Cohomology Mod 2 of the Classifying Space of Spin^c(n)

By

Masana HARADA* and Akira KONO**

In this paper we determine the mod 2 cohomology ring and the integral cohomology ring of the classifying space of the compact, connected Lie group $Spin^{c}(n)$, which is a subgroup of the group of units in the complex Clifford algebra $C_n \otimes C$ (see [1]). The group $Spin^{c}(n)$ is very important for the orientations in the KO-theory. We also determine (the mod 2 reduction of) the Chern classes of the complex spin representations and the Hopf algebra structure of the mod 2 cohomology ring of $Spin^{c}(n)$.

The first section is devoted to studying an ideal of a polynomial ring over F_2 which is associated to a symplectic bilinear form on a F_2 vector space and whose variety of geometric points is the union of the maximal isotropic subspaces rational over F_2 . We show that the generators of the ideal form a regular sequence and we determine the decomposition of the ideal into prime ideals. These algebraicgeometric results are applied in the second and third sections to compute the mod 2 and integral cohomology ring of $BSpin^c(n)$ and determine the Chern classes of the spin representation of $Spin^c(n)$. In the last section we compute the Steenrod operations and the coproducts of the mod 2 cohomology of $Spin^c(n)$.

Throughout the paper $H^*(X)$ denotes the mod 2 cohomology ring.

1. Let V be an *n*-dimensional vector space over \mathbb{F}_2 , V^* its dual, $S(V^*)$ the symmetric algebra over V^* and B a symplectic bilinear form on V. Let h' be the codimension of a B-isotropic subspace of maximum dimension. Consider the following sequence of homogeneous

Communicated by N. Shimada, October 25, 1985.

^{**} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

elements of length h' in $S(V^*)$:

(1.1) $B(x, x^2), \ldots, B(x, x^{2^{h'}}).$

Let Ω be a universal field of F_2 , $V_{\Omega} = V \otimes \Omega$, J' the ideal of $S(V^*)$ generated by (1.1) and $\operatorname{Var} J'$ the variety of zeros in V_{Ω} . First we prove the following:

Theorem 1.2. Var $J' = \bigcup W_{Q}$ where W ranges over the maximal B-isotropic subspaces of V.

Proof. Using the identity

 $B(x^{2^{i}}, x^{2^{j}}) = B(x, x^{2^{j-i}})^{2^{i}} \ (i \leq j),$

one see for an element $x \in V_{\Omega}$, that $x \in \operatorname{Var} J'$ if and only if the Ω -subspace

$$N_x = \Omega x + \Omega x^2 + \dots + \Omega x^{2^h}$$

of $V_{\mathcal{Q}}$ is *B*-isotropic. To prove the theorem we must therefore show that $x \in \operatorname{Var} J'$ if and only if N_x is stable under the Frobenius, which is shown by computing the dimension of maximal *B*-isotropic subspaces of $V_{\mathcal{Q}}$ as was done in the proof of Theorem 2.4 of [5].

Corollary 1.3. The sequence (1.1) is a regular sequence.

Remark 1.4. All maximal B-isotropic subspaces of V are of the same dimension n-h'.

Counting the number of the maximal B-isotropic subspaces, we can prove the following by Bezout's theorem (see Section 3 of [5]):

Theorem 1.5. The ideal J' has a prime decomposition $J' = \cap p_W$, where W ranges over all maximal B-isotropic subspaces and $p_W =$ Ker $\{S(V^*) \rightarrow S(W^*)\}$.

Let Q be a quadratic form on V. Then B(x,y) = Q(x+y) + Q(x) + Q(y) is a symplectic bilinear form. Let h be the codimension of a Q-isotropic subspace of maximum dimension. Then we can easily get the following:

544

Lemma 1.6. $h=h'+\varepsilon$ where $\varepsilon=0$, 1, or 1 depending on Q is real, complex, or quaternion respectively.

See Section 3 of [5].

2. First consider the central extension

$$(2.1) \qquad \qquad 0 \longrightarrow S^1 \xrightarrow{i} \widetilde{V}^c \xrightarrow{\pi} V \longrightarrow 1$$

where V is an elementary abelian 2-group. As is well known that (2.1) is classified by an element $b \in H^3(BV; \mathbb{Z})$. Let ρ be the mod 2 reduction and $B' = \rho(b)$. Since Im $\rho = \text{Im } Sq^1$, there is an element $Q \in H^2(BV)$ such that $B' = Sq^1Q$. Note that $H^*(BV)$ is isomorphic to $S(V^*)$ and so Q is a quadratic form and $B' = B(x, x^2)$. Let W be a maximal B-isotropic subspace. Then $\widetilde{W}^c = \pi^{-1}(W) = W \times S^1$ since ρ is a monomorphism. Let $\chi: \widetilde{W}^c \to S^1$ be a complex representation of \widetilde{W}^c whose restriction to S^1 is the standerd representation ι and let \varDelta be the representation of \widetilde{V}^c obtained by inducing χ from \widetilde{W}^c to \widetilde{V}^c . Then \varDelta has dimension $2^{h'}$ and $i^*(\varDelta) = 2^{h'}\iota$. Now we can prove the following:

Theorem 2.2. As an algebra $H^*(B\tilde{V}^e)$ is isomorphic to $S(V^*)/J' \otimes F_2[e]$, where J' is the ideal generated by $B(x, x^2), \ldots, B(x, x^{2^{h'}})$ and $e \in H^{2^{h'+1}}(BV^e)$ is the Euler class of Δ .

Proof. Consider the Serre spectral sequence for the fibering $BS^1 \xrightarrow{i} B\tilde{V}^c \xrightarrow{\pi} BV$

$$E_2^{p,q} = H^p(BV; H^q(BS^1)) \Longrightarrow E_{\infty} = \operatorname{Gr}(H^*(B\widetilde{V}^c)).$$

Let z be a generator of $H^2(BS^1)$ so that $H^*(BS^1) = \mathbb{F}_2[z]$. The element z is transgressive with $\tau(z) = B' = B(x, x^2)$. Therefore

$$\tau(z^{2^{k}}) = \tau(S_{k}z) = S_{k}B(x, x^{2}) = B(x, x^{2^{k+1}})$$

where $S_k = Sq^{2^k} \dots Sq^2$. Since $B(x, x^2), \dots, B(x, x^{2^{k'}})$ is a regular sequence by Corollary 1.3, we can easily get

$$E_{2^{h'}+2} = S(V^*) / J' \otimes \mathbb{F}_2[z^{2^{h'}}].$$

On the other hand $i^*(e) = z^{2^{h'}}$ since $i^*(\Delta) = 2^{h'} \epsilon$. Hence $E_{\infty} = E_{2^{h'}+2}$ and we get the theorem.

Theorem 2.3. The homomorphism $H^*(B\tilde{V}^c) \to \prod_{W} H^*(B\tilde{W}^c)$ is injec-

tive, where the product is taken over all maximal B-isotropic subspaces of V.

Proof. Recall the fact that Ker $\{H^*(B\widetilde{V}^{\epsilon}) \to H^*(B\widetilde{W}^{\epsilon})\}$ is equal to $(p_W/J') \otimes F_2[e]$. Therefore Theorem 2.3 follows from Theorem 1.5.

Remark 2.4. We can determine the Chern classes of Δ using Theorem 2.3.

3. First recall the fact that the extension $0 \rightarrow \mathbb{Z}/2 \rightarrow Spin(n) \rightarrow SO(n) \rightarrow 1$ is classified by $w_2 \in H^2(BSO(n))$ and the extension

 $(3.1) \qquad \qquad 0 \longrightarrow S^1 \xrightarrow{i} Spin^c(n) \xrightarrow{\pi} SO(n) \longrightarrow 1$

is classified by $b' \in H^3(BSO(n); \mathbb{Z})$ where $\rho(b') = w_3 = Sq^1w_2$ since $Spin^c(n) = Spin(n) \times_{\mathbb{Z}/2} S^1$. Let V be the diagonal matrices in $SO(n), j: V \rightarrow SO(n)$ the inclusion and $\tilde{V}^c = \pi^{-1}(V)$. Then the extension $0 \rightarrow S^1 \rightarrow \tilde{V}^c \rightarrow V \rightarrow 1$ is classified by $b = j^*(b')$ and so $Q = j^*(w_2)$ and $B' = j^*(w_3)$ in Section 2. Now using Table 6.2 of [5] and Lemma 1.6, we have the following:

Lemma 3.2. Let h' be the codimension of a B-isotropic subspace of maximum dimension where B is the associated bilinear form of $Q=j^*(w_2)$. Then $h'=\left[\frac{n-1}{2}\right]$ and $2^{h'}$ is equal to the dimension of the complex spin representation of Spin^e(n).

Consider the following commutative diagram:

where the horizontal lines are fiberings. Since the Serre spectral sequence for the fibering $SO(n)/V \rightarrow BV \rightarrow BSO(n)$ collapses, the Serre spectral sequence for $SO(n)/V \rightarrow B\tilde{V}^c \rightarrow BSpin^c(n)$ also collapses. Therefore we have the following:

Lemma 3.3. $H^*(BV)$ is a free module over $H^*(BSO(n))$ and $H^*(B\tilde{V}^c)$ is a free module over $H^*(BSpin^c(n))$.

Since
$$j^*(S_k w_3) = S_k j^*(w_3) = S_k B(x, x^2) = B(x, x^{2^{k+1}})$$
, we have that

 $j^*(w_3), \ldots, j^*(S_{h'-1}w_3)$ form a regular sequence. We have therefore the following by Lemma 3.3:

Lemma 3.4. The sequence $w_3, \ldots, S_{h'-1}w_3$ is a regular sequence.

Put $V_0 = \{x \in V; B(x, y) = 0 \text{ for all } y \in V\}$. Then dim $V_0 = 0$ if n is odd and dim $V_0 = 1$ if n is even. There is a unique spin representation Δ_{2m+1} if n = 2m+1 and there are two spin representations Δ_{2m}^{\pm} if n = 2m. Consider the following orthogonal decomposition:

 $V \cong W_1 \oplus W_1^* \oplus V_0.$ Then $W = W_1 \oplus V_0$. Put $\widetilde{W}^c = \pi^{-1}(W)$ then $\widetilde{W}^c = (W_1 \oplus V_0) \times S^1$ and $\mathcal{A}|_{\widetilde{W}^c} = (\operatorname{reg} W_1) \otimes \theta \otimes \iota$

where reg W_1 is the regular representation, dim $\theta = 1$ and θ is trivial (resp. non trivial) if $\Delta = \Delta_{2m}^+$ (resp. if $\Delta = \Delta_{2m}^-$). Therefore $i^*(\Delta) = 2^{h' \iota}$. In the Serre spectral sequence for $BS^1 \rightarrow BSpin^c(n) \rightarrow BSO(n)$, z is transgressive with $\tau(z) = w_3$. Now we have the following:

Theorem 3.5. As an algebra $H^*(BSpin^c(n))$ is isomorphic to $H^*(BSO(n))/J' \otimes F_2[e]$, where J' is the ideal generated by $w_3, S_1w_3, \ldots, S_{h'-1}w_3$ and e is the Euler class of the complex spin representation Δ .

This follows by computing the Serre spectral sequence for $BS^1 \rightarrow BSpin^c(n) \rightarrow BSO(n)$ as was done in the proof of Theorem 2.2.

Now we determine the Chern classes of Δ . By Theorem 2.3 and Lemma 3.3, we need only determine $c_i(\Delta|_{\hat{W}^c})$. By a similar method to that of [5], we have the following (cf. Section 5 of [5]):

Theorem 3.6. (1) The classes $c_i(\Delta_{2m}^{\pm})$ for $i < 2^{h'}$ are independent of \pm . (2) $c_i(\Delta) = 0$ for $i \neq 2^{h'}$, $2^{h'} - 2^{j}$, (j = 0, 1, ..., h'). (3) The sequence $\{c_i(\Delta); i = 2^{h'}, 2^{h'} - 2^{j}, (j = 0, 1, ..., h'-1)\}$ is a regular sequence in $H^*(BSpin^c(n))$.

On the other hand for the integral cohomology we can prove the following:

Theorem 3.7. The torsion elements of $H^*(BSpin^c(n); \mathbb{Z})$ are of order 2.

This follows by computing the Sq^1 -cohomology of $H^*(BSpin^c(n))$ as was done in [4].

Remark 3.8. The natural map $H^*(BSpin^c(n); \mathbb{Z}) \rightarrow H^*(BSpin^c(n)) \times H^*(BSpin^c(n); \mathbb{R})$ is injective (see [4]).

4. Let s=s(n) be the integer given by $2^{s-1} \le n \le 2^s$. Define $x_j \in H^j(Spin^{\sigma}(n))$ by $\sigma(\pi^*(w_{j+1}))$ where σ is the cohomology suspension. Note that $w_j=0$ if j > n. By Theorem 3.5, as an algebra $H^*(BSpin^{\sigma}(n))$ is isomorphic to

$$F_2[w'_j; 2 \le j \le n, j \ne 2^{j'} + 1 \ (j' \ge 1)]/(r)$$

for $* \leq 2^s + 1$, where

(4.1)
$$r = \sum_{i=2}^{2^{s-1}} w'_i w'_{2^{s+1-i}} + \text{higher}$$

and $w'_{j} = \pi^{*}(w_{j})$ $(w'_{j}$ is decomposable if $j = 2^{j'} + 1$). $(S_{k}w_{3} = \sum_{i=0}^{2^{k}} w_{i}w_{2^{k+1}-i} \mod \tilde{H}^{*}(BO)^{3}$ can be shown by induction on k using the Wu's formula (see 15.7 of [2])).

On the other hand by Theorem 1.1 of [3], there exists $a \in H^{2^{s-1}}(Spin^{c}(n))$ which is transgressive with respect to $Spin^{c}(n) \rightarrow Spin^{c}(n)/T \rightarrow BT$, where T is a maximal torus, so that

(4.2)
$$H^*(Spin^c(n)) = \Delta(x_j; 1 \le j \le n, j \ne 2^{j'}(j' \ge 1)) \otimes \Delta(a)$$

where $\Delta(...)$ means that (...) is a simple system of generators. Since $\bar{\phi}(x_j) = 0$ by definitions where $\bar{\phi}$ denotes the reduced coproduct of $H^*(Spin^e(n))$,

(4.3)
$$\bar{\phi}(a) = \sum_{i+j=2^{s-1}} \alpha_i x_{2i} \otimes x_{2j-1} \quad (\alpha_i \in F_2)$$

by Theorem 2.2 of [3] (see also Lemma 3.4 of [3]). Then by the Rothenberg-Steenrod spectral sequence ([6]) and (4.1), $\alpha_i = 1$ for any *i*. Then we have (see the proof of Theorem 3.2 of [3]):

Theorem 4.4. (1) In (4.2)
$$\bar{\phi}(x_j) = 0$$
 and $\bar{\phi}(a) = \sum_{i+j=2^{s-1}} x_{2i} \otimes x_{2j-1}$

548

$$(x_{j}=0 \ if \ j=2^{j'}(j'\geq 1)).$$

$$(2) \quad Sq^{i}x_{j}=\binom{j}{i}x_{j+i}(x_{2j}=x_{j}^{2}), \ Sq^{1}a=\sum_{\substack{i+j=2^{s-1}\\i< j}}x_{2i}x_{2j} \ and \ Sq^{i}a=0 \ for \ i\geq 2$$

$$(a^{2}=0).$$

References

- [1] M.F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology, 3 (1964), 3-38.
- [2] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 80 (1954), 273-342.
- [3] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structure of mod 2 cohomology of simple Lie groups, Publ. R. I. M. S. Kyoto Univ., 12 (1976), 141-167.
- [4] A. Kono, On the integral cohomology of BSpin(n), (to appear).
- [5] D. Quillen, The mod 2 cohomology ring of extra-special 2-groups and the spinor groups, Math. Ann., 194 (1971), 197-212.
- [6] M. Rothenberg and N. Steenrod, The cohomology of classifying spaces of H-spaces, Bull. A. M. S., 71 (1965), 872-875.