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Cohomology Mod 2 of the Classifying
Space of Spinc(n)

By

Masana HARADA* and Akira KONO**

In this paper we determine the mod 2 cohomology ring and the
integral cohomology ring of the classifying space of the compact.,
connected Lie group Spinc(ri), which is a subgroup of the group of
units in the complex Clifford algebra Cn®C (see [1]). The group
Spinc(ri) is very important for the orientations in the KO-theory.
We also determine (the mod 2 reduction of) the Ghern classes of the
complex spin representations and the Hopf algebra structure of the
mod 2 cohomology ring of Spinc(n),

The first section is devoted to studying an ideal of a polynomial
ring over F2 which is associated to a symplectic bilinear form on a
F2 vector space and whose variety of geometric points is the union
of the maximal isotropic subspaces rational over F2. We show that
the generators of the ideal form a regular sequence and we determine
the decomposition of the ideal into prime ideals. These algebraic-
geometric results are applied in the second and third sections to
compute the mod 2 and integral cohomology ring of BSpinc(n} and
determine the Ghern classes of the spin representation of Spinc(ri)e

In the last section we compute the Steenrod operations and the
coproducts of the mod 2 cohomology of Spinc(n)a

Throughout the paper H*(X) denotes the mod 2 cohomology ring,

1. Let V be an ^-dimensional vector space over F2, V* its dua!3

S(V*) the symmetric algebra over F* and B a symplectic bilinear
form on V. Let h' be the codimension of a 5-isotropic subspace of
maximum dimension. Consider the following sequence of homogeneous
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elements of length hf in 5(7*) :

(1.1) B(x,x2), ..., B(x,x2h/).

Let Q be a universal field of F2, 7^-7(x)^? /' the ideal of 5(7*)
generated by (1.1) and Var/' the variety of zeros in VQ. First we
prove the following:

Theorem 1. 2. VarJ'= U W^ where W ranges over the maximal

B-isotropic sub spaces of V,

Proof. Using the identity

one see for an element x^VQ, that %eVar/' if and only if the

£?-subspace

of V Q is 5-isotropic. To prove the theorem we must therefore show
that xEiVarJ' if and only if Nx is stable under the Frobenius, which
is shown by computing the dimension of maximal 5-isotropic subspaces
of VQ as was done in the proof of Theorem 2.4 of [5].

Corollary 1.3. The sequence (1.1) is a regular sequence,

Remark 1 . 4, All maximal jB-isotropic subspaces of 7 are of the
same dimension n — h'.

Counting the number of the maximal 5-isotropic subspaces, we
can prove the following by Bezout's theorem (see Section 3 of [5]) :

Theorem 1.5. The ideal J' has a prime decomposition J'=npw,

where W ranges over all maximal B-isotropic subspaces and pw =

Let Q be a quadratic form on 7. Then B(x,y) =Q(x-}-y') +Q,M

+ 0,00 is a symplectic bilinear form. Let h be the codimension of a
Orisotropic subspace of maximum dimension. Then we can easily get
the following:
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Lemma 1. 60 h = h'+e where s = 0, 1, or I depending on Q is real,
complex, or quaternion respectively.

See Section 3 of [5].

2B First consider the central extension

(2. 1) 0 - >sl-^-*Vc-^V - >1

where V is an elementary abelian 2-group. As is well known that
(2. 1) is classified by an element b^H*(BV',Z}» Let p be the mod
2 reduction and B' = p ( b ) . Since Im p = lm Sql, there is an element
QjE:H2(BV} such that B/ = Sq1Q. Note that H*(BV) is isomorphic to
5(7*) and so Q is a quadratic form and B' = B(x,x2). Let W be a
maximal 5-isotropic subspace» Then Wc = K~I ( W) = W X Sl since p is
a monomorphism. Let i'.Wc->Sl be a complex representation of W°
whose restriction to Sl is the standerd representation c and let A be
the representation of V° obtained by inducing % from Wc to Vc, Then
A has dimension 2*' and z*(J) =2h'c. Now we can prove the following:

Theorem 2, 2. As an algebra H*(BVC} is isomorphic to S(V*)/J'®
F2[_e\, where Jr is the ideal generated by B(x,)x

2)9 B 0 0 3 B(x,x2 ) and
e^H2h/+1(BVc) is the Euler class of A.

Proof, Consider the Serre spectral sequence for the fibering

q (BS1) ) =>£.. - Gr (//*

Let z be a generator of H2(BSl) so that H*(BSl) =F2\_z\. The element
£ is transgressive with r(^) =B' = B(x, x2)* Therefore

^(/) =r(5^) =SkB(x, x2) =B(x, /+1)

where Sk = Sq2 . . . 5*g2. Since B(x,x2), O o o 3 B(x,x2 ) is a regular
sequence by Corollary 1.3, we can easily get

On the other hand i*(e)=z since t*(4) =2*^. Hence Eeo=E^tf+2

and we get the theorem.

Theorem 26 30 T^ homomorphism H*(BVC} ->Ii H*(BWC) is injec-
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tive, where the product is taken over all maximal B-isotropic subspaces of V»

Proof. Recall the fact that Ker {H*(BVC)-*H*(BWC)} is equal to
(pw/J')®FJie\- Therefore Theorem 2. 3 follows from Theorem 1. 5Q

Remark 2.48 We can determine the Chern classes of A using
Theorem 2. 3.

3e First recall the fact that the extension Q-+Z/2-*Spin(ri)-+
•S0(w)->l is classified by wz^H2(BSO(ri)) and the extension

(3. 1) 0 »Sl-^-*Spinc(ri)-^SO(n) >1

is classified by b'^H*(BSO(n);Z) where p(b') =w3=Sqlwz since
Spin* (ri)= Spin (ri) XZ/2S

1
0 Let V be the diagonal matrices in S0(ri)9j:

V-+SO(n) the inclusion and Ve = 7c~1(V). Then the extension Q-+S1-*
VC->V->1 is classified by b=j*(b') and so Qf=j^(w2) and B'=j*(w>^)
in Section 2, Now using Table 6.2 of [5] and Lemma 1.6, we
have the following:

Lemma 3* 2. Let hf be the codimension of a B-isotropic subspace of
maximum dimension where B is the associated bilinear form of Qj=j* (w2).

Then A'= -^-=— and 2h' is equal to the dimension of the complex spin

representation of Spine(n).

Consider the following commutative diagram:

SO (n) /V >BVc-+-»BSpinc (n)
II I I

SO (n} /V >BV —->BSO (n)

where the horizontal lines are fiberings. Since the Serre spectral
sequence for the fibering S0(n) /V->BV->BSO(ri) collapses, the Serre
spectral sequence for SO(n)/V-*BVc-*BSpinc(n) also collapses. There-
fore we have the following:

Lemma 3.3. H*(BV) is a free module over H*(BSO(ri)} and
H*(BVC) is a free module over H*(BSpinc(ri)}e

Since j* (Skw£ = Skj* (wj = SkB (x, x2) - B (x, x2"+l), we have that
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J* (^3) 5 • • • 5 J* (-S/i'-i^s) form a regular sequencea We have therefore

the following by Lemma 3, 3 :

Lemma 3. 4- 77z£ sequence w& 0 . . , S^-iW^ is a regular sequence,

Put 70={*e7;5(#,j;)=0 for allj;<EF}0 Then dim F0 = 0 If « Is
odd and dim V0 = l if n is even. There is a unique spin representation
^2m+i if ft — 2m + 1 and there are two spin representations A%m if n = 2ma

Consider the following orthogonal decomposition:

Then W=Wi@V* Put Wc = ̂ l(W) then W* = (PFi©F0) X51 and

where reg W7! is the regular representation., dim^ = l and ^ is trivial
(resp0 non trivial) if 4 = JJW (resp0 if ^ = 4~w)8 Therefore z*(J)^27^8

In the Serre spectral sequence for BSl-^>BSpinc(n)->BSO(n)^ z is
transgressive with rfc) =^3. Now we have the following:

Theorem 3a 5. As an algebra H*(BSpinc(ri)) is isomorphic to
H*(BSO(n))/J'(g)F2[e'], where Jr is the ideal generated by w^ SiW^ 0 0 9 3

Sh,-i w^ and e is the Euler class of the complex spin representation Aa

This follows by computing the Serre spectral sequence for BSl->
BSpinc(ri)-^BSO(ri) as was done in the proof of Theorem 2. 20

Now we determine the Chern classes of A, By Theorem 2. 3 and
Lemma 3. 33 we need only determine c{(A\^)m By a similar method
to that of [5], we have the following (cfe Section 5 of [5]) :

Theorem 3. 60 (1) The classes Ci(A^) for i<^2h/ are independent 0/±.

(2) CiW=Qfor i^2h\ 2h'-V, (j = 0, 1, . 0 0 , A')-
(3) The sequence fo(2/) ;i = 2fc/, 2h'-2j, (j = Q, 19 . .. , h'-l)} is a regular
sequence in H*(BSpinc(n)).

On the other hand for the integral cohomology we can prove the

following :
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Theorem 38 7* The torsion elements of H* (BSpin0 (n) ; Z) flr* o/
2.

This follows by computing the ^-cohomology of H* (BSpin0 (ri))

as was done in [4].

Remark 3.8. The natural map H* (BSpin0 (ri) ;Z)-+H*(BSpine(n))

xH*(BSpine(ny,K) is injective (see [4]).

4. Let s = s ( n ) be the integer given by 2S~1<\^<2S. Define
Hj(Spinc(n)) by <7 (TT* (ze^i) ) where <r is the cohomology suspension.
Note that z^ = 0 if j>;z. By Theorem 3.5, as an algebra H* (BSpin0

(n)) is isomorphic to

for *<2* + l, where

2s"1

(4.1) r = S ^Xui • + higher
;=Z 2 -4-1"1

2fe

and r^^^Cz^y) (ze;^- is decomposable if j = 2- 7 / +l) . (SkW^= 2 ^i^2fe+i_{.

mod H*(BO)3 can be shown by induction on A using the Wu's
formula (see 15.7 of [2])).

On the other hand by Theorem 1. 1 of [3], there exists a^
H2S~l(Spinc(n)) which is transgressive with respect to Spine(ri)->
Spinc(n) /T-+BT, where T is a maximal torus, so that

(4. 2) H* (Spin* («))=// (*, ; 1 < j<n, j * 2'' ( / > 1 ) ) (g) A (a)

where J ( . . . ) means that ( . . . ) is a simple system of generators.
Since $(Xj) =0 by definitions where $ denotes the reduced coproduct

of H*(Spine(n))9

(4.3) $(a)= S

by Theorem 2.2 of [3] (see also Lemma 3.4 of [3])0 Then by the
Rothenberg-Steenrod spectral sequence ([6]) and (4. 1)? (Xi = l for any
i. Then we have (see the proof of Theorem 3. 2 of [3]) :

Theorem 4. 4. (1) In (4.2) $(*y)=0 and $(d) = 2 x2i®x2j-i
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(2) Sqixj = xj+i(x2j = x$9 Sqla= Z xKx2j and Sq{a = Q for i>
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