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Domains of Holomorphy In Segre Cones

By

Tetsuo UEDA*

Introduction

Let X be a normal Stein space and D a domain (open set) In
X, If D is Stein, then it is a domain of holomorphy. The converse
is valid when X is a manifold (Docquier-Grauert [2]). However,
this is not the case in general, as was pointed out by Grauert-
Remmert [6], [7], They gave an example of a non-Stein domain
of holomorphy in a Stein space (Segre cone).

This problem is naturally related with the Levi problem, which
asks whether a domain in X is Stein if it is locally Stein (at all
boundary points). Concerning some results on the Levi problem for
Stein spaces, see Andreotti-Narasimhan [1], Fornaess-Narasimhan [4],
and Fornaess [3] particularly for Segre cones.

A domain of holomorphy is locally Stein at the boundary points
which are non-singular points of X. So we pose the problem :
Suppose that D is locally Stein at the boundary points which are non-
singular points of X. Under what additional condition Is D a domain
of holomorphy, or a Stein domain?

In the present note we will give an answer to this problem for
the case where X is a Segre cone. The method used here is the same
as the one in the previous note of the author [11], i.e., to go over
to a domain in an affine space and to apply Oka's theorem.

§ 1. Segre Cones

Let r, s be integers ^1. We identify the complex affine space
Crcr+ixs+i) with the set ofall ( r + l , j + l ) matrices * =(£,•,•), i = 0, 1,. . . ,
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r9j = Q 9 l 9 . . . 9 s. The Segre cone Z=ZriS is the algebraic set

Z: -

which is naturally regarded as a normal and irreducible Stein space
of dimension r + s+l. The origin 0 is the only singular point of Za

(See Grauert-Remmert [8, Chap. 73 §5].)
We will describe three kinds of desingularizations of Z. Let Pr,

Ps be the projective spaces with homogeneous coordinate systems

[?] = [?o> ? ! » • • • , fj, D?] = Ij?o, ^i, - . . , ft] respectively. We set

ZQ'- = (fe [?], [?]) eZxP rxPs | there is a constant ^eC
such that Zi — ̂ tfj for all i, j} ,

Zi: = {(£, [?]) eZxP r | there are constants y0,
 yi, . • • , vs^C

such that Zij = £iUj for all i9 j} ,

Z2: = {fe [37]) eZxFs | there are constants ^0, /*i, • • • 9 ^^^
such that Zij^fiflj for all i, j} ,

The projection Z0->FrxFs defines a holomorphic line bundle over
PrxP\ whose zero section 00 is canonically identified with PrxPs,
Let GQ denote the projection Z0->Z. Then ^(O) =0Q, and (70IZ0\00

is a biholomorphic map of Z\0Q onto Z\{0}0 Thus Z is obtaind
from Z0 by contracting 00. The fibers of the line bundle ZQ^Pr X Ps

correspond by <70 to lines in Cr(r+1)(s+1) which pass through 0.
The projection Zi~*Pr defines a holomorphic vector bundle of rank

s+l over jPr
3 whose zero section Oi is canonically identified with Pr.

Let GI denote the projection Zx->ZD Then fff^O) =0i and ^i|Zi\Oi
is a biholomorphic map of Zi\0i onto Z\{0}. Thus Z is obtained
from Zi by contracting Oi. The fibers of the vector bundle Zi~>Pr

correspond by al to vector subspaces of dimension s+l in C7(r+1)(s+1)
0

Now we define a holomorphic mapping r^: Z0->Zi by (z9 [f]9 [57])
-^fe [f])- 00 is mapped by TI onto Ox correspondingly to the
projection PrxPs-*Pr

tt The restriction Ti\ZQ\00 is a biholomorphic
map of Z0\00 onto Zi\0i. We have obviously al^rl=a^

The above observations for Zx is applied analogously to Z2. We
obtain the commutative diagram

"2
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with GQ = ai°Ti = a2
oT2-

Now we will represent the Segre cone as the quotient of an
affine space. Let A:=C(r+l}+(s+l} be the affine space with the coordi-

nates (*, y) = (#o, *i , . . . , xr ;jy03 j>i, • • ., jO . We set

We define the holomorphic mapping p : A^>C(rJrV>(s+l} by (#,jy) -» (#,- jv,-) .

We have <oC4) = Z and ^(O) =L0. For the points £^Z\{0}3 the fibers

are biholomorphic to C*:=C\{0}. Hence Z\{0} is the quotient

space of AQ by the action AQxC*-*AQ, ( (x9 y) , c) -» (^5 c"1^) . In other
words, ]0|^0: ^40->Z\{0} is regarded as a holomorphic principal C7*-

bundle.

We define a holomorphic mapping pi°. Al-^Zi by (#, j>) -» ( (#0^-) j
W)- i°i is surjective and Zi is the quotient space of AI by the action
^41XC7*->^1, ((x, j;), <;)I->(<;A:, £~^). Thus ^i defines a holomorphic

principal C7*-bundle over Zls We have fflop1 = p\Ai and the pull-back

of the bundle AQ—>Z\ {0} by ffl coincides with the restriction of the

bundle AI~>ZI to Zi\0i.

Analogously we define a holomorphic mapping p2°> A2~^Z2 by

(•^5 y) f-> ( (XiJ>j) 5 [j])- The commutative diagram can be augmented
in the following way:

i \
A

o — r

A'.

2 >^
1

P2 I Pi

->Zi

1 A.
Z2 >£

where Ai~»A, A2->A are inclusion mappings.

Remark. The map p is used also by Fornaess [3].

§2o Boundary Points

Let us recall some properties of boundary points of domains in

complex spaces. Let E be a domain (open set) in a complex space
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X, and let dE denote the set of all boundary points of E in X. The
domain E is said to be locally Stein at q^dE if there is a neighborhood
U of q such that Uf}E is a Stein space. When E is locally Stein at
a non-singular point q of X, we say that E is pseudoconvex at q,

Now let S be an analytic set of positive codimension in X. A
point q^dEnS is said to be removable along S if there is a neighbor-
hood U of q such that U\SdE. We denote by # the set of the
boundary points of E that are removable along S. We set E* = E(JR.
Then £"* is a domain in X, which will be called the extension of E
along S. The following lemma is essentially due to Grauert-Remmert

[6].

Lemma* (Ueda [11]) Let E be a domain in a complex manifold X
and S be an analytic set of positive codimension in X. Suppose that E
is pseudoconvex at every point q^dE\S. (1) If there is no boundary point
removable along S, then E is pseudoconvex (at every boundary point.) (2)
The extension E* of E along S is pseudoconvex.

Remark. When X is a complex space, this lemma (with the word
"pseudoconvex" replaced by "locally Stein") is false in general, as is
shown by the example in [6].

§ 3. Domains in a Segre Cone

Let D be a domain in a Segre cone Z. For k = Q, 1,2, we set
D k : = f f k l ( D ) - Dk is a domain in Zk. Since ffk\Zk\Ok is a biholomor-
phic map of Zk\0k onto Z\ {0}, the domain Dk is biholomorphic to D
if O^Z). Let Rk be the set of all boundary points of Dk that are
removable along Ok, and D*:=DkURk be the extension of Dk along

0».
Assume that D satisfies the condition

(*) D is pseudoconvex at every boundary point in Z\ {0}.

Then Dk is pseudoconvex at every boundary point in Zk\0k, By the
lemma, D* is pseudoconvex at every boundary point. Hence the set
Rk = D* nOk is empty or pseudoconvex, considered as a domain (not
necessarily connected) in Ok.

The sets 00, Ol9 02 are naturally identified with PrxPs,Pr,P\
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and the maps TI\OQ\ 00->0i3 T2\00: 00-^02 with the projections PrxPs

->Pr, PrxPs-^Ps. The following proposition is an immediate
consequence of a theorem of Fujita [5] on the Levi problem for the
product of projective spaces.

Proposition 1. If D satisfies the condition (*), then one of the following

four cases occurs'.

( i ) RQ is empty or a Stein domain in 0Q.
( i i ) R0 = Tii(Ei) =ElxPs, where EI is a Stein domain in 0\.
(in) RQ = T2

l(E2)=PrxE2y where E2 is a Stein domain in 02o

(iv) R0 = 0Q =

Now we observe how RQ is related with R^ R2.

Suppose that Ri=£<f>, and take a point q^Ri* We will show that
?il(q) dR0tt Let U be a neighborhood of q such that C/\OiCA- Then

Here, rf^t/) is an open set containing r\l(q). Therefore all points
in Til(q) are removable boundary points of DQ along 003 i. e., rfx(^)

Conversely, suppose that RQ contains a set of the form rf1^),
We will show that q^Ri. Since rf1^) is compact3 we can

take an open set V in Z0 containing T i l ( q ) such that F\00cZ)0. Since
TI is a proper map, we can take a neighborhood U of q in Zi such

that rfHC^cr. Then

Therefore
These observations are valid also for R2.
Combining these with Proposition 1, we obtain

Proposition 20 Suppose that D satisfies the condition (*) . We have

RI = $, R2 = (f> in the case (i) of Proposition 1; Ri = E^ R2 — <f> in the
case (ii) ; Ri = <f>, R2=E2 in the case (iii) ; and Ri~0^ R2 = 02 in the
case (iv).

Now we can state the main result.

Theorem,, Let D be a domain in the Segre cone Z satisfying the
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condition (*). In the case (i) of Proposition 1, D is Stein, In the case
(ii), D* is Stein, and D is a non-Stein domain of holomorphy in Z, In
the case (iii), Z)2* is Stein and D is a non-Stein domain of holomorphy.
In the case (iv), 0 is an isolated boundary point of D, D is not a domain
of holomorphy and D U {0} is a Stein domain,

The form of ^0 depends only on the form of D in the vicinity
of 0. Hence we have

Corollary 1. A domain in the Segre cone is Stein if it is locally Stein
at every boundary point,

This is also an immediate consequence of a result of Andreotti-
Narasimhan [13 Corollary 1 to Theorem 4],

In the case (ii), D is biholomorphic to Di = D*\Ri, where RI is
an analytic set of codimension s + l in Z)*. The situation is similar in
the case (iii). Hence we have

Corollary 20 If D is a domain in the Segre cone satisfying the condition

(*), the set of all holomorphic functions on D constitutes a Stein algebra,

§ 4, Proof of Theorem

Consider the domain D:=p~l(D) in A, We notice that D<^AQ

if OCA and LQdD if Oe£>. Further we have p^1(Dk) =Df}Ak9 k =

1, 2. Let R be the set of all boundary points of D that are removable

along L0, and let D*=D\JR be the extension of D along LQ. The
set R is related with R^ R2 in the following way.

Proposition 3, We have p^l(Rk} =Rr\Ak and p k l ( D £ ) =D*nAk, k =
1,2.

Proof, First we remark that, if OeZ), then the sets R,Ri,R2are
empty and the proposition is trivially true.

Suppose that q^Ri. We choose a neighborhood U of q in Zi such
that U\OiC.Di. Then pi1(LT) is an open set in AI such that

=D.
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This shows that all points in pTl(q) are removable along L2. Hence

Conversely suppose that (x9 0) e/?ri-4i. We choose a neighborhood

W of (#9 0) such that J^\L0c£)6 By shrinking W7, we can suppose

that WdAi and hence M^\L2c£)a Then we have

ft(*mo1=ft(w>v:2) cftCD) =A-
Here ft (WO is an open set in Z1? since the projection p1 of the vector
bundle Ai—>Zi is an open map. Thus ft(;v, 0) = (0, [#]) is a remo-
vable boundary point of DI along Oi. Hence pil(Ri) 2-Rfl^i.

Thus we have shown pT1(Ri) — Rr\Ai. From this follows imme-

diately that pi1 (Di*) = D* n AI. The proof for k = 2 is similar.
q. Co d0

Proposition 4, Suppose that D satisfies the condition (*). Then D*

is Stein, D is Stein if and only if R~<j).

Proof. The domain D is pseudoconvex at every boundary point

in A0= A\LQ. Hence, by Lemma, D* is pseudoconvex at every boundary

point. D* is Stein by Oka's theorem. We have D = D*\R,) where R
is an analytic set of codimension ^2 if it is not empty. The second
assertion follows from this fact. q. e0 d0

Let us consider the case (i) of Proposition 1, i.e., the case where
RQ is empty or Stein. We have Ri~<f>, R2 = <f> by Proposition 2, and
hence RnAi = <?>, Rr\A2 = $ by Proposition 3. Since R is an open

subset of Zi0j we have R = $. Therefore D is Stein by Proposition 4.
The theorem is proved for the case (i) if we show the following

Proposition 5. D is Stein if D is Stein.

Proof. If Q&D, the map p\D: D->D defines a holomorphic principal
bundle with structure group C*. For this case, the proposition follows
from a theorem of Matsushima-Morimoto [9, Theoreme 5].

To cover the general case, we will go back to the construction
of holomorphic functions on D. The domain D is Stein if it has the
following property : For any sequence foj K of points in D which has
no accumulation point in D and for any sequence [CK] K of complex
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numbers, there exists a holomorphic function / no D such that

Consider the analytic set p~l([zK}) in D. If D is Stein, there is

a holomorphic function F on D such that F \ p~l (ZK} = CK for all K.
When £e£)\{0}, the fiber p~l(z) is biholomorphic to C7*° Choose a
fiber coordinate «; on p~l(z) so that jO"1^) = {w^C \ w=£Q}9 and a
smooth Jordan curve 7^ equipped with orientation such that

We define
2m jrz w

1

In other words, f ( z ) is the constant term of the Laurent expansion
of (F | p~l (z")) (w) in z0. Clearly y(^) is defined independently of the
choice of w and fa. The function / is holomorphic on Z)\ {0}, and
/(*.)=*. if ^0.

When OeD, we define/(O) =F(0, 0), Then/ is holomorphic at
0. To show this we specify fa as follows: Let

T: = {(*,;,) ^A | |*012 + .. . + \Xr j
2- b012 + . .. + \y, 2}

and ^z: =Jrri|0~1(^), with an appropriate orientation. When z tends
to OeZ, the set ?2 tends to (0, 0) e^; hence /(^) tends to F(0, 0) =
/(O). Thus / is continuous and hence holomorphic at 0, because Z
is a normal space- Clearly f(zK) =CK for ZK = 0, too.

Thus / is a holomorphic function with the desired property.
q. e0 d0

Let us next consider the case (ii) of Proposition 1, i.e., .ffo —
rf1^), Rii^(j) and R2 = <f>» We have R^A2 = (j) by Proposition 3 and

hence D*<^Ai. Therefore we have pTl(D*) =D*a The domain D* is

Stein by Proposition 4. The map pi |Z)* defines a holomorphic principal
bundle with structure group C* over D*. By the theorem of
Matsushima-Morimoto, mentioned above, D* is Stein.

D is biholomorphic to Di=D*\Ri, where RI is a nonempty analytic
set in D* of codimension s+\. Therefore D is not Stein. Since D*
is Stein, it is a domain of holomorphy in Z1? i. e., there is a holomorphic
function gi on D* which is singular at all points in 3D*. We set
g=gi°(0i\Di)~\ Then g is holomorphic on D and singular at all
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points in 3D\{0}. Consequently it is singular also at 0, Thus D is
a domain of holomorphy.

We have thus proved the theorem for the case (ii). The case
(iii) is treated in the same way.

Finally consider the case (iv). There is an open set V containing
00 such that 7\00cA- Hence <70(F)\{0} =0Q(V\0Q) c<70(D0) =D.
This implies that 0 is an isolated boundary point of D. D U {0} is a
domain in Z containing 0, which falls upon the case (i).

This completes the proof of the theorem.
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