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Actions of 7-Groups on Lebesgue Spaces
and Properties of Full Factors of Type 1.

By

Valentin Ya. GOLODETS*

Abstract

The ergodic actions of TICC groups preserving the finite measure and the [ ;-factors
constructed on these actions are studied in this paper. To distinguish between the [ i-
factors, the properties of a centralizer of such actions are used. For SL(n, £)QZ" n=>3, a
continuum of orbit (weakly) nonequivalent actions is constructed. Full [ ~factors having
the properties opposite to the known properties of the hyperfinite factor are constructed.
A full [ -factor is presented, whose all tensor powers are non-isomorphic in pairs. It is
shown that the full factor can contain a non-isomorphic factor as a finite index subfactor
and possess externally non-conjugated periodic automorphisms. Similar results are valid for
ergodic equivalency relations.

The Supplement presents the principal points of the proof of the fact that the group
SL(n, Z) for each n>>3 has at least a countable number of orbit-nonequivalent actions
preserving the finite measure.

§1. Introduction

1. The recent progress in the ergodic theory [1-3] and in the
theory of factors [4-9] is connected with consideration of 7-groups
[10-12]. The ergodic systems and von Neumann algebras related to
T-groups have interesting properties different from those of similar
objects related to amenable groups.

In this paper ergodic actions of 7-groups on the Lebesgue spaces
and the factors of ] ;-type constructed by these actions are considered.
It is proved that the group SL(n, Z) ©Z", n>3, can have a continuum
of orbit (weakly)-nonequivalent ergodic free actions on the Lebesgue
space and the corresponding [ ;-factors are non-isomorphic in pairs
(see Theorem 7.1 and its Remark). Full [, factors having the
properties opposite to the known properties of the hyperfinite [ ;-
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factor are also constructed. Thus, a full [, factor is constructed whose
all tensor powers are in pairs nonisomorphic (see Theorem 7.2). It
is proved that the full [ ;-factor can contain a non-isomorphic sub-
factor of the finite index (see Theorem 8.3 (ii)) and have externally
non-conjugated periodic automorphisms (Theorem 8.3 (i)). It is
proved that there exists a full [i-factor whose group Out N=Aut N/
Int N is a continuous locally compact group (see Theorem 8.4). The
case of a discrete Out N is described in [4]. Similar facts take place
also for ergodic dynamic systems.

Our invariants employed to distinguish between the ergodic actions
of TICC-group (and the I ,-factors constructed by these actions) are
based on the properties of centralizer of such actions (see Prop. 2.5).
We also use for this purpose the known results of irreducible lattice
of connected semisimple Lie groups [13-15].

The Supplement presents the principal points of the proof of the
fact that the group SL(n, Z) for each n>3 has at least a countable
number of orbit-nonequivalent actions preserving the finite measure.

The question on the existence of such actions arises in particular in
connection with [1], where it is proved that the ergodic actions of
the group SL(n, £), n>3, with various n are always orbit-nonequiv-
alent.

§2. General Properties of [ ,-Factors Constructed by
Actions of T-Groups on Lebesgue Space

Let G be a countable group for which all classes of conjugated ele-
ments, except for the trivial one, are infinite (an ICC group). Assume
that G is a 7-group, i.e. there is a finite subset #CG and ¢>0 such
that for any unitary representation = of G the existence of a vector
§eH; such that

EllI=1, lr (9 §—¢ll<<e, gEF,
implies the existence of a vector §’€ H,, ||§'l|=1, satisfying n(g)§'=¢’,
geG, [11].

Let (X, #) be a Lebesgue space, @ a free ergodic action of G on
(X, ). M denotes the factor of [, type, which is a crossed product
of A=L>(X, 1) on G with respect to @, i.e. M=W*(4,a,G). Then
the operators from M act in the space H=0P*(G, H,) of the vector



AcTIONS OF T-GROUPS ON LEBESGUE SPACES 615

functions €= (£(g)) on G with the values in H,=L?(X, ), for which
[|EI1P= 21|16 (g) [’<<oo. The factor M is generated by the operators x(a),
a4, and 2, g=G:

(z(@)§) (9 =a,1(a)€(g), where a&L=(X, p),
4E) (9) =E&(h7'g), h,g=C.

Lemma 2.1. If R(G)=(2,g<€G), then R(G)'NM=C and M is a
full factor,i.e. Int M is a closed subgroup Aut M.

Proof. R(G)'NM=C is a result of the fact G that G is an ICC
group, the closedness of Int A/ is proved in [7]. |

Theorem 2.2. Let A¥ be a subgroup of Aut M generated algebraically
by the subgroup Ac={0cAut M: 0(2,) =2, g=G} and Int M. Then
AY is a closed and open subgroup of Aut M.

Proof. Let &= (§/(g)), where £,(g) =1 at g=¢ and £(g) =0 at
g#e. Then & is a cyclic separating vector for M in H. The corre-
sponding unitary involution is denoted as J: Jx&=x%&, x&M. Assume
that

V={0Aut M: 10(2) ]2, J&—E&l|<le, VEEF}.
Then V is an open neighbourhood of unity in Aut M. Let 67V,

Since m5(g) =0(4,)J4,J is a unitary representation of G in H, then it
follows from the T-property that there exists §éH such that

¢ (Zg)JZgJS =§, VEEG,
0(A)E=]J2; J&, Vg<G.
Since M is a [ ,-factor, there exists a closed operator a, joined to

M [16] such that a§,=¢. Let a=ula| be its polar decomposition. Then
from the previous equality we obtain

0 RQu=J2 Ju=ul,, Vg<aC. 2.1
Hence by Lemma 2.1 it follows that «*u=wu*<®,. But then one

may assume that in (2. 1) u is the unitary operator, which means that

Adu* 0(2) =2, gEG, i.e. 0€4¥. The closedness of 4¥ is proved
in a similar way. OJ
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Lemma 2.3. Let the conditions of Theorem 2.2 be obeyed. Then Ag
is a closed subgroup of Aut M; AcNInt M=id. There exists an algebraic
homomorphism wng mapping A¥ on Ag, with Ker zg=1Int M.

Progf. The closedness of A; follows from the definition of A¢, and
the relation A¢NInt M=id from Lemma 2.1. Because of Theorem
2.2 there exists an algebraic homomorphism 7 of 4¥ on Ag which
brings the point g into accordance with the co-set (Int M)g, where
g=Ae. The relation AgNInt M shows that ker zo=Int M. ]

Lemma 2.4. The homomorphism = is continuous in the following
sense. If 6, (neN), 0=Aut M and lim 6,=0, then lim n;(0,) =rc(0)

n—>c0

with respect to the topology in Aut M.

Proof. By Lemma 2.3 there exists the following realization 6,=
Adu, 7;(0,) and 0=Ad u+nc(d), where u, (n€N) and u are unitary
operators in M. Since y(4,) =4, for y€4; and Vg&EG, we obtain

s*—lim (Ad u,(A) —Ad u(2,)) =s*—1im (6, (2,) —0(2,)) =0

for any g&G. But then (u*u,);.; is a G-asymptotically invariant
sequence and therefore it follows from the results of [8] that (u*u,),~;
is equivalent to the G-invariant sequence. Thus, by Lemma 2.1
(u*u,) -1 is equivalent to the trivial sequence (4,/),=; where 3, &C i e.
s*—lim(u,—4,u) =0. From this and the assumption that lim§,=4,

the rglation lim ¢ (6,) == (0) follows. ]

Proposition 2.5. Let A;=L>(X, w.), G, a; and M;=W*(4,, a;, G)),
i=1,2 be such as in Theorem 2.2. If My~M,, then Ag, assumed to be

continuous groups having the topology induced with Aut M, contains
closed algebraically isomorphic subgroups H; with respect to the countable
index in Ag.  Besides, if ¢ is an isomorphism of H, on Hy, then it follows

Jrom lim 0,=0 where 0,, 0= H,, that lim ¢(0,) =¢(0).
Proof. Let M, be identified with M,;= M and assume A?;’IIGZ=A%1 NA4E,
By Theorem 2.2 A¥g, is a closed and open subgroup of Aut M, and
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therefore A¥, i=1,2. Thus, 4¢ ¢, has a countable index in A¥ and

hence
M __ i AM
4 f _J.ZE:Ngf GGy

where gi€AY . Thus, Ac,=n¢ (4¢,) = Xime,(g))7e, (4¥,) and the index
H,-=7rGi(A’glcz) in Ag, is not more than]countable.

Now we prove the closedness of H; in 4g: If 8n=7rci(0,,) €H; and
4,—8 in Aut M, then SEAG‘, because of the closedness of Ag. On the
other hand, S"EAé”lcz and therefore SEAé’IIGZ and hence g, 9 =9 H..
Then H;~H, in the algebraic sense since H,-NA?;’IIGZ/Int M. This

isomorphism ¢ of H; on H, obviously coincides with the restriction
7, on H,. Hence by Lemma 2.4 the continuity ¢ follows. il

§3. The Centralizers of Actions of Groups G(n), n>2,
on Finite Dimensional Tori

Before proceeding to the construction of examples of full factors of
I 1-type, we prove some auxiliary statements which can be of indepen-
dent interest.

Lemma 3.1. The centralizer Ca SL(n, Z) of the natural action a of
the group SL(n, Z), n>2, on the torus T" is a group of the order of 2.
(The Proof is obtained jointly with S. L. Gelter).

Proof. Let us consider the case n=2, the general case being
considered in a similar way. Assume that 7%= (4, 2;) where 4T,
i=1,2. If g=(n;) (G, j=1,2) €SL(2, Z) then the standard action is
found as

a(8) (b, %) = ("2 4™25%).

Let 6€CaSL(2,Z). Then 0: (A,4) —>(0:(4, 4), 0;(4, A)), where
0;(4, ), 1=1,2, are Borel mappings from 7% in 7, satisfying for
almost all (4, 4;) the relation

(07037, 6:76;) = (01(a (&) (A, %)), O (&) (A1, %))
= (0:(A"%% AP8%), G,(A"2" A25D).
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Then for g= ((1) '1212>, the equality

02(%a, %) = 0,(225, ;) G.D

is valid for almost all (4, 4;). If 1/2xi log 2; is an irrational number,
then it follows from the ergodicity of the automorphism 72=44, on
T that 6, is independent of 2, for almost all 4,7. Similarly, 6,
is independent of 2,  Thus, 0(4, 4) =(0:(4), 0;,(%)). From the
commutativity of ¢ with <_(1) é) we find that for almost all (4, 4)
the equality
(02(2), 07 () = (6:(%), 0.(&"))

holds, that is,

0:(2) =0,(%)  for almost all Z,

(3.2)
0,(2) '=6,(47Y)  for almost all A.
Then from Eq. (3.1) we obtain for g=<(1) i)
01 (425) =01(2y) 01(2;) 3.3)

for almost all (4, 2;).

Now it follows from Egs. (3.2) and (3. 3) that 6, is a measurable
character of 7T and therefore is, as known, continuous. But then : (1, 4,)
— (2%, 23) for some nEZ, and since ¢ is the automorphism of (72 my),
where m, is the Haar measure of 7% we have n=+1. ]

Now consider the group G(n) =SL(n, Z)SZ", i.e. the semidirect
product of SL(n, Z) on Z", where SL(n, Z) naturally acts on Z". Itis
known [12], that G(n) is a TICC group for n>3. Then the action
of G(n) on T"is defined. Let y&€T and 7= (y;)%-;, where n=r:=...
=7,=7. The automorphism a;(I,) of the space (7" m,) with m, the
Haar measure of 7", multiplying by 7 the i-th component of the vector
(A())2€T™ and leaving the rest of the components unchanged, is
set in correspondence to each vector I; from Z”, whose i-th coordinate
is equal to 1 and the rest of them are zero. The action a; of the
group 168Z" is thereby defined on 7". The action «; of the group
SL(n, Z) on (7" m,) is defined in the natural way. Thus, the
ergodic action a; of G(n) on (7", m,) is constructed.
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Lemma 3.2. The constructed action oy of G(n) on (T" m,) is such
that its centralizer is trivial (n>2).

The proof follows from the previous Lemma.

We shall construct the action «, of the group G(n), n>2, on
(T*, m)™ meN. Let Z,=(1),..., () ET" and () s(TH™
For geSL(n, Z) it is defined

@, () 1 () i > (a1 (9) 4) s -
For 1,€1Q02Z" 1<j<n, it is defined

am(Tj>: (zk>i"=1_"(ﬂk);n=1,
where p,(s) =24,(s) at s#j and 1 (J)) =4 ()7 at s=j, 1<k<m. It is
clear that the action «,, is ergodic.

Lemma 3.8. If 0=Ca,G(n), then 0 corresponds to the integral
matrix (n;;) 4,j=1,..., m, for which ﬁ n;=1, 1<i<m, and det(n;;) =
i1

+1. (Below, the group of all such matrices will be referred to as

S(m)).

Proof. Let 6€Ca,G(n). Then @ corresponds to the transformation
0: A)r—OiLAp ), 1<i<n, 1<k<m.

To simplify the notation, it is assumed that n=2, The general
case is considered similarly. Then from the commutativity of # with
a,(9), gSL(2, Z), we find that

{(0)™(0% ™2, (62627 y=
{03 (6 (1) ™2,(2) ™2, 2,(1) "22,(2) ") 1],
02 (2 (1) "2(2) ™2, 2,(1) "2, (2) ") i1}

As in the proof of Lemma 3.1, we have that at j=1,..., m for
Vn,EZ for almost all ()",

O (A (1), 42) =0 (A1) 2:(2) ™, 2(2)) L]

As earlier, this means that 6% is independent of (2,(1)) ;. Then we find
that 02=0}=0;, 1<j<m, and 0; is a continuous character on 7", i.e.

BLAM) =TT 4D, neZ,
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Jj=1l..., m. Thus, 0=(6,..., 0,) corresponds to the integral matrix
(ni), 1, j=1,..., m, which defines the transformation of 7" From
the commutativity of ¢ with «,(1;), 1<i<2, we have that

GL AP i1=0L (& (1)) 27
m LTI énn'i m .
But O (DY =TT AMP" Le ¢ =p or 2 nz=1, 1<j<m.
i=1 i=1
As 0 is the automorphism of (7™ m,) which conserves the measure,
so det (n;;) ==+1. U

Lemma 3.4. The group S(m) iniroduced in Lemma 3.3 for m>2 is
noncommutative and conjugated to the matrix subgroup mXm over Z with a
determinant equal to +1 of the form
o |
: X
i

Proof. Indeed, let (n;;); j-1,...€S(m). Then since Xn;=1 the
vector (1,1,...,1) is invariant for Vg&S8S(m). But the vector (1,1,

.., 1) transforms into the vector (1,0,...,0) under the action of

the matrix
1
—1 1 0
-2 1 1
—(m-=1) 1 1...1
From this Lemma follows. N

§4. Centralizers of Actions of Groups G(n), n>2,
on Infinite Dimensional Tori

Now we proceed to construction of the desired ergodic actions of G (n).
As earlier, let m, be the Haar measure of 7" We put (T'(n), m(n))
=(T" m,)N, then T(n) is a commutative compact group, which is a
product of a countable number of copies of 7™ groups, and m(n) is
a Haar measure on T (n). The elements of 7'(n) are various sequences
of the vectors (Z;)5;, where 2,= (4,(1),..., 4(n)) ET" The multi-
plication in 7'(z) is found as
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A 1w () i = () 21
where
A= QD (1), v ey H(n) p(n))
Note that T'(n) =T(1)", T(1)=1TN,

Now we define the action a of the group G(n)=SL(n, Z)CZ"
on (T(n),m(n)). If (A);,€T(n) and g&SL(n, Z) then

a(®: (&)i—(a1(9) ) i 4. 1)

Let (7). €TN. The element T, 1<i<n, from 18Z" is set in
correspondence with the action

a(l): (zk> i (ay (1) jk) b=l (4.2)

It is clear that because of Eq. (4.1) the constructed action a of
G(n) is ergodic.

Proposition 4.1. Let (7)1 be a sequence of numbers of T, the
numbers (1/2ni log ;) 521 being rationally incommensurable.  Put 7,=7;
Jor n;<k<nj.,, where ny=1 and n; is an increasing sequence of natural

numbers. Construct from (y,) 5=y the action o of the group G(n), n>2, on
(T (n), m(n)) in the way just described. If 0&CaG(n), then 02{@@,
where 0, is the automorphism (T m)", m;=n,,—n;, and 0,€8(m;)
(see Lemma 3. 3).

First prove a subsidiary Lemma.

Lemma 4.2. Let I be a unit interval, m the Lebesgue measure on I.
Consider I as an additive group mod. 1, then I™ is also a compact commutative
group. Let ()3, €1V, where 0<a;<1 and the numbers 1 and (a;) are
rationally incommensurable.  Then the automorphism T: (x;) 7= (%;+a) i
of the space (I, m)¥ is ergodic.

Proof. Let us consider a complete orthogonal basis in L*((Z, m)™)
of the form

a

= 2Tin % ;
Sy () = 1T &%

J

Il
-
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where Z= (x;) ;L EIY. Then {f, ..} is a complete system of charac-

ters of the group IM. If feL>((,m)"™) and f(T%) =f(Z) for almost
all ZeI”, then it is necessary to consider the orthogonal series
JS(@~Z ay, .n, fo.-n, and compare the Fourier coefficients of the

function F(Z) =f(TZ) and f(Z) taking into account the equality f(Z)

I

=f(TZ) for almost all Z&I", from which we have that (%) =a_ [

Proof of Proposition 4. 1. Note that (T'(n), m(n)) =@ (T" m,)" and

i=1
the action a transforms the component (7™ m,) ™ in itself. The restric-
tion of @ on (7" m,) " coincides with a, according to the notation

of Lemma 3. 3.
Again we put n=2 to simplify the notation. Then

0: () —— O[], 1<iL2, k=1, 2,...
where

2= (,(1), 2,(2), 2, ET, i=1, 2, g=N.

As in the proof of Lemma 3.3, we have that for each k€N and

Vnes

Ol (2,(1), 2,(2) 7] =L (1) 4(2)", 2,(2)) Zal.
for almost all (,);2;,. Because of Lemma 4.2 it follows that 62
ke N, is independent of (4,(1));;. Then, as before, 6;[(4,(2))1]
=0i[(24,(2) ;2] and 0i[(2,(d))=.] is a continuous character on T(1).
Using the commutativity ¢ with a(I;), 1<i<2, we have

OIL (A (N 7a) ] =0 (2, (1) il e
But since 6] is a character, then

0i((r9) i) =7 (4. 3)

Let k€[n;, n;.1). Since 0] is a continuous character on 7°(1), we have
: . oo N - nk,qi
O] =11 2, ()™,
where NEN, n,, EZ. From (4.3) follows

N g
U(r) "=

It follows from the incommensurability relation of the numbers
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1/2xi (log 77) 51 that n,,, =0 for g;&[n;, n41), that is,

n 11 u
LG = T 4™

4171 w1 .
where > n,,=1. Thus, (6));%, j=1,2, determines the auto-
g=n. i

morphism Lof (7% my) from Ca, G(2). O

§5. Properties of [ ,-Factors Constructed by the
Actions of Groups G(n),n>2, on Tori

We study the factors M=W*(4, a, G(n)) of type [, constructed
by the ergodic action @ of G(n) according to Proposition 4.1. We
shall recall that M acts in the space H of the vector-functions
£(g), g=G(n), whose values are in L*(T(n), m(n)) and is generated
by the operators w(¢), where p=L=(T(n), m(n)), and 4, g=G(n),

@(@)E) (@ =p(algMHx)é(®), x&T(n),
(48) (9 =& g, h, g€G(n).

Proposition 5.1. Let M=W*(4, a, G(n)) be a factor constructed by
the ergodic action o of the group G(n), n>2, according to Proposition 4. 1.
If 0€ Ay, then 0(A) =A and 0],€CaG(n).

First we prove the subsidiary Lemma.

Lemma 5.2. Let «, be an action of G(n), n>2, considered in Lemma

3.3. M,=W*(4,, a,, G(n)) where A,=L>((T",mn)™). If 0 Agm, then
0(A4,) =A,.

Proof. To simplify the notation, put n=2. The general case is
considered similarly. Let B=0(4,), the character (1) on 7% is
defined by 2. (1)[(Z)™]1=2,(1) where we use the notation of Lemma
3.3. Put a,(1)=n(x(1)), £=1,2,..., m, and consider 6(a,(1)) €B.
Then 6(a,(1)) corresponds to the orthogonal series

0(ai (1)) ~2a (g, 8, ) AAm (1), 6.1

where ) la(g, 0, ) |?*<o0, and the summation is over g€SL(2, Z),
oeZ? yez™,
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Since §€ 4¢m, then the equalities
40 (a, (1)) 47 =0 (ha, (D A7) =70 (a (1)),

- (5.2)
20 (a, (1)) 25'=60(a, (1))
are valid, where we put =%, i=1,2.
Note also the relations
AAs=2Aph,, 6047 gESL(2, Z),
ghs = Agolgs g ( ) (5. 3)

2;‘”(%) 21:_1=Xi (T)E(X)a Z: 13 2’
where 7=(7,...,NE€T™ x=(p, %) and peZ" i=1,2.
Now let a(g, 9, x) #0 for g#e. Then by taking into account (5.3)
it follows from (5.2) that
lalg,d, 1) | = la(g,0+57 T~ 1, |, i=1,2, V€2’ yeZ™
But the equality contradicts the condition ] |a(g, d, y)|*< o0, since
g 1,=1, i=1,2, for g+e, is impossible. Hence, a(g, d, y) =0 for g+#e
and
0 (a, (1)) ~23a (8, ) Az (%), 6.9
where d€ 2% ye= 2™

Now we find from (5.2) that the summation in (5.4) extends

over 6€Z? and those y&Z™ for which x(7) =7, (7 =1.

Note further that if g1=<i ?), then

Aem (0 (1)) 25 =7 (e (1)),
A (0 (2)) 25 =7 (2 (1) %:(2)). (5. 5)

Using the above consideration we have from (5.3) and these
equalities that

02, (1)) ~Yat, nl,...,nm)léfiln(xj(l)ﬂj), (5. 6)
=
where ¢, n;, 1<i<m, €Z and z_,;nj=l.

Since gy, (1) git=yx(2) for g2=<_(1) (1)>, we have

0(@(2)~Tal,m, ., n) AT 22", (5.7)
For g=(y 1) we have g (1)&=7%(1)%:(2), and hence

2,0 (a1 (1)) 2 = 0(a, (1)) 0 (a2 (2)). (5. 8)
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On the other hand, we have
2.0 (1)) i~ Talt, my ..., 1) wz)f Lz (D%@)7 . (5.9)

Then, substituting (5.6) and (5.7) into the right-hand side of (5. 8)
and comparing it with (5.9), we find that

0(a, (1)) =aﬁ1n'(x,-(1)"" ), éni:l, =v

But this means that 0(aq, (1)) €4, ke O

Now we complete the proof of Propositions 5. 1. As above, it may
be assumed that 0(a,(1)) corresponds to the orthogonal series of type
(5.4). For k=[n;, n;,1), we have because of (5.2) that

2.2a(0, ) 0P m () =722 a9, 1) A (),
i.e. y1(7) =711, where y is a character on TV and 7=(y;). But since
the numbers 1/27i logyi, j=1,2,... (see Proposition 4.1) are
rationally incommensurable, then y; is a character dependent only on
the numbers 2,(1), where k€[n;, n;,1). Then taking into account the
relations (5.5), we have that 0(ak(l)) corresponds to the series

o(ak(l))'\'za(ta 726,-- 3nm I)ZZ E(Xn+](l) ) Zn —1

where m= (n;,1—n;). Thus we arrive at the sitnation considered in
Lemma 5. 2. Il

Corollary 5.3. Let M=W*(4,a,G(n)) be a | ~factor considered
in  Proposition 5.1. Then the following statements hold: (i) In the

algebraic sense the Agw group is isomorphic to ﬁ S(m;). (i) The topology
on Agw, induced by the topology on Aut M, ;;Encia’es with the product-
topology on ,-13 S(m;). (i) If the factors My=W*(A4, oy, G(ny)) and
M,=W*(4, ay, G(ny)), where n; >3, i=1, 2, are isomorphic, then Co,G (ny)

~HS(m1) and Ca,G (n,) ~H S(m? contain zsomorphw closed :ubgroups H,
and Hz with respect to the countable index in HS(ml) and HS(mz)

Proof. (i) follows directly from Proposition 5.1. To prove (ii),
remember that the topology on Aut A is given by the system of unit
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neighbourhoods V(e %y, ..., x.) = {0€Aut M; |10 (x;) —x;],<le, x:EM,
1<i<n}. Now (ii) follows directly from the construction of the factor
M. (iii) follows from (i), (ii) and Proposition 2. 4. ]

§6. Properties of Centralizers of Actions
G(n),n>2, on Tori

In paragraph 5 we constructed the ] ;-factors M=W*(4, a, G(n))
for which AG(n)'\«_li:IlS(m,-). We study the properties of the groups 1.8 (m;).
Let G;, i€N be countable discrete groups. G=TIIG; denotes the

group which is a direct product of the groups G;. The functions on
N with values in G; are the elements of IIG;: For f(i) €G,, let

S~ (@), &~ (g@) EIIG, then fF~(fD ™), fe~(fDeg®).
We find on IIG; the weak (product) topology which is given by
the system of the unit neighobourhood
U;={fETIIG; f(n)=e, nEl}
where I is a finite subset N, and ¢; is the unit of the group G;. Asis
well known, TIG; is a topological group with respect to this topology.
Let I be a subset NV and put G(J) =IIG, If f€IIG; then the
iel i

mapping z([)f=yf, where y; is a characteristic functioln of I, deter-
mines the canonical homomorphism of IIG; on G(I). In particular

ﬁ(j)Gsz.
Proposition 6.1. If H is a closed subgroup of G=IIG; of the
countable index in G, then there exists nEN such that
T([n+1, 00)) H=G([n+1, c0)).

Lemma 6.2. If, for any neN, =z([l,n])H=G([1,n]) then
H=G(=IIG)).

Proof. Let f€G. If fu€H and f,=f on [l,n], then limf,=f
with respect to the product-topology in G and hence H=G. ]

Proof of Proposition 6.1. Assume that the theorem is not correct.
Since HCG, then by Lemma 6.2 there exists m;&N such that
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n([1, m) HCG([1,n]) and z([n,+1, ))HCG([nm+1, )). Since
z([1,n ) HCG([1, ny]), then there exists r,&G([1,7n;}) and Me&r
([1, m1) H. Since m([n;+1,00)) HCG([n,+1, o0)), then by the Lemma
there exists n,& IV such that z([n,+1, n,]) HCG([m+1, ny]), where
ne>m~+1 and Ay of G([n,+1, n,]) not belonging to z([n+1, n,]) H.
Similarly we obtain partition of N into the intervals [;.;=[n;+1, 7,41,
where n,=0, n;+1<n;, t(l;;0) HCG(U;4) and b0 €GU11), hin &
w(l;) H.

It is obvious that G=TIG(/;) and (A, [IG{;) where ;=0
or 1. We state that (4;%) ‘E‘;;%H, if not all a;=0, and if (a;) #(B), then
(hF %y, H,  Indeed, if a;;=1 and B;.,=0 and if (A %), €H,
then 7(Z,.)) (hii ")z, =h;,1Cxn(I;;1) H which is impossible due to the
choice of %;.;. Because there are different elements (%;7)7; of the
cardinality of continuum due to the continuum cardinality of the
choice @;=0 or a;=1, the power of the set [G: H] is equal to the
continuum. The obtained discrepancy proves Proposition. []

Denote the group of all integral matrices having the determinant
+1 as GL(n, £). According to Lemma 3. 4, S(n) ~GL(n—1, £)QZ".

Lemma 6.3. (1) [t is impossible to represent the group S(n), n>4,

as a direct product of two groups. (ii) There is no homomorphism of S (m)
on S(n), where m#n>4, m, neN.

The proof of the Lemma uses Theorem 3 [14] from which it
follows that any normal subgroup of SL(n, Z), n>3, for which the
factor-group is non-amenable, belongs to the center ZSL(n, Z) of
SL(n, Z). The proof is also based on the Margulis rigidity theorem
(see Theorem 3 [13]) and some simple results on lattices [15]. These
theorems were also formulated in the survey article [1].

We present the proof of (ii) assuming the oddness of m and n. Let
(i) be incorrect in this case. The homomorphism of S(m) on S(n) is
denoted as ¢. N, and N, denote the subgroups of id XZ™"! and
idx Z"Y, respectively, and ¢; denotes the homomorphism of §(z) on
GL(n—1,%). Then ¢=¢i¢, is the homomorphism of S(m) on
GL(n—1,%). We prove that ¢(¥,) €CZGL(n—1,Z). Let N be the
normal subgroup of GL(zn—1, Z) generated by ¢(N,) and ZGL(n—1,2).
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Then N is a commutative normal subgroup of GL(n—1, Z). Since
GL(n—1, Z) is a non-amenable group, the group GL(n—1, Z)/N
is also non-amenable. ¢ denotes the homomorphism of GL(n—1, Z)
on GL(n—1, Z)/N. Since SL(n—1, Z) has index 2 in GL(n—1, Z),
¢(SL(n—1,Z)) is also a non-amenable subgroup of GL(n—1,2)/N
and ¢ denotes the homomorphism of SL(n—1, Z) on ¢(SL(n—1, Z)).
According to Theorem 3 [14], the kernel of this homomorphism is
contained in Z=ZSL(n—1, Z) andin ¢ (SL(n—1, %))~ (SL(n—1,Z) /K
where K=SL(n—1,Z) NNCZ. Let g=(n;) be a diagonal matrix for
which ny=—1and n;=1,i=2,...,n—1. Obviously g and SL(n—1, Z)
generate GL(n—1, Z). We prove that gh&N for VhESL(n—1, Z).
Indeed, if gh=nEN, then ghah ‘git=nan"'=an,eSL(n—1, Z), where
meN for VaeSL (n—1, Z). Thus ghah™gi'=ac where ¢=Z,
Evidently, e —1I, since Adgh is the automorphism of SL(n—1, Z).
But then Adgh(a) =a for YacsSL(n—1,Z) that is also impossible
because Adg, is the outer automorphism of SL(n—1, Z). Hence, we have
gh&EN for YheSL(n—1, Z), and herefore ¢(N,) ENSZGL(n—1, Z).

Thus, ¢(N,) €ZGL(n—1, Z) and hence ¢(V,,) =id hold, Therefore
¢ determines the homomorphism of GL(m—1,Z) on GL(z—1, Z) which
is denoted as @. If N=Ker ¢ then repeating the above arguments
we have that NCZGL(m—1,Z). Then a simple test shows that the
centre of GL(m—1, Z)/ZGL(m—1, Z) is trivial but ZGL(n—1, &) #id.
Hence N=id and 0(ZGL(m—1, Z))=ZGL(n—1, Z). Thus @ is an
isomorphism on GL(n—1, Z).

Now let = be a natural homomorphism of GL(n—1, Z) on
GL(n—1,Z)/SL(n—1, Z) then z(SL(n—1, Z))=0 (mod 2) and = (g)=1
(mod 2). Let K, denote the maximum subgroup of @(SL(m—1,2))
such that #(K,) =0. Then K, is a normal subgroup of 3(SL(m—1, Z))
having an index not more than 2, that means that XK, is a
normal subgroup of GL(n—1, Z) with an even index not more than
4. Since K,CSL(n—1, Z) then K, is a normal subgroup of SL(zn—1, Z)
with an index not more than 2. But then according to 10.5, 1.6 and
5.2 [15] the group K, is an irreducible lattice in SL(n—1, Z) and its
isomorphic subgroup K,=@& 'K, is by the same reason an irreducible
lattice in SL(m—1, Z). By the Margulis rigidity theorem [13] this
is excluded and hence the homomorphism ¢ of S(m) on S(n) does not
exists. This proves (ii) for odd n, m. The other cases are considered
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in a simpler way. ]

If {m}z, is a sequence of natural numbers, then S({m;},) will
denote the group, which is a product of the groups {S(m)}7, with
the topology of a direct product.

Proposition 6.4. Let me N, me {m;} 2. Then S=S({m;} ) cannot
be represented an S=8(m)QN, where N is a subgroup of S.

Proof. Assume the opposite, i.e. S=S5(m)RXN. Let §i1=(fi() )
and S,=(f2({)721) be non-commuting elements of S(m)&id. There
exists JE N such that f,(j) and f,(j) do not commute either. Consider
r(NS=x()S(m)Q@x(J)N. But z(j)§=8(m;) and §(m;) cannot be
represented as a direct product of two groups. Since f;(j) #id, i=1, 2,
and do not commute, therefore z(j) (§(m)Xid)=S8(m;), which is
impossible for m#m; due to the results given in Lemma 6. 3. I

§7. A Continuum of Nonequivalent Actions
of Groups G(n), n>3

Now we can proceed to the proof of the main statements of the
paper.

Theorem 7.1. There exists a continuum of orbit-nonequivalent free
actions of the group G(n), n=3, on the Lebesgue space, which preserve the
Jfinite measure. The factors constructed by these actions are non-isomorphic

Sull factors of 11 type.

Proof. The sequence of the groups (§(2i+a;){2;) is corresponding
to any (a;)iZ;, where a;=0 or I. Because of Proposition 4.1 an
ergodic free action a of the group G(n) on (T(n), m(n)) can be

constructed so that CaG(n)=ﬁS(2i+a,-). Let (B8;):: be another
i=1

binary sequence, such that the set {i: «;#8;} is infinite. Let 8 denote
the action of G(#) on (7'(n), m(n)), corresponding to (B)7;. We
state that the [,-factors W*(4,a,G(n)) and W*(4,B,G(n)) are
not isomorphic.  Assume the opposite. By Corollary 5.3 there exist
closed isomorphic subgroups H,CCaG(n) and H,CCBG(n) having a



630 VALENTIN YA. GOLODETS

countable index in CaG(n) and CPG(n), respectively. Because of
Proposition 6. 1 H,=H,® II S(2i+a;), Hy=H,® II S(2i+p,), where
i=N+1 i=N+1

H, is a subgroup of ﬁl S(2i-+a;) and H, is a subgroup of inIIS(Qi+ 8.
Let w(1) denote the homomorphism of H,; on H,: n(l)H,=H, and
7(j) denote the homomorphism of Hz; on S(2j+8;) for j>N. If ¢ is
an isomorphism of H, on H,then by Lemma 6. 3 (/) (S (2i+«;)) =id
for ieK=(a,#pB, t>N) and j>N. But then ¢(S(2i+e«;)) CH, for
ieK. Hence @(@{S(Qi-%-a,-)) CH,;, and from the continuity of ¢ (see
Proposition 2. 5)1 we find that (p(iIETKS(Qi-I-ai)) CH, since H, is a

discrete closed subgroup of Ag;m. But ¢ is an isomorphism, the group
H, is a countable and HKS(2i+ai) is continual, which is impossible.
The obtained contradicttieon shows that the factors W*(4, «, G(n)) and
W*(A, B, G(n)) are not isomorphic, and the actions a and f of the
group G(n) are orbit-non-equivalent. It remains to note that the set
of all binary sequences (a;):; where a;=0 or 1, every two of which
have an infinite number of different components, has the power of the
continuum since such a set is isomorphic to the factor-group with
respect to the subgroup of all sequences with a finite number of

components other than zero. |

Remark. If a is an ergodic action of the group G(n)=SL(n, Z)
&8Z", n=3, constructed in Theorem 7.1, then using an inducing
construction one can construct an ergodic action & of the group
SL(n, B) OR" preserving the finite measure. But then from Theorem
7. 1 and the inducing construction it follows that SL(n, R)QR", n>3,
has a continuum of orbit-non-equivalent free ergodic actions preser-

ving the finite measure.

Theorem 7.2. There exists a full [ ~factor M whose all tensor
degrees M, MM, . .. are non-isomorphic by pairs and the dynamical systems
(T(n), a, G(n))%, p& N are orbit-non-equivalent for different p.

Proof. We construct an action a of the group G(n), n=>3, on

(T (n),m(n)) so that CaG(r;) ~1ITI §(2¢) according to Proposition 4. . Let
i=1

M=W*(A4, a, G(n)). Then MRQM=W*(ARA, o G(n)?) where a’=aRa
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and G(n)?=G(n) XG(n). Describe Ca’G(n)?: If G(n) = (gXg g=G(n))
is a diagonal subgroup of G(z)? then evidently G(n) ~G(n). Consider
the action «® of the group G (n) on T(n) XT(n). Because of Proposi-
tion 4.1 Cazé(n)fvfl S(41). Taking into account the commutativity
of the elements of Cc;;é(n) with a (g) Xid and id X« (g), where g&G(n),
we have that CazG(n)Z'vE (S(2) DS (20)) ~£I1(S(2i))2.

Now by repeating the same arguments as in the proof of Proposi-
tion 5.1 it can be shown tliat if 0EAG(”)2, then 0(ARA) =AKA and
hence AG(n)ZNCaZG (n)2~ <,-=Hl S(24))%

We prove a subsidiary Lemma.

Lemma 7.3. Let Hi=K:® LI S(2i) and Hy=K,® II (S(2i) DS (2i))
i=N+1 i=N+1
N
be groups where K is a subgroup of 11 .8(2i) and K, is a subgroup of
i=1
INI(S(Qi) PBS(2i)). Then the groups H, and H, are non-isomorphic.
i=1

Proof. Assume the opposite. Let ¢ denote the isomorphism of Lemma
2.5 of Hyon H,. Put $(2i) =5(21) ®id and $,(27) =id&®S(2:). Then
for any >N there exists j(=1,2) such that ¢(5;(2i)) CX,. Indeed,
if #(1) denotes the homomorphism of H, on X, and = (i) of H; on §(2i)
for i>N, then from Lemma 6.3 it follows that 7(p)S;(2i) =id for
p+t and hence ¢(5;(21)) CKi®S(2i). If for example «(3) pS,(24) #~id,
then because of Lemma 6.3 we have that #(2)¢S;(2:) =85(2). But
then ¢§,(2i) CK;. Thus, the group K, contains a subgroup isomorphic
to EINS(%), which is excluded. O

Completion of the proof of Theorem 7.2. Let H, and H, be closed
subgroumps of a countable index in A;w and 4, » respectively.  Since
AG(n)'\«_Hl $(2i) and 4 N_ﬁI(S(Qi) @S(2:)), then according to Pro-

position 6.1 H; and H, have the form such as in the formulation of

cm?

Lemma 7.3. According to this Lemma the groups H; and H, are
non-isomorphic. Therefore from Proposition 2. 5 the nonisomorphism
between M and MM follows. The general case is considered
similarly. ]
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§8. Full I,-Factors with Non-Isomorphic
Subfactors of Finite Index

We continue the discussion of the main results of the paper. For

n=2k+1, G(n) has the automorphism 7 of the order of two:

7(® =g at g&SL(n, Z),

r(1)=-T, at [,eZ" 1<i<n.
G,(n) denotes a semidirect product of the group Z; on G(n). Evidently,
Gy(n) for n=2k+1,k=1,2,...,1is a TICC-group. Construct an ergodic
action a of G(n) on (T'(n), m(n)) according to Proposition 4. 1 putting
njy—n;=2 for Vj. Then M=W*(4,a, G(n)), where A=L=(T(n),
m(n)) is a full [ ,-factor. Construct the automorphism 7, of the space
(T'(n), m(n)), putting

7’1[(24) =il= [U?) ol

where (2)72,€T(n). A direct test shows that

na@rit=a(r(@), VeECG@). 8.1)
Thus, we construct a free ergodic action of the group G,(n) on
(T(n), m(n)), which is denoted as a;. Let Ny=W*(4, a;, G,(n)) be
a [, type factor corresponding to this action. From (8.1) it follows
that neN[a(G(n))], where [aG(n)] denotes a full group of automor-
phisms (7'(n), m(n)) created by aG(n) [17]. As known in this case,
7 extends to the automorphism of M which is denoted again as 7.

Lemma 8.1. (i) W*(M, y)~N,; where N,=W*(4, a, Gy(n)).
(1) CayGy(n) ~S(2)Y, where S(2)~ denotes a direct product of the
countable number of copies of the group S(2).

Progf. (i) is evident. To prove (ii), note that according to
Proposition 4.1, CaG(n) ~S(2)". From the definition of r; it follows
that y; commutes with the automorphisms of CaG(n) and hence

Ca,Gy(n) =CaG(n). O

Construct another action of G,(n) on (T(n), m(n)). Let d be an

automorphism of S(2)¥ which corresponds to the element (u;)72; of

$(2)¥, where u,.=u=<‘l’ é) It is clear that 6°=id. Put y,=7.0=0r.
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Since a(g)d=da(g), g&G(n), We have
2@ rit=a(r:(9)), VeEG(n). (8.2)

Thus, the actions of G,(n) is constructed, which is denoted as a,.

Lemma 8.2. (i) W*(M, 1) ~N, where Ny=W*(4, ay, Gy(n)).
(i) CasGy(n) ~(Zy) ™.

Proof. Let Cu be a centralizer » in §(2). It is easy to check that
Cu= (1, u) and the centre §(2) is trivial. Since CaG(n)~S(2)" the
automorphism of Ca,G,(n) corresponds to the matrix sequence (v,) 7y,
where v,€Cu i.e. v;=u or 1. Hence Ca,G,(n) ~(Z,)". ]

Theorem 8.3. (1) There exists a full | ,~factor M possessing outer
automorphisms 7, 1=1,2 such that y?=id and the factors N;=W*(M, 1,),
which are crossed products of v; on M, are non-isomorphic and hence 7,
and 7, are not outer conjugate.

(1) The factors Ny,=W*(M, 1,) and M are non-isomorphic, i.e. a
Jull factor of type 11 can contain a non—isomorphic subfactor of a finite
index (see [18]).

Progf. Remember that M=W*(A4, a, G(r)) and N,=W*(4, a,
G,(n)) where G(n) and G,(n),n=2k+1,k=1,2,..., are TICC-groups.
Use Proposition 6.1 taking into account that CaG(n)~S(2)" and
Ca,Gy(n) ~(Z;) N (see Lemma 8.2). According to this Proposition,
CaG(n) and Ca,Gy(n) cannot contain closed isomorphic subgroups of
a countable index. Therefore by Corollary 5.3 (iii) the factors A and
N, are non-isomorphic. It is similarly proved that N; and N, are
non-isomorphic. ]

Theorem 8.4. There exists a full factor N, of type [i, in which
Out N,=Aut N,/Int N, is a continuous locally compact totally disconnected
group. (The case when Out N is discrete is described in [4].)

Proof. Since N,=W=*(A4, ay, G,(n)) is a full ] ,-factor, Int N, is
closed in Aut N, and on the group Out N, a factor-topology 7; is
induced, with respect to which all the points Out N, are closed.

According to Theorem 2.2 Aﬁ;(,,) is an open subgroup Aut N, but



634 VALENTIN YA. GOLODETS

since (Int N,). AGZ(chQ;W then A]GV22<,1>/Int Ny~Ag,m is also an open and
closed subgroup of Out NV, But on 4g,x one can consider the topology
7, induced directly with Aut N,. By Corollary 8.2 (ii) with respect
to 7, the group Ag,m is compact (and isomorphic (Z;))™). Hence since
7, is stronger than 7;, we find through the standard considerations that
7, and 7; coincide on 4g,m. Thus AJGV:(,,)/Int N; is an open compact
subgroup Out N, isomorphic to (Z;) " and hence the group Out N,
itself is locally compact. ]

Supplement

On Ergodic Actions of Groups SL(n,Z), n>3.
In this Supplement we illustrate the concept of the proof of the

following theorem.

Theorem S.1. The group I'=SL(n, Z), n>3, has at least a countable
number of orbit-non-equivalent ergodic actions preserving the finite measure.

Let I',, be the normal subgroup of I" such that I'/I",~SL(n, Z/p™)
where Z/p™ is the residue ring modulo p™ In what follows p is a
simple number. Let K,=lim I'/I",, be the projective limit of the group

coem

r)r,, then, as is well known, K, is a compact group including I" as

a dense subgroup.

Lemma S.2. The group K, and K, are nonisomorphic for different simple
numbers p and q and do not contain isomorphic subgroups of a finite index.

The proof is based on the following fact. Let K?=limI,/I",.,

coet

then K7 is a normal subgroup of K, of a finite index, in this case
K,/Ky~SL(n, Z/p™). Besides, N\K7= {e}.

Lemma S.3. Let p,be a the Haar measure of the group K,. Consider
the right-hand o, and left-hand a, actions of the group K, on (K, p,):
oy (k) h="hk, a,(K)h=kh where k, hEK,. Then Ca,(I") =a,(K,), where
Ca,(I") is a centralizer of a,(I") in Aut (K, ,).

The proof uses simple properties of the matrix elements of irredu-
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cible representations of the compact groups.
We shall agree to denote the action a,(y), 7€l, on (K, p,;) as

a, (7).

Lemma S.4. Let M,=W*(8,, a,, I') be a factor, where By= L (K, ).
Then Aapp'\—Ca,F (see the notation of Theorem 2.2). Thus, M, and M,

at p¥q are not isomorphic.

It is readily tested that if 7‘61‘101;, then y(B,) =B, and T[BPEC%R
Therefore A%FNKP and, according to Lemma 8.2, as well as to the

arguments given in the proof of Theorem 8.4 and Proposition 2.5,
the factors M, and M, are not isomorphic for simple p+gq.

The statements given are true for the case when I'=SL(n, Z) has
a trivial centre, i.e. n=2k+1, k=1, 2,... . If n=2k, k=2,3,... then
the problem is readily reduced to the case, when I'=PSL(n, Z).
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