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On Wall Manifolds with 00 -Free Involutions
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By

Tamlo HARA*

§ Oo Introduction

Let $1% denote the unoriented cobordism ring. Then 9^ Is the
polynomial algebra over Z2 on classes Xk of dimension k for each
integer k not of the form 2''-l. Let W* = Z2[^2*-i, X2k;k^2\ (X^2~\

be the polynomial subalgebra of 91* defined by Wall [10]. As the
bordism theory of free involutions on Wall manifolds, let W*(Z^) be
the bordism group of Wall manifolds with (e) -free involutions studied
by Komiya in [3]. (Here e denotes one of the signs + and — .)
While let 9?* (Z^) denote the unoriented bordism group of free involu-
tions, then there are homomorphisms FB

m.W£(Z2)-*3l*(Z^ which
forget a Wall structure. The following theorem is known.

Theorem (cf. [3]). The two homomorphisms FB are monic, Moreover ',

the image of each F& is a direct summand of 91* (Z2)*

In this paper, we study the image of each FB as a subgroup of

In §1, we define the bordism groups W*(Z^, and give some
examples of Wall manifolds with (a) -free involutions,,

In §2, we state the image of each FB in Theorem 28 80

In §3, we study Wall manifolds with (e)-free involutions derived
from some generators of @*(Zz)> the oriented bordism module of all
orientation-preserving (or orientation-reversing) free involutions ([5]),
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and calculate their images by the maps FE (Theorems 3. 6 and 3. 8).
Finally we refer to the elements in 3l*(Z<^) which belong to both
ImF+ and ImF_ (Theorem 3. 12).

§ L Wall Manifolds with (e)-Free Involutions

Definition 1.1 (cf. [6]). Let M be a compact smooth manifold
(with or without boundary), let det TM be the determinant bundle of
the tangent bundle TM of M, and let aiM-^RP(oo) be a classifying
map of det TM where g->RP(oo) is the universal line bundle. Then
a(M)dRP(r) for some r^O, since M is compact. Such a is called
an RP(r) —structure of M.

Definition 1. 2(cf. [3]). A Wall manifold with (e) —free involution
is a triple (M, /z, a) where :

(i) M is a compact smooth unoriented manifold and jit is a free
involution on M',

(ii) a'.M-^RP(l) is a RP(l) —structure of M which is equivari-
ant with respect to jw, i.e., a°/ji = a', and

(iii) aosdet<^ — a for a bundle map a covering a where det^:
det rM->det TM is the map induced by fj. and e det d^ means det dft

[resp., — detflfj if e= + [resp., e=— ].

The boundary dM of M is a Wall manifold (dM, ft\dM, a\ dM)
since det rm is identified with (det TM) \ dM by the inner unit normal
vector.

Definition 1.3. Let e be one of the signs + and — . We say
that two closed Wall manifolds with (e) —free involutions, (M, fjt, a)
and (M', /*', a'} are bordant if there is a Wall manifold with (e) —free
involution (W, v, /3) such that the disjoint sum (Af, ft, a) + (M\ ft', a'}
= (dW, v\dW, fi\dW) and an equivariant RP(l) —structure ft satisfies
j5|Af = a and fi\M' = a', where a, a7 and $ are bundle maps covering
a, ar and /5, respectively.

Definition 1.4. (cf. [3]). For each e, we denote the bordism class
of (M, fi, a) by [Af, //, a], and define
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W^(Z2) = {[Af, ft a] |a°s det ̂  = a, dim M = m]

which is an abelian group by the disjoint sum. Thus we have a

graded abelian group

the bordism group of Wall manifolds with (e) — free involutions.

Let QB#(Z2) = 2m@em(Z2) be the oriented bordism group of all
orientation-preserving free involutions (e=+) or all orientation-

reversing free involutions (e=— ) (cf. [5]). Then we obtain the

exact triangles of the type of Wall.

Theorem 1.5 (cf. [3]). For each e, there is an exact triangle:

0%

in which 2 w £/?£ multiplication by the integer 2, p is defined by considering

[Af, fji]^QB#(Zz) as a Wall manifold with the trivial RP (1) ~ structure

l:M-*{l}c:Sl = RP(l), and d sends [Af, ft a] e fFm
e (Z2) iwfo [AT,

^ ^ ^^ invariant submanifold of M dual to det rMo

To say the fundamental type of Wall manifolds with (e) —free

involutions, we introduce the following notion0

Definition 1.6 (cf. [4; p. 88]). Let (Af, //) be an orientation-

preserving involution // on an oriented manifold Af. We say that

(Af, fjL) is equivariant reversible if Af admits an orientation-reversing
diffeomorphism R such that [jt°R = R°[t. When (Af, //) is an orientation-

reversing involution, this is always equivariant reversible by consid-

ering R = /JI.

Definition 1. 7 (cf. [10; §3]). Let (Af, fjt) be an orientation-

preserving free involution which is equivariant reversible, then (S1

X^Af, z r f X f t a) is a Wall manifold with ( + ) —free involution where

SlXRM = SlXM/aXR is the twisted product of the unit circle with

antipodal map and (Af, //), id is the identity map, and a([z, m\) =
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for z<=S\ m<=M. While let (M9 fi) be an orientation-
reversing free involution, then we obtain a Wall manifold with ( — ) —
free involution (S1XflM9 idXfa a) in the same way. From now on
we denote an involution (S1X^M, idXft) by (Sl®M, idx //) if no
confusion can arise.

Example 1. 8.
(1.8. 1) The antipodal maps on spheres (S2n+l, a) and (S2*, a) are

Wall manifolds with ( + ) and (— )— free involutions with the trivial
structure 1 respectively.

(1. 8. 2) Let R:S2n+l->S2n+1 be the reflection defined by R(xQ, xl9 . . .,

xzn+i) = (*o, — *i, • • • , — *2»+i) for (*0, xly . . . , x2n+i) ^$2n+l. Then (^X
RS2n+l, idx a, a} is a Wall manifold with ( + ) — free involution. While

(1.8.3) (Sl®S2n, idx a, a} is a Wall manifold with (-)-free
involution.

§ 2, On the Images of FG

In this section, we study the homomorphism FB: W£(Z2) -^3fJ*(Z2)
defined by FB(\_M, /*, a]) =\_M, fji]2 as mentioned in Introduction where
[Af, fjL\2 is the unoriented bordism class of a free involution (M9 /^).
First we give some natural basis of ^(^2).

Definition 2.1 (cf. [8]). Let [X(n) \deg X(n) =n, n^O] be a
homogeneous basis of ^(JS^) which satisfies:

(i) Z(0)=[5>]2,
(ii) e*(X(n))=Q for all w ^ l , where e^: 3fiS|!(Z2)->Sfi* is the aug-

mentation map, and
(iii) J(Z(« + l ) )=Z(w) for all ?z^05 where A is the Smith

homomorphism.

This basis exists and is unique with respect to satisfying (i)-
(iii). It is determined inductively by the following relation:

(2. 2) [_S", a-]t = 2}_lRP

This follows that for any [M",

(2. 3)
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Remark 2. 4. X(2n + I) = Zn^a2i[S2n-2i+\ a]2 and
i^2,a~\2 for all ^^0, where the element <% in ^21 is defined by

a0=l and I\^a2i\_RP(2k-2i)~\=Q for all k^l (cf. [9]).

We first study the images of Wall manifolds in Example L 8 by
the homomorphisms FB.

Theorem 2, 5* We have

(i)
(ii)

Proof. For the proof of (i) , see the remark 2. 4 and the corollary
2. 5 in [9]. Next we prove (ii). We see that

(2.6) d([SlXRS2n+\ idXa1^=lSl®S2n, idXa']2 = X(2n + l')

for all ra^O. Let 7= {(*, *0? *!,..., ̂ +i) e^X^+1 1^0^0} and let M^
be the image of V in ^X^2n+1. Then WU (idXa) W=S1XRS2n+l and
Pl/n (idXa) W=dW=SlxSln where 5?= {(^, xl99... 5^2re+1) e52ra+1 i^0 = 0}
and the reflection R acts on S2n as the antipodal map a. Thus we
obtain the result (2.6) by [1; (24.1)]. Put X'(2?i + 2) =[_SlXRS2n+\
idx a~\ 2, then it is sufficient to show that £*(X /(2n + 2)) =0 by the
definition of ( X ( n ) } . The manifold S1 X RS2n+l/id X a is diffeomorphic
to V2n+2 = SlxRP(2n + l)/aXR by the natural map where R:RP(2n + l)
->RP(2n + l) is defined by I?[>03 xl9 . . . , x2n+l~\ = [XQ, ~xlya,,, -^2n+i]0

Let T be the involution on V2n+2 induced by TI(Z, x) =(z>x) for z^S1

and x £H RP (2n + I) here I is the conjugation of £. Then the fixed point
data of r implies that

e* (Z7 (2^2 + 2) ) - [51 X 12S
fl"+1/W X fl]

(cf. [1;(21. 8), (22. 2)])

where RP(g@2R) is the projective space bundle associated to
->RP(2n), the Whitney sum of the canonical line bundle t;->RP(2ri)
and the trivial 2-plane bundle 2R->RP(2n). In other words,
RP(£®2R) is the quotient of the fixed point free involution on S2nX

RP(2) given by r(#, [#0, *i, *2] ) = ( — *, [ — *o, *i, #2]) for x^S2n and
[*o9*b*2]e£P(2). Thus we have [/2P(f©2J?)] = [/2P(2w + 2)] by
Lemmas (2.2) and (5.1) in [2], and £*(X'(2?i + 2)) =2[jRP(2n + 2)]
= 0. q. e. d0
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Considering RP(l) =S1, the groups W^(Z^) is the module over
W* via the multiplication m:SixS1-*Si (cf. [6; p. 163] for example.).
Since the maps Fe are monic as mentioned in Introduction., the following
lemma is convenient to explain the images of Fe.

Lemma 2. 7* For each e, let (Y(n) |deg Y(ri) = n, n^Q} be a suitable
homogeneous $l*-basis of ^ft^(Z2) and let [M(ri) |deg M(n) = n, n^O}
be a set of generators of W^(Z2) as the W ^-module such that F B ( M ( n ) )
= Y(ri) for all /z^rO, then we have that'.

(i) W*(Z^ is a free W*-module with basis [M(n)\n^Q] (When
= +, see [6; p. 163] for example. ,)3 and

(ii) ImFe=W*{{Y(n) \n^Q}} in Sfc*(Z2), i.e., a free W*-module
with basis {Y(ri)}, obtained by restricting the coefficient ring 31% to W*.

From Example 1. 8 and Theorem 2. 5, we can choose the basis
{Y(n)} as follows,,

Theorem 2. 8» (i) PP"J(Z2) is the free W*-module with basis:

[Zj,a, 1], M(2n + 2)=iS1XRS2"+\ idXa.al and

for n^Q, and Im F+= W*{{X(2n), [S2n+\ a~\2 \ n^Q}}, where (Z2,
the action of Z2 on itself by the additive homomorphism a.

(ii) W * (^2) is the free W^-module with basis :

M(2n)=tS2n,a,l~j and Af(2« + l) =[51(g)5*>, idXa, a]

for 72^0, and

Proof, First we note that the above set {Y(n}} in each ImFe

forms an S^-basis of 9?* (^2). When e=+, the set [M(n)} becomes
a IF^-basis of Wr + (Z2) naturally if it satisfies that F+(Af(w)) =F(n)
for the basis (Y(n)} of ^^(^2) as mentioned above (cf. [6; p. 154]).
When s=~ 9 we see that the above set [M(n)}, in fact, generates
Wl(Z^) over IF*. (See Remark 3. 9 in the next section.) Hence the
theorem follows. q* ea da
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§ 3o Some Examples

In this section, we study the Wall manifolds with (e)-free involu-
tions derived from a set of generators of Q% (Z2) .

For each e, let O% (SN, a) be the equivariant singular £?*-module
of orientation-preserving (or orientation-reversing) free involutions
for the antipodal map on TV-sphere (SN, a) , where Q* is the oriented
cobordism ring.

Definition 3. l(cf. [5]). Let (M, ft/) represent a class in

Qk(SN, a). For each integer 72^0, we define Dn(M}, Dn(ft) and
Dw(/) as follows.

(3. 2) Dn (M) =DnxM/ ( j, x) — (s, p (*) ) for s e 3D" and
xeM (Z)n: the /2-disc),

Dn(fji):Dn(M)-^Dn(M) is defined by DK(/JL) (\_d, x}} = [0(rf), p(x)~\ and
Dn(f) :Dn(M)-*EnSN = Sn+N(the /2-fold unreduced suspension of S*)

by -D"(/)(K^])=[rf,/W] for rfeD" and ^eAf. Then (Dn(M},

Dn(f£), D"(/)) represents a class in &k+n(S
n+N, a) (e=(~l)"+l) and its

image in Ol+n(S°°9 a) =Ql+n(Z2) is denoted by Dn\_M, ft/]. The map

D*:QH(SN, a)-»Q%(Z2)(e=(~ir+l) sending [M, ft/] to D«[M3 ft/]
is a well-defined -0^-homomorphism of degree n.

Now let TT be the set of all partitions co= (pi, . . . ,/v) with unequal
parts pi none of which is a power of 2, And let \co\ =r be the length
of w. For a partition co= (p:, „ . . 3 /?r) ? we denote Mat = M2p1. . . -M2^,^

the unoriented manifold in [10; §4] representing the generator

X = ̂ r.*^efF*. And let \Wn, t\^Q^ (S\ a) be the bordism

class of the orientation-reversing involution t on the orientation bundle

WQ> over Mm. Then we know that Q^(Sl, a) is isomorphic to W* as

S^-modules via the map r]\Q~(S1^ a) ->PF# sending [Af, ft/] to [Af/ft
////] and ^(X^ =\Wa, f\ by definition, where IF* is regarded as £?*-

module via the natural map r'.Q*->W*. Thus we see that Q^(Sl^a)
is generated as ^-module by [510, a] and [W^ f\

Using the above maps Dn: Q* (S1, a) -»£* (Z2) (e = ( — 1 ) ra+1) , we obtain
some direct sum decompositions of Q% (Zz) which are similar to those
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In [5 ; CorB 3. 3] by the maps En. In particular, we have

Lemma 3o 3 (cf. [5]). As @*-modules,
(i) Q% (Z%) is generated by the following elements ',

[Za,*], [S2n+\ fl], lD2n+lW^ D2w+1(0] (ii^O, ^TT), and
(ii) Q J (£2) is generated by the following elements ;

[S* fl], [D2reW^, Z

See [5 ; Th. 4. 5] for further structures of Q% (Z2) , especially the
relations among these generators.

For each rci^O, let Dj: 91* (Z2) -^ (Z2) be the ^-homomorphism
of degree w whose definition is entirely analogous to Dn given at (3. 2) ,
forgetting the orientations,,

Lemma 3.4. Dn
2([_Sl, a]2) =JT(« + 1) /or fl/Z n^O.

Proof. First we note ^(^[^ ^D — 0 for all /2^0, considering
for example the involution A on DnS1/D"(a) induced by A([_d, x]) =
[a(d), xj and its fixed point data (cf. [1 ; (21.8), (22.2)]). Using
the formula (2,3) for [M, 7]2 = Z)J[,S1, a]25 we have the result, since

^l) in general q. e, d.

Now we return to the study of the maps FB. We first consider
Wall manifolds with the trivial structure 1 (cf. Theorem 1. 5.).

Lemma 3. 5 (cf. [5 ; Lemma 5. 2]) . F_ (\_W^ t, 1]) =X.[S°9 a~\2+
(9A) ["S1, a\2 in Sl*(Z2), where dl\W*-*W* is the derivation in [10].

Using Lemmas 3. 4, 3. 5 and the fact that DN (\_S\ 0]2) =[£*, a]2 for
each JV^O, we have

Theorem 3. 60 For each n^O and

(i) F+dD^W*, ZP-+1(0, l])=
(ii) F_([D2»W^, /^(O, l])-^[

in S?*^). (cf. Theorem 2.8.)

Definition 3. 7* Let (M9 ft) be an orientation-reversing free involu-
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tion. For each 72 ̂ 0, (D2n+1(Af)9 D2n+1(») is equivariant reversible
since D2n+1 (M) admits an orientation-reversing difFeomorphism A
defined by A(\d,x\) =\a(d),x\ for d^D2n+l and x^M0 While the
map (fjf) defined by (/*) ([rf, A;]) =[rf, //CO] is also an orientation-
reversing diffeomorphism on D2n+1(M) (cf. Definition 1. 6). When
(M9 fjt) = (S°, #0)5 the antipodal map on 0-sphere? the above map A
is the reflection R: S2n+l->S2n+l in Example 1.8. While (a0) is another

reflection defined by (a0) (#o, #1, . . . , #2«+i) = ( — ̂ o5 ̂ i, - • •

Further, putting (Af, //) = (M^,, 03 we consider Wall manifolds
with the RP(l) -structure a as follows (cf. Definition 1.7).

Theorem 30 80 For each n^O

(ii)

where the element ^ErS^i i^ defined in Remark 2, 4. W0 j^
?/z^ homogeneous polynomial in variables fij = l_CP(2j)^ (l^/^

Proof. We first prove (i-1). Using Theorem 2e 5 and Lemma 3, 5,
we have

Now let

/: 51 X D^+^-^S1 X D2n+lSl

be the map defined by f(z,[d,w']) = (z,[_d9zw~]) for ^we.S1 and
d^D2n+\ Then /° (a X A) = (a X D2n+l (a) ) °/ and fo(idxD2n+l(a)) =

(idxD2n+l(a))°fe Therefore / induces an equivariant diffeomorphism
between (S^X ADin+1SL

9 idxD2n+1(a)) and (Sl®D2n+lS\ idxD2n+l(a)).
Since [D2"^ D2"+1(«)]2-Z(2^ + 2) (cf. Lemma 3,4),
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idxD2n+l(ci)]2=[_S\ a]2X(2n + 2) in 5K*(Z2) as ^-algebra. Thus we
have the result (i-1) by the formula for \_S\ a~\2[S2m, a]2 (cf. [9;
Cor. 2. 5]) and Remark 2. 4.

We next prove (i-2). Similarly we have

, idxD2n+l(t), a])

where RI is the reflection (00) mentioned in Definition 3. 78 It is
easy to see that (Sl X Rl$

2n+l, idxa) is isomorphic to (S1 X RS2n+l, idXa)

by a natural diffeomorphism. Thus [S1 X R}S
2n+\ idXa~]2 = X(2n + 2).

While the map f in the proof of (i-1) satisfies f°(aX (a)) = (aXid) °f
in this case. Therefore [S1 X MD2n+lS\ idxD2n+l(d)~]2=[RP(l)~\

The proof of (ii) is entirely analogous to the above one, so we
omit it here0 q0 e. d0

Remark 3. 9. Since the map FB is monic, we see the relation among
Wall manifolds with (e)-free involutions via FB. In particular, let us
consider the natural map 8 : Q^ (Z2) -> W * (Z2) defined by 5([M9 //])
= [iS4(g)Af, idx^oi} (cf. Definition 1.7). Then S is a splitting map
to d in the exact triangle (W-) in Theorem 1. 5, Thus W^(Z^) is
generated as £*-module by [S2«, fl, 1], [D2re^, D2"(03 1], [^(x)S2ra,
idXa,a~\, \_Sl®D2nW^ idxD2n(t),a~] for ra^O and W^TT by Lemma 3. 3
(ii). Using the map F_, we see that W^(Z2) is generated as W*-
module by \_S2n, a, 1], [^(X)52n, i d X a , «] for ra^O from Theorems 2.5,
3. 6 and 3. 8.

Let SJl^S1) be the unoriented bordism group of S1, and let
E:W^(Z2)-^^^(Sl) be the map assigning to an element [Af, //, a] e
W^(Z2) the induced map #: M=M/fJt-^Sl, Since the manifold Af
is the double cover associated to det r^(x)a*(f) where f is the canonical
line bundle over S\ the map E is the additive isomorphism (cf. [7]).
Letz : S^-^CS1) be the natural inclusion defined by i ([Af]) =[AQ
[^, 1] where (*5 1) is the one-point set * with the trivial map

l:*-^1, and let L = F-oE~1°i: 9l*-*9l#(Z2) be the induced injective
homomorphism. Then we have
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Lemma 3.10. For any Wall manifold [M] in W* and integer n^Q,

L([AfX/2P(2w)]) = [M~\l_S2\ a-\2+\_diM\X(2n + \)

in 91* (Za).

Proof. In case of [Af] = Jf^, the above formula is exactly the
same as that (li) of Theorem 3.6 since E([_DZnWat9 D2n(t), 1]) =
Xm[_RP(2n)~][*9 1] by definition. For any element [M], the proof is
clear. q. e0 cL

Remarks. 11. We see that the relation I7=o [ Af2i] [&P (2f) ] = 0
for [Af2J<EEW^ if and only if [Af2£]=0 for all i.

In conclusion of this section, we study the relation between ImF+
and ImF_0

Theorem 3. 12. ImF+ n ImF_ - W* {{\_S\ aJ2, [S\ aJ2} } .

Proof. First we note [S°, a]2 = X(Q) and [51, a]2 = X(l) by defini-
tion. Thus these elements belong to ImF+ fi ImF_ (cf. Theorem 2. 8) .
Next we take an element x in ImF+nlmF- with dGgx = 2n^ then

(3. 13) *=^0[M«]A'(2n-20 +^:0
1[^2i+1][5

2"-2i-1, a]

by Theorem 20 8, where [Af J, [Afs]9 [_NS~\ and [TV^] are elements in
ITS. Consider £*(*)3 then [M^] = [MJJ and [AfJJ =0 for j = 0, 1, . . . ,
?z — 1 by Remark 3. 11. Substitute this result for the identity (3. 13).
And we describe it by the basis [X(n)} alone, using the relation
(2. 2). Then a straightforward calculation shows that x = [Af2JX(0)

+ [#2.-i] [tf, fl]2= [Afa,] E^°9 fl]2+ E^-i]^(l) from Remark 3. 1 1 again.
Thus x belongs to ^^{{[S0, 0]2, [51

3<2]2}}8 In the case of deg# = 2ft
— 1, the proof is similar. q. e. d.

Our basis (Y(ri)} of 31^ (Z 2) in Theorem 2. 8 is essentially unique
in the following sense.

Theorem 3. 14. Let [C(n) \degC (n) =n, n^O} be a homogeneous
basis of Sft* (Z2) with the following properties :
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(i) For each n^Q, there is an element M(ri) in W* (Z^) such that

F+(Af(w))=C(w), and
(ii) ^2(C(;z)) = C(H-2) for all n^2.
Then C(2n)=X(2n°) mod J and C(2w + l) =[S2n+\ a]2 mod J? where

The proof is clear, so we omit it here.
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