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On Lie Algebras of Vector Fields
on Smooth Orblfolds

By

KOJUN ABE*

§ Oa Introduction

In the previous paper [1], we studied Pursell-Shanks type theorem
for orbit spaces of G-manifolds. The purpose of this paper is to
prove that this still holds for smooth orbifolds and for fibrations over
smooth orbifolds with compact generic fibre.

Let B and Br be connected smooth orbifolds. Let S)(5) (resp.
K(5)) be the Lie algebra of all smooth vector fields (resp. strata
preserving smooth vector fields) on B with compact support.

Theorem 0. 1. The following statements are equivalent.
(1) There exists a Lie algebra isomorphism
(2) There exists a Lie algebra isomorphism
(3) There exists a diffeomorphism o:B->B'a

E admits a natural orbifold structure. Let p:E-+ B (resp. p':E'-*B')
be a fibration over B (resp. B') with generic fibre F (resp. jp7), a
connected closed smooth manifold. Let ©(£";/?) (resp. X (£":/?)) be the
subalgebra of ®CE) (resp. £(£")) consisting of fibration preserving
vector fields (see § 1). Using Theorem 0. 13 we prove the following.

Theorem 0. 2* The following statements are equivalent.
(1) There exists a Lie algebra isomorphism <P :
(2) There exists a Lie algebra isomorphism <
(3) There exists a fibration preserving diffeomorphism 0:E-+E'.

Communicated by N. Shimada, September 10, 1985.
Department of Mathematics, Faculty of Liberal Arts, Shinshu University, Matsumotos 390,
Japan.
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Theorem 0. 1 is a special case of Theorem 0. 2, but we prove
Theorem 0.2 by using Theorem 0. 1. Theorem 0.2 was proved by
Omori [6] for the case that E and E' are smooth fibre bundles.

The paper is organized as follows. In § 1 we define smooth vector
fields on smooth orbifolds and on fibrations over smooth orbifolds. § 2
is devoted to preliminaries. In § 3 and § 4 we determine the maximal
ideals of 36 (B) , 3£ (E',p) and some subalgebras of 3£ (E',p). In § 5 we
prove that Theorem Oe 2 (2) implies (3) . In § 6 and § 7 we determine
the maximal ideals of S)(J3) and 2) (£;/?), and prove Theorem 00 1 and
Theorem 0. 2.

The author would like to thank the referee for reading the paper
in detail and giving him valuable suggestions.

§ 1. Definitions

In this section we shall define smooth vector fields on smooth
orbifolds and fibrations over smooth orbifolds.

Definition 1. 1 (See Satake [7] and Thurston [10])
A paracompact Hausdorff space M is called a smooth orbifold

if there exists an open covering (C/J of M5 closed under finite
intersections, satisfying the following conditions.

(1) For each Ui9 there are a finite group Fi9 a smooth action
of Ft on an open set Ui of R" and a homeomorphism 0 ,-:[/$—>

(2) Whenever UiC.Uj9 there is a smooth embedding
such that the following diagram commutes:

0, - * - > 0,

ui/ri

-I

- > U
'71

Remark. We can choose the finite group F{ such that the action
FiXUi-^-Ui is effective, and then there is a unique injective group
homomorphism f^iF^Tf such that <f>{j is equivariant with respect
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to fi3.

Two coverings give rise to the same orbifold structure if they
can be combined consistently to give a larger cover still satisfying the
conditions.

Let F be a smooth manifold,, A paracompact Hausdorff space E
with a continuous map p:E->M is called a smooth fibrations over a
smooth orbifold M with generic fibre F if the following conditions
are satisfied,,

(1) For each [/,-, there exists a smooth 7^,— action on F such that
p~l(Ui} = UiXF/r{ and the following diagram commutes:

I

(2) Whenever C/fCf/y, the reexists a smooth embedding
F~>UjXF such that the following diagram commutes:

I I

Deinltlon 1.2 (See [!],§!) Let M be a smooth orbifold given
in Definition L 1, A function f\M-*R is said to be smooth if the
composition Ui-^Ui/ri = Ui^R is smooth for any U{. Let C°°(M)
denote the algebra of all smooth functions on M. As in [1]? § 1 for
any b^M we can define a tangent space r6(M). We define a smooth
vector field on M to be a real linear derivation on C°°(M)0 Let
S)(M) be the Lie algebra of all smooth vector fields on M with
compact support. A smooth vector field X on M is called strata
preserving if X preserves the ideals in C°°(Af) of smooth functions
which vanish on the strata of Ui = Ui/ri for any C/t-(cf. [10], §2) 0

Let 3£ (Af ) denote the Lie algebra of strata preserving vector fields on
M with compact support

Let p:E-+M be a smooth fibration over a smooth orbifold M with
generic fibre F. Then £ has a natural smooth orbifold structure8

Let X^%(E). X is said to be fibration preserving if (dp}ei(Xe^) =

(Xe^ for any b^M and eb G2^p-l(b)a Let %(E;p) = {XtE%(E) \X
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is fibration preserving} . Let p'\Ef->M' be another smooth fibration
over a smooth orbifold M1 with generic fibre F'. We say a map
<7:F-»F' is smooth if /°<7<=C°°(F) for any feC00^'), and a is
diffeomorphic if <7 and ff"1 are smooth. For a diffeomorphism a:E->E',
let ov£(F)->3£(F') be a Lie algebra isomorphism defined by 0

to =

§ 28 Preliminaries

Let r be a finite group and let Fxt7->t7 be a smooth action
on an open set U of /Zn. Let U=U/F be the orbit space of U and
TT: U-+U the natural projection. In this section, we shall consider that
p:E-*U is a smooth fibration with generic fibre F, a closed connected
smooth m-manifold, and E = UxF/F. Let 3£r(f7) be the Lie algebra
of all F-invariant smooth vector fields on U with compact support.
Let E=UxF. Let 7r:F->F and p:E->U be the natural projections.

Lemma 2.1. 77z£ induced map n*:%r(U)-*£(U) is a Lie algebra
isomorphism.

Proof. By Bierstone [2] and Schwarz [8], ft* is epimorphic. For
a^U, the isotropy subgroup Fa at a acts on the tangent space rfl([7).

Let ra(U) a denote the set of Fa-invaraint vectors of ra(U). Let

X(=%r(U) such that ft*(X) =Q. Then Xa^ra(ufa for any ae#.

Since (dn)a:Ta(U)->Ta(U) is monomorphic on ra(f7) fl, we have ^ = 0,
and this completes the proof of Lemma 2. 1.

Let /3ir(E\p') = {X^^r(E} \X is fibration preserving}.

Lemma 2. 2. The induced map ft^:3ir(E',p)-^y,(E'ip) is a Lie algebra
isomorphism.

Proof. By Lemma 2. 1, the map It* is monomorphic. Let
(E;p). By Lemma 2. 1, there exists a vector field Fe3£r(£) such
that *+(Y)= X. We shall prove that Y is fibration preserving. Let
el9e2<=E such that ^(^) =/(£2) =b<=U. Let b=x(b) and ei='K(ei} for
i = l,2. Then (dn)~b( (dp) ,.(¥,}) = (dp)e.(Xe.) for i = l,2. Since Z is
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fibration preserving, (die) i ( (dp) ^ (Y^ ) = (dn) i ( (dp) ,2(Y^ ) , Note that,

if FI is a principal isotopy group, then (dn)i:Ti(U) *->r6([7) is
isomorphic, and (dp)gl(Y^ = (dp)g2(Ys^)a Since the set of principal

orbits of U is open dense in [7, we see that Y is fibration preserving.

This completes the proof of Lemma 2. 20

For e^E, let (V',xl9 . . . , xn,yl9 . „ . ,ym) be a local coordinate at e

such that (#i , . . . ,#n) is a local coordinate of Rn and (jh, • • . ,J)O is
a local coordinate of the fibre F. We can assume that V is a /V

invariant neighborhood of e. Then we see that each Jf£E3£r (£;/?)

is described on V as follows;

8

where at and ^- are smooth functions on V.

Lemma 2. 3* // X^£r(E>P) satisfies (dp)sXg^®, then there exists

a local coordinate (W',Xi, . . , #n.j;i, • • • jJV»w) «^ ^ JM^A that
(1) (#!,...,#„) fj <2 local coordinate of U satisfying Xi(e^ — %i(e2) for

b^U and 8l9 e2^p~l(b) f } W .

(2) Xi is a Fg-invariant smooth function on W such that X=-~ — .
OXi

(3) ( jvi, . . . , ym) is a local coordinate of the fibre F,

Proof. We can prove by easy computations.

Lemma 2.4. Let Ze3£r(E;j5) satisfying (dp)sX^Q. Then for any

E;p) with supp(Y)C.W, there are a neighborhood WidW of e

and a vector field Z^3cp(E°,p) such that \_X,Z}=Y on W^ where W is

a neighborhood of e as in Lemma 2.3,

Proof, Let (W',xi, . . . , xn9jl9 . . . , ym) be a local coordinate at e as
n 3 m

Lemma 2. 30 Let Y= L a{(xl9 ».., *J-~-+ Z bj(xl9 ..., *„, j>i, . . . , yj

3 «
-~ on W, Put Z^

• - - 9ym)dxi)-=—. Then Zi is a fibration preserving /^--invariant smooth
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vector field on W. By using a F-invariant partition of unity on E,

we can extend Zi to a F-invariant smooth vector field on E with
compact support such that Z=Zl on a neighborhood WidW of e.

Obviously, [Jf, Z]— Y on W^ and this completes the proof of Lemma

2.4.

Lemma 2.5. (cf. Omori [6], 10.7.1) // X satisfies Xg^0 and

(dp)gXg = Q, then there exists a local coordinate (W°,Xi, . „ . , xn,yi, . . . ,jO
such that (ji, . . . ,j;w) is a local coordinate of the fibre F and

X=Zai(xl,...,xJ-£-+-Jl- with fl,.(0,...,0)=0,
i=i dXi oyl

where the origin of the coordinate corresponds to the point e. Moreover,

the coordinate can be chosen such that y± is Fg-invariant.

Poof* We can show by easy computations.

§3. Maximal Ideals of £(#) and £(J?;j>)

Let B be a connected smooth orbifold. Let^:E->J3 be a fibration

over B with generic fibre F, a connected closed manifold. In this

section we shall determine the maximal ideals of 3£ (E;p).

Let ®6(5) = {XtE%(B) ; Z-0 on a neighborhood of 4 for

Lemma 3. 1 (cf. Koriyama, Maeda, Omori [4], Lemma 40 3) Let

be a maximal ideal of 3E(S) such that

exists a unique point b^B such that

We give a metric on B. Let ®B(e) = (Ze3£(5) ;Z=0 on

an s-neighborhood of b] 0 Assume that 2)fl + ©6(e) =£(B) for any ie5.

As in the proof of Koriyama, Maeda and Omori [4], Lemma 4. 13 we

can prove that SJiz) [3£(J9), 3£(5)], contradicting the assumption for

2R. Thus there exists a point ie5 with 3Kz>©6(£).

Let ^e= (6e5;©&(s) cSK}. It is easy to see that, if e>35 then

AB^cl(As) (the closure of ^4)8 Then there exists b^r\A^ and we see
__ e>0

that SKD®B(jB). If 6^=4', then we can prove that ®6 (5) + ®B/ (5)

= 3£ (5) . Therefore such a point b must be unique and this completes

the proof of Lemma 3. 1.
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Let BQ= {b<=B',Xt = Q for any X^X(B)} and let Bl = B-BQ. From
[1], Lemma 3. 9 and Proposition 3, 10 we have the following.

Proposition 3* 2. (1) For any point b^B^ there exists a unique

maximal ideal )g(6) such that S(*)=>®6(5), 3 (A) Z> [3E (B) , £(£)] and
codim ^(b) =00.

(2) Let $1 be a maximal ideal of 3E(5) jMcA that SKz>®6GB) /or
codim

Let 5* be the space of all maximal ideals 3K of 3£(5) such that
Sfe 2 [£(£), 3ECB)], with Stone topology (see [1], Definition 4.1).
Using Lemma 38 13 we define a map t:B*-*B such that f (3K) =6 if
2fc=>®5CB). Let B^ffieB*', codim SK = oo}.

From [1]3 Lemma 4. 2 we have the following.

Proposition 3. 3* ?:B*-*Bl is homeomorphic,

Let ®.(£;/0 = {X(E%(E;p) iX=Q on a neighborhood of* for
Then we have the following useful lemma.

Lemma 3* 4. i*J W be a subalgebra of £(E;p*) such that fX^W for
any f^C°°(E) and X^$lr\(Ker p^). Let %Jl be a maximal ideal of 21
such that SO? 7) [SI, 21] flrarf />* (3K) =/># (21) . T'A^w ^A*r* *A;W^J a unique

point e^E such that SKlD©e(2I), ^^ ®.(«) =®e(E',p)

Suppose that 2I = 3K + ©eO;2T) for any ^eE, where @e(s;2T)
= {X^$l',X=Q on an s-neighborhood of e] . For any vector field JfeJI,
there exists a vector field FeSK such that Z=X—Y^Ker p*. For
each positive number £^05 Z can be written as finite sums Z— XI Z»-
such that Z£e2tn (Ker p*) and diam (supp Zt) <^e. Then as in the
proof of Koriyama3 Maede and Omori [4], Lemma 4, 1, [21 n (Ker p^)9

ytr\(Kerp#)~\ is contained in SK. Then [2ty 21] is contained in $R9

contradicting the assumption for SJL Therefore there exists a point
tf^E1 such that 3K ID ©e (e ; 21) . As in the proof of Lemma 30 1, there
exists a unique point ^eE1 such that 5DZ 13 (Sg (e ; 21) , and Lemma 30 4
followSo
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Let Fb=p~l(b') for b^B0. Put Fb>0= {e^Fb;Xe = Q for any
(£;/>)} and put FM = F6-FM. Let X F ( E ; p ) = {X^%(E;p) ;p*(X) = 0}.
For b£EBQ, etEFb,put%(e) = {X£E%(E;p);((adYl)... (adYk)X)e = Qfor

any Yt^3iF(E;p) and any integer A;^0}, where (arf Y)(Z)=[Y,Z]
for Y,Z<=X(E;p).

Lemma 3.5. //" b^BQ and eeFM, £/z£/z SW is an infinite codimen-
sional maximal ideal of X(E;p). Moreover $0) is a unique maximal

ideal containing ®e(E',p), and 30) 3>[_%F(E'>P), 3£F (

Proof. There exist a finite group /", a smooth action of F on
an open set U of Rn such that U/P — U is a neighborhood of i, and
there exists a smooth /"'-action on the fibre F such that p~l(U) —
UxF/r. Put Eu=UxF/r and Eu = UxF. Let xiEu-^Eu and /:^
->[/ be the projections. By Lemma 2.2 ft%:£r(Eu}p)-*3;,(Eu',p) is a
Lie algebra isomorphism. Let £ be a point of £# such that ;r(£) =^5

and let §(«) - (Ze3£r(^;^) ; ( (ad YJ... (ad F,)Z),-0 for any y,-e 3£r.F
(En',p) and any integer ^^0}. Note that %,r(Eu'>p} can be identified
with 3£r(CO x3£r_F(£j7;j5) as an /^-algebra, where ^riF(Eu',p) = [X^£r

(Eu°>P) ',p*X=Q}. By easy computations we can see that $(£) is an
ideal of 3Er (£*;/). Since ^(^W H 3i(Ev;p)) =%(e), JgO) is an ideal
of £(£;p).

Let SJJ be a maximal ideal containing ®e(E',p). Assume that there
exists a vector field ZeSK with Xe3=Q. There exists X<=%r(Eu\p)
such that TT^(^) = JT on a neighborhood F of e. Since b^BQ, (dp)§X§

= 0. By Lemma 2.5, there exists a local coordinate (W;xi,...,xn,

}>i9-",ym) around e such that (j/i, . . . , jym) is a local coordinate for

a fibre F and Jf= 2 «»(^i» • • • i ̂ n)-?s— + ^r~ witn ^.(0, . . . , 0) —0. where»=i oXi ay i
the origin of the coordinate corresponds to the point e. There is a

vector fields Xi ^ 26r F (En ; p) such that Xi=yi-=— on a neighborhood

or ^ Note that X9=^X9 Xl']=-- on ^ Put X2=[_X9ft*dyl

Then JT2e9K. Let YeX(Eu',p) such that supp(Y)dV. Let
Eu',p) such that **(Y)=F. As in the proof of Lemma 2.4,

we can prove that there are a neighborhood T4^ of e and a vector
field Z^^r(Euip) such that [12, Z] = Y on J^cW. Put Z=
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Then [Jf2, Z]<EE3K and [^2,Z]=y on a neighborhood o f f . Since 3K
contains ®e(E;p), SUJ — 3£ (E',p}, This is a contradiction. Thus Xe = 0
for any JTeSK, and we have 2K = $(*)• Therefore $0) is a unique
maximal ideal containing ®e(E',p). There are vector fields Y{^%r

*\

( E n ; f ) (i = 0, 1,2, . . o ) such that Yi=j;j-— — on a neighborhood of &
d^i

Put Yi=ft^(Yi). Then F t-C$(tf)5 and $0) is infinite codimensionaL

Since [F05 FI] €3W, 3(0 2>[£ir(£;/0, 3£F (£;/>)]. This completes
the proof of Lemma 3e 5.

Let b^B0 and e^Fti0. Let U=U/F be a neighborhood of 4 as
in §2. For X^X(E;p), there is Y^£r(UxF;p) such that ff*(F) =-Y
on a neighborhood W of e,, where ftiUxF-^UxF/F is the natural
projection.

Choose a point e<=UxF with 1t(g)=e. Let j'J(F) denote the 1-jet
of Y at & Note that jJ(Y) defines an element of 8^,fa(#xF)),

where gtr (rs(UxF)) denotes the set of all /Y-in variant endmorphism of

the tangent space Ts((UxF)) ate. Let J](E',p) = {Aeat^(r f(f7xF)) ;

( d f ) g ( A ( v ) ) = Q for any v^r,(UxF) with (dp) g(v) =0), where j5: f/X
F-+U is the natural projection. Since F is fibration preserving, j ] ( Y )

eyi (£ ;/») . Let jj : 36 (£ ;/») ->/l (£;/)) be a map defined by jj (Z) =j] (Y) .
Then it is easy to see the following.

Lemma 3. 6. jl:£(E',p)-*J}(E',p) is an onto Lie algebra homo-
morphism.

Lemma 3e 7. Let 3K be a maximal ideal of £(E',p) such that
= ^(B} and SKz)©e (E;p) for some point *eFM with b<=BQa Then

2ft= O'l)"1^) f°r some maximal ideal & of Jl(E',p), and SK is finite
codimensionaL

Proof. Assume that j'J(SK) =Jl(E',p). We use the same notations
as in the proof of Lemma 3. 88 Take a vector field X^$Jl such
that fe(X) is a unit matrix. There exists Fe3Er(C/xF;j5) such that
ft*(Y) =X on a neighborhood of e. By Sternberg's linearization theo-
rem [9], there exists a local coordinate (WlZi, - - - ,Zn+m) at e such

that Y= ZV- on W.
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Let Z^3c(E;p) with jl(Z) =0. There exists Ze3£r(f7xF;j5) such

that 7r*(Z) =Z on a neighborhood of e. ThenjJ(Z) =0. Let ^1 = ^°°-4rf
Jo

(exptY) Zdt, where (Ad(exp tY}Z)x = (d<f>t) . I f 2 , . $t=exp tY (see
0f U) 0£ W

Koriyama, Maeda and Omori [5], § 1). Z can be written in the form
~ n+m rl rln
Z=Ea,(t1,...,zn+m)-j- on W with -|̂ (0, . . . , 0) =0 for i, j=l, . . . ,

i=l VZi O£j

n + m, Th^n Ad(exptY)Z=nf]ai(e't^ly..,9e~t^n+Jet^- on W. Since
;=i oZi

^5/7. C °°
-^(0, o . . , 0) =0, it is clear that \ fl,-(0~~U;i, . . . , e'^n+^^dt exists. Hence

Zj „ J°
Z^3ir(UxF). We can see that exp s(Ad(exp tY)Z) =$t°<f>3°$7\ where
<fjs=expsZ. Thus 2^ is fibration preserving, and Zi^£r(UxF',p)a Note
that [Y, Zi]=Z, and [_X,7t*(Z^~\=Z on a neighborhood of <?, Since
Sft contains ®.(E;p), W contains the ideal Ker j] of X ( E ; p ) . But

=J](E',p)9 hence 3K = 36 (E',p). This is a contradiction. Thus
must be a proper ideal S of J}(E',p), and SW=01)"1(S).

Since Jl(E',p) is a finite dimensional Lie algebra, SK is finite codimen-
sional. This completes the proof of Lemma 3. 7*

Let E* be the space of all maximal ideals HJJ of £(E;p) such that
3K:2>[3£(£;/0, £(£;/>) ], with Stone topology. Let £f = {SKeE*; ^tm
SK = oo}e Combining Proposition 3.2, Lemmas 3.4, 3.5 and 3» 7, we
have the following.

Proposition 3. 8. //
(1) SW^^CSW) /^ Joiw« SWe^f, or
(2) SK

Let Ei = Bi\J ( WFM) be a subspace of the disjoint union B\JE.
5eBQ

Using Proposition 3.8 we can define a map T'.E*->Ei as follows.
(1) If m=p*l(m) for some SWeSf, then r(2R)=?(3K).
(2) If SK = SW for ^eF&>1 with 6e^0j then r(2K) =*.

Proposition 3.9. T:E*-*Ei is homeomorphic.

Proof. By Proposition 3. 8, r is a bijection. It is enough to show
that T(CL(S))=cl(T(S)) for any subset S of E?. Here CL and
cl are closure operators of E* and E1^ respectively. Assume that
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r(HR)<5*/(r(.S)) for some SReCZ,(»S). In the case that r(3K) =
we can find X^3i(E',p) such that /?* ( X) & ̂  0 and X=Q on a neigh-
borhood of d(r(S)). Then we see that Z<E fUes^dSft (cf. [1]?

§4). Since /^ (2ft) =8(6), /^W 6 = 0. This is a contradiction. In
the case that r(2ft) =e^Fbil(b^B0), we can find Ze3£ (£;/?) such that

^0 and Z=0 on a neighbor good of T(5). Then
= S(*)1 and Jf. = 0. This is a contradiction. Therefore

is contained in cl (?($)).
If XG r\ 2ft, then />*CY)=0 on r(^) fl-Bi, so />*(JO =0 on

d^rCS) n#i). Hence, for any X<=r\m, p*(X) =0 on
SKeS _

Then /^SK is an ideal of 3£ (£";/?) contained in /?;* ($(£)) for any
ajieS

b^cl(r(S}r\B^), Similarly, r\Wl is contained in $W for any ^e^Z
aneS

(r(5) n^C-Bo)). Thus ^SK is contained in r\ 50?, and r (CL (5) )
27ieS r(50i)ed(r(S))

contains cl(r(S))* This completes the proof of Proposition 3e 9*

§4. Maximal Ideals of Some Subalgebras of

Let 3E(5)»={Jre3ECB);Jir, = 0} for 6e5, and a^^C^C^)^ be
a subalgebra of 3E (£;/>). For 6, i'efi, let ^/i0= {^eFj,;Z. = 0 for

and let Fl^F^-Fl^ Let 3W» = a6nSW and let ®.(%)
£;^) for ^e£e As in the proofs of Lemmas 3.5 and 3.7,

we prove the following lemmas respectively,,

Lemma 4, 1. //" *eJPt/ f l/0r b'^B0 or b'=b, SW& w fl« infinite
codimensional maximal ideal of 31&. Moreover ^5(^)5 w a unique maximal
ideal containing ©e(Sl&).

Lemma 4. 2. L^ 3K fo a maximal ideal of 216 JM^A f Afl^ ^^ (SW) =
an^ 3KD®e(%) /or some e^Fli0 with b'tEBQ or b' =b. Then m

is finite codimensional.

Let A* be the set of all maximal ideals Srt of 2l& such that
aK2)[Sr6?%] and ^(SK) =3E(fi)6. Let ^1*= {3K;3Ke^&* for some 6e5}0

We give the Stone topology on A*. Combining Lemmas 3, 4, 4e 1 and
4, 2 we have the following.

Proposition 4. 3« // 3K e -4*, £A#fl ^^ /z<2^ the following cases.
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(1) There exists a point e^p-l(B0) such that 2W =)©.(%), and 271 =
mr\%bfor some m^E*.

(2) There exists a point *eF6(4e£i) such that SKz)@e(ST&)5 and
for any

Using Lemma 3.4, we have a map t'.A*->E such that
for 2Ke8I?. Let Aj*!= {2Re4? \codim m = oo and SKdSK for any

for 5^5! and Aftl= [m<=A*;codim SK-oo? / , (f(2K))=*} for
Let A*=W-4*i. Setting jS1 = wFj>1, we have a bijective map

SeS ' Se2?

J:A*-»<fii by Lemma 4. 1 and Proposition 40 3.

Proposition 4. 4. 77z£ map t : A* — >j6x z'j1 homeomorphic.

Proof. It is enough to show that t(CL(S)) =d(t(S)) for any
subset 5 of A*9 where CL and cl are closure operators of A* and
£1 respectively. As in the proof of Proposition 3. 9, we see that
t(CL(S)) is contained in cl(t(S)).

Note that, for Xe£(E;p) and e^t^ X^(e) M if ((adYJ...
(adYk)X)g = 0 for any Yi^%F(E;p) and any integer &^0. Then we
see that r\^SJl= r\ ^s(e)PM= r\ %$(e)PM. Thuscl(t(S)) is contained

meS ee^(s) eecZ(«(s))

in t(CL(S)). This completes the proof of Proposition 4.4.

§ 5e Theorem Oa 2 (2) Implies (3)

Let B and B' be connected smooth orbifolds without boundary.
Let p:E-*B(resp. / :£'-»£') be a fibration over £(resp. B') with
generic fibre F(resp. jFx), a connected closed manifold. Suppose that
there exists a Lie algebra isomorphism 0:£(E',p) -*£(£' ;p').

Lemma 5.1. ®(%F(E;p)) =£F,(E'ip').

Proof. From Proposition 3. 9, there exists a homeomorphism 0 :

5i U ( W FM) -^^i*-^^*-^^ U ( W /v 0 . Note that £1? 5J, F& x
&eBQ ' &'eB'0

and Fj/.i are connected smooth orbifolds. Assume that 0(50 =Fj/ t i

for some &'e£0. Put %„,,,= [XtE%(E' ;p') ; Z-0 on /^(i7)}- We

see that r\T~l(b) =ZF(E;p) and ^ r'-1^') =H6/i0. Let EltF= {e<=E;
6eB1 « /eF/6/,l

JTe^O for some X^%F (E',p)}. Using the method of the proof of
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[1], Proposition 3. 2, we see that EiiF is dense in E. As in the proof
of Lemma 3.5, SW n3£p(.E;/0 is an infinite codimensional maximal
ideal of £F (£;/>) and we see that 8 (*) D %F(E°,p} 3>[3EF (£;/>), 3£F(£ ;/>)].
Hence the intersection of all maximal ideals SK of %F(E;p) with

3R3>[3EF (£;/>), 3EF (£;/>)] is zero.
Let 2R' be a maximal ideal of %,.„ with 2R2> [%,.<,, SK/.0]. If />'* (SKO

is a proper ideal of 3£(57), then SK' = (/O^OW') for some SK'GE^'*.
If p'*(2K') = 3£(jB')5 then, by Lemma 3,4, there exists a unique point
e'taE' such that 2K'z>®.,(2G/.o) for e'^p''1^ or pf (e') =b' , where

®X^.o)=®.'CE';/On8K/.0. Choose a point *Je.E' with />' (*D ̂  #.
There exists X' ^%,tQn (Ker p'*)such that JT'./^O and JT^O on a
neighborhood of p'~l(B'o). Then ^ is contained in any maximal
ideal of STj/>0. But, for each maximal ideal 271' of aj/,0 with ^^[Sti/.o,
Slj/.o], there exists a maximal ideal SK of 3£F (£";/?) with SO? ̂ )[3£F (E',p),
3£(£;p)] such that $(3K) =2^'. Thus the intersection of these maximal
ideals 3K' of 2l&/ i0 must be zero, and this is a contradiction. Therefore

$(Bi)=B{ and we have 0 ( 36F (£;/))) =3£F/(£ /;/> /). This completes the
proof of Lemma 5. 1.

Proposition 5. 28 If there exists a Lie algebra isomorphism @:%(E°,
p)->£(E';p'), then there exists a Lie algebra isomorphism ®:£(B)-*£(B')
and a dijffeomorphism a:B->Bf such that p'*o@ = 0op^ and @ = a%a

Proof, By Lemma 5. 1, the Lie algebra isomorphism 0 induces a
Lie algebra isomorphism @:£(B)^>%(B') . Using a partition of
unity, we can reduce the proof of Proposition 5. 2 to the special case
when the orbifolds B and Bf are orbit spaces of representation spaces
of finite groups. Thus Proposition 5.2 follows from Theorem of [!]„

We shall use the notations given in § 4. From Proposition 5. 2,
we have a Lie algebra isomorphism 0:316->§1,J(&) for each be$. By

Proposition 4.4, there exists a homeomorphism ffi'.fii - >A* - >A{*

Proposition 5« 3* The map Oi'.&i-^E'i is extended to a homeomorphism
-^E' such that p'°0 = d°p.

Let At={meAf;m<tm for any SKeE*} for be5i and Af = {m
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=A} for b£EB0. Let A*= {2K;3We4»* for some
Let CL and cZ be the closure operators of A* and E, respectively. To
prove Proposition 5. 3, we need the following.

Lemma 5.4. t(CL(S)) = d(t(S)) for any subset S of A*.

Proof. As in the proof of Proposition 3. 9, we see that t (CL (S) )
is contained in cl(t(S)). Let e^d(t(S)). By the similar argument
to Proposition 4.4, we see that r\M is contained in %(e)p(e) for

e^cl(t(S)) H-fii. Thus c l ( t ( S ) ) PlE is contained in tCCL^)).
Now assume that fg(9l) =7l(%) for some e^cl(t(S)) fl^&.o, where

Srt^r^SW, b=p(e}. As in the proof of Lemma 3. 75 we can prove
aneS

that, for any Jfe3l6 fl (-for />*), there exists Y^3l such that Z^F on
an open neighborhood W of e. There exists M^S with t($Jl)^W.
Since SK contains ©./(%/), we have that SK = ST6,5 where ^ r=:^( TO) and
b'=p(e')m This is a contradiction. Therefore jj (91) must be a proper
ideal of 71(810 for any e^d(t(S)) nFlt0(b=p(e)). Hence, for any

nFli0, there exists a maximal ideal SWeCL^) such that
z=^a This completes the proof of Lemma 5. 4.

Proof of Proposition 5. 3. Note that the map t: A*-*E is surjective.
We define 0:E^>E' by a(*(3K)) =^(*(SK)). First we shall prove
that a is well defined. Note that a=al on &i by the definition, and
p'(a(t(W))=d(p(t(W)}) for any SKe^*. By the same argument as
the proof of [1], Proposition 3.2, we see that Fb

biQ is discrete in Fb

for each b^B. Thus, for any e^E—&i9 there exists a closed neigh-
borhood D of e in Fb such that Dn^f .o— M> where b=p(e). Let
A = £-M and let A*=r1(A), i)* = r1(D). Since

Together with Lemma 5.4, we have that d(ffl(D0)) =cl(ff1(t(D*)))
= cl(t'(0(DfW =t'(CL(Q(DW =t'(0(CL(DW =t'(Q(D*)). Since
ai is homeomorphic, d(0(DQ)) n^llj.o consist of a point e' ', Thus
f7((P(D*)) n^S8)).o=M. Therefore a is a well defined bijective map.
It is clear by the definition that p'°a = a°p. By Lemma 5.4, a is
homeomorphic, and this completes the proof of Proposition 5. 3.

Lemma 5.5. (Cf. Koriyama, Maeda and Omori [4], Lemma 5. 1)8
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Let X<E%(E;p) and e<=Ely b=p(e). Then Xe^0 if and only if \J>*(X),

or [*,

Proof. From [1], Lemma 5, 2, p*(X)t*Q if and only if [ p * ( X ) ,
36(5)] +8(6) =3£(5)0 We assume that p*(X)t = Q. By the same argu-
ment as the proof of Lemma 3.5, we see that if Xe^Q, then [ X, %]

+ $(«)* = «*. Now assume that [-Y, %]+ S (*)»=% but Ze-00 Let
$(*)!= {Ze%;((4rfY)Z). = 0 for Ye3£F(£;/?)} be a subalgebra of %.
It is easy to see that [Jf, Z] e $ (*) i for any Ze^GOL Note that

J is finite codimensional in St&B

Let flrf Z:2T&-->2t6 be a map defined by O/ X) (Z) =\_X, Z] for
Then the map ad X induces a map A (X) % : 2I5/$ (0) &— »%/

SWL Since DY, %]+$(*)* = %, 4(^0* is epimorphic. Since
is an endmorphism of the finite dimensional vector space 3tj
A(X)* is isomorphic. Let {X} be the equivalence class of X in §I&/
$(*)!. Then ^(Z)^{Z}-05 hence Ze^Wl Therefore [Z3(2T6)e]c
SWi, where (a6).= {Y^%b',Ye = Q} a This means that ^ (X) * ( (%) ./
SWi) =0, and (%). = 3WJ. Since (%). =?$(*)», this is a contradiction.
This completes the proof of Lemma 5. 50

Let X(E;p)e= {X^%(E\p} lXe = 0} for each eeEB From Propositions
5. 2, 5. 3 and Lemma 58 5, we have the following.

Proposition 5.6. The Lie algebra isomorphism 0 : 3£ (E°,p)
induces a Lie algebra isomorphism 0: 3£ (£";/?) ,-» 36 (Ef ',p'}a(e} for each

Let V be a product F-module V\ XV2 of a finite group F such
that Fr={0}9 and p\\V-*V\ the natural projection,, Let { r j l 9 . . . , 7]s]

be a minimal set of homogeneous generators for J?[F2]f. Here -ff[F2]f
is the algebra of /"-invariant polynomials which vanish at 0. Let
[yi,... ,ym] be a canonical coordinate of V2 such that I"1 acts orthogo-
nally on this coordinate. We can assume r]l=y\-\ hj4° Let C°r(V)
denote the set of all /^-invariant smooth functions on Ma

Lemma 5« 7» Let g be a T-invariant continuous function on V such

that 7]ig^Cr(V) for i = l,... , s. Then g is a F-invariant smooth function.
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Proof, If ^=1, by using Taylor expansion, it is easy to prove
that g is a smooth function. We consider the case that s^2. Put
hi = i)ig. Then we see that hi^2 = h2^i. Put G — hif]2* Let TaG be a
formal Taylor expansion at a^V. Then TaG = 7]2Ta(hi) =^iTa(h^). Since
[r]i, . . « , 5?s} is a minimal set of homogeneous generators for ^[F2]^,
there exists a smooth function h{ on V such that hi = r]ilii. Then
g is a smooth function.

Theorem 5.8. There exists a Lie algebra isomorphism @:£(E;p)->
26 (£';/>') if and only if there exists a fibration preserving diffeomorphism
<j\E->E' such that ® = ff*.

Proof. Using Proposition 5. 6 and Lemma 5. 7, we can prove
Theorem 5. 8 by the same argument as in [1], §5.

§ 6. Reflection Groups

Let V be an ^-dimensional product F- module ViXV2 of a finite
group F. Let Fv denote the isotropy subgroup of F at v^.V, Let
F(1) = [v^V\Fv is a cyclic group of order two generated by a reflection
of F}. Let Fl be the subgroup of F generated by reflections [j-^Fv\
#eF(1)}. Fl is a normal subgroup of F which is a reflection group.
Let F{(i=\,T) be the subgroup of Fl generated by reflections {^e
Fv ; v e F(1) n FJ . Then Fl = F\x F\, Since A is a reflection subgroup,
there is a homogeneous minimal set of generators (#1, . . . , #„} for

^[^]0
ri (see Bourbaki [3], Ghapitre F, §5, Theoreme 3]). Let rc^

dim Vi for i = 1, 2. We can assume that [61, , . . , ̂ KI} and {^ni+1, . . . ,

ri
&„} are homogeneous minimal sets of generators for ^[Fijo1 and

r,1 respectively. Let 6l= (0lf ..., OJ : V^Rn\ d^ (^+lf . . . ,*„) :

and 0= (01, ^2) : F->^ra be polynomial maps. Let 6l;Vl/F\-*Rn\

Rn2 and 0:V/Fl-^Rn be the induced orbit maps which are
embeddings. Since /\ is a normal subgroup of F9 the jT-action on
F induces an action W^rxV/Fi-^V/F^ where F is a factor group

Lemma 6* 1, There exists a linear action W:FxRn->Rn such that
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(1) W(r, 0CY))= 0(^0(7-,*)) for r^T, x^V/F^ and 0:}
is a F-equivariant embedding,

Vi/F{-^Rni is a F-equivariant embedding.

Proof. Since Fl is a normal subgroup of F, F acts on R^VJo1 by

(r8/) (zO =f(r~1'ti for f^R{V~]Q\ 7-eT, yeF. We can choose a homo-
r>

geneous minimal set of generators for ^[FJo1 such that ^°0{ =

Zd.g6i=d.gejai,(r')ffj with ( f l£ j-(r))eGL(« f /Z) for rer(cf0 Schwarz [8],

Lemma 8. 1). We can assume that 0^ = 0 if l^i^Sfti, Wi+l^ /^w or
1^/^Wi, 77 i+ l^z^w. Let {<?!, o o . ,en} be a canonical basis of R". We

define a linear action ¥:FxRn^Rnby W(r, Z^Xjej) =2lj=laij(r~1} xp{.

Then we can check that the action satisfies (1) and (2). This completes
the proof of Lemma 6. 1.

Let p\V/r-^Vjr and p:Rn/F-^Rni/F be maps induced from the

natural projections F— >Fx and Rn->R l respectively. We can regard

p and p as fibrations over smooth orbifolds. Since S: V/Fl-^Rn is a

F-equivariant embedding by Lemma 6, 19 we have an induced embed-

ding §:V/F->Rn/r. It is easy to see that the induced map ^*:C°°

(Rn/n-*C°°(V/F) is epimorphic. We define 0*:®(J?V/")^®(JW
by S*(X)(0*(f))=X(f)og for X^<&(Rn/F), f^C~(Rn/F). Since

§(V/F) is the closure of an open set in Rn/F, we see that 0* is
a well defined Lie algebra homomorphism0 Clearly 6* induces a Lie
algebra homomorphism <9*:S)(J?n/^^)->S)(F/r;/?)0

Let {771, . . o , 7]k} be a minimal set of generators for R^R^ such

that (371, . . . , 57^} (ki^h) is a minimal set of generators for R[_Rni^a

Let 7j:Rn/F-^Rk be the orbit map of a polynomial map 57= (571, . . . , %) :

Rn—>Rk. Let v= (»i, 8 . . , vk) : V->Rk, where ui = 7]i°0e Since 0 and 5 are

smooth embeddings, v(V) = f ] ( 0 ( V / F ) } is diffeomorphic to V/Fe Let

rx-e/?[jvi, . o . , jVi], i = ! J 8 o e , / , be the generators of the ideal / of
algebraic relations among ^i? . . . , ̂ . Let S be a subset of Rn and

/°°(5) denote the ideal in C°°(Rn) which vanish on S. For a smooth

vector field X on 7?", we say that X is tangent to S if X preserves

the ideal /-(5).
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Lemma 6. 2. Let X be a polynomial vector field on Rk. Then

(1) X is tangent to r](Rn} if and only if X(ri} e/5 i =!,...,/.
(2) X is tangent to y(Rn} if and only if X is tangent to

Proof, Since the ring of polynomial functions on 57 (Rn) can be
identified with R\_yi, . . . ,_%]//, we see (1). Since v(F) contains an
open set in Rn, we can prove that / is also the ideal of algebraic
relations among &»i, . . . , ̂ , and (2) follows.

Let D(?](Rn)) be the Lie algebra of polynomial vector fields on
Rk which tangent to y(Rn}, By the same argument as in Schwarz
[8, Proposition 6. 14], we see the following.

Proposition 6. 3. ( 1 ) ® 0? (R w) ) = C°° (5? (Rn) ) -£>(>? (Rn) ) .
(2) S>

Proposition 6.4. The Lie algebra homomorphism
(V/F) is epimorphic.

Proof. By Lemma 6.2 D(y(Rn)) =Z)(y(PO). Let j : » (V) C>7] (Rn)
be the inclusion. Then the induced map j*:C°°(^(^ra))->
is epimorphic,, Since 0* is identified with a homomorphism

= S(?(#"))-^S)(>(F)) =S(F/r)9 ^* is epimorphic from Proposition
6. 3B This completes the proof of Proposition 6. 4.

Note that the maps p\V/T-^V^r and p:Rn/r-*Rni/r induce Lie
algebra homomorphisms p*:&(V/r;p)-><£)(Vi/n and p*:<&(Rn/r\p)

->S(/?ni/r). We set <S>P(V/r\p)=kerp* and <&F(Rn/r',p) =ker p*.
Then SF(F/F;/0 is a C°°(F/r) -module and &F(R»/r;p) is a

C°° (Rn/F) -module respectively. Let q:Rk-^>R 1 be the natural projection
q induces a Lie algebra homomorphism q^:^(Rk\q)-^^(Rk). Let
D F ( r j ( R n } } q } = k e r q * f } D ( r ] ( R » ) } and DF0(F) ;?) =A«r ?* n^(^(F))8

By the same argument as in Proposition 6. 3 and Proposition 68 4,
we have the following.

Proposition 6.5, (1) S)F0?(F) ;?) -C~0?(F))
(2) SF
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(3) The Lie algebra homomorphism 0* i^F(Rn/ Tip) ->SF(F/ Tip) is
epimorphic.

Combining Propositions 6. 4 and 6B 55 we have0

Corollary 6. 68 The Lie algebra homomorphism 0
) is epimorphic,

Lemma 68 7 If V(l} is not empty ^ then there exists a smooth vector
field Xe$)(V/rip) such that X^^O, where x:V->V/r is the natural
projection,

Proof. V is an orthogomal representation with respect to a suita-
ble basis of V, Let W be the orthogonal complement of Vr. Then
W is a F- module. Since F(1) is not empty, dim PF>0. Let [xi9 ... ,xp]
be a canonical coordinate of W. If dim P^r>03 we see that there exists
a F-in variant smooth vector field Y on V such that X=n*(Y)^
©(F/Tj/O and Jf^o^O. If dim Wr = Q, then we can choose a homo-

ji
geneous minimal set of generators {0^ . . . 9 0n} for ^[FJo1 such that
Oi=x\-\ ----- \-x2

p for some i. Since j"t0i = 0i for any ^^/^ we see that
dim(Rn)F^>Qe Then we have a /'-invariant smooth vector field Z on
R* such that X=K*(Z) ^%)(Rn/r;p) and ^,(0)^0, where x':Rn-*Rn/F
is the natural projection. Since (d§)n(o:>:T1t(iQ:>(V/r)-^TK/(Q}(R

n/r) is
isomorphic, ff^(X)fm^O. This completes the proof of Lemma 6. 78

Let $)(V/r',p)(x) = {Y3eiYE=S)(V/r;p)} for

Corollary 6. 8. ^(V/Fip) (TT(O)) - {0} if and only if dim Vr =
and

Proof. If F(1)-^5 then S(F/F;/0 =X(V/r;p) by Schwarz [8,
Chapter I, Proposition 3.5]. By Lemma 2.2 X(V/r°,p) =3Er(7;j5),
where j5:F->Fi is the natural projections Thus if F(1) = 0 and dim
Vr = Q, ®(F/r;/?) (;r(0)) = {0} from Lemmas 2. 3 and 20 5, If V™*$9

then D(V/F;p) (n(Q))*r {0} by Lemma 6. 7, and Corollary 6, 8 follows.
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§ 7. Proof of Theorem 0. 1 and Theorem 0. 2

Let p:E^>B be a fibration over a connected smooth orbifold B
with generic fibre F, a connected smooth manifold. We set BQ =

s = 0 for any JTeS(5)}, 5! = 5-50 and

Proposition 7. 1. For b^B^ there exists a unique infinite codimensional

maximal ideal S&(7?) of 3) (7?) which is contained in

Proof. For b^B, there exist a finite group 7^ and a linear action
FxF-^F on an n-dimensional vector space V such that V/F is
diffeomorphic to an open neighborhood U of 6. By Lemma 6. 1 and
Proposition 6. 43 we have a linear action /* X Rn-*Rn such that there
exists an embedding 0:V/F-^Rn/F and ^iSX/?"/^)-* 35(7/7") is a
Lie algebra epimorphism. Using the property of the reflection group
7\, the natural group homomorphism F->F has a right inverse. Then
it is easy to see that F has no reflection subgroups. Then (S)(RH/F)
= £(Rn/F). By Corollary 6.6 and Lemma 6. 7, there exists a smooth
vector field X^^(Rn/F) such that A^(0)^0.

From [1], Lemma 3. 93 there exists a unique infinite codimensional
maximal ideal 3^ of %(Rn/F) which is contained in 3c(Rn/F)ba

Then 3i2 = 0^(^i) is an infinite codimensional maximal ideal of ^(V/F)
which is contained in S>(7/r)6. ^(B') = (X^<S)(B) ',X=Y on a
neighborhood of b in £ for some Y^312}- As in the proof of [1],
Proposition 3. 83 we can prove that ^Sb(B) is an infinite codimensional
maximal ideal of ®(.B). This completes the proof of Proposition 7. 1.

Lemma 7- 2, Let b^Blt Then, for X^^(B), X(b) ^Q if and only
if [J

Proof, We use the same notation as in the proof of Proposition
7. 1. To prove Lemma 7. 25 it is sufficient to prove that, for JfeS)
(F/T), X,<n*Q if and only if {_X, S(F/O] + K2 = 35(7/7") where
7r:7->7/r is the natural projection. Note that ® (/2 "//*) = X CR VO .
It follows from [1], Lemma 5.2 that, for Y^^(Rn/F), Yp(0^Q if
and only if [F, S(/2"/O]+3fii = S)(/2n/O, where p:Rn-*Rn/F is the
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natural projection. Let J^S(F/F) with XK(fn*rQ. There exists
(R*/r) such that g*(Y) =X. Then Fp(0)^0 and hence [y, S) (/?»//")]
+ 9ii = S(#V/"). Since 0* is epimorphic3[Z? S)(F/r)] +?l2

Conversely, suppose that K S(F/F)] +^2=S(F/F). Let
such that 0*(Y) =Z. It is easy to see that $)(Rn/n=[Y9 S>
+3?!. Then yp(0)^0. Hence ZB(0)^=0, and this completes the

proof of Lemma 70 2.

Proof of Theorem 0. 1. Using the result of [1], we see that (2)
implies (3). By Schwarz [8], Corollary 1.7, if a: B-+B' is diffeomor-
phic, then a is strata preserving0 Then we see that (3) implies (2).
Assume that there exists a Lie algebra isomorphism 0: S)(5) -»S)(5')-
As in [1], § 5, using Proposition 7, 13 and Lemma 7. 2, we can prove
that there exists a diffeomorphism a'.B~^Bf such that @ = a*. This
completes the proof of Theorem 0. 1.

Proof of Theorem 0,2. By Theorem 5.8, (2) implies (3). By
Schwarz [8], Corollary 1.7, (3) implies (2). Assume that there exists
a Lie algebra isomorphism 0: &(E;p) ->S(£" ;/?')• As the proof of
Theorem 5.7, using Corollary 6.6 and Theorem 0. 1, we can prove
that there exists a fibration preserving diffeomorphism o:E-^>Ef such
that 0=a*. This complete the proof of Theorem 0.2.
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