On Wall Manifolds with (ε) -Free Involutions

Dedicated to Professor Nobuo Shimada on his 60th birthday

By

Tamio HARA*

§0. Introduction

Let \mathfrak{N}_* denote the unoriented cobordism ring. Then \mathfrak{N}_* is the polynomial algebra over \mathbb{Z}_2 on classes X_k of dimension k for each integer k not of the form $2^i - 1$. Let $\mathbb{W}_* = \mathbb{Z}_2[X_{2k-1}, X_{2k}; k \neq 2^i, (X_{2i})^2]$ be the polynomial subalgebra of \mathfrak{N}_* defined by Wall [10]. As the bordism theory of free involutions on Wall manifolds, let $\mathbb{W}_*^{\varepsilon}(\mathbb{Z}_2)$ be the bordism group of Wall manifolds with (ε) -free involutions studied by Komiya in [3]. (Here ε denotes one of the signs + and -.) While let $\mathfrak{N}_*(\mathbb{Z}_2)$ denote the unoriented bordism group of free involutions, then there are homomorphisms $F_{\varepsilon}: \mathbb{W}_*^{\varepsilon}(\mathbb{Z}_2) \to \mathfrak{N}_*(\mathbb{Z}_2)$ which forget a Wall structure. The following theorem is known.

Theorem (cf. [3]). The two homomorphisms F_{ε} are monic. Moreover, the image of each F_{ε} is a direct summand of $\mathfrak{N}_{*}(\mathbb{Z}_{2})$.

In this paper, we study the image of each F_{ε} as a subgroup of $\mathfrak{N}_{*}(\mathbb{Z}_{2})$.

In §1, we define the bordism groups $W^{\varepsilon}_{*}(\mathbb{Z}_{2})$, and give some examples of Wall manifolds with (ε) -free involutions.

In §2, we state the image of each F_{ε} in Theorem 2.8.

In §3, we study Wall manifolds with (ε) -free involutions derived from some generators of $\Omega_*^{\varepsilon}(\mathbb{Z}_2)$, the oriented bordism module of all orientation-preserving (or orientation-reversing) free involutions ([5]),

Communicated by Nobuo Shimada, November 25, 1985.

^{*}Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba, Japan.

and calculate their images by the maps F_{ε} (Theorems 3. 6 and 3. 8). Finally we refer to the elements in $\mathfrak{N}_{*}(\mathbb{Z}_{2})$ which belong to both $\mathrm{Im}F_{+}$ and $\mathrm{Im}F_{-}$ (Theorem 3. 12).

§ 1. Wall Manifolds with (ε) -Free Involutions

Definition 1.1 (cf. [6]). Let M be a compact smooth manifold (with or without boundary), let det τ_M be the determinant bundle of the tangent bundle τ_M of M, and let $\alpha: M \to RP(\infty)$ be a classifying map of det τ_M where $\xi \to RP(\infty)$ is the universal line bundle. Then $\alpha(M) \subset RP(r)$ for some $r \ge 0$, since M is compact. Such α is called an RP(r)-structure of M.

Definition 1.2(cf. [3]). A Wall manifold with (ε) -free involution is a triple (M, μ, α) where:

(i) M is a compact smooth unoriented manifold and μ is a free involution on M;

(ii) $\alpha: M \to RP(1)$ is a RP(1)-structure of M which is equivariant with respect to μ , i. e., $\alpha \circ \mu = \alpha$; and

(iii) $\bar{\alpha} \circ \varepsilon \det d_{\mu} = \bar{\alpha}$ for a bundle map $\bar{\alpha}$ covering α where $\det d_{\mu}$: $\det \tau_M \rightarrow \det \tau_M$ is the map induced by μ and $\varepsilon \det d_{\mu}$ means $\det d_{\mu}$ [resp., $-\det d_{\mu}$] if $\varepsilon = +$ [resp., $\varepsilon = -$].

The boundary ∂M of M is a Wall manifold $(\partial M, \mu | \partial M, \alpha | \partial M)$ since det $\tau_{\partial M}$ is identified with $(\det \tau_M) | \partial M$ by the inner unit normal vector.

Definition 1.3. Let ε be one of the signs + and -. We say that two closed Wall manifolds with (ε) -free involutions, (M, μ, α) and (M', μ', α') are *bordant* if there is a Wall manifold with (ε) -free involution (W, ν, β) such that the disjoint sum $(M, \mu, \alpha) + (M', \mu', \alpha')$ $= (\partial W, \nu | \partial W, \beta | \partial W)$ and an equivariant RP(1) -structure β satisfies $\bar{\beta} | M = \bar{\alpha}$ and $\bar{\beta} | M' = \bar{\alpha}'$, where $\bar{\alpha}, \bar{\alpha}'$ and $\bar{\beta}$ are bundle maps covering α, α' and β , respectively.

Definition 1.4. (cf. [3]). For each ε , we denote the bordism class of (M, μ, α) by $[M, \mu, \alpha]$, and define

$$W_m^{\varepsilon}(Z_2) = \{ [M, \mu, \alpha] \mid \bar{\alpha} \circ \varepsilon \det d_{\mu} = \bar{\alpha}, \dim M = m \}$$

which is an abelian group by the disjoint sum. Thus we have a graded abelian group

 $W^{\varepsilon}_*(\mathbb{Z}_2) = \Sigma_m W^{\varepsilon}_m(\mathbb{Z}_2),$

the bordism group of Wall manifolds with (ε) -free involutions.

Let $\mathscr{Q}_{*}^{\varepsilon}(\mathbb{Z}_{2}) = \mathscr{\Sigma}_{m}\mathscr{Q}_{m}^{\varepsilon}(\mathbb{Z}_{2})$ be the oriented bordism group of all orientation-preserving free involutions ($\varepsilon = +$) or all orientation-reversing free involutions ($\varepsilon = -$) (cf. [5]). Then we obtain the exact triangles of the type of Wall.

Theorem 1.5 (cf. [3]). For each ε , there is an exact triangle: $\Omega^{\varepsilon}_{*}(\mathbb{Z}_{2}) \xrightarrow{2} \Omega^{\varepsilon}_{*}(\mathbb{Z}_{2})$ $(W_{\varepsilon}): \qquad \delta \qquad \qquad \swarrow \rho$ $W^{\varepsilon}_{*}(\mathbb{Z}_{2})$

in which 2 is the multiplication by the integer 2, ρ is defined by considering $[M, \mu] \in \Omega^{\varepsilon}_{*}(\mathbb{Z}_{2})$ as a Wall manifold with the trivial RP(1)-structure $1: M \rightarrow \{1\} \subset S^{1} = RP(1)$, and δ sends $[M, \mu, \alpha] \in W^{\varepsilon}_{m}(\mathbb{Z}_{2})$ into $[N, \mu|N] \in \Omega^{\varepsilon}_{m-1}(\mathbb{Z}_{2})$, where N is the invariant submanifold of M dual to det τ_{M} .

To say the fundamental type of Wall manifolds with (ε) -free involutions, we introduce the following notion.

Definition 1.6 (cf. [4; p. 88]). Let (M, μ) be an orientationpreserving involution μ on an oriented manifold M. We say that (M, μ) is equivariant reversible if M admits an orientation-reversing diffeomorphism R such that $\mu \circ R = R \circ \mu$. When (M, μ) is an orientationreversing involution, this is always equivariant reversible by considering $R = \mu$.

Definition 1.7 (cf. [10; §3]). Let (M, μ) be an orientationpreserving free involution which is equivariant reversible, then $(S^1 \times_R M, id \times \mu, \alpha)$ is a Wall manifold with (+) – free involution where $S^1 \times_R M = S^1 \times M/a \times R$ is the twisted product of the unit circle with antipodal map and (M, μ) , *id* is the identity map, and $\alpha([z, m]) =$

 $[z] \in RP(1)$ for $z \in S^1$, $m \in M$. While let (M, μ) be an orientationreversing free involution, then we obtain a Wall manifold with (-) free involution $(S^1 \times_{\mu} M, id \times \mu, \alpha)$ in the same way. From now on we denote an involution $(S^1 \times_{\mu} M, id \times \mu)$ by $(S^1 \otimes M, id \times \mu)$ if no confusion can arise.

Example 1.8.

(1.8.1) The antipodal maps on spheres (S^{2n+1}, a) and (S^{2n}, a) are Wall manifolds with (+) and (-)-free involutions with the trivial structure 1 respectively.

(1.8.2) Let $R:S^{2n+1} \to S^{2n+1}$ be the reflection defined by $R(x_0, x_1, \ldots, x_{2n+1}) = (x_0, -x_1, \ldots, -x_{2n+1})$ for $(x_0, x_1, \ldots, x_{2n+1}) \in S^{2n+1}$. Then $(S^1 \times RS^{2n+1}, id \times a, \alpha)$ is a Wall manifold with (+) – free involution. While

(1.8.3) $(S^1 \otimes S^{2n}, id \times a, \alpha)$ is a Wall manifold with (-)-free involution.

§ 2. On the Images of F_{ε}

In this section, we study the homomorphism F_{ε} : $W_{*}^{\varepsilon}(\mathbb{Z}_{2}) \to \mathfrak{N}_{*}(\mathbb{Z}_{2})$ defined by $F_{\varepsilon}([M, \mu, \alpha]) = [M, \mu]_{2}$ as mentioned in Introduction where $[M, \mu]_{2}$ is the unoriented bordism class of a free involution (M, μ) . First we give some natural basis of $\mathfrak{N}_{*}(\mathbb{Z}_{2})$.

Definition 2.1 (cf. [8]). Let $\{X(n) | \deg X(n) = n, n \ge 0\}$ be a homogeneous basis of $\Re_*(\mathbb{Z}_2)$ which satisfies:

(i) $X(0) = [S^0, a]_2$,

(ii) $\varepsilon_*(X(n)) = 0$ for all $n \ge 1$, where $\varepsilon_* \colon \mathfrak{N}_*(\mathbb{Z}_2) \to \mathfrak{N}_*$ is the augmentation map, and

(iii) $\Delta(X(n+1)) = X(n)$ for all $n \ge 0$, where Δ is the Smith homomorphism.

This basis exists and is unique with respect to satisfying (i)-(iii). It is determined inductively by the following relation:

(2.2)
$$[S^n, a]_2 = \sum_{j=0}^n [RP(n-j)]X(j)$$

This follows that for any $[M^n, \tau]_2 \in \mathfrak{N}_n(\mathbb{Z}_2)$,

(2.3)
$$[M,\tau]_2 = \sum_{j=0}^n \varepsilon_* (\Delta^j ([M,\tau]_2)) X(j).$$

Remark 2.4. $X(2n+1) = \sum_{i=0}^{n} a_{2i} [S^{2n-2i+1}, a]_2$ and $X(2n+2) = \sum_{i=0}^{n+1} a_{2i} [S^{2n-2i+2}, a]_2$ for all $n \ge 0$, where the element a_{2i} in \mathfrak{N}_{2i} is defined by $a_0 = 1$ and $\sum_{i=0}^{k} a_{2i} [RP(2k-2i)] = 0$ for all $k \ge 1$ (cf. [9]).

We first study the images of Wall manifolds in Example 1.8 by the homomorphisms F_{ε} .

Theorem 2.5. We have

- (i) $F_{-}(\lceil S^1 \otimes S^{2n}, id \times a, \alpha \rceil) = X(2n+1), and$
- (ii) $F_+([S^1 \times_R S^{2n+1}, id \times a, \alpha]) = X(2n+2)$ for each $n \ge 0$.

Proof. For the proof of (i), see the remark 2. 4 and the corollary 2. 5 in [9]. Next we prove (ii). We see that

(2.6)
$$\Delta([S^1 \times_R S^{2n+1}, id \times a]_2) = [S^1 \otimes S^{2n}, id \times a]_2 = X(2n+1)$$

for all $n \ge 0$. Let $V = \{(z, x_0, x_1, \ldots, x_{2n+1}) \in S^1 \times S^{2n+1} | x_0 \ge 0\}$ and let Wbe the image of V in $S^1 \times_R S^{2n+1}$. Then $W \cup (id \times a) W = S^1 \times_R S^{2n+1}$ and $W \cap (id \times a) W = \partial W = S^1 \times S_0^{2n}$ where $S_0^{2n} = \{(x_0, x_1, \ldots, x_{2n+1}) \in S^{2n+1} | x_0 = 0\}$ and the reflection R acts on S_0^{2n} as the antipodal map a. Thus we obtain the result (2.6) by [1; (24, 1)]. Put $X'(2n+2) = [S^1 \times_R S^{2n+1},$ $id \times a]_2$, then it is sufficient to show that $\varepsilon_*(X'(2n+2)) = 0$ by the definition of $\{X(n)\}$. The manifold $S^1 \times_R S^{2n+1}/id \times a$ is diffeomorphic to $V^{2n+2} = S^1 \times RP(2n+1)/a \times \overline{R}$ by the natural map where $\overline{R}: RP(2n+1)$ $\rightarrow RP(2n+1)$ is defined by $\overline{R}[x_0, x_1, \ldots, x_{2n+1}] = [x_0, -x_1, \ldots, -x_{2n+1}]$. Let τ be the involution on V^{2n+2} induced by $T_1(z, x) = (\overline{z}, x)$ for $z \in S^1$ and $x \in RP(2n+1)$ here \overline{z} is the conjugation of z. Then the fixed point data of τ implies that

$$\varepsilon_*(X'(2n+2)) = [S^1 \times_R S^{2n+1}/id \times a]$$

= [RP(2n+2)] + [RP(\$ (2R)] (cf. [1; (21. 8), (22. 2)])

where $RP(\xi \oplus 2R)$ is the projective space bundle associated to $\xi \oplus 2R \to RP(2n)$, the Whitney sum of the canonical line bundle $\xi \to RP(2n)$ and the trivial 2-plane bundle $2R \to RP(2n)$. In other words, $RP(\xi \oplus 2R)$ is the quotient of the fixed point free involution on $S^{2n} \times RP(2)$ given by $T(x, [x_0, x_1, x_2]) = (-x, [-x_0, x_1, x_2])$ for $x \in S^{2n}$ and $[x_0, x_1, x_2] \in RP(2)$. Thus we have $[RP(\xi \oplus 2R)] = [RP(2n+2)]$ by Lemmas (2.2) and (5.1) in [2], and $\varepsilon_*(X'(2n+2)) = 2[RP(2n+2)]$ = 0. q. e. d.

Considering $RP(1) = S^1$, the groups $W_*^{\varepsilon}(\mathbb{Z}_2)$ is the module over W_* via the multiplication $m: S^1 \times S^1 \to S^1$ (cf. [6; p. 163] for example.). Since the maps F_{ε} are monic as mentioned in Introduction, the following lemma is convenient to explain the images of F_{ε} .

Lemma 2.7. For each ε , let $\{Y(n) | \deg Y(n) = n, n \ge 0\}$ be a suitable homogeneous \mathfrak{N}_* -basis of $\mathfrak{N}_*(\mathbb{Z}_2)$ and let $\{M(n) | \deg M(n) = n, n \ge 0\}$ be a set of generators of $W^{\varepsilon}_*(\mathbb{Z}_2)$ as the W_* -module such that $F_{\varepsilon}(M(n))$ =Y(n) for all $n\ge 0$, then we have that:

(i) $W_*^{\varepsilon}(\mathbb{Z}_2)$ is a free W_* -module with basis $\{M(n) \mid n \ge 0\}$ (When =+, see [6; p. 163] for example.), and

(ii) Im $F_{\varepsilon} = W_* \{ \{Y(n) \mid n \ge 0\} \}$ in $\mathfrak{N}_*(\mathbb{Z}_2)$, i. e., a free W_* -module with basis $\{Y(n)\}$, obtained by restricting the coefficient ring \mathfrak{N}_* to W_* .

From Example 1. 8 and Theorem 2. 5, we can choose the basis $\{Y(n)\}$ as follows.

Theorem 2.8. (i) $W_*^+(Z_2)$ is the free W_* -module with basis: $M(0) = [Z_2, \sigma, 1], M(2n+2) = [S^1 \times_R S^{2n+1}, id \times a, \alpha]$ and $M(2n+1) = [S^{2n+1}, a, 1]$

for $n \ge 0$, and $\operatorname{Im} F_+ = W_* \{ \{ X(2n), [S^{2n+1}, a]_2 | n \ge 0 \} \}$, where (\mathbb{Z}_2, σ) is the action of \mathbb{Z}_2 on itself by the additive homomorphism σ .

(ii) $W_*(\mathbb{Z}_2)$ is the free W_* -module with basis:

 $M(2n) = [S^{2n}, a, 1]$ and $M(2n+1) = [S^1 \otimes S^{2n}, id \times a, \alpha]$

for $n \ge 0$, and $\operatorname{Im} F_{-} = W_{*} \{ \{ [S^{2n}, a]_{2}, X(2n+1) | n \ge 0 \} \}.$

Proof. First we note that the above set $\{Y(n)\}$ in each $\mathrm{Im}F_{\varepsilon}$ forms an \mathfrak{N}_* -basis of $\mathfrak{N}_*(\mathbb{Z}_2)$. When $\varepsilon = +$, the set $\{M(n)\}$ becomes a W_* -basis of $W_*^+(\mathbb{Z}_2)$ naturally if it satisfies that $F_+(M(n)) = Y(n)$ for the basis $\{Y(n)\}$ of $\mathfrak{N}_*(\mathbb{Z}_2)$ as mentioned above (cf. [6; p. 154]). When $\varepsilon = -$, we see that the above set $\{M(n)\}$, in fact, generates $W_*^-(\mathbb{Z}_2)$ over W_* . (See Remark 3. 9 in the next section.) Hence the theorem follows.

§ 3. Some Examples

In this section, we study the Wall manifolds with (ε) -free involutions derived from a set of generators of $\Omega_*^{\varepsilon}(\mathbb{Z}_2)$.

For each ε , let $\hat{\mathcal{Q}}_*^{\varepsilon}(S^N, a)$ be the equivariant singular \mathcal{Q}_* -module of orientation-preserving (or orientation-reversing) free involutions for the antipodal map on N-sphere (S^N, a) , where \mathcal{Q}_* is the oriented cobordism ring.

Definition 3.1 (cf. [5]). Let (M, μ, f) represent a class in $\hat{\mathcal{Q}}_{k}^{-}(S^{N}, a)$. For each integer $n \geq 0$, we define $D^{n}(M)$, $D^{n}(\mu)$ and $D^{n}(f)$ as follows.

(3.2)
$$D^n(M) = D^n \times M/(s, x) \sim (s, \mu(x))$$
 for $s \in \partial D^n$ and $x \in M$ (D^n : the *n*-disc),

 $\begin{array}{l} D^n(\mu):D^n(M)\to D^n(M) \text{ is defined by } D^n(\mu)\left([d,x]\right)=[a(d),\mu(x)] \text{ and}\\ D^n(f):D^n(M)\to E^nS^N=S^{n+N}(\text{the }n\text{-fold unreduced suspension of }S^N)\\ \text{by } D^n(f)\left([d,x]\right)=[d,f(x)] \text{ for } d\in D^n \text{ and } x\in M. \quad \text{Then } (D^n(M),\\ D^n(\mu), D^n(f)) \text{ represents a class in } \hat{\mathcal{Q}}_{k+n}^{\varepsilon}(S^{n+N},a) \ (\varepsilon=(-1)^{n+1}) \text{ and its}\\ \text{image in } \hat{\mathcal{Q}}_{k+n}^{\varepsilon}(S^{\infty},a)=\mathcal{Q}_{k+n}^{\varepsilon}(\mathbb{Z}_2) \text{ is denoted by } D^n[M,\mu,f]. \quad \text{The map}\\ D^n:\hat{\mathcal{Q}}_*^-(S^N,a)\to \mathcal{Q}_*^{\varepsilon}(\mathbb{Z}_2) \ (\varepsilon=(-1)^{n+1}) \text{ sending } [M,\mu,f] \text{ to } D^n[M,\mu,f]\\ \text{ is a well-defined } \mathcal{Q}_*-\text{homomorphism of degree }n. \end{array}$

Now let π be the set of all partitions $\omega = (p_1, \ldots, p_r)$ with unequal parts p_i none of which is a power of 2. And let $|\omega| = r$ be the length of ω . For a partition $\omega = (p_1, \ldots, p_r)$, we denote $M_\omega = M_{2p_1} \ldots M_{2p_r}$ the unoriented manifold in [10; §4] representing the generator $X_\omega = X_{2p_1} \ldots X_{2p_r} \in W_*$. And let $[W_\omega, t] \in \hat{Q}_{2|\omega|}(S^1, a)$ be the bordism class of the orientation-reversing involution t on the orientation bundle W_ω over M_ω . Then we know that $\hat{Q}_*^-(S^1, a)$ is isomorphic to W_* as Q_* -modules via the map $\eta: \hat{Q}_*^-(S^1, a) \to W_*$ sending $[M, \mu, f]$ to $[M/\mu, f/\mu]$ and $\eta^{-1}(X_\omega) = [W_\omega, t]$ by definition, where W_* is regarded as Q_* module via the natural map $r: Q_* \to W_*$. Thus we see that $\hat{Q}_*^-(S^1, a)$ is generated as Q_* -module by $[S^0, a]$ and $[W_\omega, t]$ ($\omega \in \pi$).

Using the above maps $D^n: \hat{\mathcal{Q}}^{\varepsilon}_*(S^1, a) \to \mathcal{Q}^{\varepsilon}_*(\mathbb{Z}_2)$ ($\varepsilon = (-1)^{n+1}$), we obtain some direct sum decompositions of $\mathcal{Q}^{\varepsilon}_*(\mathbb{Z}_2)$ which are similar to those

in [5; Cor. 3.3] by the maps E^n . In particular, we have

Lemma 3.3 (cf. [5]). As Ω_* -modules, (i) $\Omega^+_*(\mathbb{Z}_2)$ is generated by the following elements; $[\mathbb{Z}_2, \sigma], [S^{2n+1}, a], [D^{2n+1}W_{\omega}, D^{2n+1}(t)] \ (n \ge 0, \ \omega \in \pi), and$ (ii) $\Omega^-_*(\mathbb{Z}_2)$ is generated by the following elements; $[S^{2n}, a], [D^{2n}W_{\omega}, D^{2n}(t)] \quad (n \ge 0, \ \omega \in \pi).$

See [5; Th. 4.5] for further structures of $\Omega_*^{\varepsilon}(\mathbb{Z}_2)$, especially the relations among these generators.

For each $n \ge 0$, let $D_2^n: \mathfrak{N}_*(\mathbb{Z}_2) \to \mathfrak{N}_*(\mathbb{Z}_2)$ be the \mathfrak{N}_* -homomorphism of degree *n* whose definition is entirely analogous to D^n given at (3.2), forgetting the orientations.

Lemma 3.4. $D_2^n([S^1, a]_2) = X(n+1)$ for all $n \ge 0$.

Proof. First we note $\varepsilon_*(D_2^n[S^1, a]_2) = 0$ for all $n \ge 0$, considering for example the involution \overline{A} on $D^nS^1/D^n(a)$ induced by A([d, x]) = [a(d), x] and its fixed point data (cf. [1; (21.8), (22.2)]). Using the formula (2.3) for $[M, \tau]_2 = D_2^n[S^1, a]_2$, we have the result, since $A \circ D_2^n = D_2^{n-1}(N \ge 1)$ in general. q. e. d.

Now we return to the study of the maps F_{ε} . We first consider Wall manifolds with the trivial structure 1 (cf. Theorem 1.5.).

Lemma 3.5 (cf. [5; Lemma 5.2]). $F_{-}([W_{\omega}, t, 1]) = X_{\omega}[S^{0}, a]_{2} + (\partial_{1}X_{\omega})[S^{1}, a]_{2}$ in $\mathfrak{N}_{*}(\mathbb{Z}_{2})$, where $\partial_{1}: W_{*} \to W_{*}$ is the derivation in [10].

Using Lemmas 3.4, 3.5 and the fact that $D^N([S^0, a]_2) = [S^N, a]_2$ for each $N \ge 0$, we have

Theorem 3.6. For each $n \ge 0$ and $\omega \in \pi$,

(i) $F^+([D^{2n+1}W_{\omega}, D^{2n+1}(t), 1]) = X_{\omega}[S^{2n+1}, a]_2 + (\partial_1 X_{\omega}) X(2n+2),$

(ii) $F_{-}([D^{2n}W_{\omega}, D^{2n}(t), 1]) = X_{\omega}[S^{2n}, a]_{2} + (\partial_{1}X_{\omega})X(2n+1)$

in $\mathfrak{N}_*(\mathbb{Z}_2)$. (cf. Theorem 2.8.)

Definition 3.7. Let (M, μ) be an orientation-reversing free involu-

578

tion. For each $n \ge 0$, $(D^{2n+1}(M), D^{2n+1}(\mu))$ is equivariant reversible since $D^{2n+1}(M)$ admits an orientation-reversing diffeomorphism Adefined by A([d, x]) = [a(d), x] for $d \in D^{2n+1}$ and $x \in M$. While the map (μ) defined by $(\mu)([d, x]) = [d, \mu(x)]$ is also an orientationreversing diffeomorphism on $D^{2n+1}(M)$ (cf. Definition 1. 6). When $(M, \mu) = (S^0, a_0)$, the antipodal map on 0-sphere, the above map Ais the reflection $R: S^{2n+1} \rightarrow S^{2n+1}$ in Example 1.8. While (a_0) is another reflection defined by $(a_0)(x_0, x_1, \ldots, x_{2n+1}) = (-x_0, x_1, \ldots, x_{2n+1})$.

Further, putting $(M, \mu) = (W_{\omega}, t)$, we consider Wall manifolds with the RP(1)-structure α as follows (cf. Definition 1.7).

Theorem 3.8. For each $n \ge 0$ and $\omega \in \pi$,

$$\begin{array}{ll} \text{(i-1)} & F_{+}([S^{1} \times_{A} D^{2n+1} W, \ id \times D^{2n+1}(t), \alpha]) \\ & = (\partial_{1} X_{\omega}) \bullet \Sigma_{i=0}^{\left[\frac{n+1}{2}\right]} a_{2i}^{2} [S^{2n+3-4i}, \ a]_{2} + X_{\omega} X(2n+2), \\ \text{(i-2)} & F_{+}([S^{1} \times_{(t)} D^{2n+1} W_{\omega}, \ id \times D^{2n+1}(t), \ \alpha]) = X_{\omega} X(2n+2) \\ \text{(ii)} & F_{-}([S^{1} \otimes D^{2n} W_{\omega}, \ id \times D^{2n}(t), \ \alpha]) = X_{\omega} X(2n+1), \end{array}$$

where the element $a_{2i} \in \Re_{2i}$ is defined in Remark 2.4. We see that a_{2i}^2 is the homogeneous polynomial in variables $\beta_j = [CP(2j)]$ $(1 \le j \le i)$.

Proof. We first prove (i-1). Using Theorem 2.5 and Lemma 3.5, we have

$$\begin{split} F_{+}([S^{1} \times_{A} D^{2n+1} W_{\omega}, id \times D^{2n+1}(t), \alpha]) \\ &= X_{\omega}[S^{1} \times_{R} S^{2n+1}, id \times a]_{2} + (\partial_{1} X_{\omega}) [S^{1} \times_{A} D^{2n+1} S^{1}, id \times D^{2n+1}(a)]_{2} \\ &= X_{\omega} X(2n+2) + (\partial_{1} X_{\omega}) [S^{1} \times_{A} D^{2n+1} S^{1}, id \times D^{2n+1}(a)]_{2}. \end{split}$$

Now let

 $f: S^1 \times D^{2n+1} S^1 \longrightarrow S^1 \times D^{2n+1} S^1$

be the map defined by f(z, [d, w]) = (z, [d, zw]) for $z, w \in S^1$ and $d \in D^{2n+1}$. Then $f \circ (a \times A) = (a \times D^{2n+1}(a)) \circ f$ and $f \circ (id \times D^{2n+1}(a)) = (id \times D^{2n+1}(a)) \circ f$. Therefore f induces an equivariant diffeomorphism between $(S^1 \times_A D^{2n+1}S^1, id \times D^{2n+1}(a))$ and $(S^1 \otimes D^{2n+1}S^1, id \times D^{2n+1}(a))$. Since $[D^{2n+1}S^1, D^{2n+1}(a)]_2 = X(2n+2)$ (cf. Lemma 3.4), $[S^1 \otimes D^{2n+1}S^1, S^1 \otimes D^{2n$

 $id \times D^{2n+1}(a)]_2 = [S^1, a]_2 X(2n+2)$ in $\mathfrak{N}_*(\mathbb{Z}_2)$ as \mathfrak{N}_* -algebra. Thus we have the result (i-1) by the formula for $[S^1, a]_2[S^{2m}, a]_2$ (cf. [9; Cor. 2. 5]) and Remark 2.4.

We next prove (i-2). Similarly we have

$$F_{+}([S^{1} \times_{(t)} D^{2n+1}W, id \times D^{2n+1}(t), \alpha]) = X_{\omega}[S^{1} \times_{R_{1}} S^{2n+1}, id \times a]_{2} + (\partial_{1} X_{\omega})[S^{1} \times_{(a)} D^{2n+1}S^{1}, id \times D^{2n+1}(a)]_{2}$$

where R_1 is the reflection (a_0) mentioned in Definition 3.7. It is easy to see that $(S^1 \times_{R_1} S^{2n+1}, id \times a)$ is isomorphic to $(S^1 \times_R S^{2n+1}, id \times a)$ by a natural diffeomorphism. Thus $[S^1 \times_{R_1} S^{2n+1}, id \times a]_2 = X(2n+2)$. While the map f in the proof of (i-1) satisfies $f \circ (a \times (a)) = (a \times id) \circ f$ in this case. Therefore $[S^1 \times_{(a)} D^{2n+1} S^1, id \times D^{2n+1}(a)]_2 = [RP(1)]$ $[D^{2n+1} S^1, D^{2n+1}(a)]_2 = 0.$

The proof of (ii) is entirely analogous to the above one, so we omit it here. q. e. d.

Remark 3.9. Since the map F_{ε} is monic, we see the relation among Wall manifolds with (ε) -free involutions via F_{ε} . In particular, let us consider the natural map $\overline{\delta}: \Omega_*^-(\mathbb{Z}_2) \to W_*^-(\mathbb{Z}_2)$ defined by $\overline{\delta}([M, \mu]) = [S^1 \otimes M, id \times \mu, \alpha]$ (cf. Definition 1.7). Then $\overline{\delta}$ is a splitting map to δ in the exact triangle (W_-) in Theorem 1.5. Thus $W_*^-(\mathbb{Z}_2)$ is generated as Ω_* -module by $[S^{2n}, a, 1], [D^{2n}W_{\omega}, D^{2n}(t), 1], [S^1 \otimes S^{2n}, id \times a, \alpha], [S^1 \otimes D^{2n}W_{\omega}, id \times D^{2n}(t), \alpha]$ for $n \ge 0$ and $\omega \in \pi$ by Lemma 3.3 (ii). Using the map F_- , we see that $W_*^-(\mathbb{Z}_2)$ is generated as $W_*^$ module by $[S^{2n}, a, 1], [S^1 \otimes S^{2n}, id \times a, \alpha]$ for $n \ge 0$ from Theorems 2.5, 3.6 and 3.8.

Let $\mathfrak{N}_*(S^1)$ be the unoriented bordism group of S^1 , and let $E: W^-_*(\mathbb{Z}_2) \to \mathfrak{N}_*(S^1)$ be the map assigning to an element $[M, \mu, \alpha] \in W^-_*(\mathbb{Z}_2)$ the induced map $\bar{\alpha}: \overline{M} = M/\mu \to S^1$. Since the manifold M is the double cover associated to det $\tau_{\overline{M}} \otimes \bar{\alpha}^*(\xi)$ where ξ is the canonical line bundle over S^1 , the map E is the additive isomorphism (cf. [7]). Let $i: \mathfrak{N}_* \to \mathfrak{N}_*(S^1)$ be the natural inclusion defined by i([M]) = [M] [*, 1] where (*, 1) is the one-point set * with the trivial map $1:*\to S^1$, and let $L = F_- \circ E^{-1} \circ i: \mathfrak{N}_* \to \mathfrak{N}_*(\mathbb{Z}_2)$ be the induced injective homomorphism. Then we have

Lemma 3.10. For any Wall manifold [M] in W_* and integer $n \ge 0$, $L([M \times RP(2n)]) = [M][S^{2n}, a]_2 + [\partial_1 M]X(2n+1)$

in $\mathfrak{N}_*(\mathbb{Z}_2)$.

Proof. In case of $[M] = X_{\omega}$, the above formula is exactly the same as that (ii) of Theorem 3.6 since $E([D^{2n}W_{\omega}, D^{2n}(t), 1]) = X_{\omega}[RP(2n)][*, 1]$ by definition. For any element [M], the proof is clear. q. e. d.

Remark 3.11. We see that the relation $\sum_{i=0}^{n} [M_{2i}][RP(2i)] = 0$ for $[M_{2i}] \in W_*$ if and only if $[M_{2i}] = 0$ for all *i*.

In conclusion of this section, we study the relation between $\text{Im}F_+$ and $\text{Im}F_-$.

Theorem 3.12. $\operatorname{Im} F_+ \cap \operatorname{Im} F_- = W_* \{ \{ [S^0, a]_2, [S^1, a]_2 \} \}.$

Proof. First we note $[S^0, a]_2 = X(0)$ and $[S^1, a]_2 = X(1)$ by definition. Thus these elements belong to $\text{Im}F_+ \cap \text{Im}F_-$ (cf. Theorem 2.8). Next we take an element x in $\text{Im}F_+ \cap \text{Im}F_-$ with degx=2n, then

(3.13)
$$x = \sum_{i=0}^{n} [M_{2i}] X(2n-2i) + \sum_{i=0}^{n-1} [N_{2i+1}] [S^{2n-2i-1}, a]_2$$
$$= \sum_{j=0}^{n} [M'_{2j}] [S^{2n-2j}, a]_2 + \sum_{j=0}^{n-1} [N'_{2j+1}] X(2n-2j-1)$$

by Theorem 2.8, where $[M_s]$, $[M'_s]$, $[N_s]$ and $[N'_s]$ are elements in W_s . Consider $\varepsilon_*(x)$, then $[M_{2n}] = [M'_{2n}]$ and $[M'_{2j}] = 0$ for $j = 0, 1, \ldots, n-1$ by Remark 3.11. Substitute this result for the identity (3.13). And we describe it by the basis $\{X(n)\}$ alone, using the relation (2.2). Then a straightforward calculation shows that $x = [M_{2n}]X(0) + [N_{2n-1}][S^1, a]_2 = [M_{2n}][S^0, a]_2 + [N_{2n-1}]X(1)$ from Remark 3.11 again. Thus x belongs to $W_*\{\{[S^0, a]_2, [S^1, a]_2\}\}$. In the case of degx = 2n - 1, the proof is similar.

Our basis $\{Y(n)\}$ of $\mathfrak{N}_*(\mathbb{Z}_2)$ in Theorem 2.8 is essentially unique in the following sense.

Theorem 3.14. Let $\{C(n) | \deg C(n) = n, n \ge 0\}$ be a homogeneous basis of $\Re_*(\mathbb{Z}_2)$ with the following properties:

581

(i) For each $n \ge 0$, there is an element M(n) in $W_n^+(\mathbb{Z}_2)$ such that $F_+(M(n)) = C(n)$, and

(ii) $\Delta^2(C(n)) = C(n-2)$ for all $n \ge 2$.

Then $C(2n) = X(2n) \mod \mathcal{I}$ and $C(2n+1) = [S^{2n+1}, a]_2 \mod \mathcal{I}$ where $\mathcal{I} = \operatorname{Im} F_+ \cap \operatorname{Im} F_-$.

The proof is clear, so we omit it here.

References

- P. E. Conner, Differentiable Periodic Maps, Second Edition., Lecture Notes in Math., 738, Springer-Verlag, 1979.
- [2] -----, Fibring within a cobordism class., Michigan Math. J., 12 (1965), 33-47.
- [3] K. Komiya, Oriented bordism and involutions., Osaka J. Math., 9 (1972), 165-181.
- M. Kreck, Bordism of Diffeomorphisms and Related Topics., Lecture Notes in Math., 1069, Springer-Verlag, 1984.
- [5] K. Shibata, Oriented and weakly complex bordism algebra of free periodic maps., Trans. A. M. S., 177 (1973), 199-220.
- [6] R. E. Stong, Notes on cobordism theory., Math. Notes, Princeton Univ. Press, 1968.
- [7] ____, Wall manifolds., Trans. A. M. S., 251 (1979), 287-298.
- [8] J. C. Su, A note on the bordism algebra of involutions., Michigan Math. J., 12 (1965), 25-31.
- [9] F. Uchida, Bordism algebra of involutions., Proc. Japan Acad., 46 (1970), 615-619.
- [10] C. T. C. Wall, Determination of the cobordism ring., Ann. of Math., 72 (1969), 292-311.