
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(1)  There exists a point esp(By) such that MDOS, (W), and M=
MNY, Jor some Me E*,

(2) There exists a point e Fy(bEB,) such that MO S, (), and M M
Sor any MEE*,

Using Lemma 3.4, we have a map ¢{:4*—FE such that MDOS,, (A,)
for MeWF. Let Afy={MEAf;codim M=c0 and MEM for any
MEE*} for beB, and Af = (e A*;codim M=oo, p(t(M)) =b} for
beB, Let A{"zb\EJBAi'fl. Setting Elzb:épi,l, we have a bijective map
t:Ar—>E, by Lemma 4.1 and Proposition 4. 3.

Proposition 4.4. The map t:Af—E, is homeomorphic.

Progf. It is enough to show that {(CL(S)) =cl(¢(S)) for any
subset S of Al*, where CL and ¢l are closure operators of Ar and
E, respectively. As in the proof of Proposition 3.9, we see that
t(CL(S)) is contained in ¢l (¢(S)).

Note that, for X X(E;p) and ¢€E, X€J(),. if ((adY)...
(adY) X),=0 for any Y;€X;(E;p) and any integer £=0. Then we
see that "IN = /\)%(e)w)z N () py- Thus ¢l (£(S)) is contained

meS ect(s eccl(t(s))

in £(CL(S)). This completes the proof of Proposition 4. 4.

§5. Theorem 0.2 (2) Implies (3)

Let B and B’ be connected smooth orbifolds without boundary.
Let p:E—B(resp. p':E'—B’) be a fibration over B(resp. B’) with
generic fibre F(resp. F’), a connected closed manifold. Suppose that
there exists a Lie algebra isomorphism @:X(E;p)—>X(E';p’).

Lemma 5.1. Q@(Xp(E:p)) =% (E";p").

Progof. From Proposition 3.9, there exists a homeomorphism ¢:

-1 ,
BiU (\) Fy)~—Ef L ErE BiU(\J Fy). Note that By, B, F,
e 0 e ’0

and F,,; are connected smooth orbifolds. Assume that ¢(B;) =F;/

for some b’EB, Put Uy = {XESX(E;p’); X=0 on p7'(b")}. We

see that n (b)) =X (E;p) and N 7)) =Wy . Let B p={e€E;
EBI

e'EF’b/,l

X.x0 for some X=X(E;p)}. Using the method of the proof of
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[1], Proposition 3.2, we see that E;  is dense in E. As in the proof
of Lemma 3.5, J(¢e) N%Xz(E;p) is an infinite codimensional maximal
ideal of X (E;p) and we see that J(e) N Xz (E;p) D[ X(E;p), Xx(E;p)].
Hence the intersection of all maximal ideals I of Xz(E;p) with
MO[X(Esp), Xe(E;p)] is zero.

Let M’ be a maximal ideal of Ay, o with M D[Nz o, Wrro]. I pL (M)
is a proper ideal of X(B’), then m':@;)-l(iﬁt') for some WM B'*.
If p. (M) =%(B’), then, by Lemma 3.4, there exists a unique point
¢/ E’ such that M DG, (As,) for e p(By) or p’(e') =b’, where
S, Uz 0) =G, (E';p") NWio. Choose a point e;€E’ with p’(e)) EBi.
There exists X' & 0N (Ker py)such that X/ef\:o and X’=0 on a
neighborhood of p'"'(B;). Then X’ is contained in any maximal
ideal of ;. But, for each maximal ideal I’ of A o with I 2 [Uj 0,
Az0], there exists a maximal ideal M of X (E;p) with MD[X(E;p),
X (E;p)] such that @(IM) =M’. Thus the intersection of these maximal
ideals M’ of U;. , must be zero, and this is a contradiction. Therefore
#(By) =B; and we have @(X;(E;p)) =X (E";p’). This completes the
proof of Lemma 5. 1.

Proposition 5.2. [If there exisis a Lie algebra isomorphism @:%(E;
p)—=X(E";p"), then there exists a Lie algebra isomorphism 0:%(B)—>%(B)
and a diffeomorphism G:B—>B’ such that pyo@=0opy and D =ay.

Proof. By Lemma 5.1, the Lie algebra isomorphism @ induces a
Lie algebra isomorphism @:%(B)—>¥(B’). Using a partition of
unity, we can reduce the proof of Proposition 5.2 to the special case
when the orbifolds B and B’ are orbit spaces of representation spaces
of finite groups. Thus Proposition 5.2 follows from Theorem of [1].

We shall use the notations given in §4. From Proposition 5.2,
we have a Lie algebra isomorphism @:%,—%;,; for each beB. By

.. . . t_l A [] A,
Proposition 4. 4, there exists a homeomorphism o Bi—— Ay ——A*

LN Yol

Proposition 5.3. The map o1:E1—E; is extended to a homeomorphism
0:E—E’ such that p’'oca=aop.

Let AE‘={§D€EA£“;§D?CZ§5’C for any EDA?EE*} for beB, and AF ={M
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EA4%;p(t(M)) =b} for b&B, Let A¥={M;MeA; for some b B}.
Let CL and ¢l be the closure operators of A* and E, respectively. To
prove Proposition 5.3, we need the following.

Lemma 5.4. ¢(CL(S)) =cl(t(S)) for any subset S of A*.

Proof. As in the proof of Proposition 3.9, we see that {(CL(S))
is contained in c/(¢(S)). Let e=cl(¢(S)). By the similar argument

to Proposition 4.4, we see that NI is contained in <J(e),, for
mneS

eccl(t($)) NE. Thus cl(¢(8)) NE, is contained in t(CL(S)).
Now assume that j1(%) =/%(%;) for some eccl((S)) NEFL, where
§R=f\s§m, b=p(e). As in the proof of Lemma 3.7, we can prove

that, for any X&%; N (Ker py), there exists YEN such that X=Y on
an open neighborhood W of e. There exists IM&S with (M) eW.
Since M contains &, (W), we have that M=2U;,, where ¢’ =¢ (M) and
b’=p(e’). This is a contradiction. Therefore j;(:) must be a proper
ideal of Ji(%;) for any eEcl(t(S))ﬂﬁ'Z,o(bzp(e)). Hence, for any
ecscl((8)) NFY,, there exists a maximal ideal MECL(S) such that
t(M) =e. This completes the proof of Lemma 5. 4.

Proof of Proposition 5.3. Note that the map ¢:A*—E is surjective.
We define o: E—E’ by o((IM)) =¢'"(P(IM)). First we shall prove
that ¢ is well defined. Note that ¢ =0, on E, by the definition, and
p (@) =a(p(IN))) for any MeEA*. By the same argument as
the proof of [1], Proposition 3.2, we see that F, is discrete in F,
for each b=B. Thus, for any eEE——El, there exists a closed neigh-
borhood D of ¢ in F, such that DNFY,={c}, where b=p(c). Let
Dy=D—{¢} and let Df =tY(D,), D*=¢t"1(D). Since N McCS,(Ay),

meD§
CL(D§) =D*,

Together with Lemma 5.4, we have that ¢/ (o,(Dy)) =¢l(0:(t(D5)))
=l (9(Dg))) =t'(CL(O(D§))) =t' (9(CL(DF))) =t (9(D*)). Since
o1 is homeomorphic, c/(o(Dy)) NF® o consist of a point ¢’. Thus
' (@(D*) NFiE = 1{¢’}. Therefore o is a well defined bijective map.
It is clear by the definition that p’ocg=dop. By Lemma 5.4, o is
homeomorphic, and this completes the proof of Proposition 5. 3.

Lemma 5.5. (Cf. Koriyama, Maeda and Omori [4], Lemma 5. 1).
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Let XeX(E;p) and ecEy, b=p(e). Then X,%x0 if and only if [px(X),
EB)I+IG)=%(B) or [X, W]+I()s=Us.

Proof. From [1], Lemma 5.2, px(X);%0 if and only if [p4(X),
%(B)]—F;ws-(b) =%(B). We assume that p4(X);=0. By the same argu-
ment as the proof of Lemma 3.5, we see that if X,20, then [ X, %]
+3(e)s=%;. Now assume that [X, U]+J(e),=U but X,=0. Let
S@)={Z€W; ((A4dY)Z),=0 for YEX:(E;p)} be a subalgebra of %,.
It is easy to see that [X,Z]€J(e)i for any Z&J(e)). Note that
J(e)! is finite codimensional in .

Let ad X:%—Y; be a map defined by (ad X) (Z)=[X, Z] for
Ze¥,. Then the map ad X induces a map A(X):%/J(e)i—Us/
S(e)3. Since [X, W] +J(e)s=Ws, A(X)4 is epimorphic. Since 4(X)
is an endmorphism of the finite dimensional vector space %,/J(e)i,
A(X) 4 is isomorphic. Let {X} be the equivalence class of X in %/
J(e)t. Then A(X)4{X} =0, hence X&J(e)}. Therefore [X, (U,).]1C
3(e)i, where (Up),={YeE¥Y,;;Y,=0}. This means that A(X)4((¥)./
I(e)1) =0, and (W).=J(e)}. Since (W), 2IJ(e)}, this is a contradiction.
This completes the proof of Lemma 3. 5.

Let X(E;p).={X€X(E;p); X, =0} for each e E. From Propositions
5.2, 5.3 and Lemma 5.5, we have the following.

Proposition 5.6. The Lie algebra isomorphism @:X(E;p)—X(E’;p’")
induces a Lie algebra isomorphism @: % (E;p) ,—~>X(E’;p’) s for each e€E.

Let V be a product I'-module V;XV, of a finite group I' such
that V'={0}, and p,:V—V; the natural projection. Let {n,..., 7}
be a minimal set of homogeneous generators for R[V;]{. Here R[V,]{
is the algebra of I'-invariant polynomials which vanish at 0. Let
{»1,...,7.} be a canonical coordinate of ¥V, such that I" acts orthogo-
nally on this coordinate. We can assume 7, =3+ ---+3%. Let C3(V)
denote the set of all I'-invariant smooth functions on M.

Lemma 5.7. Let g be a I'-invariant continuous function on V such
that 7,gCs (V) for i=1,...,5. Then gis a I'-invariant smooth function.
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Proof. If s=1, by using Taylor expansion, it is easy to prove
that g is a smooth function. We consider the case that s=2. Put
h;=n;g. Then we see that An,=hm. Put G=~mn,. Let T,G be a
formal Taylor expansion at a€ V. Then T,G=5.T,(h) =mT,(h;). Since
{7,...,7} is a minimal set of homogeneous generators for R[V,]7,
there exists a smooth function A on V such that A =mnhki. Then
g is a smooth function.

Theorem 5.8. There exists a Lie algebra isomorphism @:X(E;p)—
X(E";p") if and only if there exists a fibration preserving diffeomorphism
0:E—E’ such that ®=oy.

Proof. Using Proposition 5.6 and Lemma 5.7, we can prove
Theorem 5.8 by the same argument as in [1], §5.

§6. Reflection Groups

Let V be an n-dimensional product /™-module VXV, of a finite
group I'. Let I', denote the isotropy subgroup of I' at veV. Let
V®={eV;I, is a cyclic group of order two generated by a reflection
of V}. Let I') be the subgroup of I' generated by reflections {y&rl’,;
veV®}., I} is a normal subgroup of I which is a reflection group.
Let ['{(i=1,2) be the subgroup of I’y generated by reflections {re
I'y;oev®nV}., Then I'=I71xI% Since I'} is a reflection subgroup,
there is a homogeneous minimal set of generators {f;,...,60,} for
R[V]c.rl (see Bourbaki [3], Chapitre V, §5, Théoréme 3]). Let n;=
dimV,; for i=1,2. We can assume that {6,... ,0,,1} and {6,,1+1,...,

1
0,} are homogeneous minimal sets of generators for R[VI]OF ! and
2
R[V;lo* respectively. Let 0'=(6;,...,0,) :Vi>R™, 0= (0, 4,..., 0,

V,—>R"™ and 6= (0", 6% :V—R" be polynomial maps. Let §*;V,/I"\—>R"™,
@:V,/I"—R™ and @:V/I'—R"* be the induced orbit maps which are
embeddings. Since ') is a normal subgroup of I', the I'-action on

V induces an action ¥o:I'XV/I—V/I';, where I" is a factor group
r/r,.

Lemma 6.1. There exists a linear action ¥:I' X R"—>R" such that
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() ¥, 0(X)=0(r,x)) for yel’, x€V/I', and 0:V/I',—>R"
is a I'-equivariant embedding.

@) U, F ) =T, %) for rel,x€V,/Ti(i=1,2), and G
V./Ti—R" is a I'-equivariant embedding.

Proof. Since I'; is a normal subgroup of I', I" acts on R[V]g1 by
(r-f) @) =f (7 v) for feR{V]fl, rel’, v€V. We can choose a homo-
geneous minimal set of generators for R[V]f;l such that 7-0;=
Ziogo,=ae00,4i, (1) 0; with (a;;(7)) EGL(n, R) for y&I (cf. Schwarz [8],
Lemma 8.1). We can assume that g;=0 if 1<i<n;, m+1<j<n or
1<j<m, m;+1=<i<n. Let {e1,...,e,} be a canonical basis of R*. We
define a linear action ¥:I"X R*—>R"by ¥ (y, Xt ix,e;) =27 ;10,77 x4
Then we can check that the action satisfies (1) and (2). This completes
the proof of Lemma 6. 1.

Let p:V/[—Vy/I" and p:R*/[—R"™/I be maps induced from the
natural projections V—V,; and R"—>R™ respectively. We can regard
p and p as fibrations over smooth orbifolds. Since :V/I'}—R" is a
I'-equivariant embedding by Lemma 6. 1, we have an induced embed-
ding §:V/I'->R"/I". Tt is easy to see that the induced map §*:C~
(R*/I"—C=(V/I") is epimorphic. We define G DR/ -DW/T)
by (X)) (6*(f))=X(f)of for XeD(R"/I"), feC~(R"/I"). Since
G(V/I') is the closure of an open set in R*/I', we see that #* is
a well defined Lie algebra homomorphism. Clearly §* induces a Lie
algebra homomorphism §*:D(R*/I;0)—>DV/I;p).

Let {p,...,7} be a minimal set of generators for R[R" I' such
that {7,... ,7)k1} (k1=<k) is a minimal set of generators for R[R™L.
Let 7:R"/I'—R* be the orbit map of a polynomial map 7= (71,...,7) :
R*—R*. Let v=(v,...,v):V—>R" where v;=7,°0. Since § and 7 are
smooth embeddings, v(V) =7(§(V/I")) is diffeomorphic to V/I'. Let
nER[y, ..., ), 1=1,...,[, be the generators of the ideal I of
algebraic relations among 7,...,7. Let § be a subset of R* and
I°(S) denote the ideal in C~(R") which vanish on §. For a smooth

vector field X on R", we say that X is tangent to § if X preserves
the ideal 7=(S).
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Lemma 6.2. Let X be a polynomial vector field on R*:. Then
(1) X is tangent to n(R™) if and only if X(r)<l, i=1,...,L
(2) X is tangent to p(R") if and only if X is tangent to v(V).

Proof. Since the ring of polynomial functions on »(R") can be
identified with R[y,...,»1/I, we see (1). Since v(V) contains an
open set in R", we can prove that / is also the ideal of algebraic
relations among vy, ...,, and (2) follows.

Let D(»(R")) be the Lie algebra of polynomial vector fields on
R* which tangent to »(R"). By the same argument as in Schwarz
[8, Proposition 6.14], we see the following.

Proposition 6.3. (1) D((R)) =C~(n(R")) D (n(R")).
(2) D) =C=ET)) D).

Proposition 6.4. The Lie algebra homomorphism ¢*:D(R"/T)—>D
(V/I') is epimorphic.

Progf. By Lemma 6.2 D(n(R"))=D(V)). Let j:v(V)ITn(R"
be the inclusion. Then the induced map j*:C~(p(R"))—>C~((V))
is epimorphic. Since §* is identified with a homomorphism ®(R"/I")
=§)(7](R"))——’i—>@ (V) =D(W/I'), §* is epimorphic from Proposition
6.3. This completes the proof of Proposition 6. 4.

Note that the maps p:V/I'—Vy/I" and p:R*/[—R™/I" induce Lie
algebra homomorphisms py:D(V/I";p) >D(Vy/I") and ox:DR"/T;0)
—DRYI). We set Dp(V/I';p) =ker py and Dp(R*/I;p) =ker py.
Then D(V/I;p) is a C=(V/I)-module and D(R*/[;p) is a
C=(R"/T")-module respectively. Let q:R’b—>Rk1 be the natural projection
¢ induces a Lie algebra homomorphism ¢x:D(R*;q) >D(R*). Let
Dr(n(R") ;q) =ker gxND(n(R")) and Dp(v(V);q) =ker gxND((V)).
By the same argument as in Proposition 6.3 and Proposition 6.4,
we have the following.

Proposition 6.5. (1) D(p(V):q) =C~(n(V)) De(n(V);q).
@) D)) =C~@) D (V);q).
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(3) The Lie algebra homomorphism §%:Dx(R*/T;0) —>Dp(V/I;p) is
epimorphic.

Combining Propositions 6.4 and 6.5, we have.

Corollary 6.6. The Lie algebra homomorphism §%:D(R*/T";0)—
DWV/T;p) is epimorphic.

Lemma 6.7 If V® is not empty, then there exists a smooth vector
field XeDW/I';p) such that X0, where m:V—V/I" is the natural
projection.

Proof. V is an orthogomal representation with respect to a suita-
ble basis of V. Let W be the orthogonal complement of V'. Then
W is a I'-module. Since V® is not empty, dim W>0. Let {x1,...,x,}
be a canonical coordinate of W. If dim W' >0, we see that there exists
a I'-invariant smooth vector field Y on V such that X==n,(Y) e
DW/I';p) and X,0x0. If dim WF=0, then we can choose a homo-

geneous minimal set of generators {6,...,0,} for R[V][,F1 such that
0;=x%+---+x5 for some i. Since y-0,=0; for any yI', we see that
dim(R"I'>0. Then we have a I'-invariant smooth vector field Z on
R such that X=x,(Z) €D(R"/[;p) and X, o0, where z’: R*—>R"/I"
is the natural projection. Since () :Teey (V/I) —>Tww (RY/T) is
isomorphic, 04x(X):00. This completes the proof of Lemma 6. 7.

Let DWV/I';p) (x) ={Y;YEDWV/I;p)} for x&€V/I,

Corollary 6.8. DV/I;p) (x(0))={0} if and only if dim V=0
and VO =¢.

Proof. If VP=¢, then DV/I;p) =X(V/I';p) by Schwarz [8,
Chapter I, Proposition 3.5]. By Lemma 2.2 X(V/I';p) =%r(V;p),
where f:V—V; is the natural projection. Thus if V®=¢ and dim
Vr=0, DWV/I';p) (x(0)) ={0} from Lemmas 2.3 and 2.5. If VP4,
then D(V/I";p) (=(0)) = {0} by Lemma 6.7, and Corollary 6. 8 follows.
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§7. Proof of Theorem 0.1 and Theorem 0.2

Let p:E—B be a fibration over a connected smooth orbifold B
with generic fibre F, a connected smooth manifold. We set By=
{beB;X,=0 for any XeD(B)}, Bi=B—B, and D(B),;={X&D(B);
Xb:()}.

Proposition 7.1. For b By, there exists a unique infinite codimensional
maximal ideal ,(B) of D(B) which is contained in D(B),.

Proof. For b€ B, there exist a finite group I’ and a linear action
I'XV—V on an n-dimensional vector space V such that V/I" is
diffeomorphic to an open neighborhood U of . By Lemma 6.1 and
Proposition 6.4, we have a linear action I" X R"—>R" such that there
exists an embedding §:V/I'—R*/I" and §*:D(R"/[)->DWV/I) is a
Lie algebra epimorphism. Using the property of the reflection group
I';, the natural group homomorphism I"—I" has a right inverse. Then
it is easy to see that I" has no reflection subgroups. Then D(R"/I)
=%(R"/T). By Corollary 6.6 and Lemma 6. 7, there exists a smooth
vector field X& D(R*/I") such that X, 0.

From [1], Lemma 3.9, there exists a unique infinite codimensional
maximal ideal R, of X(R"/I’) which is contained in X(R"/I),.
Then N,=F*(N,) is an infinite codimensional maximal ideal of DV /I")
which is contained in DV/I); Fp(B)={XcD(B);X=Y on a
neighborhood of 4 in B for some Y&,}. As in the proof of [1],
Proposition 3. 8, we can prove that &,(B) is an infinite codimensional
maximal ideal of ©(B). This completes the proof of Proposition 7. 1.

Lemma 7.2. Let b= B, Then, for X&D(B), X(b) =0 if and only
if [X,D(B)]+3(B)=D(B).

Proof. We use the same notation as in the proof of Proposition
7.1. To prove Lemma 7.2, it is sufficient to prove that, for X&D
V/IN, Xin=0 if and only if [X, DWV/IN)]+NRN,=DV/I') where
m:V—V/I" is the natural projection. Note that DR/ T =%(R*/T).
It follows from [1], Lemma 5.2 that, for YED(R/I), Y,nx0 if
and only if [Y, D(RY/)]+R=D(R*/I), where p:R*—R"/I" is the
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natural projection. Let Xe®(V/I") with X;(0. There exists YED
(R*/I") such that @*(Y)=X. Then Y,,*0 and hence [Y, D(R"/I)]
+9,=D(R*/I"). Since §* is epimorphic,[ X, DV /)] +R,=DWV /).
Conversely, suppose that [X, D(V/[N]1+N,=DWV/I"). Let YD
(R"/T") such that §*(Y)=X. It is easy to see that D(R"/I)=[Y, D
(R"/I]+MN. Then Y,;,30. Hence X;p30, and this completes the
proof of Lemma 7.2.

Proof of Theorem 0.1. Using the result of [1], we see that (2)
implies (3). By Schwarz [8], Corollary 1.7, if ¢:B—B’ is diffeomor-
phic, then ¢ is strata preserving. Then we see that (3) implies (2).
Assume that there exists a Lie algebra isomorphism @:9(B) —>D(B’).
As in [1], §5, using Proposition 7.1, and Lemma 7.2, we can prove
that there exists a diffeomorphism ¢:B—B’ such that @®=g,. This
completes the proof of Theorem 0. I.

Proof of Theorem 0.2. By Theorem 5.8, (2) implies (3). By
Schwarz [8], Corollary 1.7, (3) implies (2). Assume that there exists
a Lie algebra isomorphism @:D(E;p)—>D(L’;p’). As the proof of
Theorem 5.7, using Corollary 6.6 and Theorem 0.1, we can prove
that there exists a fibration preserving diffeomorphism ¢:E—E’ such
that ®=o,. This complete the proof of Theorem 0. 2.
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