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Domains of Holomorphy in Segre Cones
By

Tetsuo UEDA*

Introduction

Let X be a normal Stein space and D a domain (open set) in
X. If D is Stein, then it is a domain of holomorphy. The converse
is valid when X is a manifold (Docquier-Grauert [2]). However,
this is not the case in general, as was pointed out by Grauert-
Remmert [6], [7]. They gave an example of a non-Stein domain
of holomorphy in a Stein space (Segre cone).

This problem is naturally related with the Levi problem, which
asks whether a domain in X is Stein if it is locally Stein (at all
boundary points). Concerning some results on the Levi problem for
Stein spaces, see Andreotti-Narasimhan [1], Fornaess-Narasimhan [4],
and Fornaess [3] particularly for Segre cones.

A domain of holomorphy is locally Stein at the boundary points
which are non-singular points of X. So we pose the problem :
Suppose that D is locally Stein at the boundary points which are non-
singular points of X. Under what additional condition is D a domain
of holomorphy, or a Stein domain?

In the present note we will give an answer to this problem for
the case where X is a Segre cone. The method used here is the same
as the one in the previous note of the author [11], i.e., to go over
to a domain in an affine space and to apply Oka’s theorem.

§1. Segre Cones

Let r, s be integers =1. We identify the complex affine space
C e+ with the set of all (r+1,s+1) matrices z=(z;;), :=0,1,...,
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r, j=0,1,..., s. The Segre cone Z=Z,, is the algebraic set
Z:={zeC" VD |rank 21},

which is naturally regarded as a normal and irreducible Stein space
of dimension r+s+1. The origin 0 is the only singular point of Z.
(See Grauert-Remmert [8, Chap. 7, §5].)

We will describe three kinds of desingularizations of Z. Let P,
P* be the projective spaces with homogeneous coordinate systems
[E1=0&, &u...5 &1, [91=[%, 71,..., 1] respectively. We set

Zy:={(z, [£], [7]) €eZX Pr X P*| there is a constant 1€C
such that z;=2&;; for all i, j},
Zy:={(z,[€]) =Z X Pr| there are constants vy, v,..., v,EC
such that z;=¢&y; for all 4, j},
Zy:={(z, [7]) €ZX P*| there are constants fy, t,..., L,EC
such that z;;=p7; for all i, j},

The projection Z,—P" X P* defines a holomorphic line bundle over
Prx P*, whose zero section O, is canonically identified with P X P,
Let g, denote the projection Z;—Z. Then 0;1(0) =0,, and c,!Z,\0,
is a biholomorphic map of Z\O, onto Z\{0}. Thus Z is obtaind
from Z, by contracting O,. The fibers of the line bundle Z,—P"X P*
correspond by ¢, to lines in C**P¢*P which pass through 0.

The projection Z,— P defines a holomorphic vector bundle of rank
s+1 over P7, whose zero section O, is canonically identified with P,
Let o; denote the projection Z;—Z. Then o¢7'(0) =0, and 0,]|Z;\0;
is a biholomorphic map of Z\O, onto Z\{0}. Thus Z is obtained
from Z; by contracting O;. The fibers of the vector bundle Z;—P”
correspond by o¢; to vector subspaces of dimension s+1 in C“*PE+D,

Now we define a holomorphic mapping 7;: Z;—Z; by (z, [£], [7])
—(z, [§]). O, is mapped by 7; onto O; correspondingly to the
projection P"X P*—P’., The restriction 7;|Z,\0, is a biholomorphic
map of Z,\0, onto Z;\0;. We have obviously ¢,07;=0,.

The above observations for Z; is applied analogously to Z,. We
obtain the commutative diagram

Zy — 7,

| |

Zy, — Z

9
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with ¢y=0,07, =007,

Now we will represent the Segre cone as the quotient of an
affine space. Let 4:=C "6+ e the affine space with the coordi-
nates (¥, 9) = (Xo, X1,+-+5 X300 V1s+ -+ Js). We set

Li:={x=0}, Li:={y=0}, Ly: =L;U L,
Ay =A\Ly, Ay: =A\L,, Ay: =A\L,.

We define the holomorphic mapping o: A—>C*P¢ D by (x,9) — (%, ;).
We have p(4) =Z and p7*(0) =L, For the points z& Z\ {0}, the fibers
are biholomorphic to C*:=C\{0}. Hence Z\{0} is the quotient
space of 4, by the action A, xX C*—4,, ((x,9),¢)—(cx,¢™). In other
words, p|4,: A;—Z\ {0} is regarded as a holomorphic principal C*-
bundle.

We define a holomorphic mapping p,: 41—>Z; by (x, ) = ((x;9,),
[x]). o1 is surjective and Z; is the quotient space of A; by the action
A X C*—=4;, ((x, »), ¢)—(cx, ¢7%). Thus p, defines a holomorphic
principal C*-bundle over Z;. We have g,00,=p |4, and the pull-back
of the bundle 4,—Z\{0} by o0, coincides with the restriction of the
bundle 4,—Z; to Z;\O..

Analogously we define a holomorphic mapping pg,: 4,—>Z, by
(x, )—((x:9), [»]). The commutative diagram can be augmented
in the following way:

4
I N
A,——4
] J/ 151
Zy ) -7 e
N

where 4,—A, A,—A are inclusion mappings.
Remark, 'The map p is used also by Fornaess [3].

§2. Boundary Points

Let us recall some properties of boundary points of domains in
complex spaces. Let E be a domain (open set) in a complex space
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X, and let 0E denote the set of all boundary points of £ in X. The
domain E is said to be locally Stein at g€ dE if there is a neighborhood
U of ¢ such that UNE is a Stein space. When E is locally Stein at
a non-singular point ¢ of X, we say that E is pseudoconvex at g.
Now let S be an analytic set of positive codimension in X. A
point g€ dENS is said to be removable along S if there is a neighbor-
hood U of ¢ such that U\SCE. We denote by R the set of the
boundary points of E that are removable along S. We set E¥*=EUR.
Then E* is a domain in X, which will be called the extension of E
along §. The following lemma is essentially due to Grauert-Remmert

[6].

Lemma. (Ueda [11]) Let E be a domain in a complex manifold X
and S be an analytic set of positive codimension in X. Suppose that E
is pseudoconvex at every point g dE\S. (1) If there is no boundary point
removable along S, then E is pseudoconvex (at every boundary point.) (2)
The extension E* of E along S is pseudoconvex.

Remark. When X is a complex space, this lemma (with the word
“pseudoconvex” replaced by “locally Stein”) is false in general, as is
shown by the example in [6].

§3. Domains in a Segre Cone

Let D be a domain in a Segre cone Z. For £=0,1,2, we set
D,:=a;'(D). D, is a domain in Z, Since ¢,|Z,\0,; is a biholomor-
phic map of Z,\O, onto Z\ {0}, the domain D, is biholomorphic to D
if 0&€D. Let R, be the set of all boundary points of D, that are
removable along O,, and Djf:=D,UR, be the extension of D, along
O..

Assume that D satisfies the condition

(*) D is pseudoconvex at every boundary point in Z\ {0}.

Then D, is pseudoconvex at every boundary point in Z,\0, By the
lemma, Dy is pseudoconvex at every boundary point. Hence the set
R,=D{ N0, is empty or pseudoconvex, considered as a domain (not
necessarily connected) in O,.

The sets Oy, Oy, O, are naturally identified with P7X P, P, P,
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and the maps 7;]0y: 0;—0;, 7210, O;—0, with the projections P X P°
—P7, P"xP°—>P°. The following proposition is an immediate
consequence of a theorem of Fujita [5] on the Levi problem for the
product of projective spaces.

Proposition 1. If D satisfies the condition (*), then one of the following
Sour cases occurs:

(i) Ry is empty or a Stein domain in O,.

(ii) Ry=t(E) = E, X P, where E, is a Stein domain in O..

(iii) Roy=t7(E,) =P XE,, where E, is a Stein domain in O,

(iv) Ry=0,=Prx P~

Now we observe how R, is related with Ry, R,

Suppose that R;#¢, and take a point g=R;. We will show that
t1'(¢) CR,. Let U be a neighborhood of ¢ such that U\O;CD,. Then

1 (U)\Op =717 (U\O,) Cr1'(Dy) =D,
Here, z7*(U) is an open set containing 7;'(¢). Therefore all points
in 77'(gq) are removable boundary points of D, along O, i.e., 71'(q)
CR,.

Conversely, suppose that R, contains a set of the form 7'(g),
¢€0,. We will show that ¢=R;. Since 77'(g¢) is compact, we can
take an open set V in Z; containing zi'(g) such that V\O,C D, Since
7, is a proper map, we can take a neighborhood U of ¢ in Z; such
that 77*(U) cV. Then

U\O,C 7 (V\Oy) Cr1(Dy) =Dy

Therefore g=R,.
These observations are valid also for R,
Combining these with Proposition 1, we obtain

Proposition 2. Suppose that D satisfies the condition (*). We have
Ri=¢, Ry=¢ in the case (1) of Proposition 1; Ri=E,, R,=¢ in the
case (ii); Ri=¢, Ry=E, in the case (iii); and Ri=0, R,=0; in the
case (iv).

Now we can state the main result.

Theorem. Let D be a domain in the Segre cone Z satisfying the
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condition (*). In the case (i) of Proposition 1, D is Stein. In the case
(ii), Df is Stein, and D is a non-Stein domain of holomorphy in Z. In
the case (iii), DF is Stein and D is a non-Stein domain of holomorphy.
In the case (iv), 0 is an isolated boundary point of D, D is not a domain
of holomorphy and DU {0} is a Stein domain.

The form of R, depends only on the form of D in the vicinity
of 0. Hence we have

Corollary 1. A domain in the Segre cone is Stein if it is locally Stein
at every boundary point.

This is also an immediate consequence of a result of Andreotti-
Narasimhan [1, Corollary 1 to Theorem 4].

In the case (ii), D is biholomorphic to D;=D¥\R;, where R; is
an analytic set of codimension s+1 in Df. The situation is similar in
the case (iii). Hence we have

Corollary 2. If D is a domain in the Segre cone satisfying the condition
(*), the set of all holomorphic functions on D constitutes a Stein algebra.

§4. Proof of Theorem

Consider the domain D:=p"}(D) in 4. We notice that DCA4,
if 0D, and L,cD if 0D. Further we have p;'(D;) =DN 4, k=
1, 2. Let R be the set of all boundary points of D that are removable
along L,;, and let D*=DUR be the extension of D along L. The
set R is related with R;, R; in the following way.

Proposition 3. We have o7 (R,) =R N A, and pi*(DF) =D*N 4,, k=
1, 2.

Proof. First we remark that, if 0D, then the sets R, Ry, R, are
empty and the proposition is trivially true.

Suppose that ¢€R;,. We choose a neighborhood U of ¢ in Z; such
that U\O,CD;,. Then pi*(U) is an open set in 4, such that

pr (U \ L, = pr*(U\Oy) Cpi*(Dy) =D.
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This shows that all points in p;'(¢) are removable along L, Hence
pi'(R) SRN 4.

Conversely suppose that (x,0) ERNA4;. We choose a neighborhood
W of (x,0) such that W\L,C D. By shrinking W, we can suppose
that WcC A4, and hence W\L,CD. Then we have

o1 (W\Oy=p1(W\Ly) Cp1(D) =D,

Here 0,(W) is an open set in Z,, since the projection p; of the vector
bundle 4,—Z%; is an open map. Thus o(x, 0) =(0, [x]) is a remo-
vable boundary point of D; along 0,. Hence pi*(R;) 2RN A4,

Thus we have shown pi'(R) =RNA4, From this follows imme-
diately that o7 (D,*) =D*NA4,. The proof for k=2 is similar.

g-e d.

Proposition 4. Suppose that D satisfies the condition (¥). Then D*
is Stein. D is Stein if and only if R=¢.

Proof. The domain D is pseudoconvex at every boundary point
in A,=A\L, Hence, by Lemma, D* is pseudoconvex at every boundary
point. D* is Stein by Oka’s theorem. We have D=D*\R, where R

is an analytic set of codimension =2 if it is not empty. The second
assertion follows from this fact. g-e. d.

Let us consider the case (i) of Proposition I, i.e., the case where
Ry is empty or Stein. We have Ri=¢, R,=¢ by Proposition 2, and
hence RNA,=¢, RNA,=¢ by Proposition 3. Since R is an open
subset of L,, we have R=¢. Therefore D is Stein by Proposition 4.
The theorem is proved for the case (i) if we show the following

Proposition 5. D is Stein if D is Stein.

Proof. If0& D, the map 0|D: D—D defines a holomorphic principal
bundle with structure group C*. For this case, the proposition follows
from a theorem of Matsushima-Morimoto [9, Théoréme 5].

To cover the general case, we will go back to the construction
of holomorphic functions on D. The domain D is Stein if it has the
following property: For any sequence {z;}, of points in D which has
no accumulation point in D and for any sequence {c:}, of complex
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numbers, there exists a holomorphic function f no D such that
J(ze) =¢.

Consider the analytic set p7'({z}) in D. If D is Stein, there is
a holomorphic function F on D such that F|o™'(z) =¢, for all .
When ze D\ {0}, the fiber p7'(z) is biholomorphic to C* Choose a
fiber coordinate w on p7'(z) so that p7'(z) = {weC|w+#0}, and a
smooth Jordan curve 7, equipped with orientation such that
1 S dw

——\ =—==1. We define
omi w

F@ =g Flo? ) @

In other words, f(z) is the constant term of the Laurent expansion
of (F|p™(2)) (w) in w. Clearly f(z) is defined independently of the
choice of w and 7,. The function f is holomorphic on D\{0}, and
J(ze) = ¢ if 2z, #0.

When 0D, we define f(0) =F(0, 0), Then f is holomorphic at
0. To show this we specify 7, as follows: Let

i={xynedl||nl+ .. +lx=pl+ .. +3%}

and 7,: =I"Np™'(2), with an appropriate orientation. When z tends
to 0 Z, the set 7, tends to (0,0) =4; hence f(z) tends to F(0,0) =
f(0). Thus f is continuous and hence holomorphic at 0, because Z
is a normal space. Clearly f(z,) =¢, for z,=0, too.
Thus f is a holomorphic function with the desired property.
g. e d.

Let us next consider the case (ii) of Proposition I, i.e., Ry=
T (Ry), Ri#¢ and R,=¢. We have RNd,=¢ by Proposition 3 and
hence D*CA,. Therefore we have o (D) =D* The domain D* is
Stein by Proposition 4. The map o, | D* defines a holomorphic principal
bundle with structure group C* over Df. By the theorem of
Matsushima-Morimoto, mentioned above, Di is Stein.

D is biholomorphic to D;=D{\R;, where R; is a nonempty analytic
set in Df of codimension s+1. Therefore D is not Stein. Since D}
is Stein, it is a domain of holomorphy in Z, i. e., there is a holomorphic
function g on Df which is singular at all points in 0Df. We set
g=g°(01|D) ", Then g is holomorphic on D and singular at all
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points in 0D\ {0}. Consequently it is singular also at 0. Thus D is
a domain of holomorphy.

We have thus proved the theorem for the case (ii). The case
(iii) is treated in the same way.

Finally consider the case (iv). There is an open set V containing
0O, such that V\O,CD,. Hence a,(V)\ {0} =0, (V\Oy) Cay(Dy) =D.
This implies that 0 is an isolated boundary point of D. DU {0} is a
domain in Z containing 0, which falls upon the case (i).

This completes the proof of the theorem.
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