
Publ. RIMS, Kyoto Univ.
22 (1986), 671-687

Singular States on Maximal Op*-algebras

By

Frank LOFFLER* and Werner TlMMERMANN**

Abstract

The paper is devoted to the investigation of singular states on topological ^-algebras
of unbounded operators defined on (F)-domains. There are considered only func-
tionals which are continuous with respect to the so called uniform topology r^0

Equivalent characterizations of positive singular functional and a decomposition result
for functionals are proved. Analogously to the bounded case positive singular functional
can be given with the help of limits on free ultrafilters. Moreover, the state space of
the maximal 0/>*-algebra is the ^*-closed Convex hull of vector states (pure states) -
despite the fact that the state space is not ^-compact.

§1. Introduction

In the last 15 years the theory of topological algebras of unbounded
operators has been substantially developed. This concerns the study
of the topological and order structure, commutants, ideals, special
classes of algebras and representations as well as applications to quan-
tum statistics [10]. As for states on topological operator algebras,
satisfying results were obtained first of all for normal states (see [20]
for a short summary). The present paper is the first of a series
devoted to the investigation of the structure of the state space of
0/?*-algebras. We start here with the study of positive singular
functionals on the maximal 0/?*-algebra c£?+(S) on (F)-domains.

The paper is organized as follows. Section 2 contains the necessary
definitions, notations and auxiliary results. In section 3 we describe
a restriction-extension procedure which relates classes of r^-continuous
functionals on <&+(@) and ^(Jf)« This gives a useful method to
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transform results from the bounded case («^(Jf)) to the unbounded
one (c£?+(^)). As an application we prove that states can be
uniquely decomposed into the sum of normal and singular positive
functional. In section 4 a representation theorem for positive singular
functional is given (see also [20]), which has interesting applications.
For example one gets that singular states are ze;*-limits of vector
states. This has the following important conclusion. Despite the fact
that the state space of £f+(@) (i.e. the set of r^-continuous states)
is not z#*-compact, it is the ze;*-closed convex hull of vector states,
hence of pure states. A more general result derived by quite other
methods is given in [14].

§2e Preliminaries

For a dense linear manifold & in a separable Hilbert space 3F
the set of linear operators &+(&) = [A: A@d@, A*@d@} is a
^-algebra with respect to the usual operations and the involution
A - >A+=A*\®. An 0/>*-algebra st r(^) is a *-subalgebra of ^
(@) containing the identity operator I. The graph topology ^ on
& induced by j/(^) is given by the family of seminorms <p - HI^M!
for all A^<$tf(@). Denote J , simply by £. This topologization of
3f gives rise to a canonical rigged Hilbert space 3f\f\tLtf c @'[t'~]
and a canonical dual pair (®,<£if). Here £' is the strong topology
in Q}'. Let a = 0(&, &') be the weak topology in ^. Remember
that a sequence (<pn) C 2 is ^-convergent to zero (<pn - >0) if and
only if {<pn} is ^-bounded and <^, #?„> - *0 for all <p^&, hence for
all 9>e^f. An 0/?*-algebra tf(Q) is called

closed if &= n @(A) or equivalently if ®\f\ is complete;
A&jtf

self adjoint if @ = 3)*= n

In 0/?*-algebras there can be defined a lot of topologies (cf. e. g.
[8] -[10], [15], [16]). We mention only those used here: the uniform
topology T® given by the seminorms

A - M|

where ^ runs over all ^-bounded sets of 3d; the topology r^ given
by the seminorms IHU where Jf now runs over all relatively tj/
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compact subsets of 3f . Later on we will use the fact that r@ and
rcg, are not only defined on £?+ (<&) but also on o£?(S, S')5 hence on
^(Jf) [10], [6]. The most important domains 2 are those where
t is a Frechettopology, i. e. & \t~\ is complete and t can be given by
{||4,-i|: n^N] with An = A+, I=AQ<Al<"'. A special type of such
domains is of the form Of = S°°(T) = H 2 (T*1) T=T*>I0

n

In what follows we allways assume that J£?+ (&) is selfadjoint and
Sf\f} is an (F) -space. Some of the results are valid in more general
situations. To simplify notations we denote a bounded operator
A^<&+(@) and its closure A(=&(jj?) by the same letter A, The
following sets are two-sided *-ideals in J£?+ (&} and play an important
role in the description of T^ TC® ([5], [9], [19], [20]):

= {T: AT, AT* bounded for all

= {T: AT, AT*^^^^ for all

Here £?*(&} denotes the *-ideal of compact operators on

Proposition 2.1. Let Jf be the unit ball in Jf=
i) The family [Btf : B^^(^), B>Q, Ker 5=(0), St(lS) t-dense

in &} is a fundamental system of t-bounded sets. Hence T® can be given
by the seminorms A - >||jBAB|| B as above,

ii) The family {CJf: C^^00(^), C>03 Ker C=(0), ^ (C) t-dense
in <£>} is a fundamental system of ralatively t-compact sets. Hence "ccs,
can be given by A - >||C4C|| C as above.

An important consequence is the fact that &(<£}} is r^-dense in
&'), consequently in JS?+(S) and Si (3? ) [6]. In what follows

we need some special assertions along this line and collect them in
the next lemma.

Lemma 2.2. Let B<=&(@), B>0, B = ldEx. For a>Q put Pa =

Ei and Aa = PaAPa for A£E&+(@)a Then

i) Pa and Aa are elements of <g(&).

ii) lim\\Ba(A-Aa*)Ba\\ = Q for all a>Qe
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Next we consider linear functionals on 0/?*-algebras. In contrast
to the C*-case one has to distinguish two notions of positivity. Namely,
a linear functional CD on an 0/?*-algebra j&(2) is said to be

positive if a>(A) >0 for all A<E^& (X(^)) = [A = S AfAi9
finite

strongly positive if a>(A)>0 for all
for all ^e^}.

Remark that these definitions hold for any *-subalgebra of
it is not necessary that they contain /. The problem of r^-continuity
of strongly positive functionals was investigated in [15], Clearly
& ( j t f ( @ ) ) CJf Of (^)) and the inverse inclusion depends on whether
or not j/(S) contains the square root of its positive operators. In
[11] it was shown that £<=&(&) implies Ba^&(@) for all a>08

Hence ^ (^ ( ̂  ) ) = Jf (@ (@)). Moreover, considerations as in
Lemma 2. 2 show that the following is true.

Lemma 2.3. i) 0> (3S (2)) is T9-dense in &(£'+(®)) and Jf

ii) On J£>+(@) the sets of r@- continuous positive and r&- continuous
strongly positive functionals coincide,

In view of Lemma 2. 3 it is unambiguous to speak about T@-
continuous states on &+(@). This set is denoted by E=E(&+(@})
= [w: linear positive TQ- continuous functional on c5?+(^), co(I) = 1} .
Let &+(@Y denote the dual space to J^+(S)[rs] and let <TQ =
o-CJ^+W, &+(@)) be the ^-topology in J^+(S)'B We need the
following subsets of E:

vector states'. VQ= {o)^E:a)(A) =<jp, A<p>9 <p^@, \\9\\ =
pure states: PQ= {ax=E: a^^ &+(&)', &i>Q9 (*>i<a)

implies coi = Zco

Clearly, coQ^PQ if and only if O)Q cannot be represented as a
nontrivial convex combination of G)l9 o)2£=E. As in the bounded case
one defines:

vector state space F^o^-closure of VQ
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pure state space P = a0-closure of PQ.

These sets of states will be investigated in detail in [14]. To
define normal and singular functionals on <&+ (@) let us introduce the
following two-sided *-ideals of <

: AT, AT*^^^) for all
dim

Here ^i(J^f) stands for the ideal of nuclear operators on Jtf*, It

appears that the r^-closure of .F(^), <g(2)=W(®9 is a very
appropriate generalization of the set of compact operators to the
unbounded case. Among other things the following assertions are
valid [7], [13]:

Proposition 2.4. i) A^tf (@) if and only if (A<pn) is t-convergent
to zero for any sequence (<?„) which is a-convergent to zero,

ii) If &\t~\ is not a Montel space, then tf (&) is the only nontrivial,
TQ- closed two-sided * -ideal in J£?+(^).

iii) 2\f\ is a Montel space if and only if

These properties give rise to the following definition.

Definition 2.5. A linear functional o) on ^+(^) is said to be
normal if w(A) =Tr AT for some re^i(^) and all
singular if a) is r^-continuous and co(C) =0 for all

Let us remark that while normal functionals are automatically
r^-continuous (even r^-continuous) we have included the r^-continuity
in the definition of singular functionals. Proposition 2. 4 iii) shows
that there does not exist nontrivial singular functionals if @\f\ is a
Montel space. The proof of a result concerning trace representation
of functionals (cf. e. g. [16]) implies immediately the next Iemma0

Lemma 2.6. Every a)Ei£?+(&)' can be uniquely decomposed into CD —

(t)n-\-a)s, where o)n, cos are respectively normal and singular functionals. Moreover,
o>>0 implies (on>Qe

In section 3, Theorem 3. 4 we give a stronger result.
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§3. A Restriction-Extension Procedure

The rs-density of a (3) in &+(@) and SI (3? ) leads to the
following procedure. Let a)^3?+(@)' be given. By restriciton to
&(&) and extension to J* (ffl ) one gets a unique ^-continuous
linear functional on &($?)', notation: o)-*a). Conversely, let <a be a
r^-continuous linear functional on J*(Jf). Restricition to & (3)
and extension to J£?+(S) gives again a unique r^-continuous linear
functional on =S?+(^) ; notation:^-* A. Obviously: o)= &<=£?+(@Y and
a)= JJe^ («£?)', <o — r^-continuous. This procedure will be frequently
used (see also [14]). So we collect some of its properties in the
next lemmata. Before doing so, let us mention that in the context
of J£?(^, 3') one would call this an extension-restriction procedure
(e.g. J^+(^)-*J^(^5SO^«^G^) and so on). But because we do
not want to leave 3C we prefer this one. A direct consequence of
the definition and of Lemma 2. 2 is the following lemma.

Lemma 3.1. i) Ifw^^+(^) ', \a)(A) \ <\\BAB\\jor all
and some #6Ej'(^), then \&(A) \<\\BAB\\for all A<^@ (tf} and moreover

and conversely
ii) If (o^&W, Ts-continuous, \<o(A) \<\\BAB\\for all

and some 5EE^(S), then \A(A)\<t\\BAB\\ for all A<=E£>+(@) and

<z-»0

iii) The same assertions are true for T@- continuous linear functional
on 3?+(@), &(Jf) respectively.

In the next lemma we will see which sets of r^-continuous linear
functionals mutually correspond in this procedure.

Lemma 3. 2. In the restricition- extension procedure described above the
following sets of T@- continuous linear functionals mutually correspond:

i) positive functionals on ^+(^) ^positive functionals on
ii) normal functionals on 3?+(@)**normal functionals on
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more exactly: <o(A) =Tr AT, TEE^^), 4eJ2?+(0) implies &(B) =Tr
BT for all B^^(^} and conversely, o>(5)=Tr ^r/or a/Z $eJ>pf)3

, a)-?®- continuous implies re^i(^) W a>(4) -Tr^r /or

iii) singular functional on £*+ (&)<->singular functional on 3$
iv) /w# states on £?+ (&) <^->pure states on <

Proof, i) follows from Lemma 2. 30

ii) Let o>C4)=Tr ^^ for all AtE^+(@) and some
Because Te^i(^f) it follows immediately that &(A) = Tr AT for all
A Ei ^ ( Jf ) . On the other hand, if &> on ^ (^f7) is r^-continuous and
a)(A)=Tr AT for all ^e^(^) and some re^C^f), then <y is r^-
continuous on ^f^(S) and can be decomposed into a linear combi-
nation of positive r^-continuous functionals which are normal if
restricted to &($} [16]. Hence A(F) =Tr F^ for all FeJ^(S) and
some S^&i(&). Since &(F) =o)(F) for all Fe^(^), we get 5=re

Thus, CD is normal on <^f+(S) (using the uniqueness of OD— > < y ) 0

iii) Let ^ be singular on ^f+(S), then <o(F) =0 for all Fe^(^)0

But ^(^) is r^-dense in ^"(Jf) hence in &„{&}, so <5>(C) =0 for
all C^^ooC^f), i.e. & is singular. The other direction follows simi-
larly.

iv) Let a) be pure on ^(Jf)e Suppose a) = Za)i+ (l—X)a)2, o)^ oo2-
positive and r^-continuous on =^+(S)0 This would imply OD= cS
= Ao)i +(l—Z)a)2 with d), e J* (^f ) 7, o),-r^-continuous and positive accord-
ing to i). This is a contradiction. In the same way the other
direction can be proved.

It is necessary to add the following remark. The notion "pure
state" on 3$ (Jf ) is here not unambiguous because we can consider
decompositions within the set of all states or only within the TQ,-
continuous states. We have in mind the r^-continuous states alone0

To consider pureness in the context of all states and derive the
direction->in Lemma 3. 2 iv) one would need a result of the following
type: if <Wi<cw, 00 — r^-continuous on £% (^ ) and col positive, then o)i is
r^-continuous, too. Nevertheless normal pure states (i. e. vector
states) on ^+(^) lead to pure states (vector states) on & (jf ) also
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in the context of norm-continuity.

Corollary 3.3. i) A vector functional o)(pi4,(A) = <£>, A(p) on & Of) is

r ̂ -continuous if and only if £>, ^G:S.

ii) The vector states &9(A) = <>, 4p>(||?>|| = l) on &+(&) are pure

states.

iii) Let co be a state on J£?+(S) so that co(C) =(t)9(C) for all

. Then (o = o) on

Proof, i) follows from Lemma 3. 2 ii) and the fact that P<p,</,=

<fo .>0e«^i(S) if and only if <p,0<=@.
ii) If o) = a)9 on ^+(S) then by Lemma 3.2 ii) w = a)9 on «^(Jf).

Because vector states are pure on 3ft (Jf ) the assertion follows from
Lemma 3. 2 iv) .

iii) It follows that w on @ (3? ) has the property o>(C) =®9(C) =
o)9(C) for all Ce^oo(^). Then by [4] d) = d>p = a>9 on ^(Jf). Hence
co= S = o)9 again by Lemma 3.2 ii).

q. e. d.

Now we prove the main result of this section, namely the decom-
position theorem for positive r^-continuous functional.

Theorem 3. 4. Let CD be a positive TQ- continuous linear functional on

. Then there is a unique decomposition

such that a)n>Q, normal, o)5>0 singular.

Proof. By Lemma 2. 6 we have a unique decomposition a) = c
with cw°>0 normal and o)°s singular. So it remains to prove that a)Q

s>Q.
Let d), o>°, a>°s be the corresponding functionals on & ( Jf ) . Then
w = wl + wl. On the other hand w can be uniquely decomposed into
a) = Wi + w2 with o>i>0 normal and o)2>® singular. Since the normal
parts coincide on J^(S), the corresponding trace class operators are
the same. Hence &°n = o)L, i.e. o)2 = wQ

s>0. So the assertion follows from
Lemma 3. 2. i), namely o)Q

s>0.
q. e. d.
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Corollary 3.5. Let weP0, i.e. a) is a pure state. Then either a) is

a vector state or a) is a pure singular state.

Proof. Let a) e P0? then CD = o)n + o)s = wn (/) ° (a>»A»» CO ) + <*>* CO • (^/
ws (/) ) is a convex combination of states. Since o) is pure, either

<yn(/) =0, i.e. ft>w = 0 and a> = ws is a pure singular state or o>s(7) = 0,
i. e. ft>s = 0 and a) — o)n is a pure normal state, hence a vector state.

q. e. d.

§4. Singular Positive Fuectionals on £?+(<$}

In this section we start with some simple equivalent characteriza-

tions of singular positive functionals which correspond to those of the

bounded case [17], [18]. Then there is given a representation theorem
for singular states on £?+(@). This result has important conclusions,

for example about the structure of the state space E of j£?+(S)? cf.

Theorem 4. 8.

Lemma 40 1. Let o) be a positive T&- continuous linear functional on

<£+(3$). Then the following statements are equivalent:

i) a) is singular.

ii) The only positive normal functional p with p<a) is p = Q.

iii) For any projection E<^&)+(@), E^Q there is a projection
so that F<E and <y(F)=00

Proof. We show i) <-» ii), i) <-» iii).

i) — >ii) : Suppose p is normal and 0<p<(t), then p(F) =Q for all
Fe^(^), i.e. p = Q.

ii) -»i) : If o) is not singular, then by Theorem 3.4 <y = (yn + eys

with o>n>0, o>s>0, a)n^Q. Thus o)n<o).

i)->iii) : If o)(E) =0, then take E = F. If a>(E) ^0, then there is a
finite dimensional F<E, F^O, so that F^£>+(@) and clearly, o)(F)

= 0.

iii)->i): Take E one-dimensional, £e^f+(^)0 Then co(E) =0,

so a)(F)=Q for all F^^(^) and consequently <w(C) =0 for all

This means o>-singular.

q. e. d.
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Lemma 4.2. Let w be singular and positive on J£P+(S). Then for
every projection P<=&+(@), (o(P)=l there is a projection Q<P,

so that P — Q is infinite dimensional and co(Q}=la

Proof. It is easy to see that P& is a ^-closed subspace of 2 (and
again an (F) -space). Moreover one has (cf. e.g. [13]9 [16]): Pe
<g (&) if and only if P® is a Montel space if and only if P<& does
not contain an infinite dimensional Hilbert space Jf 0 (i. e. P@ is of
type I in the sense of [12]). So a)(P)=l means P&tf (3) and
consequently there is such an Jf0cP^C^. Let P0 be the orthopro-
jection onto Jf0- If ^(Po) = 0, then we are done taking Qj=P — PQ

which must be infinite dimensional. Suppose o>(P0)— ^^O, i.e.
a)(P— P0)=l — b. Applying the reasoning of [1], p. 305 to ^f0 and
P0 one gets a PI so that Pi<P0, P0 — PI is infinite dimensional and

w(p^=b. Putting Q=Pi+(P — P0) we get the desired result.
q. e. d.

Our next aim is to describe all positive singular functional on
J^C^). Let us remember the situation in the bounded case. It has
often been mentioned that J'(Jf), ^i(^f) and &„(&) are the non-
commutative analogs to 1°°9 I1 and CQ (the zero-sequences). The
complex homomorphisms of 1°° are given by the elements of fiN (the

Stone-Cech compactification of N) which can be identified with the
ultrafilters on N. There are two types of ultrafilters on N: fixed
(consisting of all subsets of N containing a fixed element of JV) and
free ultrafilters giving the elements of f)N\N. The formula <%((#„))
= lim<%xn, (#n)el°°5 ^-ultrafilter gives the complex homomorphisms of
1°°. If ^ is fixed at k, then a)^=o)k with <*>* ( OO ) = #*. If °tt is free,
then ^((^M)) :=0 for all (xn)^cQ, i.e. free ultrafilters give rise to
singular states. This is a guide to construct singular states on & (3?) .
Let (<fin) be a sequence of unit vectors in Jf7 weakly converging to
zero. Then c% defined by

(1) (

gives a state on 3ft (Jf ) which is singular if and only if ^ is free.
Moreover, if one takes any sequence (^B) of unit vectors, then exactly
those free ultrafilters ^ give singular states for which
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for all (p^3? [1]. Furthermore, the following theorem was established
by Wils [21] and extended to the non-separable case by Anderson

Theorem 4. 3. There is a fixed sequence (0n) of unit vectors of ffl so
that any singular state on 3ft (3P) has the form

for an appropriate free ultrafilter % (namely such one with
for all

We remark that this sequence (0B) (call it Wils sequence) can be
taken to be arbitrary || ]| -dense in the unit sphere. A little bit more
is known. While the only pure normal states on ^ (^ are the vector
states, pure singular states are obtained if one takes in (1) instead of
(^B) an orthonormal system (<pn). But the question whether or not
this gives all pure singular states seems to be open. Now we turn to
the unbounded case and start with a simple observation.

Lemma 484. Let (^JcS be a t-bounded sequence ̂  % a free ultra-
filter. Then <%: <%G4) = lin%<<pn, A<p^ defines a positive, r&- continuous
functional on <&+(&) which is singular if and only if lin%<^K, £>> = 0 for
all

Proof. The positivity is clear, r^-continuity follows by standard
estimation. The proof of the remaining part is as in the bounded
case. Let <p, (p^@, Pq>,4>=(<P> 8>^- Then the finite linear combinations
of the -P^./s are r^-dense in ^ (^). Thus <% is singular if and only
if <w#CPVl0) =0 for all ^,^eS. But this is the case if and only if

<py = 0 for all <p, ^eS. This implies the assertion.
q0 e0 d0

Now let (0B) be a Wils sequence, B<=3$(®}, <% a free ultrafilter.
Then

gives a positive, singular functional on ^f+(S)0 The positivity is clear,
the r^-continuity follows from the estimation \a)Bi^(A) \= |li
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I < sup |<^3 A<f>y | where Ji= {B0n} . The singularity follows from

the fact that Se^(S) implies B*SB e^C^f) for all £e J>(^) [13].
To get states on J*?+(S) one takes for example such pairs (^,5) that
lin%<jB^M, B(p^) = la In the way just described one gets all positive
singular functional.

Theorem 4.5. The positive singular functionals on j£f+(S) are given
by

«>c,®'' <oCty(A) =lim®<C<pn, AC0nyfor all A^J?+(@^

where (0J is a Wils sequence, W an appropriate free ultrafilter and Ce
& (@) which can be taken to be positive, Ker C= (0) and having t-dense
range,

According to the considerations above one has to prove only one
direction. We will give two different proofs. One uses explicitly the
restriction-extension procedure described in section 30

First proof. Let CD be a positive singular functional on
then \(o(A) <\\BAB\\ for all JeEJ5?+(S) and some B^^(^) which
can assumed to be positive, invertible with £-dense range. The set
3/1= [BAB: A^£?+(&)} is a ^-algebra which can be considered as
a *-subalgebra of J*(^f)0 Consider the linear functional coi on j/i
given by a)l(X)=co(A) for all X=BAB^^le The properties of B
yield that coi is correctly defined, positive and norm-continuous on
j/i. Therefore wl can be extended to the C*-algebra ^c^C^f)
generated by jtflm Denote this extension also by cola The properties
of B give also that [BFB: F^^(@)} is norm-dense in ^(Jf).
Hence &*00(Ji?') dj/i. In the usual way (DI can be extended to the
C*-algebra j/ obtained by adjoining the identity / to j/i. This gives
again a positive norm-continuous functional, again denoted by cole

Finally since /Gj/, 0)1 can be extended to a positive linear functional
fthon^(^f). This functional is singular because ®i(BFB) =co(F) =0
for all FeJ^(S), hence by continuity d>i(C) =0 for all
Put <S) = d>iM(/) and apply Theorem 4.3. Then

X(pny for all

If X=BAB(=£/l we get
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Thus

a (A) =0x0)

with C=(&l(I))
l/2°B.

Second proof '. Let \<o(A) \<\\BAB\\ with B = ( ldEx as above. Then
Jo

the corresponding functional & on £% (3t?) is positive, singular and
fulfills (cf. section 3)

(2) <Z(X)=limco(PaXPa), \&(X)\<\\BXB\\.

Fix ae(0, 1) and put B~a = { XadEx, a>0. Then B B-a = Bl~aPa and

. From (2) it is easily seen that w(B~aXB~a) is a Gauchy

sequence (having in mind a-»0) for any X^^(^). Put

This gives a positive functional on £8 (ffl} . Moreover &i is singular

because for Xe^G^f), B^XB^^^^^), too and co(B-aXB~a) =0
for all «>00 For arbitrary Ye ^ C^f) and X=BaYBa one gets

a5ja) =d)(Y).

The last equality follows from the estimation

\ti(B-a
aBaYBaB-a) -co(Y) \<\\B(B-aBaYBaB-a-Y)B\\

= ||B(PBYPB-Y)B||->0 for ^-^0 (see Lemma 2, 2 ii)).

Next put G)2 = fl)i/a>i(/)5 cw2 is a singular state on J* (Jf) (the case &>i(/)

= 0 can be excluded since this would imply o) = 0). Applying Theorem

40 3 we get

l i m n , Y ^ > for all

Consequently,

with C= (ft)i(/))1/25ae J* (^). Now we return to ^f+(S) by observing

that

=<» (A) = lim
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for all A^^(3>}. Then

/) \\B"(PaAPa-A)B«\\
n

which goes to zero for <s— >00 This gives the desired result:

(o(A)=lim^C(pm AC</>ny for all .4<E^+(S).
q0 e, d.

From this theorem we get a trivial but important corollary,,

Corollary 4 9 6« Any positive singular functional on £?+ (&} is the

weak limit of positive vector functionals. Especially, the singular states are

contained in the vector state space of

Proof. Let o) be singular and positive on
, O>0 be given0 From Theorem 40 5 we have

Hence there are L^e^C so that

|ft)(^)-<C^,^C^>|<£ for all

i. e.

for all

This proves the first assertion.
Let CD be a state, then if necessary replace ^n by <fi'n = 2n<fin for all

n^U<=<% for some £/ and lim^2n=l so that <C$[, C$O=1 for all
n&U. Then the statement follows from the considerations above8

qs e0 d.

Finally we derive from Theorem 4B 5 an important result about
the state space E of &+(@). Remember that in the case of C*-
algebras the fact that the unit ball in the dual space is z#*-compact
allows to apply the Krein-Milman theorem. This leads to the well-
known result that the state space of a C*-algebra is the z#*-closed
convex hull of the pure states. In contrast to this the state space of
an 0/?*-algebra is not ^-compact if the algebra contains unbounded
operators. But nevertheless for £?+(&) one can derive the analogous
result. Here we will prove this almost constructively using Theorems
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3.4 and 4.5. In [14] there is given another proof in the context of
more general considerations.

Theorem 4. 7, The state space E of J*?+(S) is the w*-closed convex
hull of the vector states, hence of the pure states.

Proof, Because of Corollary 3. 3 ii) it is enough to prove that E
is contained in the ^-closed convex hull of the vector states. Thus9

let o)^E and A^ • • • , Ak^<&+(&), O>0 be given. According to Theorem
3.4: a) = 6i)'n + a)'s, where &^>03 normal, G>s>03 singular. a) (I) =co'n(I) 4-
o)'s (/) = 1 implies that
/Q\ . I /I JL\\3) (D==tO)n-r (^1 — t ) ( t ) s

with t = co'n(I), a)r, = t~1w'w cos= (1 — £) ~lo)'s is a convex combination of
states. By Corollary 4.6 there is a vector state o)9 on =^+(^) with

(4) \cos(Ai)—w<p(Ai) |<e for i=l, ••-, k0

Since fl>B(4£) =Tr^r=2 fn<^«^»> for some re^i(S)9 T<pn = tn<pm

((pn) an orthonomal system in ^ and 2^ n =l , there is an N^N so
that

(5) IZ]^n<^«? Aipny\(e/2 for 2 = 1, • •• , A;;

r

and there is a C>0 so that | L *n<P« ^iPn) K<7 for all re7¥ and
n=l

i = 1, ••• , A:0 Then

N __ JV

n=l H n n ^^

is a convex combination of vector states and
N

(6) KC^i) -tyi(^0 |< IE(£n-O<^MJ^i^»> I
n=l

+ I2^»<^^P->I^C|(l-l/S^J | +e/2
<s for sufficiently large N,

Combining (3), (4) and (6) we get that

N+l

P=TjrnPn With rn~t»Sm pn=(<pn<) °^nX W = l , •"3 TV
»=1

is a convex combination of vector states satisfying



686 FRANK LOFFLER AND WERNER TIMMERMANN

\oj(AJ-p(AJ |<£ for i=l,- ,A:.

q. e. d.

Acknowledgement

The authors are grateful to the referee for careful reading of the
manuscript and pointing out some inaccuracies.

References

[ 1 ] Anderson, J., Extensions, Restrictions and Representations of States on C*-Algebras,
Trans. Am. Math. Soc., 249 (1979), 303-329.

[2] , Extreme Points in Sets of Positive Linear Maps on B(H}, J. Funct. Anal.,
31 (1979), 195-217.

[3] Dixmier, J., Les C*-algebres et leurs representations, Paris, 1969.
[4] Glimm, J., A Stone-Weierstrass Theorem for C*-Algebras, Ann. Math.,72 (1960), 216-

244.
[ 5 ] Junek, H. and Muller, J., Topologische Ideale unbeschrankter Operatoren im Hilbert-

raum, Wiss. Zeitschr., PHKL Potsdam, 25 (1981), 101-110.
[ 6 ] Kiirsten, K. D., The Completion of the Maximal Qp*-Algebra on a Frechet Domain, preprint,

Leipzig 1985.
[ 7 ] , Two-Sided Closed Ideals of Certain Classes of Unbounded Operators, preprint,

Leipzig 1985.
[ 8 ] Lassner, G., Topological Algebras of Operators, preprint E5-46063 Dubna 1969 and

Rep. Math. Phys., 3 (1972), 279-293.
[9] Lassner, G., Quasi-Uniform Topologies on Local Observables, JINR-Communications,

E17-11408, Dubna 1979.
[10] , Topological Algebras and Their Applications in Quantum Statistics, Wiss.

Zeitschr. KMU, Mat.-Nat. Reihe, 30 (1981), 572-595.
[11] Lassner, G. and Timmermann, W., Normal States on Algebras of Unbounded Opera-

tors, Rep. Math. Phys., 3 (1972), 295-305.
[12] 5 Classification of Domains of Operator Algebras, Rep. Math. Phys., 9 (1976),

205-217.
[13] Loffler, F. and Timmermann, W., The Calkin Representation for a Certain Class of

Algebras of Unbounded Operators, preprint E5-84-807, Dubna 1984.
[14] 1 On the Structure of the State Space of Maximal Op*-Algebras, preprint E5-

85-727, Dubna 1985.
[15] Schmiidgen, K., On Topologization of Unbounded Operator Algebras, Rep. Math.

Phys., 17 (1980), 359-371.
[16] , On Trace Representation of Linear Functionals on Unbounded Operator

Algebras, Comm. Math. Phys., 63 (1978), 113-130.
[17] Takesaki, M., On the Conjugate Space of Operator Algebra, Tohoku Math. Journ., 10

(1958), 194-203.
[18] 3 On the Singularity of a Positive Linear Functional on Operator Algebra,

Proc. Japan Acad., 35 (1959), 365-366.
[19] Timmermann, W., Ideals in Algebras of Unbounded Operators, Math. Nachr., 92 (1979),

99-110.



SINGULAR STATES ON MAXIMAL OP*-ALGEBRAS 687

[20] Timmerman, W., States on Algebras of Unbounded Operators, preprint E5-85-91, Dubna
1985.

[21] Wils, I. M.j Stone-Cech Compactifications and Representations of Operator Algebras, Ph. D.
Thesis, Catholic University of Nijmegen, 1968.




