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Tomlta's Spectral Analysis in Kreln Spaces

By

Yoshiomi NAKAGAMI*

§1. Introduction

The most manageable indefinite inner product space is a Pon-
trjagin space or a more general Krein space. The spectral analysis of
operators on indefinite inner product spaces is known to be difficult
even in such spaces. Tomita has proposed one formulation of the
spectral decomposition for bounded selfadjoint operators with respect
to the indefinite inner product as follows: Every bounded selfadjoint
operator on a Pontrjagin space with respect to the indefinite inner
product is expressed in the form

( hn hl2 Ai3\

0 h22 h23\

0 0 hj

where hn and /z33 act on neutral subspaces and h22 is bounded and
selfadjoint with respect to some positive definite inner product of the
Hilbertian structure. For many applications it is desirable to extend
the operator and the space to an unbounded operator as well as to
a Krein space. A unitary operator with respect to the indefinite inner
product is bounded on a Pontrjagin space, but not on a Krein space.
Therefore it gives rise to another problem which must be solved
concerning the matrix representation and the product of unbounded
operators as in (1.1) and (1.2) below. To avoid such troubles we
will modify our problem and consider a bounded unitary operator
instead of a selfadjoint operator with respect to the indefinite inner
product. As a result we can show
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Theorem . If u is a bounded unitary on a Krein space $ with u-juj

compact, then there exists a unitary (not necessarily bounded) operator v

with respect to the indefinite inner product and a dense subspace D of ^

such that

0 ^22 Mai on Z),

where wn and u& act on neutral subspaces and u22 is a unitary with respect

to a positive definite inner product of the Hilbertian structure.

A slightly more precise statement will be given in Theorem 3. 1.
In §2 we shall prepare definitions on indefinite inner product spaces
and recall some related results. Especially the concept for a #-unitary
to be quasi-#-spectral is important. Our main assertion is Theorem
3. 1. In §4 we will give supplementary discussions for the theorem.
First we will give an example of a quasi-#-spectral bounded ^-unitary
whose spectrum is distributed to the outside of the unit circle. This
shows that the spectrum is not preserved by the quasi-#-spectrality
unlike the #-spectrality. Secondly, in order to see the difference of
our result from that of Krein-Langer explained in [6] we will restrict
ourselves to a finite dimensional space and give a concrete form of
a Tomita's triangular matrix for a #-unitary. Finally, we will give
a sufficient condition that a Tomita's triangular matrix is decomposed
into the direct sum of the (1,1) + (3, 3) component and the (2,2)
component.

This paper is a detailed proof of a part of our results in [8],
The same type of analysis for #-selfadjoint operators in Krein spaces
will appear in a separate paper, in which we will use our theorem.

§ 2. Preliminary

In this paper we shall use the traditional terminologies and

notations in the theory of Hilbert spaces.

Throughout this paper $ will denote a complex Hilbert space
with respect to a positive definite inner product ( | ).
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Definition 2.1. A pair (®, < , >} of a Hilbert space $ and a
continuous indefinite inner product < , > is called a Krein space if
the operator / defined by <f, 57)— (/? |^) for all ?, 27 in 5D is (self-
adjoint and) unitary.

We sometimes use the notation {S, J] for Krein spaces. We
denote the spectral decomposition of /by J+—J~ (J++J~=l) and the
corresponding subspaces by ®±=J±!$. The operator / is called a
metric operator.

Definition 2,2. A Krein space (S, < , >} is called a Pontrjagin
space if dim ^+ or dim ^~ is finite,,

A vector f in ^ is called pasitive, neutral or negative according as
<?, ?> is positive, zero or negative. The same terminologies will be
used for subspaces and for projections.

The adjoint x* of a densely defined linear operator x with respect
to the indefinite inner product is defined similarly as the case of a
positive definite inner product:

Of, ?> = <£ *V for ?eZ>(*) and 35>eZ>(**).

The domain Z)(tf*) of #* is the set of all 57 such that the mapping
? EE Z) (#) •— K#£s ^y^C is continuous. Therefore x*=Jx*J and Z)(#*)
=JD(x*). The #-adjoint operation satisfies the condition of the
involution for bounded operators:

A densely defined operator A; satisfying A; = ^* is said to be %- self adjoint.
A $-selfadjoint operator defined everywhere is called a ^-projection if
it is idempotent. Since it is closed, it is bounded and the range is
closed. A densely defined operator v satisfying <(yf9 y^ = ̂ 5 ^ for
all |, 77 in Z)(z;) is called a #-isometry. Since D(v*v)=D(v) as easily
seen from the definition, v is #-isometry if and only if 0*0=1 on
D(v). A closed #-isometry v is called a ^-unitary if the range /2(0)
is dense in ^ and 0* = 0"1. If v is #-unitary9 then 0* is also #-unitary.
A ^-unitary is bounded if and only if 0*0 = 00*=!. On the Pontrjagin
space a ^-unitary is automatically bounded, [4]. On the contrary
there exists an unbounded #~unitary on a Krein space0 For example,
let p be a neutral projection such that /^=ZIj=i Pj and dim pj=l for
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allj^N. Then

u = H£i(JPj+J-lP$ + (1 -p-p*)
is an unbounded ft-unitary. Other examples are given in [3], Here we
must apologize for our notations and terminologies. The traditional
terminologies for "selfadjoint", "unitary", etc., with respect to the
indefinite inner product space are "/-selfadjoint", '/-unitary", etc.
When we fix an indefinite inner product on a complex vector space,
a metric operator / depends on the choice of a positive definite inner
product which makes $ a Krein space, while the adjoint with
respect to the indefinite inner product is decided independently from
it. This fact makes us employ the symbol # instead of /, following
Tomita as in [11].

A bounded #-selfadjoint (resp. ^-unitary) operator x on a Pontrjagin
space is called ^-spectral if there exists a ^-unitary v such that vxv*
is selfadjoint (resp. unitary), [11]. We shall extend this concept to
a Krein space.

Definition 2.3. A bounded #-unitary u on a Krein space is called
^-spectral if there exists a bounded #-unitary v such that vuv1 is
unitary.

To give a weaker but more important concept we shall introduce
a set

(2. 1) D0 = vD(v*v) = v*~lR(v*v)

for a #-unitary v. Then D0 is dense in $. Indeed, since D(v*v) is
a core of y, vD(v*v) is dense in R(v)9 and hence in ®.

Definition 2.4. A ^-unitary u on a Krein space is called quasi-
%-spectral if there exists a #-unitary v such that

( i ) D(v*v) dD(u) and uD(v*v) =D(v*v\
(ii) vuv*\DQ is closable and the closure is unitary.

In the above definition, Ju~lJ=u* andJ\v\J= \v\~l. Hence JR(u)
= Z)(M*) and JR(v*v) =D(v*v). Condition (i) implies

R(v*v) =JD(v*v) dJR(u) =Z)(w*)
and

u*R(v*v} =Ju~1JR(v*v) =Ju~lD(v*v) =JD(v*v} =R(v*v).
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Since (vuv^t-, vuv^y = ^9 57)> for f, 7]E^DQ and the closure w of vuv*\DQ

is bounded, w is ^-unitary as well as unitary. Bofore going into our

main discussion we shall recall the Tomita's theorem, which motivates
this paper.

Theorem 2,5 ([10]). Let [R, < , >} be a Pontrjagin space. If h

is a bounded %-self adjoint operator, then there exists a neutral projection p

such that p!& is invariant under h and (1 —/?—/?*) h (1 —p — p*} is #-
spectral.

A projection p is neutral if and only if pp*(=p*p)=Q. Therefore
if bounded operators x and x* leave a neutral subspace p® invariant,

then x is represented in the form of a triangular matrix

(
V- V V \
#11 #12 #13 \

0 #22 #2:

0 0 *33/

where pi=p, p2=l~p—p*, pz=P* and ^ is the restriction of p{x to
/>j-®. In this case, J is also represented in the form

/o o /13\
(2. 3) 0 Ja 0

I/si o o
and J22 is a selfadjoint unitary on pffi.

Definition 2.6. The above triangular matrix (2.2) is called a

Tomita's triangular matrix for # if x22 is quasi-^-spectral on {pffi, J^.

The above Tomita's theorem is then restated in such a way that

any bounded #-selfadjoint operator on a Pontrjagin space is represented

by a Tomita's triangular matrix and the (2, 2) component is #-

spectral.

For the proof of the theorem we approximate the given bounded

^-selfadjoint operator by a net of #- selfadjoint operators on finite
dimensional Krein spaces, on which we prove the theorem. Then

we replace the ^-unitary implementing the $-spectrality by an ope-
rator T in the unit ball as in Lemma 2. 7 in below and then
manipulate the limit procedure. In this sense the discovery of the

operator T is crucial in Tomita's spectral analysis.



642 YOSHIOMI NAKAGAMI

Lemma 20 7 ([11]). For a bounded $~self adjoint operator h on a

Pontrjagin space the following two conditions are equivalent :

( i ) h is $-spectral; and

(ii) there exists an operator T such that

a) 0<r<l

b) JTJ=l-T

c) Th(l-T) is self adjoint.

§ 3. Tomita's Triangular Matrix for #-Unitarie§

In this section we shall generalize the Tomita's spectral analysis

for bounded #-selfadjoint operators in a Pontrjagin space to that for
bounded #-unitaries in a Krein space, and show a similar assertion

to Theorem 2. 1 for them.

Theorem 3. L // u is a bounded ^-unitary in a Krein space with

J+uJ~ compact, then u is represented by a Tomita's triangular matrix. If

$ is a Pontrjagin space, then u22 is %-spectral.

The compactness of J+uJ~ is equivalent to that of u-juj. This

implies that u*u — 1 = (u*~u*)u and uu* — 1 = u (M* — M*) are compact.

For the proof of this theorem we must prepare the following five

lemmas.

Lemma 3.2. A bounded %-unitary u of the form pl+k with

|//| =1 and k £=:<$?(!$) of finite rank is represented by a Tomita^s triangular

matrix.

Proof. Among neutral projections invariant under u and w*3 let p

be a maximal one. Then u' = (1 —p—p*) u \ (l—p—p*)® is a ^-unitary

on the subspace (1— p— p*)!$ and has no nonzero neutral projections

invariant under u' and (V)*- It suffices to show that u' is #-spectral.
Therefore we may assume that u itself has no nonzero neutral projections

invariant under u and u*.

To decompose u into the generalized eigenspaces, let Sp(^) be the

spectrum of u. Since k is of finite rank, Sp(w) consists of a finite

number of points. Put
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(3.1) e(%) = . \ (^1 — u)~ldz for /i^Sp(u)

where C* is a small circle with center 1 and oriented counter clockwise.

Then each e(X) satisfies that

a) e(Z) commutes with u

b)

d) (M— • /U)0(/l) is nilpotent.

Furthermore, e(X) satisfies
e) c(X)* = e(Jrl).

Indeed, for any ?, r] in !&, we have

(3.2) <«(*)*£, ^>

We use the fact that

The right hand side of (3. 2) turns out to be

Since (A:*)"1^ (^~1)1 for any invertible ^, this is equal to

Therefore ^eSp(w) implies r1^Sp(w) by e). If | A | ^ = 1 , then

and hence ^(^)*^(^)=0. This means that e(X)® is neutral. This

case dose not occur by our assumption. Thus |^| = 1 and hence e(X)

is a ^-projection for each X in Sp(w)B

Next we shall show that e(X)!ft is either positive or negative^

For this it suffices to show that the generalized eigenspace e(X)!$ for
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u turns out to be the eigenspace. Because every neutral subspace of

e(X)!ft is then invariant under u and u*( = u~l), and hence it must be

{0} by assumption. Since (u — Al)e(X) is nilpotent, we can find the

least positive integer n such that

(u- 21)^6 (2)^0 and (u-We(Z)=Q.

If n^>l, there exists a nonzero f] of the form (u — ̂ l)*""1? with

= £. Then ur] = ty and so u^f] — 1f]. Therefore

Thus Cf] is a nonzero neutral subspace of e(X)® invariant under u

and u*. This contradicts our assumption.

Let £+(resp. e~) be the sum of ^-projections e(X) such that e(X)!$

is positive (resp. negative). Then e* are ^-projections with e+ + e~ = l,

Thus there exists a bounded #-nuitary v such that ve±v~l=J±. Then

vuv* commutes with J and hence it is unitary. Q. E. D.

Lemma 3. 3. For a bounded %-unitary u the following two conditions

are equivalent:

( i ) u is quasi-^- spectral', and

(ii) there exists an operator T^3?($V) such that

a) 0<r<l

b) JTJ=l-T

Proof, (i)^(ii). If u is quasi- ̂ -spectral, there exists a #-uni-

tary v such that

d) uD(v*v)=D(v*v)9

e) vuv~l\DQ is closable and the closure is unitary,

where DQ is defined by (2. 1).

We denote vuv~1\D0 by w. Then w is a bijection of DQ onto itself

by d). Since the closure w~~ is unitary by e), vu~lv~L = w* on D0 and

hence vu~l — w^v on D(v*v). Since

vurlD(v*v) =vD(v*v) cZ)(z;*)

by d), it follows that

v*vu*=v*w*v on D(v*v).
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If £ and f] are In D(0*0), then

Therefore we have

(3.4) v*vu* = u*v*v on D(v*v).

Now we denote 0*0(1 +0*0) "1 by T. Then D(T') = ® and 7" satisfies

0<r<l. Since

JV*VJ = v* (z,i) * = v-i (a*) -i = (3*0) -i3

r satisfies b). Since Ker 0={0}5 it follows that 7>00 Combining
this inequality with b) , we see that T satisfies a) . Since (3. 4)
implies

( 1 + 0*0) -^ZJM* ( 1 + 0*0) -1 = ( 1 + 0*0) "^*0*0 ( 1 + 0*0) -1

on ®=(1+0*0)D(0*0)3 c) follows.
(ii) ^> (i) . Using the operator 7" satisfying conditions a) , b) and

c)5 we set

Condition b) implies

and so (0*)2 = 0~2
B Since 0 is positive and selfadjoint, we obtain 01

= v~~l and hence 0 is #-unitaryB

Next we shall show d) . Since the range of the left hand side of
c) is contained in R(l—T) and 1—7" is invertible, we see that
(l-T)~lTu*(l-T)=u*T, so that

~ on

Since R(l—T)=D(v2}, this turns out to be

(3.5) »V=MV on D(02)0

This shows that u"lD(v2) cZ>(02). Since c) is equivalent to Tu(\—T)
— (\—T)u**T, it follows from the same discussion replaced u by M*
that v2u = u**v2 on Z>(02). Thus uD(v2) cD(02). Consequently, we
have d).

Finally we shall show e). We notice that Z)0cD(0) n^(0)* The
operator w = vuv~l\D0 satisfies w~l = vu*v~l \ DQa Equation (3.5) implies

v on DO-
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If ? and 3? are in D0, then uv~lr)^D(v2} (cD(y)) and

(zrVzjf | >?) = (M*Z£ IzT1?) = (of IMZT1?) - (f NzT1?) .

Therefore w~1 = w* on Z)0 and w is closable. Since (z0*f 1 20*37) = (?|^)
for all f, 57 in D0 and 20* is closed, we find that Z)(zt>*) =S and z#*
is unitary. Thus ^~ = rt>**= (if*)"1 is unitary. Q. £. D.

According to this lemma we can obtain the following lemma.

Lemma 3. 4. For a bounded ^-unitary u the following two conditions
are equivalent:

( i ) u is represented by a Tomitofs triangular matrix', and
(ii) there exists an operator T^^(^) satisfying

a) 0<r<l
b) JTJ=l-T
c)

Proof. (i)i>(ii). If we represent u by a Tomita's triangular
matrix, then u22 is quasi-#-spectral. By virtue of Lemma 3. 3, there
exists an operator T22 on the Krein space {p2®, J22] satisfying

a') 0<r22<l

b ) t/22-^22t/22 ~ 1 •* 22

c 0 T22ul2 (l-T22) = (l~ T22) u?2T22.
The operator T defined by

clearly satisfies a), b) and c).
(ii)r^(i). Let p be the projection onto the kernel of T. Condi-

tion b) implies that the projection p* = jpj is the spectral projection
of T corresponding to the eigenvalue 1. Thus p is neutral. Using
projections pi=p, p2=l—p—p* and p3=p*, we obtain matrix represen-
taions

and u =
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Then we have

0 0

7V(1-:T)= ^22/22*4/31 T22J22u?2J22(l-T22) 0

and

(0 u*iT22 u*i

o (i-rB)«firB (i-:
o o o

According to c) and the fact that Q<^T22<^1 on p2^ we have u2i = 0,

w31 = 0, w32 —0 and c')- Since b') follows from b), jT22 satisfies a')3

b') and c') with respect to u22. Consequently, u22 is quasi-#-spectral

by Lemma 3a 3, Thus u is represented by a Tomita's triangular

matrix. Q. E, Da

The following characterization of a bounded #-unitary x by means

of the angular operator k corresponding to the maximal uniformly

positive subspace x®+ is more or less known, [1, Theorem 1.5; 4],

Lemma 30 5, For an operator x in K the following two conditions

are equivalent'.

( i ) x is a bounded %-unitary°, and

(ii) there exist an operator k^<£ (^+, ®~) and two unitaries

u±^^(^±) such that ||£||<1 and

(3.6) ,= - « * ° -
.0 M~/,

where

S =
k \ 1 ,1 7 4 , 7 x _ 1 / 9 ,, _££*\-l/2

Proof. (i)=»(ii). Let /!=/+, ./,=/- and xiS=JiX\Jp. The
operator ^ is a bounded #-unitary if and only if

*fi*U - ^2*^21 = 1, X&u ~ X%iX22 = 0

( — #£*u + ^2*2-̂ 21 = 0) — ̂ £^12 + #2*2*22 = 1

and
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Xl2%l2 = 1 j #11-̂ 21 i ^12^22 =

Among these equalities the first and the third show that #u and x22

have bounded inverses. Now we set
7 _1

oince *n \ •*• *£ ft) *n~~ *ii*n#21*21== •*• anol #22 C-*- *•''*' / *22~= #22*22
\*22*21/ *11 *11 \*21*22x ~~ *22*22 \*12*llx *11 *11 \*11*12/ ~~~ •*• ^ tilC SCCOnOl

and the third equalities, we find that 1— k*k and l—kk* are positive
and have bounded inverses. Therefore ||A||<1.

The operators u± defined by

u+=(l- k*k} 1/2#u and «-=(!- kk*) 1/2#22

satisfy (u+)*u+=l on S+. Thus u+ is an isometry. Since 1— k*k
and #n have bounded inverses, u+ is a unitary on S+. Similarly, M"
is also a unitary on $~. Since #2i = &#n and #i2 = #*r1(

— **r1(*2**22) — ̂ **223 we obtain (3.6).
(ii)=>(i). By means of ||£|K1 and the identity

k(l~k*k)l/2=(l-kk*)i/2k

we see that Sk is a bounded operator and satisfies

fc*A) -1/2 0

0
0 X ,1 *<

0 (1-M*)-1/2/ \k 1

Therefore ^S1*^ = jS^J = 1 and hence #*# = ##*=:le Q.E. D.

Remark 3.6. (1) In the above lemma the formula (3.6) is noth-
ing but the polar decomposition of #: x= \x*\u. That is \x* \ =Sk and

' 0

/I **\
S k \ k 1 /

(2) In the above proof (i)=^(ii), if we use the fact [1; 6]
that the operator Sk given by the angular operator k corresponding
to the maximal uniformly positive subspace v®+ satisfies
= vj±v~1, then (ii) is immediate.

In the following lemma we shall denote by J£ & ($) the C*-algebra
of all compact operators on $.
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Lemma 3.7. Let IQ be an infinite dimensional Hilbert space and
the set of all operators of finite rank. Then the set of k^

($) with \\k\\<\ and (1 -£*£)-1/2eC71-f ^(£) is norm dense in
the set of ktE&V ($) with \\k\\<\.

Proof. Consider the correspondence from (1— k*k)~l/2 to k for
nonnegative &'s. The mapping

is surjective. Since it is continuous, the image of the subset of h
•^($))+ with h>l is dense in the set of k^g*(g($)+ with
Namely, the set of k^^^ ($)+ with (1 — If) ~l/2(=Cl + &(!§)

is dense in [k^^tf ($) + :||£i|<l}. For a general k we have only to
consider the polar decomposition. Q. Ee D,

Proof of Theorem 3. 1. Let u be a bounded ^-unitary with u-juj
compact. Then u is of the form

/u+ 0-

<o „
and £ej£?(^+

3 !$~) is compact by Lemma 3.5.
Let £?*% (ft*) be the C*-algebras of compact operators on ft*

and at the unital C*-algebra {^f# (®+)©<S?^ (ft")} +Crla. Then the
group ^ (j/) of all unitaries in s$ is *-strongly dense in the group
<% (^(S"1")©^(S~)) by the theorem due to Glimm and Kadison.
Let Jr(^±) be the *-subalgebras of g^? (!&*) of operators of finite
rank and j/0 the unital *-subalgebra {Jr(^+) 0^(^")} +C71a. Then
j/o is norm dense in j/ and the group ^ (j/0) is norm dense in
<ZT(«f lO. Therefore ^ (j/0) is *-strongly dense in ^r (^(^+) ©J^C^")).

Let J^f^iC^^ $~) be the set of all compact operators k of ®+ to
$~ with ||A:||<1, and ^f^0(^+

3 ^") the set of all £(EJ£f ^i(ffi+
f ft") such

that

— AJ AJ J U

0 (1

Since k(l-k*k}-l/2=(l-kk*rl/2k, the condition that (l-k*krm

belongs to Jr($+) +CI is equivalent to the condition that (1 — M*)~1/2

belongs to ^"(ft^+Cl. Thus the above condition (3.7) is restated
as
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Here we use Lemma 3.7, which shows that J£P^0(®+, ft") is norm
dense in ^^(ft*, ft-). Therefore the element

0

in the topological product space
{^(J^(ft+)©J^(^"))3 *-strong top.} X {j^^i(K+, ft"), norm top.}

is approximated by a net

' 0\ \
o M r )*<) : ' e /

in the dense subspace W (j^0) X ̂ f^0(^+, ft"). Since ||&||<1, we
may assume that inequalities HA^IKl hold for all ie/ by the Kaplan-
sky's density theorem. Here we set

Then u{ are bounded #-unitaries by Lemma 3. 5. By virtue of
(3. 7) , the diagonal part of u{ belongs to jtf0 and the off diagonal
components are operators of finite rank. Moreover, the diagonal part
of u{ converges *-strongly to that of u and the off diagonal compo-
nents of u{ converge in norm to those of u. Thus ut converges
*-strongly to u.

As ut is of finite rank (mod. Cl), it is represented by a Tomita's
triangular matrix by Lemma 3. 2. Therefore there exists for each ut

an operator Tt satisfying conditions a), b) and c) in Lemma 3.4.
By means of condition a) the set {T^. i^I] is relatively weakly
compact, it contains a weakly convergent net [Tji j'e/'}. Clearly,
the weak limit T satisfies conditions a) and b) . According to Lemma
3. 4 it remains to show that T also satisfies condition c) .

Now, rewrite the above weakly convergent net by {TV ie/}.
Then condition c) for Tt is equivalent to

The left hand side is written in the form

Since u{ converges *-strongly to u, the first and the last terms
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converge weakly to zero. Therefore the left hand side converges

weakly to u*T—Tu*. Thus our problem is reduced to show that the

right hand side converges weakly to T(u* — u*)Ta Using Ji = J+ and

/2=/"3 we denote

for

Then T(u*-tf)T={T(u-Juf)T}* and

'0

0

/ O
(
\U2i

The w/s have the same type of matrix representation. Thus we can

concentrate our attention on the off diagonal elements.

Since u-juj is compact by assumption, for any £>0 there exists an
operator of finite rank

/ n i- "
Ic — l

\k2l 0

with | | (M—JuJ) — £||<e/8. For the notational convenience we write

the off diagonal components by

Vi = ut—JuJ, v = u—JuJ.

Then

Here we use the fact that vt converges in norm to v, that T{ converges

weakly to T and that k is of finite rank. Then for O>0 given in the

above and for any unit vectors ?, rj in ^, there exists an z'0e/ such

that if i>z"0 then

and

Thus, for z > z 0 5 we have

\ ( (

which means that T&Ti converges weakly to TvT. Q.E. D.
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§4. Supplementary Discussions

1. Let u be a bounded #-unitary. Suppose that u is quasi-#-
spectral with respect to a #-unitary v. Then the closure w of
vuv~l\DQ is unitary, where D0=vD(v*v). It is then easy to see that
D(v*v) is contained in D(v*wv) and

v*wv=u on D(v*v).

Since u is bounded, it coincides with the closure of v*wv\D(v*v).
Therefore the #~unitary u is reconstructed from the unitary w, the
closure of vuv*\DQ. Thus all the informations of u seem to be
contained in w. However there exist examples of bounded #-unitaries
with Sp(u)=£Sp(w) as shown in below, if v is unbounded. This
means that the informations of u are contained in a pair of w and
v, although the quasi-#-spectrality does not preserve the spectrum.
Of course, the #-spectrality preserves the spectrum.

We begin by discussing the general circumstances. Suppose that
a bounded ^-unitary u is quasi-ft-spectral with respect to a ^-unitary
v. Namely, the closure of vuv*\D0 is unitary as well as ^-unitary.
Denote by ®v the completion of D(v*v) with respect to the inner
product ( | )„ defined by

(£!?).= 0*|w?).

Then we have the following commutative diagram:

{/)(»**), (I).} — (A, ( I ) }

u\D(v*v) I |zw0*|A

[D(v*v)9 ( I ) . } — {A, ( I ) } .

That u is quasi-#-spectral is then equivalent to that the closure of
u\D(v*v) in ®v is unitary. Moreover the spectrum of the closure of
vuv*\D0 in ® coincides with that of the closure of u\D(v*v) in ®v. It
is worth while noticing that $=$)„ whenever v is bounded. If v is
unbounded, then ®v is different from $ and it may happen that the
spectrum of u in ® and that of the closure of u\D(v*o) in ft, are
different as shown in the following example.

We begin by giving a definition of a type of operators considered
in Example. Let {sn: n^Z] be the canonical basis of /2(Z) with
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en(m) =dnm. Let x and y be the shift and the multiplication operators
on /2(Z} such that

xsn=sn+l and ^n=anen,

where an^R with aw>0 and (||jy||=)supnez |#J<oo0 Let z0 be the
closure of y~lxy. Then the polar decomposition is of the form

w = x\w\ and \w \ = (x*y~lx)y.

Thus w is a weighted shift:

^£» = («»/«»+l) £n+l? « ̂  Z,

whose absolute value is interpreted as a kind of difference operator
of y. It is easy to see that

Example 4.1. We will give a bounded #-unitary u such that it
is quasi-#-spectral and the spectrum contains the set

r={leC: \X\=2 or 2'1}.

This indicates that the quasi-#-spectrality does not preserve the spec™
trum, for the spectrum of a unitary operator must be contained in
the unit circle in C.

Let an = 2~lnl for all n£EZ in the above operator Then w is a
weighted shift

(2en+l if ?z>0
W£n~(2-len+l if n<-L

The spectrum of w contains the set F. Indeed, the spectrum of w is
invariant under the multiplication by ^E:£7, |^ |=1 and the spectral
radiuses of w and w~l are given by

r(z0)=lim ||^n||1/n=2 and

because | \wn\ \ = \ \w'n\ \ = 2n. Moreover, the spectrum of w*'1 also contains
T5 for w*~l = x \w\~\

Now, let ®=

/01\ /w 0 \ / v 0
(4 ' I} -Mi n)' " = (n *-J and v = («\1 O/ \0 w* l/ \0 j;"

Then {^, J} is a Krein space, in which u and y are #-unitaries such
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that u is bounded and Ds=vD(v*v) =R(y}®y~lR(y2') . Since each
belongs to R(y} and ywy~l satisfies

the closure of ywy~l \R(y) is the shift x. Since yen^R(y*)9 w*~lyen

and

the closure of y~lw*~ly \y~lR (y2) is also x. Therefore the bounded
#-unitary u is quasi-#-spectral with respect to v and the spectrum of
u contains F. Indeed, the closure of

is a unitary x@x, which has the absolutely continuous spectrum {^
eC: |^| = 1} with multiplicity 2.

It should be noted that each point in the unit circle in C belongs
to the point spectrum of w*~\ Indeed, if we define fj by

then S^/2(Z) and it satisfies

On the other hand, put

?n=fl-1/2(

Then ||^B|| = 1 and yn^R(y). Since

w^n~2i9n = 2n-l/2(en+1-e1)9

2 belongs to the approximate point spectrum of w. Similarly, we can
know that F is also contained in the approximate point spectrum of
w.

Remark ([Referee]). By virtue of Theorem 5 in Shield's article
[10] it is known that

for a (general) invertible bilateral weighted shift w.

2. To see the distinction between our result and the theory of
Krein-Langer [6], we will consider the finite dimensional case.
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Let u be a ^-unitary. When a Krein space is finite dimensional,

there exists an isomorphism a of {ft, < ? X) onto {£7 ,̂ < , >c^}

C/V=dim ft) such that

where 1^.. and Odm, are the d^Xd^ identity and zero matrices (N

iz^Wn+t-,J-) and

Sp (u) /T= {/*!, //2j • • • 5 /A«} U {/2i X
3 /22 \ • • • j pm1} 5

I rl or — 1 for i=l9eeo^n
"" ]*<**'=(!

U /

^2

with ak = ik/kl and d=d{j—lB

I

Therefore one of the maximal neutral projections p invariant under u

and u* is of the form

n n* m mi

where

' 0

(
1 ;
1 (d. •— l)/2 :

*J ;— t-.

10
j '1 for £=!, . . . ,

if d,-;

and
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Thus we have

where

if rf,-y = odd,

if fiL—even

and hence

»= =...=Q

for some #-unitary z; on (1— />—/>*) $, where /jiy are one dimensional
projections.

3. Finally we will consider the problem when the both (1,1) and
(3, 3) components and the (2, 2) component in the Tomita's triangular
matrix are orthogonal. We notice that the Gupta-Bleuler triplet due
to Araki [3] gives a similar matrix representation of a group if we
apply it to our more restrictive situation. This is the case the
subspaces corresponding to the (1,1) , (2,2) and (3,3) components
are interpreted to be the spaces of the longitudinal, transversal and
scalar photons, respectively.

Let u and / be a bounded #-unitary and a metric operator of the
forms

Then w* is of the form

22

0

0
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Thus MM* = H*M=I is equivalent to the following conditions

"ll/13M33 J 31 == /13M33/31M11 ~ 1

u22 is a #-unitary

2-0

U*Z + Z/12/22Z/12 + ^13/31 /̂11 — 0.

Now, let /? be a neutral projection and pi = p, p2=l—p — p* and

j&3=/>*. If x^&(p2®, pi®) and *13ejS?(/?3®, />!$) with

#13 ~(~/13#13/13 = %J22X /13?

then the matrix

/i ,
(4.3) 0 1 -t

\0 0 1

is a bounded ^-unitary. Of course, we can choose — i

as ̂ 13.

Proposition 4» 2B Z/^^ (M,-;-) i^ a Tomita's triangular matrix of a

bounded %-unitary. If there exists an x^£f(p2!&, p^) with

Ui2, then there exists a bounded ^-unitary v such that

/«ii 0 *'
v(uij')v

t~ I 0 U22 0

\0 0 uj.

Proof. Choose v to be the matrix of the form (4. 3) with ̂ 13=

Q, E. D.

In this case, the (1,3) component in the above matrix is given by

If a ^-unitary u is of the form (4. 2), then the diagonal part

Mi 0 0

(4. 4) 0 U22 0

\0 0 uj

is also #-unitary and u is expressed as a product of #-unitaries of
the forms (4.4) and (4.3) :
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where * = 1
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