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Actions of ^-Groups on Lebesgue Spaces
and Properties of Full Factors of Type 11

By

Valentin Ya0 GOLODETS*

Abstract

The ergodic actions of TICG groups preserving the finite measure and the E i-factors
constructed on these actions are studied in this paper. To distinguish between the n i-
factors, the properties of a centralizer of such actions are used. For SL(w, Z)QZ"3 ra>3, a
continuum of orbit (weakly) nonequivalent actions is constructed. Full I i-factors having
the properties opposite to the known properties of the hyperfinite factor are constructed.
A full n i-factor is presented, whose all tensor powers are non-isomorphic in pairs. It is
shown that the full factor can coniain a non-isomorphic factor as a finite index subfactor
and possess externally non-conjugated periodic automorphisms. Similar results are valid for
ergodic equivalency relations.

The Supplement presents the principal points of the proof of the fact that the group
SL(TZ, Z) for each n>3 has at least a countable number of orbit-nonequivalent actions
preserving the finite measure.

§ 1. Introduction

1. The recent progress in the ergodic theory [1-3] and in the
theory of factors [4-9] is connected with consideration of !T-groups
[10-12]. The ergodic systems and von Neumann algebras related to
jT-groups have interesting properties different from those of similar
objects related to amenable groups.

In this paper ergodic actions of !F-groups on the Lebesgue spaces
and the factors of I i-type constructed by these actions are considered,,
It is proved that the group SL(X Z)QZH, n>3, can have a continuum
of orbit (weakly) -nonequivalent ergodic free actions on the Lebesgue
space and the corresponding I ^factors are non-isomorphic in pairs
(see Theorem 7. 1 and its Remark). Full 11 factors having the
properties opposite to the known properties of the hyperfinite I x-
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factor are also constructed. Thus, a full 1 1 factor is constructed whose

all tensor powers are in pairs nonisomorphic (see Theorem 7. 2) . It

is proved that the full I i-factor can contain a non-isomorphic sub-

factor of the finite index (see Theorem 8. 3 (ii) ) and have externally

non-conjugated periodic automorphisms (Theorem 8.3 (i)). It is

proved that there exists a full I ]- fact or whose group Out N=AutN/

Int N is a continuous locally compact group (see Theorem 8. 4) . The

case of a discrete Out N is described in [4], Similar facts take place

also for ergodic dynamic systems.

Our invariants employed to distinguish between the ergodic actions

of TIGC-group (and the 1 r~ factors constructed by these actions) are

based on the properties of centralizer of such actions (see Prop. 2. 5) .

We also use for this purpose the known results of irreducible lattice

of connected semisimple Lie groups [13-15],

The Supplement presents the principal points of the proof of the

fact that the group SL(ft, Z) for each n>3 has at least a countable

number of orbit-nonequivalent actions preserving the finite measure.

The question on the existence of such actions arises in particular in

connection with [1]3 where it is proved that the ergodic actions of

the group SL(?2, Z), ft>3, with various n are always orbit-nonequiv-

alent.

§20 General Properties of Hi-Factors Constructed by
Actions of T -Groups on Lebesgue Space

Let G be a countable group for which all classes of conjugated ele-

ments, except for the trivial one, are infinite (an ICG group) . Assume

that G is a T-group, i. e. there is a finite subset FdG and s>0 such

that for any unitary representation x of G the existence of a vector

such that

implies the existence of a vector f'e//*, ||?'|| = 1, satisfying ?r(g) ?' = £',

g^G, [11].
Let (X, fjt) be a Lebesgue space, a a free ergodic action of G on

(X, ft) . M denotes the factor of 1 1 type, which is a crossed product

of A = L°°(X, //) on G with respect to a, i.e. M = W* (A, a, G) . Then

the operators from M act in the space H=12(G, //i) of the vector
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functions £=(£(£)) on G with the values in Hl = L2(X, ft), for which

ll?l!2 = 211? (£)il2<°°" The factor M is generated by the operators n(a),

, and

* GO f ) (£) = 1 (fl) f fe) » where

Lemma 2eL If R(G) = (lg9g^G)9 then R(G)'ftM=C and M ij a

actor^ i. e. Int Af w a closed subgroup Aut M.

0 R(G)'nM=C is a result of the fact G that G is an IGC

group, the closedness of Int M is proved in [7], n
Theorem 2,2. Let AG be a subgroup of Aut M generated algebraically

by the subgroup AG= {0eAut M: 6(^=1^ g^G} and Int M. Then

A^Q is a closed and open subgroup of Aut M.

Proof. Let f0=(?o(£)), where ?0(g)=l at g=e and f (g) =0 at
^=^^. Then £0 is a cyclic separating vector for M in H. The corre»

sponding unitary involution is denoted as J: Jx$0 = x^^Q^ x^Ma Assume

that

Then V is an open neighbourhood of unity in Aut M. Let O^V,

Since ice(g) =0(*e)JAgJ is a unitary representation of G in H9 then it
follows from the T- property that there exists f e// such that

Since M is a I i-factor, there exists a closed operator <23 joined to

Af [16] such that «£„ = £• Let a = w |a| be its polar decomposition,, Then
from the previous equality we obtain

8(^u=J^Ju = u2g9 V^eG. (2. 1)

Hence by Lemma 2.1 it follows that u*u = uu*<^R+f But then one

may assume that in (2. 1) u is the unitary operator, which means that

Adw* 0(*g)=*g, g^G, i.e. 0^A^. The closedness of A% is proved
in a similar way. Q
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Lemma 2. 3. Let the conditions of Theorem 2. 2 be obeyed. Then AG

is a closed subgroup of Aut M ', ^1G flint M=id. There exists an algebraic
homomorphism XG mapping AG on AG, with Ker ;rG = Int .M.

Proof. The closedness of AG follows from the definition of AG, and
the relation ^4G flint M=id from Lemma 2.1. Because of Theorem
2. 2 there exists an algebraic homomorphism KG of AG on AG, which
brings the point g into accordance with the co-set (IntM)g, where

The relation AGf |IntAf shows that ker TTG — Int M . Q

Lemma 2. 4. The homomorphism KG is continuous in the following
sense. If On (n^N), 0<E Aut M and \im6n = 6, then lim nG(0J = xG(6)

n->oo n

with respect to the topology in Aut M.

Proof. By Lemma 2.3 there exists the following realization 6n =
Adun*KG(0n) and 0 = Ad u*nG(6), where un (weJV) and u are unitary
operators in M. Since f(A^)=%g for f^AG and \/g£=G, we obtain

j*-- lim (Ad un(2g) -Adu(2g)) =j*-Km(»ll(^) -«W) =0

for any g&G. But then (M*Mn)r=i is a G-asymptotically invariant
sequence and therefore it follows from the results of [8] that (M*MB) ^=1
is equivalent to the G-invariant sequence. Thus, by Lemma 2. 1
(u*u^)n=i is equivalent to the trivial sequence (%J)n=i where An^C i. e.
s* — lim(wn — Anu) =0. From this and the assumption that lim On = 6,

n n

the relation lim TTG(#W) =n(Q} follows. G

Proposition 2. 5. Let Ai = L°°(X, #), G,5 «£ awrf ^= W*(Ai9 ai9 G,-),
z = l,2 ^ JMC/Z flj iw Theorem 2.2. //* M1-^M2? M^ ^4G., assumed to be

continuous groups having the topology induced with Aut Af, contains
closed algebraically isomorphic subgroups Hi with respect to the countable
index in AG.B Besides, if <p is an isomorphism of HI on //2, then it follows

from Iim6n = d where 6n, ff^Hl9 that lim <p(OJ =<p(d}.

Proof. Let Ml be identified with M2= M and assume A^c^A^ n AGZ.

By Theorem 2. 2 ^c2 is a closed and open subgroup of Aut M9 and
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therefore AG. , i=l ,2 . Thus, AGlc2 has a countable index in A™, and

hence

where g}<=A%. . Thus, AG. = KG.(A%.) = I>G.(S/)*G. (A%lGJ and the index

Hi = KG.(AIGlG^ in AG. is not more than countable.

Now we prove the closedness of Hi in AG£: If $M = 7rG.(#n) e//,- and

$„-»$ in Aut Af, then Q^AG. because of the closedness of AG.. On the

other hand, Q^A^^ and therefore S&A^ and hence TTG.($) =d^Hia

Then H^H2 in the algebraic sense since Hi'^'A% G /Int M. This

isomorphism <p of HI on //2 obviously coincides with the restriction

TTG on HI. Hence by Lemma 2. 4 the continuity ^ follows. D

§3, The Ceetralizers of Actions of Groups G(w) , ^>2,
on Finite Dimensional Tori

Before proceeding to the construction of examples of full factors of

I i-type, we prove some auxiliary statements which can be of indepen-
dent interest.

Lemma 3, 1. The centralizer Co. SL(X Z) of the natural action a of

the group SL(w, Z), n>2, on the torus Tn is a group of the order of 2,
(The Proof is obtained jointly with S. L, Gelter) .

Proof. Let us consider the case n = 2, the general case being

considered in a similar way. Assume that T2=(Xly 22) where ^-eT,

i=l ,2 . If g= (ntj) (z, j= 1, 2) <=SL(2, Z) then the standard action is
found as

Let (?eCaSL(2, Z). Then ff: (^,^2) ->(*i(^b /y, 02(^ ^)), where

^,•(^1,^2), z = l,2, are Borel mappings from T2 in T, satisfying for

almost all (/?i, -?2) the relation

2(afe) (4
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12Then for g= ^ 12 the equality

02(^*2} =OM1\12} (3.1)

is valid for almost all (^i,^2). If I /2m log 22 is an irrational number,
then it follows from the ergodicity of the automorphism T1 = %12 on
T that 6 2 is independent of 12 for almost all 12^T« Similarly, Ol

is independent of 12. Thus, d(Al9 ^) = (#1(^1), #2(^2))* From the

eommutativity of 0 with f _, ^ J we find that for almost all (h, ^2)

the equality

holds, that is,

#2 W =^1(^2) f°r almost all

for almost all 4

Then from Eqe (3. 1) we obtain for £=(Q i

for almost all (21? 22) .
Now it follows from Eqs. (3. 2) and (3. 3) that 61 is a measurable

character of Tand therefore is, as known, continuous. But then 0: (^i, 22)
— >(/£", ^) for some nE^Z, and since 0 is the automorphism of (T2, m2),
where m2 is the Haar measure of T2

5 we have n=+l, Q

Now consider the group G(^) =SL(w, Z) QZn
y i. e0 the semidirect

product of SL(/2, Z) on Zn, where SL(^? Z) naturally acts on Zn
e It is

known [12], that G(«) is a TICC group for ?z>3. Then the action
of G(n) on Tn is defined. Let 7-eTand ?= (7v)5=ij where 7-1=^= 8o8

= 7'n = 7'. The automorphism ai(T,-) of the space (Tw, mn) with mn the
Haar measure of Tn, multiplying by 7- the z-th component of the vector
(^(J))5=1e Tn and leaving the rest of the components unchanged, is
set in correspondence to each vector T,- from Zn, whose i-th coordinate
is equal to 1 and the rest of them are zero. The action a^ of the
group \QZn is thereby defined on Tn. The action a^ of the group
SL (n, Z) on ( Tn, mn) is defined in the natural wayn Thus, the
ergodic action a1 of G(n) on (T*9 mn) is constructed,
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Lemma 3.2. The constructed action al of G(ri) on (T" ?mw) is such
that its centralizer is trivial (?z>2).

The proof follows from the previous Lemma.
We shall construct the action am of the group G(rc), n>2, on

(T»,;?O» m^N. Let 24= (^(1),. . ., ^(»))er» and O^i^T")™
For £fESL(ra?^) It is defined

am (g) ' (2») f-i

For T.-elSZ", l</<w, it is defined

a»(Ty): (2»)r=i - K/Or=i,

where // f e(j)=^(j) at j^j and /Jtk(j) =^k(j)T at J~J? 1<^^^« It is
clear that the action a'm is ergodica

Lemma 3. 30 If 6&CamG(ri), then 6 corresponds to the integral

matrix (w,-y) i,j=l,..., m, for which ^ nij— 13 I ^ Z ^ T T Z , flwrf det(w,-y) =

±1. (Below, the group of all such matrices will be referred to as

Proof, Let O^CamG(ri). Then <9 corresponds to the transformation

0: (20-1 - > 0 i ( 2 ) = i )

To simplify the notation, it is assumed that n = 2a The general
case is considered similarly. Then from the commutativity of 0 with
am(g), £GESL(2 ?^)9 we find that

( i ) "^ (2) "12
5 ̂  ( i ) "a^ (2) "22) r=j r-ii .

As in the proof of Lemma 3. 1, we have that at j=l, . . . , m for
for almost all (2A)f=1

As earlier, this means that 0] is independent of (^(l))Hi . Then we find
that 02

j = 6} = 0j^ l<j<m, and 0,- is a continuous character on Tm
3 i0ea
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j= 1, . „ . , m. Thus, 6= (0l5 . . e 3 #m) corresponds to the integral matrix
(7^)5 z, 7=1,. , , . , ?7z, which defines the transformation of jPm

0 From
the commutativity of 6 with orm(Tz-), l<i<2, we have that

But 0}[(A4(l) r)r_J=;i(J,(l)r)"' ' i-e. r, or Z>,,.= 1,
t=l i=l

As 6 is the automorphism of (Tm, mw) which conserves the measure,

so det (w,-y) = ± 1 . n

Lemma 3.4. The group S(m) introduced in Lemma 3.3 for m>2 is

noncommutative and conjugated to the matrix subgroup mXm over Z with a
determinant equal to ±1 of the form

\
0

0
X

Proof, Indeed, let (w iy) I- i J-==i i... fWe5'(m). Then since 2^=1 the
vector (1, 1, . . . , 1) is invariant for Vg^S(m). But the vector (1,1,
„ „ . , 1) transforms into the vector (1,0, . . . ,0) under the action of
the matrix

1
-1 1
-2 1 1

From this Lemma follows. Q

§49 Centrallzers of Actions of Groups G(w), n>29

on Infinite Dimensional Tori

Now we proceed to construction of the desired ergodic actions of G(n^0

As earlier, let mn be the Haar measure of Tn, We put (T'(w), m(n)}
= (Tn,mn)N^ then T(ri) is a commutative compact group, which is a
product of a countable number of copies of Tn groups, and m(ri) is
a Haar measure on T(ri). The elements of T(ri) are various sequences
of the vectors (^)r=i, where 2*= WtU ) , . . . , ^(w))er*. The multi-
plication in T(n) is found as
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where

I ) , - - , 4b000*

Note that TOO =7X1)", 7X1) =
Now we define the action a of the group G(ri) =SL(?23 Z) QZn

on (T(n),m(n)). If (^^^T(n) and £<ESL(/2, Z) then

Let (rk)r=i^TN, The element Ti5 l<i<n, from l©Zn is set in
correspondence with the action

«(!,-): (2»)r-i - "(aiCTO&r-i. (4.2)

It is clear that because of Eq. (4. 1) the constructed action a of

G(w) is ergodicfl

Proposition 4.1. Let (fj)7=i be a sequence of numbers of T, the
numbers (1 /2m log^JLi being rationally incommensurable. Put j\~Yj
for nj<k<jii+b where ni=l and Uj is an increasing sequence of natural
numbers. Construct from (pfe) J°=1 the action a of the group G (n) , n>2, on

00

(T(ri), m(n}} in the way just described. If 6^CaG(ri), then 0 = (g)0.,

where Qi is the automorphism (Tn
9m^) {, mi = ni+i — ni, and 0 l-€E5'(wl»)

(see Lemma 3. 3) .

First prove a subsidiary Lemma,

Lemma 402. Let I be a unit interval, m the Lebesgue measure on I.
Consider I as an additive group mod, 1 5 then IN is also a compact commutative
group. Let (a^ZL^I1*, where 0<a£<l and the numbers 1 and (a{) are

rationally incommensurable. Then the automorphism T: (xi)T=i~>(Xi + fxi')r=i
of the space (/, m) N is ergodic.

Proof, Let us consider a complete orthogonal basis in i2((/3 ni)N)
of the form
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where x= (xj)JLi^IN. Then {fni,-,nk} 'ls a complete system of charac-

ters of the group IN. If /e £-((/, m)N) and f(Tx) =f(x) for almost

all XE^!N^ then it is necessary to consider the orthogonal series

f(£)~~^an..infn..in and compare the Fourier coefficients of the

function F(x) =f(Tx) and f(x) taking into account the equality f(x)

=f(Tx') for almost all £^IN, from which we have that f(x) =aa. G

Proof of Proposition 4. 1. Note that (T(n), m(n)) =®(Tn
y mn}

mi and
z=i

the action a transforms the component (f7", m^™1 in itself. The restric-

tion of a on (Tn, mn)
mi coincides with am according to the notation

of Lemma 3, 3.

Again we put n = 2 to simplify the notation. Then

0: (I,)r=i - >(

where

As in the proof of Lemma 3. 3, we have that for each k^N and

for almost all (2^^. Because of Lemma 4. 2 it follows that #f,

£6EJV? is independent of (4(l))r=i- Then, as before, #f[(^(2))?~=1]

= ^*[(^(2)r=i] and ^*[(^(0)r=J is a continuous character on T(1)B

Using the commutativity 0 with «(T f)3 l<i<23 we have

»i'[ (^ 0') r«) r-J = »il (^ 0') r- Jr»-
But since 0{ is a character, then

^((r.)r-i)=r»- (4.3)
Let ^e[^z-, ^ f+ i ) 0 Since 0| is a continuous character on T(l)y we have

where N<^N, nkiq.^Z. From (4.3) follows

It follows from the incommensurability relation of the numbers
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I/2m (log Y'J) 7=i that nktq. = 0 for ?,-£[«,-, « f-+i), that is,

"f+l-1 „ _j

where 2 w * 9 = l . Thus, (00*=t* ? j ^ l j 2 , determines the auto-
* = n.

morphism of (T2
5m2) from Caw.G(2). D

§ 5. Properties of H 3. -Factors Constructed by the
Actions of Groups G(n}9n>2, on Tori

We study the factors M=W*(A9 a, GO)) of type 1 1 constructed
by the ergodic action a of GO) according to Proposition 4, 1. We
shall recall that M acts in the space H of the vector-functions
£(g)> g^G(ri), whose values are in L2(T(ra)3 m(ri)} and is generated
by the operators 7r(^)3 where (p^L°°(T(ri), m(n)}, and lg,

Proposition 5,1, Let M=W*(A, a^ G(w) ) be a factor constructed by
the ergodic action a. of the group G(ri), n>2, according to Proposition 4. 1.
// 6^AG(n^ then 6(A)=A and 6\A^CaG(ri).

First we prove the subsidiary Lemma.

Lemma 5.2. Let am be an action ofG(ii), n>2, considered in Lemma

3.3. Mm=W*(Am,am,G(n^ where Am = L°°((Tn,?nn)m). If 0t=AGW, then
0(AJ=Am.

Proof. To simplify the notation, put n = 2. The general case Is
considered similarly. Let B = 6(Am), the character &(!) on T2m Is
defined by &(1) [(^)I^i] — ̂ (1) where we use the notation of Lemma
3.3. Put fl*(l) =*(&(!)), A : = l , 2 ? a . . ? m, and consider
Then ^(^(1)) corresponds to the orthogonal series

where Z kfe ^ Z) 1 2<°°3 and the summation Is over
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Since <9eJG(n), then the equalities

are valid, where we put Xt = 2i9 i=l ,2.

Note also the relations

? 3

,

where f = (r, . . . , r) e TW
5 z= (*i, fc) and fceZ", :=1,2.

Now let fl(g, <53 7) ^0 for ^^^. Then by taking into account (5. 3)

it follows from (5. 2) that

But the equality contradicts the condition 2] \a (g, 8, %) \ 2<°°3 since
5"1T,- = T,-, z= l ,2 , for g^e, is impossible. Hence, fl(g",5, /) =0
and

where
Now we find from (5. 2) that the summation in (5. 4) extends

over d^Z2 and those %^Z2m for which ^i(f) — ̂  &00 = !•

Note further that if ft = (j j\ then

&»- (5.5)

Using the above consideration we have from (5. 3) and these
equalities that

nfaW O, (5.6)
J=l

where J, wi5 l<z<m, ^Z and J]nj=le
y=i

Since &X*(1)&"1 = Z*(2) for &=(_! 0)5 we have

(2)"o. (5. 7)

(5. 8)

For £3 = , we have &X*(1)& = %*(1)X»(2), and hence
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On the other hand, we have

• (5- 9)

Then, substituting (5. 6) and (5. 7) into the right-hand side of (5. 8)

and comparing it with (5.9), we find that

But this means that 0(ak(l))^A, k^Z. C]

Now we complete the proof of Propositions 5. 1. As above, it may

be assumed that 0(0^(1)) corresponds to the orthogonal series of type

(5.4). For Aje[7Z;, w,-+i), we have because of (5.2) that

Ea(d, %HXi(?M%) =r*S fl(«, X) V(X)?

i- £• Xi(?) =7ft9 where %i is a character on T^ and y=(ji). But since
the numbers I /2m log 7^, j = l ,2 , ... (see Proposition 4.1) are
rationally incommensurable, then %i is a character dependent only on

the numbers ^(1), where k e [wf, ?2m) . Then taking into account the

relations (5.5), we have that 0(0 f e ( l ) ) corresponds to the series

m— 1 n'

S««,nS,...,«;-i)^n ^(^.^(l) 0, Sn;=l,

where m= (w,-+i — w,-). Thus we arrive at the situation considered in
Lemma 5. 2. [3

Corollary 5.30 Let M=W*(A,a,G(ri)') be a \^-f actor considered

in Proposition 5. 1. Then the following statements hold: (i) In the

algebraic sense the AG(n^ group is isomorphic to TiS(m^. (ii) The topology

on AGW, induced by the topology on Aut Af, coincides with the product-
00

topology on HS(mi). (iii) If the factors MI — W* (A, aly G (nx) ) and
i = l

M2=W*(A, a^ G(/z2)), where Hi>3, i=l , 2, are isomorphic, then C«iG(wi)

a2G(/22)'^n 5(mf) contain isomorphic closed subgroups HI
i=l oo po

respect to the countable index in 115(777}) and TlS(m1')e
i=i i=i

Proof, (i) follows directly from Proposition 5. 1. To prove (ii),
remember that the topology on Aut M is given by the system of unit
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neighbourhoods V(e9 xl9 . . . , Xn) = (#^Aut M I 1 1# (#,•)—#• I l2<e

l<i<n}. Now (ii) follows directly from the construction of the factor
M. (iii) follows from (i) , (ii) and Proposition 2. 4. Q

§ 6. Properties of Centralizers of Actions
G ( w ) , w > 2 , on Tori

In paragraph 5 we constructed the I ^-factors M= W*(A, a, G(ri)}
00

for which AGW-^H.S (m^ . We study the properties of the groups TLS(m^.
i=l i

Let Gh i^N be countable discrete groups, G=IlGf- denotes the
i

group which is a direct product of the groups G>. The functions on
N with values in Gt- are the elements of II G^: For /(i) eG^ let

/- (/(O ) , g^ (g(f) ) e HG,5 then /-1- (/(i) -1) , /^- (/(OgCO ) .
i

We find on II G,- the weak (product) topology which is given by

the system of the unit neighobourhood

£/,= {/€= nG,, JW=e» n<=I]
i

where / is a finite subset JV3 and e{ is the unit of the group G,-. As is
well known, II G,- is a topological group with respect to this topology.

Let / be a subset N and put G(/)=IIGf-. If /eUG,- then the
iej i

mapping ^(f)f=Xify where Xi is a characteristic function of /, deter-
mines the canonical homomorphism of HG,- on G(7). In particular

ic(j)G=Gs.

Proposition 6.1. // H is a closed subgroup of G=HGi of the
i

countable index in G, then there exists n^N such that

l, oo)).

Lemma 6.2. //, for any n^N, jr([l, n])//=G([l, n]) Men

Proo/. Let/eG. If /.etf and /.=/ on [1, n], then lim/.=/
n->oo

with respect to the product-topology in G and hence H=G, Q

Proof of Proposition 6. 1. Assume that the theorem is not correct.
Since HdG, then by Lemma 6.2 there exists n^N such that
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]) and 7r([«i+l, oo))//cG([w!+l, oo)). Since
^([15 Hi])//cG([l, wj), then there exists /z1eG([l.) wj) and AI^TT
([1, wi])#. Since ^([^+1, oo))HcG([/2i+l9 oo))5 then by the Lemma
there exists n2^N such that 7r([wi+l , n?\) H C.G (\rii+ \ , w2]), where
^2>^i+l and /zz of G( [HI 4-1, w2]) not belonging to ^([wi+1
Similarly we obtain partition of JVinto the intervals /,-+i=[fl,-
where ^o^O, w,- + l<w£+i, x(Ii+i)Hc:G(Ii+l) and 3 /z /+1eG (/,-+!

It is obvious that G=nG(/i) and (/zf* )r=i^ nG(/i) where a~0

or 1. We state that (h^T^i&H, if not all a,- = 0, and if (a,-) ̂  (ft), then

(h^'^i^H. Indeed, if a jV1=l and ^+1 = 0 and If (h*'~fli)T=i^H,

then 7r(/y+1)(A^' i)r=i = A ;-+iC7r(/y+1)H which is impossible due to the

choice of A^+I. Because there are different elements (h^)^=l of the
cardinality of continuum due to the continuum cardinality of the
choice af = 0 or a £ =l 5 the power of the set [G: H~\ is equal to the
continuum. The obtained discrepancy proves Proposition, r]

Denote the group of all integral matrices having the determinant
±1 as GL (w, Z) . According to Lemma 3. 4, £ (//) — GL (w - 1 ,

Lemma 8B3. (i) /^ u impossible to represent the group S(n), /z>49

as a direct product of two groups, (ii) There is no homomorphism of S(rn)
on S ( n ) 9 where m^n>4:, m, n^Na

The proof of the Lemma uses Theorem 3 [14] from which it
follows that any normal subgroup of SL(^ ?^)9 n>3^ for which the
factor-group is non-amenable, belongs to the center ZSL(72,^) of
SL(w, -Z"). The proof Is also based on the Margulis rigidity theorem
(see Theorem 3 [13]) and some simple results on lattices [15], These
theorems were also formulated in the survey article [1],

We present the proof of (ii) assuming the oddness of m and n. Let
(ii) be incorrect in this case. The homomorphism of S(m) on S(n) is
denoted as <pi. Nm and Nn denote the subgroups of idxZm~l and
idxZn~l, respectively, and <pi denotes the homomorphism of S(n) on
GL(w — 1,^). Then <p = <f>\<p\ Is the homomorphism of S(ni) on
GL(n-l ,Z). We prove that <p(NJ cZGL(n-l, Z). Let N be the
normal subgroup of GL (n — 1 , Z) generated by (p (Nm) and ZGL (n — l,Z).
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Then N is a commutative normal subgroup of GL(n —13 Z). Since

GL(n — 1, Z) is a non-amenable group, the group GL (n — 1, Z) /N

is also non-amenable. <[> denotes the homomorphism of GL(n — 1, Z)

on GL(w-l, Z)/N. Since SL(n-l, Z) has index 2 in GL(w-l,Z),

^(SL(/z — 1, Z)) is also a non-amenable subgroup of GL(/z — 1, Z)/N

and ^ denotes the homomorphism of SL(/z —1,Z) on ^>(SL(ft — 1, Z)).

According to Theorem 3 [14], the kernel of this homomorphism is

contained in Z=ZSL(H-1, Z) andin^(SL(ra-l ?Z)) « (SL(w- 1, Z)/#

where A"=SL(w —1, Z) fl-AfcZ. Let g= (n^) be a diagonal matrix for

which «u= — 1 and «« = !, i = 2 5 . . . , w —1. Obviously gi and SL(« —1, Z)

generate GL(w-l, Z). We prove that &A£# for VAeSL(/z-l, Z).

Indeed, if glh = n^N, then gihah~lgil = nan~1 = anl^SL(n — l, Z), where

^eN for V^^SL («-l,Z). Thus gihah^gi1 = as where eeZ.
Evidently, s=^—/, since Ad&A is the automorphism of SL(/z —1, Z).

But then Adgih(a) =a for V«^SL(;z —1, Z) that is also impossible

because Adgi is the outer automorphism of SL(?z — 1, Z). Hence, we have

gJi&N for VAeSL(«-l, Z),andherefore ^(TVJ c^cZGL(w-1, Z).

Thus, 9?(JVJ cZGL(w-l, Z) and hence ?>C/VJ =id hold, Therefore

<p determines the homomorphism of GL (m — 1, Z) on GL (w — 1, Z) which

is denoted as (p. If 7V=Ker ^5 then repeating the above arguments

we have that N^ZGL(m — 1, Z). Then a simple test shows that the

centre of GL(m-l, Z)/ZGL(wi-1, Z) is trivial but ZGL(w-l, Z) ^= id.

Hence N=id and ^(ZGL(m-ls Z)) =ZGL(n-l, Z). Thus <p is an

isomorphism on GL(w —1, Z).

Now let TT be a natural homomorphism of GL(w —1, Z) on

GL(»-l,Z)/SL(;z-l,Z) then 7r(SL(?z- 1, Z)) = 0 (mod 2) and w(^i)=l

(mod 2). Let ^Tw denote the maximum subgroup of ^5(SL(m—1,

such that 7r(Kn)=Qe Then Kn is a normal subgroup of ^(SL(^—1,

having an index not more than 2, that means that Kn is a

normal subgroup of GL(w —1, Z) with an even index not more than

4. Since A»cSL(w —1, Z) then Kn is a normal subgroup of SL(w —1, Z)

with an index not more than 2. But then according to 10.5, 1.6 and

5.2 [15] the group Kn is an irreducible lattice in SL(w —1, Z) and its

isomorphic subgroup Km=(p~lKn is by the same reason an irreducible

lattice in SL(m — 1, Z). By the Margulis rigidity theorem [13] this

is excluded and hence the homomorphism <p of S(m) on S(n) does not

exists. This proves (ii) for odd 72, m. The other cases are considered



ACTIONS OF T-GROUPS ON LEBESGUE SPACES 629

in a simpler way. D

If {mjr=i is a sequence of natural numbers, then S({mi\T=i) will
denote the group, which is a product of the groups [S (m^ } °°=l with
the topology of a direct product.

Proposition 6.4. Let m^N, m<£ {wjjli- Then S=S([mi}^Li) cannot
be represented an S = S(m)®N, where N is a subgroup of S,

Proof, Assume the opposite, i.e. S = S(m)^)N, Let Si= (/i(OT=i)
and S2= (/zCO^i) be non-commuting elements of S(m)®id. There
exists j^N such that /i(j) and /2(j) do not commute either. Consider
n(j)S = n(J)S(m)®n(J)N. But ?r(j)5 = 5r(mj.) and 5(m;-) cannot be
represented as a direct product of two groups. Since /t-(j) ^id, i=l, 2,
and do not commute, therefore n(j) (lS'(m)(X)id) =S(m^9 which is
impossible for m^nij due to the results given in Lemma 6.3. Q

§ 7. A Continuum of Nonequivalent Actions
of Groups G(w)

Now we can proceed to the proof of the main statements of the
paper.

Theorem 7. 1. There exists a continuum of orbit-nonequivalent free
actions of the group G(w), ?2>3, on the Lebesgue space, which preserve the
finite measure. The factors constructed by these actions are non-isomorphic
full factors of \i type.

Proof. The sequence of the groups (5r(2i + a i)r=i) is corresponding
to any (a f)r=i5 where a{ — 0 or 1. Because of Proposition 4.1 an
ergodic free action a of the group G(ri) on (T(ri), m(ri)) can be

constructed so that CaG(ri) = TL S(2ij
rai)e Let (ftOjli be another

i = I

binary sequence, such that the set [i: a^jSJ is infinite. Let ft denote

the action of G(?z) on (T(ri), m(n)), corresponding to (fti)T=i- We
state that the I x- factors W*(A,a,G(n)) and W*(A,ft9G(n)) are
not isomorphic. Assume the opposite. By Corollary 5. 3 there exist
closed isomorphic subgroups HadCaG(n) and H^c:CftG(n) having a
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countable index in CaG(n) and CfiG(n), respectively. Because of

Proposition 6. 1 Ha = H& fi S&i + aJ, H^ = H2® fl S(2i + pj, where

HI is a subgroup of II S(2i + a{) and H2 is a subgroup of TlS(2i+pi').
i=l 1=1

Let TT(!) denote the homomorphism of H$ on H2: x(l)Hp = H2, and
TT(J) denote the homomorphism of H$ on S(2j + Pj) for j^>N. If <p is
an isomorphism of Ha on //^ then by Lemma 6. 3 7c(j)(p(S(2iJrai)) =id
for i<=K=(at=£ph t>N) and j>N. But then ^(5(2i + a£)) C//2 for
iEiK. Hence <p(@S(2i + a{)) C//2? and from the continuity of 9? (see

Proposition 2.5) we find that <p(H S(2i + (Xi)) ^H2 since H2 is a

discrete closed subgroup of AffGW. But ^ is an isomorphism, the group
H2 is a countable and HS(2i + ai) is continual, which is impossible.

The obtained contradiction shows that the factors W*(A, a, G(/z)) and
W*(A, p, G(n)) are not isomorphic, and the actions a and p of the
group G(n) are orbit-non-equivalent. It remains to note that the set
of all binary sequences (a,-)JLl5 where a{ = 0 or 1, every two of which
have an infinite number of different components, has the power of the
continuum since such a set is isomorphic to the factor-group with
respect to the subgroup of all sequences with a finite number of
components other than zero. Q]

Remark. If a is an ergodic action of the group G(w)=SL(w, Z)
®Zn, ft > 3, constructed in Theorem 7. 1, then using an inducing
construction one can construct an ergodic action a of the group
SL(;z, R)QRn preserving the finite measure. But then from Theorem
7. 1 and the inducing construction it follows that SL(w, J?)©Un, ?2>3,
has a continuum of orbit-non-equivalent free ergodic actions preser-
ving the finite measure.

Theorem 7.2. There exists a full I ^factor M whose all tensor

degrees M, M(X)M,... are non-isomorphic by pairs and the dynamical systems

(T(ri), a, G(/z))p
5 p^N are orbit-non-equivalent for different p.

Proof. We construct an action a of the group G(ri), n>3, on
00

(T(n),m(n)) so that CaG(n) —H S(2i) according to Proposition 4. 1. Let

M= W*(A, a, G(n)\ Then Af(g)Af = W*(A®A, a\ GO)2) where a2=a®a
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and G(n}2=G(n) xG(w) . Describe Ca2G(n)2: If G(n) = (gXg, £6EG(/0)
is a diagonal subgroup of G(»2

5 then evidently G(ii)~~G(ri). Consider
the action a2 of the group G(n) on T(n) xT(n). Because of Proposi-

tion 4.1 Ca2G(n) -̂ 11 S(4i). Taking into account the commutativity
i=i^

of the elements of Ca2G(n) with a (g) xid and idXa(g), where g^G(n),

we have that Ca2G(n)2^ 5(5(20 ©5(20) ~ tt(S(2i))2
mi=i i=i

Now by repeating the same arguments as in the proof of Proposi-
tion 5. 1 it can be shown that if 6^A then 0 (A® A) = A®A and

hence Ar( ,^Ca2G(n)2^ (H S(20)2.
G(n) j=i

We prove a subsidiary Lemma.

Lemma 7, 3. Let H^K^ U S(2i) and H2 = K2® U (S(2i) ®S(2i))
i=N+l i=N+l

N
be groups where KI is a subgroup of II S(2i) and K2 is a subgroup of
N
IL(S(2i) ©5 (20). Then the groups H1 and H2 are non-isomorphica

Proof. Assume the opposite. Let <p denote the isomorphism of Lemma

2. 5 of H2 on Hlf Put 6\(20 =S(2i)(8)id and S2(2i) =id(g)5'(20. Then
for any i^>N there exists j ' (=l,2) such that <p(Sj(2i)) dKla Indeed,
if TT(!) denotes the homomorphism of Hl on ^ and TT(Z') of //i on 5(20
for z>JV3 then from Lemma 6.3 it follows that n(p}<pSj(2i) =id for
jp^i and hence ^(^(20) c^T1(X)6((20B If for example jr(0^(20 ^id,
then because of Lemma 6B 3 we have that 7r(O^Si(20 =5(20- But
then ^2(20 C^i. Thus, the group KI contains a subgroup isomorphic
to II 5(20, which is excluded. n

i>N

Completion of the proof of Theorem 7. 20 Let HI and H2 be closed
subgroups of a countable index in AGW and A n 2, respectively0 Since

AGW — US(2i) and Art o^fl(S(2i) ©S (20), then according to Pro-
»=i G(n) »=i

position 6. 1 Hl and //2 have the form such as in the formulation of
Lemma 7. 3. According to this Lemma the groups HI and H2 are
non-isomorphic. Therefore from Proposition 2, 5 the nonisomorphism
between M and M(x)M follows. The general case is considered
similarly. Q
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§S. Full Hi-Factors with Non-Isomorphic
Subfactors of Finite Index

We continue the discussion of the main results of the paper* For
n = 2k+l, G(n) has the automorphism 7- of the order of two:

_
r(T f .)=-T f . at

G2(n) denotes a semidirect product of the group Z2 on G(n). Evidently,
G2(ri) for n = 2k+l, k = l, 2, . . . , is a TIGC-group. Construct an ergodic
action a of G(ri) on (T(n), m(ri)} according to Proposition 4. 1 putting
nj+l-nj = 2 for Vj. Then M=W*(A,a, GO)), where A = L°°(T(n\
m (w) ) is a full I x- factor. Construct the automorphism ft of the space

putting

where (2ff)JL1eT'(w). A direct test shows that

n«(g)Kl=«(r(g», Vg^G(n). (8. i)
Thus, we construct a free ergodic action of the group G2(ri) on

(rO), ??2 («)), which is denoted as ax. Let JV1=M^|c(-4, a^ G2(n)) be
a - I i type factor corresponding to this action. From (8. 1) it follows
that 7i£=N[_a(G(ri))~], where \_aG(n)~\ denotes a full group of automor-
phisms (T(n)9 m(ri)} created by aG(ri) [17]. As known in this case,
ft extends to the automorphism of M which is denoted again as 7^.

Lemma 8.1. (i) W*(M, r^)^Ni where N1=W*(A9 a1? G2(«)).
(ii) CalG2(n)^S(2)N, where S(2)N denotes a direct product of the

countable number of copies of the group S(2).

Proof, (i) is evident. To prove (ii), note that according to
Proposition 4. 1, CaG(n) ^~S(2)N, From the definition of ft it follows
that ft commutes with the automorphisms of CaG(n) and hence

. D

Construct another action of G2(n) on (T(ri), T W ( T Z ) ) . Let d be an
automorphism of S(2)N which corresponds to the element (U^^LI °f

S(2)N, where Ui = u = (^ Q\ It is clear that d2=id. Put T2=Tld = dri.
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Since a(g)d=da(g), g^G(n}, We have

r^rJ-^afote)), Vg*=G(n). (8.2)

Thus, the actions of G2(ri) is constructed, which is denoted as a2°

Lemma 8.2. (I) W* (M, ft) — N2, where N2= W* (A, a2, G2(«) ) .

(ii)

Proof. Let Cu be a centralizer u In 5(2). It is easy to check that

Cu=(l, u) and the centre S(2) Is trivial Since CaG(n) — S(2) N the
automorphism of Ca2G2(n) corresponds to the matrix sequence (zOr=i5

where v^Cu I.e. v{ — u or 1. Hence Ca2G2(ri)

Theorem S.3. (I) There exists a full \^- factor M possessing outer

automorphisms 7-,-, z = l , 2 JMS/Z £/z<2£ 7*?= id «nJ the factors N{=W*(M, 7%-),

£f/zz'£/z ar^ crossed products of j{ on M, ar^ non-isomorphic and hence fi

and j2 we n°t outer conjugate.
(ii) The factors N2=W*(M, ?2) and M are non-isomorphic^ i.e. a

full factor of type 1 1 can contain a non-isomorphic subf actor of a finite

index (see [18]).

Proof. Remember that M=W*(A, a, G(n)) and N2=W*(A, a2,

G2(n)) where G(w) and G2(n)5 ?2 = 2A;+ 1, A:= 1,2, . . . , are TICC-groups0

Use Proposition 6.1 taking into account that CaG(n) ^~>S(T)N and

Ca2G2(n}^^(Z2}
N (see Lemma 8.2). According to this Proposition,

CaG(n) and Cot2G2(ri) cannot contain closed isomorphic subgroups of
a countable index. Therefore by Corollary 5. 3 (iii) the factors M and

N2 are non-isomorphic. It is similarly proved that NI and N2 are
non-isomorphic. \^\

Theorem 8.4. There exists a full factor N2 of type J l5 in which

Out N2 = Aut N2/Int N2 is a continuous locally compact totally disconnected

group. (The case when Out N is discrete is described in [4].)

Proof. Since N2=W*(A9 a2, G2(«)) is a full I ^factor, Int N2 is

closed in Aut N2 and on the group Out N2 a factor -topology rl Is
induced, with respect to which all the points Out N2 are closed.

According to Theorem 2. 2 AG^ is an open subgroup Aut N^ but
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since (Int N2). AG2wdAG*w then AG^/lnt N2^AGz(n} is also an open and

closed subgroup of Out N2. But on AG^ one can consider the topology

r2 induced directly with Aut N2. By Corollary 8. 2 (ii) with respect
to T2 the group AG & is compact (and isomorphic (Z2)

N). Hence since

T2 is stronger than rl5 we find through the standard considerations that

T2 and TI coincide on AG^. Thus AG^/Int N2 is an open compact

subgroup Out N2 isomorphic to (Z2)N and hence the group Out N2

itself is locally compacto D

Supplement

On Ergodic Actions of Groups SL(w,Z), n>3.
In this Supplement we illustrate the concept of the proof of the

following theorem.

Theorem S. 1. The group F = SL(n.> Z), n>3, has at least a countable
number of orbit-non-equivalent ergodic actions preserving the finite measure.

Let Fm be the normal subgroup of F such that F/Fm^SL(n, Z/pm)
where Z/pm is the residue ring modulo pm. In what follows p is a
simple number. Let Kp = limF/Fm be the protective limit of the group

°o*-m

F/Fm then, as is well known, Kp is a compact group including F as
a dense subgroup.

Lemma S. 2. The group Kp and Kq are nonisomorphic for different simple
numbers p and q and do not contain isomorphic subgroups of a finite index,

The proof is based on the following fact. Let K$=lim Fm/Fm+t

then K™ is a normal subgroup of Kp of a finite index, in this case
Kp/K

m
p^$L(n, Z/pm). Besides, rtf$= [e].

m

Lemma S. 3e Let [JLP be a the Haar measure of the group Kp. Consider
the right-hand a2 and left-hand ae actions of the group Kp on (Kp, /jLp) :

a2(k)h = hk, ae(k}h = kh where k, h^Kp. Then Cae(F) =ar(Kp), where
Cae(F) is a centralizer of ae(F) in Aut (KP9 ^).

The proof uses simple properties of the matrix elements of irredu-
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cible representations of the compact groups.
We shall agree to denote the action ae(r)3 reA on (^ ^) as

Lemma S. 4. Let Mp=W*(fip, ap9 F) be a factor, where BP = L°°(KP, pp).
Then Aa r-~CapF (see the notation of Theorem 2_ 2) . Thus, Mp and Mq

at p^q are not isomorphic.

It is readily tested that if f^Aa r, then ^(Bp) =BP and r\B^Capr.

Therefore Aa r^Kp and, according to Lemma S, 29 as well as to the

arguments given in the proof of Theorem 8. 4 and Proposition 20 53

the factors Mp and Mq are not isomorphic for simple p=£q.
The statements given are true for the case when ,F = SL(?2, Z) has

a trivial centre, i.e. n = 2k + l, k=l, 2,... . If n = 2k, & = 2 , 3 ? 0 0 0 then
the problem is readily reduced to the case, when F = PSL(n, Z) ,
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