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Cohomology Mod 2 of the Classifying
Space of Spin‘(n)

By

Masana HARADA* and Akira KONO**

In this paper we determine the mod 2 cohomology ring and the
integral cohomology ring of the classifying space of the compact,
connected Lie group Spin°(n), which is a subgroup of the group of
units in the complex Clifford algebra C,&C (see [1]). The group
Spin°(n) is very important for the orientations in the KO-theory.
We also determine (the mod 2 reduction of) the Chern classes of the
complex spin representations and the Hopf algebra structure of the
mod 2 cohomology ring of Spin‘(n).

The first section is devoted to studying an ideal of a polynomial
ring over F, which is associated to a symplectic bilinear form on a
F, vector space and whose variety of geometric points is the union
of the maximal isotropic subspaces rational over F, We show that
the generators of the ideal form a regular sequence and we determine
the decomposition of the ideal into prime ideals. These algebraic-
geometric results are applied in the second and third sections to
compute the mod 2 and integral cohomology ring of BSpin(n) and
determine the Chern classes of the spin representation of Spin‘(n).
In the last section we compute the Steenrod operations and the
coproducts of the mod 2 cohomology of Spin®(n).

Throughout the paper H*(X) denotes the mod 2 cohomology ring.

1. Let V be an n-dimensional vector space over F, V* its dual,
S(V*) the symmetric algebra over V* and B a symplectic bilinear
form on V. Let A’ be the codimension of a B-isotropic subspace of
maximum dimension. Consider the following sequence of homogeneous
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elements of length A" in S(V*):
(1. 1) B(x, 5%, ..., B(x,5%).

Let 2 be a universal field of F,, Vo=V, J’ the ideal of S(V*)
generated by (l.1) and VarJ’ the variety of zeros in V, First we
prove the following:

Theorem 1.2. VarJ'=UW, where W ranges over the maximal
B-isotropic subspaces of V.

Proof. Using the identity
B, #%) =B(x, 4 )? (<)),
one see for an element x&V, that x&VarJ’ if and only if the
Q-subspace
N, =Qx+Qx2+ - + 252

of Vg, is B-isotropic. To prove the theorem we must therefore show
that x&Var J’ if and only if N, is stable under the Frobenius, which
is shown by computing the dimension of maximal B-isotropic subspaces
of V, as was done in the proof of Theorem 2.4 of [5].

Corollary 1.3. The sequence (1.1) is a regular sequence.

Remark 1.4. All maximal B-isotropic subspaces of V' are of the
same dimension n—4A’.

Counting the number of the maximal B-isotropic subspaces, we
can prove the following by Bezout’s theorem (see Section 3 of [5]):

Theorem 1.5. The ideal J' has a prime decomposition J'= N pw,
where W ranges over all maximal B-isotropic subspaces and py=

Ker {S(V*) ->S(W*)}.

Let Q be a quadratic form on V. Then B(x,»)=0Q(x-+y) +0(x)
+0(y) is a symplectic bilinear form. Let % be the codimension of a
Q-isotropic subspace of maximum dimension. Then we can easily get
the following:
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Lemma 1.6. A=A"+¢ where e=0, 1, or 1 depending on Q is real,
complex, or quaternion respectively.

See Section 3 of [5].

2. First consider the central extension
2.1 0— S — Ve y— 1

k4

where V' is an elementary abelian 2-group. As is well known that
(2.1) is classified by an element be H*(BV;Z). Let p be the mod
2 reduction and B’=p(b). Since Im p=Im S¢', there is an element
Qe H*(BV) such that B’=8¢'Q. Note that H*(BV) is isomorphic to
S(V*) and so Q is a quadratic form and B’=B(x,x%). Let W be a
maximal B-isotropic subspace. Then Wé¢=z"1(W) =W x§" since p is
a monomorphism. Let y:W°—>S' be a complex representation of W*
whose restriction to §' is the standerd representation ¢ and let 4 be
the representation of V* obtained by inducing y from We to Ve. Then
4 has dimension 2* and i*(4) =2*.. Now we can prove the following:

Theorem 2.2. As an algebra H*(BV®) is isomorphic to S(V*)/J'®
Fylel, where J' is the ideal generated by B(x,x%), ..., B(x, «?) and
ec H? "' (BV) is the Euler class of 4.

Progf. Consider the Serre spectral sequence for the fibering

BS'——BV*—>BV
E}*=H!(BV;H*(BSY)) >E..=Gr (H*(BV?)).
Let z be a generator of H?(BSY) so that H*(BS") =F,[z]. The element
z is transgressive with t(z) =B’=B(x, x*). Therefore
o(2%) =7 (8i0) =S:B(x, 4) =B (x, 2
where SszqZk. ..8¢%. Since B(x,x%, ..., B(x, ) is a regular
sequence by Corollary 1.3, we can easily get
Eu ,=S(/*) /]’ QF,[2"].

On the other hand i*(e) =722 since i*(4) =2%¥.. Hence E.=E,,
and we get the theorem.

S+l

Theorem 2.3. The homomorphism H*(BV<) -II H*(BW®) is injec-
w
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tive, where the product is taken over all maximal B-isotropic subspaces of V.

Proof. Recall the fact that Ker {H*(BV?)—H*(BW¢)} is equal to
(tw/]") QF;[e]. Therefore Theorem 2.3 follows from Theorem 1. 5.

Remark 2.4. We can determine the Chern classes of 4 using
Theorem 2. 3.

3. First recall the fact that the extension 0—Z/2—Spin(n)—
SO (n)—1 is classified by w,=H*(BSO(n)) and the extension
3.1 0——>S'——Spin* (n) ——>S0 (n) —1
is classified by b6’'€H*(BSO(n);Z) where p(b’) =w;=S8¢'w, since
Spin®(n) =Spin(n) X z,8". Let V be the diagonal matrices in SO(n), j:
V—80(n) the inclusion and Ve=#"1(V). Then the extension 0—S'—
VesV—1 is classified by b=j*(0") and so Q=j*(w,) and B’'=j*(w,)
in Section 2. Now using Table 6.2 of [5] and Lemma 1.6, we
have the following:

Lemma 3.2, Let h’ be the codimension of a B-isotropic subspace of
maximum dimension where B is the associated bilinear form of Q=j*(w,).

Then h’=l:nz;1:] and 2% is equal to the dimension of the complex spin
representation of Spin®(n).

Consider the following commutative diagram:
SO (1) /V——s BV*— > BSpin® (n)
I J {
80 (n) /V——BV ——BS0 (n)

where the horizontal lines are fiberings. Since the Serre spectral
sequence for the fibering SO (n) /V—BV—->BSO(n) collapses, the Serre
spectral sequence for SO (n)/ V—> BV~ BSpin°(n) also collapses. There-
fore we have the following:

Lemma 3.3. H*(BV) is a jfree module over H*(BSO(n)) and
H*(BV*) is a free module over H*(BSpin‘(n)).

ok+

Since j* (Syws) = Sij* (ws) =SB (x, x2) =B (x,5*"), we have that
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J¥(@3a)y ooey j¥(Swows) form a regular sequence. We have therefore
the following by Lemma 3. 3:

Lemma 3.4. The sequence ws, ..., Sy_1ws is a regular sequence.

Put Vy={xeV;B(x, ) =0 for all yV}. Then dim V,=0 if n is
odd and dim V,=1 if 7 is even. There is a unique spin representation
dypiy if n=2m+1 and there are two spin representations 4z, if n=2m,
Consider the following orthogonal decomposition:

VEW,OWrDVo
Then W=W,®V,. Put We=z"'(W) then W*=(W;DVy) x§* and
A Iwcz (reg Wl) ®0®l
where reg W, is the regular representation, dim #=1 and @ is trivial
(resp. non trivial) if 4=43, (resp. if 4=4;,). Therefore *(4) =2".
In the Serre spectral sequence for BS'—BSpin®(n) >BSO(n), z is
transgressive with 7(z) =w;. Now we have the following:

Theorem 3.5. As an algebra H*(BSpin®(n)) is isomorphic to
H*(BSO(n)) /]’ QF,[e]l, where J' is the ideal generated by ws, Siws, ...,

Sw_1 w3 and e is the Euler class of the complex spin representation A.

This follows by computing the Serre spectral sequence for BS'—
BSpin®(n) -BS0O (n) as was done in the proof of Theorem 2. 2.

Now we determine the Chern classes of 4. By Theorem 2.3 and
Lemma 3.3, we need only determine ¢; (A]Wc), By a similar method
to that of [5], we have the following (cf. Section 5 of [5]):

Theorem 3.6. (1) The classes ¢;(d5,) for i<<2" are independent of £.
@) c:(d) =0 for i#2¥, 2¥—2, (j=0, 1, ..., K.
(3) The sequence {c;(4);1=2", 2" —2i, (j=0,1, ..., h"—1)} is a regular
sequence in H* (BSpin®(n)).

On the other hand for the integral cohomology we can prove the
following:
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Theorem 3.7. The torsion elements of H*(BSpin®(n);Z) are of
order 2.

This follows by computing the Sg'-cohomology of H* (BSpin®(n))
as was done in [4].

Remark 3.8. The natural map H*(BSpin®(n);Z)—H*(BSpin‘(n))
X H*(BSpin®(n) ; R) is injective (see [4]).

4. Let s=s(n) be the integer given by 2°7'<n<2°. Define x;&
H/(Spin°(n)) by o(x*(w;.1)) where ¢ is the cohomology suspension.
Note that w;=0 if j>>n. By Theorem 3.5, as an algebra H*(BSpin°
(n)) 1is isomorphic to

Flw;;2<j<n, j#2'+1 (G'=1)]1/(r)
for ¥*<2°+1, where

25—1
4.1 r=), ww, . +higher
i=2 ¢
Zk
and w;=r*(w;) (w; is decomposable if j=27+1). (Skw3=§0w,~w2k+1_i
mod I:T*(BO)3 can be shown by induction on % using the Wu’s
formula (see 15.7 of [2])).

On the other hand by Theorem 1.1 of [3], there exists a&
st‘l(Spin‘(n)) which is transgressive with respect to Spin®(n)—
Spin°(n) /T—BT, where T is a maximal torus, so that
(4.2) H*(Spin®(n)) =d(x;;1 <j<m, j#27(j'>1)) X4 (a)
where 4(...) means that (...) is a simple system of generators.

Since ¢(x;) =0 by definitions where ¢ denotes the reduced coproduct
of H*(Spin°(n)),
(4.3) ¢a)= X laix2i®x2j—1 (;eFy
i+j=2°"
by Theorem 2.2 of [3] (see also Lemma 3.4 of [3]). Then by the

Rothenberg-Steenrod spectral sequence ([6]) and (4. 1), a;=1 for any
i. Then we have (see the proof of Theorem 3.2 of [3]):

Theorem 4. 4. (1) In (4‘. 2) ¢—(x,-) =0 and gﬁ(a) = Z L x2;®xz,-_1

i+j=2""



CLASSIFYING SPACE OF Spin(n) 549

(x;=0if j=2"(j’=1)).

(2) Sq‘xj=<]i ) i+i (o =x%), Sq'a= Zs i and Sq¢'a=0 for i>2
1+€:§
(a*=0).
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