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§1. Introduction

Algebras of unbounded operators have been studying by many
mathematicians (Borchers, Uhlmann, Lassner, Powers, Schmiidgen,
Antoine, Gudder, etc....) from situations of the physical applications
as well as the sheer mathematical interest. The study of one-
parameter automorphism groups and dynamics in unbounded operator
algebras seems to be hardly done except [8, 17]. It is well known
that the Tomita-Takesaki theory plays an important role for such a
study in von Neumann algebras. In this direction we consider an
unbounded generalization of the Tomita-Takesaki theory, and treat
modular automorphism groups of such algebras.

We define the notion of unbounded left Hilbert algebras which is
an unbounded generalization of left Hilbert algebras in the sense that
the left multiplication is not necessarily bounded. Then a bicommutant
A" of an unbounded left Hilbert algebra 2 is defined and becomes
an achieved left Hilbert algebra, and so it induces the fundamental
theorem of Tomita for the left von Neumann algebra #,(¥") and
the right von Neumann algebra 7°(%") of UA": J'% (A" ] =7"(¥"),
4 (AL~ =Y (A") for all t& R, where J” is the modular conjuga-
tion operator of A" and 4" is the modular operator of %’. The first
purpose is to extend the above results to an unbounded left Hilbert
algebra %. The following question arises.

Question A, Do there exist Of-algebras U (X) and V" (A) such that
U ' =U A, 7 () =7 (A), J U W] =7 (N) and 4% (N)d" " =
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=4 (A) for all t=R?

In order to solve Question A, we need an unbounded generalization
of von Neumann algebras called generalized von Neumann algebra,
and further have to consider the invariance of domains under the
unitary group {4"*}. From this viewpoint, in Section 3 we define
the notion of modular unbounded left Hilbert algebras, and show that
Question A is affirmative for such an algebra. Thus the notion of
modular is important for our study, so that it is natural to consider

the following question.

Question B.  For each achicved left Hilbert algebra ¥, does there exist
a modular unbounded left Hilbert algebra U such that W =U?

In Section 4 we consider Question B for von Neumann algebras
M, with cyclic and separating vector &, and show that if the fixed-
point algebra #§ of the modular automorphism group of the left
Hilbert algebra #o§, in #, is infinitely dimentional, then Question
B is affirmative.

Gudder and Hudson have studied positive linear functionals on
the canonical algebra & for one degree of freedom which induce
unbounded representations of & on the Hilbert space of Hilbert-
Schmidt operators [8]. In Section 5 we investigate under what
conditions trace functionals on Oj-algebras which are important in
states in quantum physics induce modular unbounded left Hilbert
algebras using Gudder and Hudson’s idea, and apply this result to
strongly positive linear functionals on the Ojf-algebra Z'(&¥), &
being the Schwartz space, and the Ojf-algebra generated by the posi-
tion and the moment operators.

In Section 6 we show that modular unbounded left Hilbert algebras
K’ are constructed by unbounded Hilbert algebras 8B investigated
in [9, 14] and positive self-adjoint operators K’ satisfying some condi-
tions and give the necessary and sufficient conditions under which an
unbounded left Hilbert algebra % is represented as K’SB.

§ 2. Generalized von Neumann Algebras

We begin with the definitions and the basic properties about
Of-algebras. Let 2 be a dense subspace in a Hilbert space .
We denote by £(2) the set of all linear operators defined on 2
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and leave 92 invariant, and by #'(2) the set of all elements X of
Z(2) such that the adjoint X* of X exists and the restriction X'
of X* to 2 is contained in #(2). Then £ (2) is an algebra under
the usual operations, and Z£'(9) is a =x-algebra with involution
X—X'. A x-subalgebra of £'(2) is said to be an Oj-algebra on
2.

Let # be an Ojf-algebra on 9. A locally convex topology on 2
generated by the family of seminorms: &—|§||+]||XE|| for XE, is
said to be the induced topology on 2, which is denoted by ¢, If
the locally convex space (2, t,) is complete, then # is said to be
closed. It is well-known that .# is closed if and only if .@=/>{.9()?)0

If 2="2(X*), then  is said to be self-adjoint. If X*=X' for

xeM
each Xe.#, then A/ is said to be standard. It is clear that if . is

standard then it is self-adjoint.

In order to generalize the notion of von Neumann algebras to the
unbounded case, we give some topologies on ¥'(2) and commutants
of Of-algebras. A locally convex topology on £'(2) generated by
the family of seminorms: P, (X)=|(X§lyp)| for §9pED (resp.
P (X) =||X¢§j| for €2, Pf(X)=||XE||+]||X'¢|| for E€2) is said to
be the weak topology (resp. the strong topology, the strong*-topology),
which is denoted by ¢, (resp. t,t¥). We now introduce stronger
topologies than these topologies. We put

Py (X) =Y XEl|, P{(X)=[YXE[|+|[YXE]|
for X, YeX'(2) and £ 2. A locally convex topology on Z'(2)
generated by the family {P,(-); YEZL'(2), §€ D} (resp.{PF:(*);
YeZ'(2), E€2})) is said to be the ultra strong topology (resp. the

ultra strong*-topology), which is denoted by ¢, (resp. £%). It is
easy to prove the following

Lemma 2.1. Suppose 2D is a dense subspace in a Hilbert space
such that L'(D) is closed. Then (L'(D), i) is a complete locally

s
convex *-algebra. The closure M'™ of an Of -algebra M on D with respect
to the topology t¥ is an Of-algebra on 2.

Definition 2.2. An O}-algebra M on D is said to be a generalized
W*-algebra if M = A",
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Suppose £'(2) is closed. By Lemma 2.1 .//Zt‘fs is a generalized
W*-algebra on 2 for every Oj-algebra 4 on 9.
We define a commutant 4, (simply, #’) of an Oj-algebra /4

on 2 as follows:
M={CEZ(D); (CXE|n) =(CE| X
Sor each £, 7€ 2D and XM},

where # ($) is the set of all bounded operators on &. It is well-
known that #’ is a weakly closed, s-invariant subspace of % (9),
but it is not necessarily an algebra, and for the following statements:
(1) A is self-adjoint;
Q2 HA'2D2=9;
(2)" X is affiliated with #” for each X&.#4;
(3) A’ is a von Neumann algebra,
the implications

2)
(D=30=—(@)
2’

hold, but the converse implications don’t necessarily hold [7, 15, 23].
Further, for the above statements (2) and (3) we have the following

Lemma 2.3. [16] Suppose A4 is an OF-algebra on D such that M’

is a von Neumann algebra. Put
9= {3, Céss Gied', €9,
Xi(3 C6) =3 CiXe, X, (ClC A, (£} 9
./%1: {X]_; XE./%}.

Then the closure (.//2, @) of the Of-algebra (M, D,) is the minimum
closed extension of (M, D) such that M =M and M'D=9.

We next define unbounded commutants ., #. and unbounded
bicommutants .#,,., M. of an Of-algebra .# on 2 as follows:

M={SEC(D, §); (SXE|n) = (S5 X'),
Jor each £,9E 2D and XM},

M={S€L(2D); SX=XS§ for each XM},
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Mu={XEL(D); (CXE|n) = (CE|X)
Jor each &, 7€ D and CeM'},
My ={X=L(D); XS=S8X for each SE M},
where ¥'(2, §) is the set of all linear operators X in § such that
2(X)N2(X*)D2. The study of unbounded commutants has been
treated in [5, 7, 8, 10, 16, 21], in particular Mathot has investigated

topological properties of unbounded commutants of Oj-algebras [21].
We have the following

Lemma 2.4.[16,2171 (1) A4, is a subspace of €'(2D, ) whose
4

bounded part equals M.

(2) A is an O}-algebra on D contained in M,

(8) M, is an Of-algebra on D containing the closure .//Zt‘* of M in
(ZLY(D), t¥) such that (M,) =.4".

(4) M, is an Of-algebra on D containing the closure M of M in
(£(2), t.).

(5) Suppose M D=2D. Then Mi={XEL"(D); X is affiliated
with M"Y DMD M.

(6) Suppose M is an Of -algebra on D consisting of bounded operators.
Then ./ﬁ’Z,cz.//th.

Definition 2.5. An Oj-algebra A4 on 2 is said to be a generalized
von Neumann algebra if M is closed, M'D=2D and M,=M

Remark. (1) Suppose M is an Of-algebra on D such that M’ is a
von Neumann algebra. Then it follows from Lemma 2.3 that M, is a
generalized von Neumann algebra on 9.

(2) Suppose M is a generalized von Neumann algebra on 2. Then
it follows from Lemma 2.4, (5) that M={XEL'(D); X is affiliated
with A"} =.ﬁ';=.///_t”:.jz7t:s, so that M is a generalized W*-algebra on
9. In the bounded case, these notions are equivalent to that of wvon
Neumann algebras.

We next consider relations of the bounded part .4, and £ of
an Oj-algebra #, and define the notion of EW*-algebras which is
an another unbounded generalization of von Neumann algebras. Let
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# be an Ojf-algebra on 2. Put

My={AEM; AR (D)},
M2 = {A/2; Ae#’, ADCD and A*D C D}.

Then M#,C.#"?. Suppose A is a generalized von Neumann algebra.

Then A,=4"?, but M, and A’ have not generally relations any
more. We can characterize generalized von Neumann algebras .# on
9 satisfying My=.M" as follows.

Proposition 2.6. Suppose M is a closed Of-algebra on D such that
MD=2D. Then M is a generalized von Neumann algebra on 2 satisfying

¥
My=M"if and only if M=M"2".

Proof. Suppose # is a generalized von Neumann algebra such
that A3=.4". Then it follows from Lemma 2.4, (6) that

¥
T = (M) o= M= L.

*

Conversely suppose M=A"". Then M'= (#"?)’. Tt hence follows
from Lemma 2.4, (6) that

¥
M= = (M) L= Mo,
so that .« is a generalized von Neumann algebra such that #"=.;.
We introduce the notion of EW*-algebras which is another unbo-

unded generalization of von Neumann algebras investigated by [9, 12,
14]. An Op-algebra # on 2 is said to be an EW%*-algebra on
2 (over M;) if M, is a von Neumann algebra on § and (J+X*X)
€M, for each Xe4. It is well-known that a closed EW*-algebra
is standard. Let . be a closed EW*-algebra on 2. Then M and
M, are closed EW*-algebras on 2 over #’. In particular, 4, is
maximum among EW#*-algebras on 2 over #’, which equals {Xe&
LND); X is affiliated with A"} =M= A"

Let o be a x-algebra. A s-~homomorphism 7 of &/ into £'(2 (z)),
where 2 (r) is a dense subspace in a Hilbert space ©,, is said to be
a s-representation of & on §.. A x-representation 7 of &/ is said
to be closed (resp. self-adjoint, standard) if the Oj-algebra z (/) on
2 (m) is closed (resp. self-adjoint, standard). Let 7= be a x-represen-
tation of /. We put
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{@(ﬁ) = r}@(@),
(x)E=m(x)§, xed, EED(R);
{9(”*) =N D (x(x)%),
zes/
¥ (x)E=n(x¥)*E, xe, E€ D (zF);
19 (@) = N D (z*(0) %),
xed
Tk (x) E=n* (x*) *¥¢, xEof, E€ D (a¥*),
Then # and #** are closed x-representations of &/ in &, such that
#(L),=n** (), and 7* is a closed representation of & in §,, but
it is not necessarily a =s-representation. These representations have
the relations: zC#Ca**cz* [7, 15, 23].

Let ¢ be a positive linear functional on a =*-algebra 7. It is
easily shown that Ny={x€/; ¢(x*x) =0} is a left ideal in /. For
each x4/ we cenote by A4(x) the coset of &//N, which contains x,
and define an inner product ( | ) on 4;(&) by: (2;(x) | 25(»)) =@ (p*x)
for x, yeo/. Let 4 be the Hilbert space which is completion of the
pre-Hilbert space 2;(s&/). We define a *-representation =3 of &/ on
94 by

73 (%) 25( ) =24 (xp)
for x, ye/. We denote by 74 the closure of #}. We call the triple

(74, 44, 94) the GNS-construction for @. If z, is self-adjoint, then ¢
is said to be a Riesz functional on 7.

§3. Modular Unbounded Left Hilbert Algebras

In this section we generalize the notion of left Hilbert algebras to
the unbounded case, and extend the main results of Tomita to the
unbounded case.

Suppose that a *-algebra ¥ with an involution # admits an inner
product (| ) satisfying the following condition:

D (ED =0l  for &9, e

Let § be the Hilbert space obtained by completion of %. By (@)
a *-representation 7, of U in § is defined by = (§)p=E&y for &, =¥
whose closure is denoted by 7y (simply 7). Further, suppose ¥ satisfies
the following conditions:
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(i) A% is dense in U, where U? denotes the vector space generated by
{€n; &9}

(i) =(A)’ is a von Neumann algebra.

Let #y (simply, #) be the closure of a #-representation =, of ¥
defined by:

() (2 c,-xi>=$_§c¢n<s>xi for {C} cr (W), {x} C D (x).

Then # is the smallest closed =-representation of % such that
rCaCa*, #(A)'=x(A)’ and #(A)'2 (#) =2 (#) [16]. We now define
a commutant %, of Y. For each &P (#) we define a linear operator
m(7) in § by

m()é=#(&)y, E€U
We denote by 2 ()" the set of all elements » of 2 (#) such that
there exists another element 7° of 2 (#) satisfying the equation:

(71662 = (8311 ")
for each &, ;€. Since %? is dense in § by (ii), it follows that p—7»*
is a conjugate linear operator on 2 ()" satisfying (7*)*=7 and m;3(7")
Cry(n)*. Further, we note that the closure w3 (%) (simply, z’(3)) of
7y(n) is contained in the unbounded commutant zo(%), of the OjF-
algebra m(%). We now define a commutant %, (simply, %’) as

follows:
U= »'(n e (D)}
Then it is easily shown that ¥’ is a x-algebra equipped with the

multiplication »9,=n"(%;)7; and the involution 7—%’, and =z’ is an
anti-*-isomorphism of ¥’ into the von Neumann algebra =(%)’.

Definition 3.1. If a #-algebra U with involution % admits an inner
product satisfying conditions (i), (ii), (iii) and the following conditions (iv),
(v), then U is said to be an unbounded left Hilbert algebra in $:

(iv) (U')? is dense in the Hilbert space © obiained by completion of
u;

V) AxU={€U; z(5) e (D)}

Suppose ¥ is an unbounded left Hilbert algebra in §. Then U’ is
a right Hilbert algebra in §. We denote by Fy the closure of the map
nEWA'—»n*&Y’ and denote by Sy the adjoint of Fz. We see that the
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usual commutant ()’ (simply, A") of the right Hilbert algebra %A’ is
an achieved left Hilbert algebra in § with involution §—>S4§ whose
left von Neumann algebra equals #(%)”, so that the fundamental
theorem of Tomita

@.1 Juw () Ja== (W)’
(3.2) A (X)) "My =m ()"
(3.3) A (W) Ay = (A’

for all t&€ R is obtained, where Jy is the modular conjugation operator
of %" and 4y is the modular operator of ¥” [32,34]. In order to
extend the above results of Tomita to the Oj-algebra =(%), we
introduce the following notion.

Definition 3.2. An unbounded left Hilbert algebra % is said to be
modular if there exists a subspace @D of D (£) such that

() Yco;
2 #MP2co;
3) 49D =2 for all teR.

Let % be a modular unbounded left Hilbert algebra in §. We
denote by Z4 the subspace of 2 (#) generated by 9\/ 2, where #
T

is the set of all subspaces of 2 (#) satisfying the conditions (1) ~(3)
of Definition 3.2. Then it is clear that 24 is the largest element
of &#.

We show that Question A in Introduction is affirmative for every
modular unbounded left Hilbert algebra.

Theorem 3.3. Suppose U is a modular unbounded left Hilbert algebra
in . Then the following statements hold.
(1) Put

U W) ={XEL(Dy); X is affiliated with =(A)"},
V(L) ={XEL(JePy); X is affiliated with =(A)"}.
Then U (N) and ¥ (N) are generalized von Neumann algebras satisfying
Ja (W) Ja=7" ().
In particular, if w is self-adjoint, then % (X) and ¥ (A) are self-adjoint.
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U (N) (resp. 7" (N)) is said to be the left (resp. right) generalized wvon
Neumann algebra of U.
@) Put
of (X) =4 X4y
SJor Xeu (A) and t€R. Then {ol},cp is a one-parameter group of
automorphisms of % (N). A similar statement holds for ¥ ().

Proof. 1t is clear that the restriction #(¥)/Z4 of the Oj-algebra
#(UA) to Dy is an Ojf-algebra on Py such that
3.4) (#(W)/Dy) =n(A)".
Since #(A)’'2 (#) =2 (#) and (8.3), it follows that the subspace @
of 2 (#) generated by n(¥)’'Py satisfies the conditions (1) ~(3) of
Definition 3.2; that is, 2 €%. Since Dy is maximum in &%, we have
T(A) D y= D4, which implies

@) /Dy o= {(XEL(Dy); X is affiliated with
#W) /D20
= (). (by 3.4)

By Lemma 2.4 % (%) is an Oj-algebra on 2y with % (%) ,.=% (¥).
Since 4#Dy= Dy for all t€R and (3. 3), it follows that
(3.5) Ay (M) A=y (A)

for all t=R, which implies that {¢}},.x is a one-parameter group of
automorphisms of % (%). We show that Jy= N 2 (X)eZ. Since

2EY(A)
%c.@uc@ucpﬂ (#(8)/ D)
C_f}@ #(8)) =2 #),
ie
it follows that Jy is a subspace of 2 (#). For each x€ $y there is
a net {x,} in Dy such that hrnx =x and hm Xx,= Xx for each

Xeu (A). Since #(8)/ Dy E%(%l’) for each EE?I we have
lim #(&) x,=#(&)x, lim X#(§)x,=X#(§)x
for each X% (%), which implies #(%A) Py Fy. Further, we have

lim 4@, = A,
lim X4gtx,=lim 43 (4 X4F) =, (by 3.5)
— L ETXED
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for each X% (%) and ¢tER, which implies 44 F 4 C Jy for all i€ R.
Thus, 9y€%F. Since Py is maximum in &, we have Fy= Dy,
which means that % (%) is a closed Ojf-algebra on 2y, Hence
% (U) is a generalized von Neumann algebra on Zy Suppose 7 is

self-adjoint. Then we can similarly show that Z2§= N 2 (X*) eZ,
xEY(A)

which implies % (%) is self-adjoint. It is clear that Jq% () Jy=7" ().
A similar result for 7" () holds. This completes the proof.

We next define the notion of standard unbounded left Hilbert
algebras. If a x-algebra ¥ with involution # admits an inner product
satisfying conditions (i), (ii) of Definition 3.1 and the following
condition (iv)’, then % is said to be a generalized left Hilbert algebra.

(iv)’ The involution E—E* is closable as a real linear operator on the
real pre-Hilbert space A%

We note that if ¥ is an unbounded left Hilbert algebra then it
is a generalized left Hilbert algebra. We consider when the converse
holds. Let % be a generalized left Hilbert algebra in & such that
m(Y)’ is a von Neumann algebra. We denote by Sy the closure of
the map: é€W*—£*<=WU% and put

2 A)={ne2A)"; «'(y) is affiliated with =(A)’}.

Then A'c2(W)'c2(W)cD(SE). It is well-known that in the
bounded case 2 (¥)"=2 (A)'=2 (5%), which implies (A’)?is dense in
the Hilbert space 2 (§%): that is, the converse always holds. But, in
the unbounded case 2 (A)7x P (A)* and the converse does not hold
in general. It is easily shown by analogy with the bounded case
([32] Lemma 3.3) that when I€2(%)", 2 (A)? is dense in & if
and only if ¥ is an unbounded left Hilbert algebra in &, and 2 (%)”
is dense in the Hilbert space 2 (8%) if and only if % is an unbounded
left Hilbert algebra in £ satisfying Sq=Sy.

Suppose ¥ is a generalized left Hilbert algebra in §. We denote
by Sy=Jud¥* the polar decomposition of Sy. Then Jy is a bounded
conjugate linear operator on § such that fi=Jy and J3=1I, and 44
is a positive self-adjoint operator in § such that 44=S5%5y and 43'=
SaS% [81.

Suppose U is an unbounded left Hilbert algebra in §. Then we
note that SyCSy, however Sy and Sy don’t necessarily equal. Hence
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we introduce the following notion.

Definition 3.4. An unbounded left Hilbert algebra % is said to be
standard if it is modular and Sy=Sy.

We next consider unbounded left Hilbert algebras induced by
positive linear functionals. Let & be a x-algebra with identity ¢, ¢
be a positive linear functional on & and (74 445 9, be the GNS-
construction for ¢. If A;(x) =0 implies 74(x) =0, then the pre-Hilbert
space A4(&/) equipped with the multiplication 45(x)25(») =4;(xy) and
the involution 2, (x)*=2,(x*), becomes a *-algebra satisfying conditions
(i), (). Then we have 7(1(H)) =n4(H), D (A5(H) )" Cr3(A),A4(e)
(2 (A4(A)) o =my(A)2s(e) if ¢ is a Riesz functional) and 2;,()’
=n4(f)'25(¢). Here we only consider a *-algebra 2;(«/) when
A xsly($)={xEoA; n,(x) EF(Dy)}. We note that if nJ(2) 4s(e) is
dense in §, then 2;(/) is a generalized left Hilbert algebra in 9y,
and A4(«&/) is an unbounded left Hilbert algebra in §4 if and only
if 74(/)’ is a von Neumann algebra and ms() ‘25(e) is dense in .
We denote by Sy(resp. J4 44 Sp J4, 45) the operators Sagn (resp.
fz¢(w>, Az¢(m, S//{¢<ma J&(x)a A§¢<,mf))o With the help of ([1] Theorem I)

it is easy to prove the following

Lemma 3.5. Suppose 2;() is a generalized left Hilbert algebra in
©s. Then A4() is an unbounded left Hilbert algebra in 4 satisfying
Ss=38% if and only if Jams( L) Jy=ns(l)’ and (AJsAJs24(e) |25(e)) =0
Sor all Acny(Z)".

Definition 3.6. A positive linear functional ¢ on a x-algebra o/ with
identity is said to be modular (resp. standard) if 2;5(&Z) is a modular (resp.
standard) unbounded left Hilbert algebra in $s.

We investigate positive linear functionals which satisfy the KMS-
condition with respect to a continuous one-parameter group of -
automorphisms of a locally convex x-algebra,

We denote by A(0, 1) the set of all complex-valued functions,
bounded and continuous on 0<Imz=1 and analytic in the interior.

Definition 3.7. Let o be a locally convex x-algebra with identity e and
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{a}icr be a continuous one-parameter group of *-automorphisms of . A
continuous positive linear functional ¢ on <f is said to satisfy a KMS-
condition with respect to {a} if for each x, yE </ there exists a function
Sy in A0, 1) such that

Jos @D =9 (a(x)p),  [o,E+0) =p(ya,(x))

for all teR. Such a system (L, {a}, ¢) is said to be a KMS-system.
A KMS-system (o, {a}, ¢) is said to be modular (resp. standard) if ¢
is modular (resp. standard).

Lemma 3.8, Suppose (o, {a)}, ¢) is a KMS-system. Then 25(sf)
is a generalized left Hilbert algebra in $4 satisfying As(e;(x)) =4425(x)
Jor all xeof and tE R, and further (A, {a,}, §) is a standard system
if and only if Jum,() Js=ry() and (AJ,AJ4(0) | 24(e)) 20 for
all Asny(sL)”.

Proof. Since ¢ is {a,}-invariant and ¢ and {a,} are continuaous,
there exists a strongly continuous one-parameter unitary group {U,}
such that U,4;(x) =45(a;(x)) for all x& .« and t&R. Since ¢ satisfies
the KMS-condition with respect to {a,}, it is easy to show that 45(</)
is a x-algebra equipped with the multiplication 24(x)2;( ) =25(xy)
and the involution A5(x) —>2;(x*). Suppose that lim 4;(x,) =0 and
lim 2;(x¥) =&. For each ye& we have o

lim Sullé) fxn.y(t) = (’2¢(J’) [US),

n—>oc0 =

lim sup f, ,(t+9) =0

n—o>o tER

for all t=R, and hence there exists an element f of A(0,1) such
that f(¢) = (4(») |U£) and f(¢+i)=0 for all t=4. Hence, &=0.
Thus 2;(%/) is a generalized left Hilbert algebra in ;. We denote
by o the closure of 2;(&;), where &= {x=sf; x*=x}. Then X
is a closed real subspace of $4 such that J;+i14°y is dense in .
Further, since the involution 2;(x)—>2;(x*) 1is closable, we have
A yNiA y= {0}, which implies that S; equals a closed operator § in
9y defined by: S(E+79)=&—n for §€X;, and nEiAy. It hence
follows from ([25] Proposition 3.7) that the one-parameter unitary
group {44} satisfies the KMS-condition with respect to 4’y in the
sense of ([25] Definition 3.4) such that 444" y="; for all t€R. It
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is clear that U y=X4 for all tR. Further, for each & pEX, we
have

lim suplfs,s, & = GIUS| =0,
llrg ig}?[fxn_yn(t‘l‘l‘) —(Ugln) | =0

for all teR, where {x,}, {y,} C}, which implies that {U,} satisfies
the KMS-condition with respect to % ’s. It hence follows from ([25]
Theorem 3.8) that U,=4% for all t&R. The rest follows from the
above result and Lemma 3.5. This completes the proof.

We next show that a standard system is constructed by every
modular positive linear functional on a *-algebra.

Let ¢ be a modular positive linear functional on a *-algebra o/
with identity e. Put

-@¢= 91¢w> ;

U (Ag(0)) ={XEL(D,); X is affiliated with m4(s0)"} ;

ot (X) =4 X4, XeU (Gy(L)), (ER;

0p(X) = (X2y(0) | 24(e)),  XEU Uy(st)).
Then % (4;()) is a locally convex *-algebra equipped with the weak
topology, {¢% is a continuous one-parametor group of automorphisms

of % (4;(sZ)) by Theorem 3.3 and w; is a continuous positive linear
functional on % (4;()).

Theorem 3.9. (I) Suppose ¢ is a modular positive linear functional
on a x-algebra o with identity e. Then (U (A4(Z)), {0%},0y) is a
standard system.

(2)  Suppose (U (A5(H)), {a,}, wy) is a standard system. Then a,=o%
for all teR.

Proof. (1) It follows from ([32] Theorem 13.1) that for each
A, Bery(/)" there exists an element f, 5 of 4(0,1) such that

Jas(8) = (457#BA(e) | A*24(e)),

Jas(t+i) = (457" A2 (e) | B¥24(e))
for all t€R. Take arbitary X,YE% (4;(&)). Since X and Y are
affiliated with 74(&7)”, we have
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lim sugifAn,Bn(t) —wy(0$(X)Y) | =0,

n—>ce tE

lim suglfAn,Bn(t—i—i) —ws(Yo?(X)) | =0

n—o

for sequences {4,}, {B,} in 7m4(&/)", which implies that there exists
an element fyy of A(0,1) such that

Srx() =04(08(X)Y), fry(t+i) =04(Ye(X))

for all teR. Hence, (% (24()), {09}, ws) is a KMS-system. It is
clear that (% (4,()), {09}, w,) is a modular system. Further, it
follows from Lemma 3.8 that 2,,,¢(0?(X))=A§f¢2w¢(X) for all Xe
% (A5(£)) and t€R, which implies that AZ,¢:A%=UA;’,U*, where U
is the unitary operator obtained by UX24(¢) =la,¢ (X) for Xeu (2;,(HA)).
Hence, (% (44(&)), {09}, w,s) is a standard system.

(2) This follows from Lemma 3. 8.

§4. Standard Uunbounded Left Hilbert Algebras Constructed by
von Neumann Algebras with Cyclic and Separating Vector

In this section we consider Question B in Introduction for von
Neumann algebras with a cyclic and separating vector.

Let ., be a von Neumann algebra on a Hilbert space § with a
cyclic and separating vector &, Then 4,5, is an achieved Ileft
Hilbert algebra in & equipped with the multiplication (4&) (B&)
=AB¢&, and the involution (4&)*=A4%&. Let 4 be the modular
operator of #5, J be the modular conjugation operator of &
and #§ be the fixed-point algebra of the modular automorphism group
{o,} of My in My; that is, ALj={ASMy; 0,(4d)=4"A47 =4 for all
teR}. In this section we construct some Oj-algebras .# such that
ME, are standard unbounded left Hilbert algebras in § satisfying
(ME)" = Moo

Theorem 4.1. Suppose M, is a von Neumann algebra on a Hilbert
space § with a cyclic and separating vector & and D is a dense subspace
in © satisfying

@ &eED;

(it) 4*2=2 for all t€R;
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(i) (AP)" =M, where
={4/9; AcHy ADCD and A*9D C D} ;

Gv) 2% 475,
g%
Then Jl?ts & is a standard unbounded left Hilbert algebra in § equipped
with the multiplication (X&) (Y&,) = XY&, and the involution (X&y)*=X'§,

g% ¥ —t:‘
such that (MP°6) ' =Mobry D o =D (B), 4% (MP° E) A7 =2 (MT " &)
./lg T4
Sor all tER and the left generalzzed von Neumann algebra 021(.///95’“0)

equals .//{09("’ ZM?‘”’ , where # is a closed *-representation #__* of

o %
%

—t ————#s
ME’ &, induced by the left regular representation r=r___x of MT &,

477 ¢

*

Proof. By (i) and (iii) it is easily shown that 4@ & is a gener-
alized left Hilbert algebra in § such that n(dll_?tjfo)’=%/3. Since
A3 — (4P, by Lemma 2.4, (6) and (i), Giv) it follows that
ﬂ(z’?t?fo) #ﬁ(.]/?ts*fo) » We now show
“.1) (A" 8 = Mt
Take arbitrary C<.#; Then we have C&, C*6,= 2 (#) and (C&| X&)
= (X'&,| C*&,) for all Xeﬁt:, and hence CEOEQ(J/_?tS*SO) *. Further,
since ©’ (C&y) X&,=# (X&) C&=CXE, for all XE?//_(?T’:, it follows that
C&e (ﬁt:‘&;) ‘. Conversely suppose 776(.7/(?15*50)’ Then ' () €
71'(.//@550)' My, and so p=n'(7) & E My, Thus aﬂo 50 is an un-

bounded left Hilbert algebra in § such that (J/f?‘so)”:,//ofo and

”
Sv,gzﬂfg equals S 4.
=0

By (i) we have A"jlg A‘”—j/@ for all t€R, and hence

(4.2) 44 42" so=u7z?s &

¥
for all t€ R, which implies that M2° & is modular. Further, we
have

SJDEO:S‘”‘QQEOCSW-th: CS__,;:‘ :S_/logo,
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R
which implies that ¥ °&, is standard.

We next show

(4.3) L

x =9 (#).
"/109550

The statement (4. 2) implies 4*Z (n) = @ (x) and (4 X&) =4"n (X&) 47
for all Xe# and t= R, so that we have

4 (gl CiE) = gl(d”cid—”) 44,€ 9D (n)
and
87 (XE0) 47 (3, Cif) =4m, (XE0) 3, (47C,) 47,

— 45 (4G (X 47,
=3 Cidim(XE) 4%,
= Can(4"XE) &,
= (4 XEy) (Zil C)

for all éCiGiE.@(nl), XeZ?’: and ¢€R, which implies that

%
D (#) =D () and d#(XE)A~=#(4"XE) for all XeAP" and
teR.
¥ - ts*
We finally show % (#?°&)=42%®". Since
g% _
UMD &) ={(XEL(D(®); X is affiliated with My

and
AT 3B = 42y,
={XeL"(2@#); X is affiliated with (M?P)"}

by (4.3) and Lemma 2.4, (6), it is sufficient to show (#2®)’'= 4,

Take arbitrary A=, with 4/2 .#Z. Then it is easily shown that
g%

A/ D (z) EMZ® and w(XE) AE=n(XAE)E for all XE.///?ts and £

9 (z), and hence

A Ck) =3 e D (m),
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m(XE)A (S, Cdn) =3, Cin(XE) ¢,
=3 Cr(XA&) s
=m(X48) (3; C4)

for each C,=.4; and &,€ 2 (x), which implies 4/2 (#) € 42®. Thus
we have A2={L; AcM?) Ml c 4P, which implies

(MED) = (MP?)'=M;. This completes the proof.

We can prove the following in similar to the proof of Theorem
4. 1.

Theorem 4.2. Suppose M, is a von Neumann algebra on a Hilbert
space © with a cyclic and separating vector & and 2 is a dense subspace
in § satisfying the conditions (i), (i) and (iii) of Theorem 4.1 and

%
(iv)" L'(2) is closed and .//{09#.,/{09'“‘_
L
Then M2 "¢, is a standard unbounded left Hilbert algebra in © such that

T —_t* —k
(AT "6 =Moo, D__yx =D (8), 4*%(MT E) A7 =2 (MT %) for all
‘/{? )
___t;‘s '_A—ts* —"‘Ttw
tER and U (MT ") =MPP" =MTDT, where k=H__x .
o %

We give some examples of the systems (., &, 2) satisfying the
conditions (i) ~(iv), (iv)’ of Theorem 4.1 and Theorem 4.2. We
first prepare the following lemma without the proof.

Lemma 4.3. Let T be a positive self-adjoint operator in a Hilbert
space . Put

2(T) =F_°\1@(T»).

Then £'(2=(T)) is a self-adjoint Of-algebra on 2=(T), and the induced
topology Lpaoay, 00 D7(T) is generated by a family of seminorms:||£]l,

=||T"¢|l, neNU{0}, so that (2=(T), ty’@”m))

Further, the ultra-strong topology t¥ on L'(D=(T)) is generated by a
Sfamily of seminorms: P}.(X) =||T"XE||+||T"X€|| for neNU{0} and
Ee9=(T).

is a Fréchet space.
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Corollary 4.4. Suppose T is a positive self-adjoint unbounded operator

=t
in § aﬁflzated with M; such that £ D=(T). Then MZ" D&, and

.//ZQN(T) & are standard unbounded left Hilbert algebras in § containing
{T"6y; neN} such that

(MQ“’(T) "SE )” (.///9"“@) S {:0) ”_‘//{0505

2 x =9 p =2(T)
,//?“’(T) “550 ‘,g.@“’(r) ’5

and

*®

UMT™ D) = (T &) = MFTOT =TT

Proof. We first show that (A4, &, 2=(T)) satisfies the conditions
(i) ~(iv)” of Theorem 4.2. Since T is affiliated with .#3, it follows
that 4¥9=(T)=2=(T) for all t€R. Let T=S:ZdET(2) be the
spectral resolution of 7. Then, for each A=.#, a sequence {E;(n)
AE;(n); ne N} in WE{X; Xe 47" ™} converges weakly to A4,
and hence (AZ"D)"'=.#, By Lemma 4.3, £ (2=(T)) is self-
adjoint. Since T*E, (k) €42 for n, k&N and lim||T"TEy (k) & —

TmT7£||=0 for each £=2~(T) and me N, it follows from Lemma
4,3 that

*

oo tus
(4. 4) T/ 2=(T) € MP™D

—— w
for n€N, which implies 42 D “x 42 P. Thus (M & 2-(T))
*

g tus
satisfies the conditions (i) ~(iv)’ of Theorem 4.2, so that 42 ¢,
is a standard unbounded left Hilbert algebra in £ such that

=y tus
(MF™D T = Mofo, D

and

* *
P tus D® R ts DG ty
% (./ﬂ()9 < 50) —_./ﬂ/() @ —_'./”0 @® 5

where =% + . Hence, it is sufficient to show 2 (#) =2=(T).

J/?""(T)t’“éo
By (4.4) and Lemma 4.3 we have
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(4.5) t

St S
7t @™ 1) l?w(_r)tus
Since a subset {E;(m)AE;(n)&; m,nEN, AcSM} of 42" D&, is

dense in the Fréchet space (2=(7), $+(9°°<T)>)’ it follows from (4.5)

that ¢ @ e *¢, is dense in 2= (T) with respect to the 1nduced topology

.#, which implies 2 () =2=(T) and z(#Z" D "”’) = 42" “’.
v//@‘”(:r‘) us

Further since 2= (T) is dense in the Hilbert space 2 (7*) for neN,

¢

*
it follows from (4.4) that J{@mmt“s is a self-adjoint O} -algebra on
2=(T), which implies 2 (%) = .@(n’)—@ (7).

Similar results for .//{9“(” Eo hold. This completes the proof.

Let 2 be a dense subspace of § and ./ be a subset of €+(2, 9).

We denote b .///t’ e’ @.9 the closure of # in ¥*(2, ) with
y

respect to the topology ¢ generated by a family {P¥; é€2} of
seminorms: P} (X) =||X¢|[+]|X*¢|l, Xe€¥€ (2, 9).

Corollary 4.5. Suppose T’ is a positive self~adjoint unbounded operator
in § affliated with M such that &E 9~ (T’) and A mETOTANW oy
Then Ao/ 9 (T S L) D= (TN = "0 19T, and
W & is a standard unbounded left Hilbert algebra in © such
that (mts’kfo)”:a//ofo and %(Wt:&) equals a closed

EW*-algebra Mo/ D (#) & on D (&) over My, where =

t¥ °
Moy2> 1) S &

Proof. Since Mo/ D=(T") =MZ”T", it follows that (Mo, &, 2=(T"))
satisfies the conditions (i)~(iii) of Theorem 4.1. It is clear that
Ao T=(T) ffsc/{o/@ =T cyE 97T 1 9= (T7). Take arbi-
trary XE.ﬁot in ¢ @™, P Then there exists a net {4,} in A, such
that hmA L£=X¢ and hm A*¥¢=X*& for each €€ 2>(T’). For each
keN and Ee2=(T") we have

llin T*A,6=XT"*, liam T'* A% = X*T"*,

which implies by Lemma 4.3 that {X,} converges to X with respect
to 1%, Hence, Ao/ D=(T7) =) D= =As* "< 7" s g=(T7).
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—1* ineT @@,

Since A,* XM, it follows that (A, &, 2=(T’)) satisfies
the condition (iv) of Theorem 4. 1, so that mts*fo is a standard
unbounded left Hilbert algebra in § such that (mt:&) "= ME
and % (Mo D=(T7)" &) = AP, Further, it is easy to show 4&® =
Mo/ D (%), which implies our assertion.

By Corollary 4.4 and Corollary 4.5 we have the following

Corollary 4.6. Suppose T is a positive self-adjoint unbounded operator
in © affiliated with Mo\ My such that &y D=(T). Then

M) D= (TY = A/ 5=(T)" = (X L*(2=(T)) 3
X is affiliated with My}, which is a closed EW*-algebra on 2=(T) over

Mo Further, Mo/ D= (T) ts*fo is a standard unbounded left Hilbert algebra
in © such that

ES
(Mo/ D™ (T)* &))"= Moty D s =2=(T)
MyD= 1) g

and

U (M) D(TY &) = Mo) T=(T)* =Mof T=(T) ™.

We denote by T(4#,) the von Neumann subalgebra {4&.4,;

AsE D p(DH =N 2 (4Y) and 4°A&E ME, for all a=C} of A, Then
tER

T (M) & is a maximal Tomita algebra in § equivalent to &, and

similar results to Lemma 4.3 for 2,(4) hold. Hence, we can prove

the following in the same way as in Corollary 4.4 and Corollary
4.5.

¥ inet @ g0

Corollary 4.7. Suppose 4 is not bounded and M M.

Then T (My) /D g (4) t’f’é‘o and T (My) /D g(4) ts*&'o are standard unbounded
left Hilbert algebras is © satisfying

AT ] D o) ol =T (M) ] D (d)'
and

LT ] D (D) A= =T (M) [T )"
Sor all acC.
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The following result is an answer to Question B in Introduction.

Theorem 4.8. Let M, be a von Neumann algebra on a Hilbert space
© with a cyclic and separating vector &, and MG be the fixed point algebra
of the modular automorphism group {o,} of Mo in My Suppose MY is
infinitely dimensional. Then there exist standard unbounded left Hilbert
algebras in © whose double commutant equals Mo&,.

Proof. Since A7 is infinitely dimensional, there exists a sequence
of mutually orthogonal projections {E,} in 4§ such that ||E,§||<]1 and
logHE &o||—log||E,41&||>1 for n€N. Then it is easily shown that

T= Z( log ||E 6D E, is a positive self-adjoint unbounded operator

aﬁﬁhated with #§ such that §,€2=(T). Hence, our assersion holds
by Corollary 4. 4.

Corollary 4.9. Suppose M, is a semifinite von Neumann algebra on
a Hilbert space © with a cyclic and separating vector &, and the spectrum
Sy(d) of the modular operator 4 is an infinite set. Then there exist
standard unbounded left Hilbert algebras in § whose double commutant
equals ME,.

Proof. By ([32] Theorem 14. 2) there exists a positive self-adjoint
operator K affiliated with #, such that 4=K2?.K'"% where K’'=JK].
Then K is affiliated with 4§ Since $,(4) is an infinite set, it follows
that §,(K) is an infinite set, which implies that #§ is infinitely
dimensional. By Theorem 4.8 our assertion holds.

§5. Standardness of Trace Functionals on Ojf-Algebras

Gudder and Hudson [8] have studied positive linear functionals
on the canonical algebra & for one degree of freedom which induce
unbounded representations of & on the Hilbert space of Hilbert-
Schmidt operators. In this section we study the standardness of trace
functionals on Oj-algebras using their idea. Woronowicz [36] and
Sherman [30] have dealt with trace representations of positive linear
functionals on the Oj-algebra Z*(¢%), & being the Schwartz space,
and the Oj-algebra generated by the position and the moment
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operators. Lassner and Timmermann [20] and Schmiidgen [28]
have extended their results to more general Oj-algebras. We here
investigated under what conditions trace functionals on a certain O}~
algebra are modular (or standard).

We first prepare some lemmas. We denote by $® 9 the Hilbert
space with inner product < | > of Hilbert-Schmidt operators on a
separable Hilbert space §, and by 2®$ the subspace of HR D
consisting of Hilbert-Schmidt operators whose range are contained in
a subspace @ of . Let K be a densely defined closed operator in
». We define densely defined closed operators z”(KX) and z’(K) as
follows:

{9(””(10) ={Te9R 9; KT HR 9},
" (K)T=KT, T2 (z"(K));

{QMKKD=%TE@®5;TFE®®6L
o (K)T=TK, T 2 (' (K)).

Lemma 5.1. (1) 7' (#(9)) is a von Neumann algebra on HR D

such that o’ (B (D)) ' =n"(B(9)) and =" (B (D)) =]z’ (B (D))J], where
J denotes the isometry on QRO defined by

JT=T*

Let S and K be positive self-adjoint operators in . Then the following
statements hold.

(2) ="(K) is a positive self-adjoint operator in QX9 affiliated with
the von Neumann algebra =" (% (9)).

(8) ='(K) is a positive self-adjoint operator in HR O affiliated with
7' (B ($)).

@ J2E@(K)=2 @ (K)) and z"(K)=]Jz'(K)].

(5) #"(K)-n'(S)=n"(S)n"(K), which is a positive self-adjoint
operator in YR D, where A-B denotes the closure AB of closed operators
A4, B.

Proof. (1) We can show in the same way as in ([8] Lemma 24)
that 7°(Z (9)) '=7"(Z(9)). In fact, take arbitrary é&z"(Z (9))".
For each &, 7€ 9 a sesquilinear form on $Q & defined by

(%, ) EH X H——X(xQ7) YRE)
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is continuous, and hence
O x@n) yQE= (I (§, 9 x|p)

for some I'(§, ) €% (). Since d&x”(# (9H))’, it follows that I' (&, 7)
EA($H)'=CI, so that I' (&, p) =4(&, p) I for some 2(§, ) €C. Further,
2 is a continuous sesquilinear form on $ X, and hence A(§, ) =
(C&|p) for some C=ZH (9), which implies d=="(C). The converse
inclusion is obvious. It is clear that z"(# (9)) =]z’ (# (9))]J, so that
7' (#(9)) is a von Neumann algebra.

(2) It is clear that ="(K) is a positive operator in HRD
affiliated with z"(# (9)). Take arbitrary 42 (z"(K)*). Then
we can show 2(K4)=$. By the closed graph theorem K4 is a
bounded linear operator. Since

> lIK A= 3 e (K)*A (ex D) |
=3 [ (K)*Aey|P<oo,

where || « ||; denotes the norm generated by the inner product < | )
on §Y® P and {¢} is an orthonormal basis in §, we have KA€ HR H.
Hence z”(K) is self-adjoint.
(4) This is trivial.
(8) This follows from (2) and (4).
(5) This is proved by using the theory of spectral resolutions of
self-adjoint operators.

Lemma 5.2. Suppose 2 is a non-singular positive Hilbert-Schmidt
operator on . Then 7' (F (9))2 is an achieved left Hilbert algebra in
DR D equipped with the multiplication (z"(4) Q) (z(B)R) =z"(AB)R and
the involution n” (A) Q—=n" (A*) 2. Further, the modular conjugation operator
Jo of (B (9))R equals the isometry J on $X D, and the modular operator
4y of o' (B (9))R2 equals the operator n’ (273 x"(2?).

Proof. Since £ is non-singular, it follows that z"(Z (9))R2 is
dense in $®H. By Lemma 5.1 we have Jr' (B (D)) J=r"(# (D))
and J2=0. Hence, n'(#($))2 is dense in $X®H, which implies
that =" (# ($))2 is an achieved left Hilbert algebra in $RH. Let
S, be the closure of the involution z”(4)2-—>7"(A*)2 of =" (% (H)) 2.
We show J,=J. The isometry J on HX O satisfies
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ISIJT>=LT|8>  for each S, TEHR ;
. 1) J=1

Jr'(A)J==r"(A*)  for each ASZ(9);

J2=20,

For each T€ $® 9 we have
(3.2) Ja' (@Y a" (@) a" (1) 2=]n" () T="Sa"(T) L.
Let {e,},-15.. be the orthonormal basis in § consisting of eigenvectors
of non-zero eigenvalues {4,},-1,.. of 2. We now put

P,,=i1ek®e7, (n=1,2,...).
k=

Since
l|=" (P,AP,) 2—=r"(4) 2|l
<|l="(P,AP,) R —=z"(P,A) Q||+ ||z" (P,4) 2—="(A) 2|,
<|4]| P2 —2||,+]124*P,—Q2A4%*||,

=4I 12a]D%+ (3 li04%]

for each A=% (9), we have
. 3) lim z* (P,AP,) 2=xn"(A) 2

n—>co

for each A= # (9). Since P,AP,c XY for each A€ Z(9), it
follows that z"(9YRH)2 is dense in the Hilbert space 2 (Sy).
Hence, we have by (5.2)
(5. 4) SoCJx' (27Hz" (2).
Since n’(27Hz"(2) is a positive self-adjoint operator in H9X Y by
Lemma 5.1, we have
R2a"(A)Jr" (A J2>=<{Sen" (4) 2| J=" (4) 2> (by 5.4
={Ja' (V=" (D" (A)2|J=" (4) 2>
=<a"(A) 2|z’ (@ Hz" (Q)a" (4) 2>
=0
for each A€#(9). It hence follows from ([1] Theorem 1) that
J=Jo. By (5.4) we have 4}cCz’(2H)x"(2). By the maximality of
self-adjoint operators, we have 4i=z'(2)z"(2). This completes
the proof.

Lemma 5.3. Let @ be a dense subspace of © such that L+ (D)
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contains the inverse of a Hilbert-Schmidt operator. Then the following
statements hold.

(1) Put
r(X)T=XT

for XELH (D) and TE DR D. Then wis a *-representation of L+ (D)
on DR D with domain DR .

(2) Suppose M is a closed (resp. self-adjoint) O}-algebra on D such
that M'=CI. Then n(M) is a closed (resp. self-adjoint) Oj-algebra on
2R9 satisfying n(M) ' =7"(B (D)) and =(M) ' =7"(B(D)).

Proof. This is similar to the proofs of ([8] Lemmas 22, 23, 24).

Theorem 5.4. Suppose (M, D, 2) is a system satisfying the conditions;
(1) M is a closed Of-algebra on 2 with identity I such that M'=
CIl;

(i) there exists an element T of L*(D) such that T'€HR D;

(iii) 2 is a positive operator contained in DR satisfying

(i), =(M)R*O=9R$:

(iii), %2 =9 for dall tER.

Then the following statements hold.

(1) #(#)Q is a modular unbounded left Hilbert algebra in XD with
91:(.#)9:9@'6 satisfying (r(M)D)"'=2"(B (D)L, Jiwa=Jo=J,
A po=do=n" (272" (2% and U (x(M)2) =n(L*(D)). In particular,
(LT (2))Q is a standard unbounded left Hilbert algebra in R 9.

(2) Put

of(X) =2 XQ %  XeP*(9), t<ER.

Then {0f},crp is a one-parameter group of automorphisms of L (D)
satisfying w(of (X)) =din(X) 45" for all X€ L (D) and t=R;
(3) Put
6,(X) =Tr X!, X2+ (9).

Then the trace functional ¢, on M is modular and (FL*(2D), {6f}, ¢o)
is a standard system.

4) Suppose LT(2D) is self-adjoint. Then every strongly positive
linear functional ¢ on FL*(9D) which satisfies the KMS-condition with
respect to {of} is represented as ¢=y¢, for some constant y>0.
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Proof. (1) It follows from (iii); and Lemma 5.3 that =" (% (D))%2
is dense in DR 9, which implies that 2 is non-singular. By Lemmas
5.2, 5.3 w(#4)82 is an unbounded left Hilbert algebra in HRH such
that D (#runo) = PR, (x(M)RD)'=1"(F (D)2 and Stro=Jr (27
7’ (£2). By (iii), we have

L0eP @ Q=" (27" (") 2R §
=92Q%
for all t€R. Thus n(#)2 is a modular unbounded left Hilbert
algebra in YR Y with D, 4 ,=2® 9. We shall show % (z(H4)2)
=n(L*(2)). Since % (z(M)Q) =L (DR D); 0 is affiliated with
'(# (D))}, we have n(L*(2)) C% (n(M4)82). Take arbitrary d&
U (z(M)82). Then there exists a sequence {4,} in #(9) such that
lim 7" (4,) T=6T and limz"(4*)T=6*T for all T€e2®$YP, which

n—>oo n—>oo

implies that lim 4, and lim 4}¢ exist for each £ 2. We now put

n—>c n—>oo

X&=lim 4,6 and Yé=lim A}¢

n—>oc0 n—>oc0

for each é€€2. For each k€N and £=2 we have
HXE—5(5®5;)%HZ+_=ZIII5(E®e_k)€i]|2
ixk

=lim 3 |4, (EQep) ¢;— 3 (ERey) el

n—o0 i=1

=lim||z" (4,) (EQper) —9(ERew) |13

:0,
where {¢,} is an orthonormal basis in . Hence we have
(5.5) se@a={ "
0, k1
for each £€92. Similarly we have
(5.6) re@me={ 0
0, k1

for each é=€2. By (5.5), (5.6) we have X, Ye¥(2). Since
(X&|np) =(£|Yn) for each & =9, it follows that X £"(2) and
X*+*=Y. For each T€e 2®H we have

lim|| 3 Te,®e,—T12=0,
—oo k=1
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Lim||3 (3 Tes®en) | (m>n)
———limk‘;‘j | XTe, (by 5.5)
=0,

and hence

ST=lim 8(3 Te;Rey)
k=1

=lim 7 (X) (2 Te,®er)
=r(X)T.
Hence, d=r(X) €n(£*(92)).
(2) This follows from (1).
(3) This follows from (1), (2) and Theorem 3. 9.
(4) Since Z*(2) is self-adjoint and ¢ is strongly positive, it
follows from ([36] Theorem 3) and ([20] Lemma 2.4) that
(X)) =TrXs? XeL*(9D)
for some positive operator » in 2@ Y. We now put
$=9+do.

Since ¢ is strongly positive, it is represented as
$(X) =TrXp'=<{z(X)plp>, XEL(D)
for some positive operator o in 2® 9. Then p=(*+29*, and so
o is non-singular, which implies
(5.7) (D) P=2R8.

In fact, take arbitrary T€ 2® 9. Let {¢,} be an orthonormal basis
in  consisting of eigenvectors of non-zero eigenvalues {4,} of o, and

let A,,=kznl%ek®e_k. Then we have TA,=%*(2) for neN and
= k
lim|lz (X) 7 (TA,) p—z(X) T|E=lim > || XTA4,0¢,— XTe,[*
n—oco n—>oo k=1

=lim > J1X T,

oo k=n+

=0

for all X€ #*(2). Hence, T€x(L*(2))0"¢ @, By Lemmas 5. 2,
5.3 a(L*(2))p is an unbounded left Hilbert algebra in HR Y with
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S:(_?J,(g))p:Sp:_]ﬂ’(p‘l)n"(p)., It follows from (5.7) and Lemma 5.3

that m, is self-adjoint and (£*(2), {07}, ¢) is a KMS-system. By
Lemma 3.8 we have
7 (09 (X)) p=4ix (X) p
for all X€%*(2) and t=R, which implies
e (X)n(Y) p| 45T) =<{4n (XY) p| T
=<{n (0%, (XY))p| T)
=<{n(Y) p| 43m (62,(XT)) T
for each X, YEZ+(2), TE2® Y and t€R. It hence follows from
the self-adjointness of #(£*(2)) that
(5.8) LEP2QRYHOC 2R D and Lin(X) 47 =n(s?(X))
for all X #*(2) and t=R, which implies that (£*(2), {7}, ¢)
is a standard system. By (5.8) we have
7 (0% Xp~%) = ditn (X) 45 =7 (P (X))
= (QZitXQ—2it)
for all Xe#*(2) and t=R, and hence p**Xp #=0%X0Q"% for all
XeZ%(2) and teR. Hence, "2 %% (2)’'=CI for all teR,
which implies p=¢£ for some constant y>>0. Hence we have
$(X) =9(X) —9o(X) =("—1) $o(X)
for all Xe¥*(2). This completes the proof.

We give some examples of (4, 2, 2) satisfying the conditions
(i), (@i1) and (iii) of Theorem 5.4. Let & =% (&) be the Schwartz
space of infinitely differentiable rapidly decreasing functions and
{fs} n=01,2,.. be the normalized Hermite functions; that is,

i) = (@) (—1)ra—ig+ (%)ne"z.

Then {f,} forms an orthonormal basis in the Hilbert space LZ—LZ(R)
contained in &. Then =9~(N)= f\,@(N”), where N= Z(n—l—l)

(foRf, and hence Z* (&) is a self'—ad_]omt Of-algebra contalmng
the inverse N of a positive Hilbert-Schmidt operator. We put

={{a,} CC; sup n*|a,{<oco for each kEN},
s,={{a,} €8 a,>0 for n=0,1,2,...},
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Q=2 |l /,Qf  la}es.

Then it is easily shown that 2, 2=(z"(N)) =%Q®L?* and N*2(, , D
Q(an,N" for each kN and {«,} €s,. Hence (&, an)) satisfies the

conditions (ii) and (iii), of Theorem 5.4, and so we have the follow-
ing

Corollary 5.5. (1) Let # be a closed O%-algebra on & with
identity I such that M'=CI, and {a,} =s8,. Suppose ;(.//{)—Qm”}t’”‘"”)=
FPRL:.  Then n(M) Q) is a modular unbounded left Hilbert algebra in
LQL* with Drune,, )=y®.r7 and U (x(M) Dy, ) =7 (L (). In
particular, for every {a':} Es, 7r($+(,?))!2{an) is a standard unbounded left

Hilbert algebra in LAQL* with 91:(?*@7’»9(%,: FRL? and

U (@ (L(F)) Ry =a(LH(F)).

(2) A strongly positive linear functional ¢ on L+ (&) which satisfies
Q a -
the KMS-condition with respect to {o,( M} for {a,} s, is represented as
$=1dg,, , for some constant 7>0.

Let &/ be the canonical algebra for one degree of freedom; that
is, the =x-algebra generated by two self-adjoint elements p and ¢
satisfying the well-known Heisenberg commutation relation: pg—gp
= —i. The Schrédinger representation m, of &/ on L? with domain
& is defined by

w®H O ==i(F)®O,  @@HO=1O.

Then =, is a faithful self-adjoint representation of & with a strongly
2

L&
cyclic vector fy(t) =n ‘e 2 satisfying m(/)’=CI [23]. We note by
the following corollary that positive linear functionals on &/ given by
Gudder and Hudson [8] are standard.

Corollary 5.6. Suppose M is an Of-algebra on & containing my(Z)
and {a,} €8, satisfies

0<a,<re™, neN
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Sor some >0 and y>0. Then n(M)2 ) is a standard unbounded left
Hilbert algebra in L*QL* with Dee, =S QL and U (a(M) D) =
T(LH(F)).

Progf. By ([8] Lemma 27) we have
(5.9) @A)y P = QL

Since FRL*=2P=(z’’(N)), it follows from Lemma 4.3 that the
induced topology ¢, .2 on P®L? is generated by a family of
seminorms:!|T|,=|lz"" (N*) T||, for n€ N, and further, since N=my(aa™),

where az\/—%(q—l-ip) and a+=7}—é_—(q—ip), we have

(5.10)

tﬂ(wo(.nl))ztz(vlt)=t?+(y®f2)-
By (5.9) and (5.10) we have
(5.11) 7 (M) .Q(e_,,ﬂ)‘w =PRI

It hence follows from Corollary 5.5 that z ()% _,, is a modular
unbounded left Hilbert algebra in LARL?* with D, 4, _"ﬂ‘z.?@p
and %(ﬂ(.//{).Q(e_,,g)) =r(£*(&)). By ([8] Lemma 28) (Eand] Lemma
5.2 n(no(.szi))!)(e_ﬂﬂ) is standard, which implies that n(J//)Q(e_,,ﬂ) is
standard. It follows from (5.11) that for each X&%* (%) there is
a net {X,} in . such that li‘fnn'(Y)n(Xa)Q(e_mg)=7r(Y)7r(X)Q(e_"3}
for each Ye£. Since z’(K) is bounded, where Kzi’—%(f,,@f;),

pe
we have

lim 7 (Y) 7(X.) Qya,y =lim 7 (V)7 (X) 7 (K) 2, s
=='(K) lim #(YV)7(X) @, -
=2/ (07N, s
=2(¥)7(X) D,

for each Y&, and hence ﬂ(f*(Y))Q(an,Cﬂ(.//l).Q(aﬂt,“"‘”. Since
2 (LHP)) R "¢ =S QI we have (M), "V =SRL. It
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hence follows from Corollary 5.5 that n(#)2,, is a modular
unbounded left Hilbert algebra in L*QL? with .@,,M)Q(a")=5”®L_z and
Y (( M) ‘Q‘“n’) =r(L*(S)). Similarly it is shown that z" (% (LZ))QM“,
C D (8 /)Q(an]), which implies that =(.) 'Q‘“n’ is standard. This

completes the proof.

§6. Structure of Some Unbounded Left Hilbert Algebra

In this section we investigate unbounded left Hilbert algebras %
such that z(¥)’’ are semifinite von Neumann algebras. We first
introduce the notion of unbounded left Hilbert algebras with EW*-
extendable left regular representation.

Definition 6.1. Let U be an unbounded left Hilbert algebra in 9.
If there exists a subspace & of D (#y) such that UC &, #(A) ECE
and wg(N)"" & =&, then U is said to be an unbounded left Hilbert algebra
with EW*-extendable left regular representation.

Let % be an unbounded left Hilbert algebra in  with EW*-
extendable left regular representation and = be the left regular
representation of %. We denote by &4 the subspace of 2 (%)
generated by g\ng &, where & is the set of all subspaces & of 2 (#)

such that Yc &, 2A) £ &, and #(A)"€=¢&. Then &4 is the
largest element of #. We denote by #%(¥) the Oj-algebra on
€ v generated by #(A)/Ey and 7 (A)’/ &y, and denote by % (A)
the closure of Z%(¥) in (L (&y), tu,).

Lemma 6.2. Suppose U is an unbounded left Hilbert algebra in 9
with EW*-extendable left regular representation. Then the following state-
ments hold.

(1) # is standard.

(2) UxU) is a closed EW*-algebra on &4 over m(A)” which is
minimum among EW*-algebras on &y over ()" containing #(N)/ & o,
which is called the minimum left EW*-algebra of .

B) #iA) is maximum among EW*-algebras on &y over m(A)”
containing #(N)/ & o, which is said to be the maximum left EW*-algebra



UNBOUNDED TOMITA-TAKESAKI THEORY 757

of U, which equals (#(N)/ & @) oe=U % (N) .= {XE L (&) ; X is affiliated
with ©(A)"}.

Proof. (2) It is easily shown that Z%(¥) "=z (A)” and #(A) &4

and N 2(X) are contained in #. Since &, is maximum in £,
Xeah o
it follows that &y=r(A)'&y= N D (X), which implies that

Xeqp @
%% (A) is a closed EW*-algebra on &4 over m(A)". It is clear
that # %(¥) is minimum among EW*-algebras on &4 over z ()"’
containing #(A)/ & .

(3) As stated in Section 2, it follows that # (%) = (% 5(N)) .=
@)/ Eu={XEL (&) X is affiliated with =(A)’’}, which
implies that % (%) is maximum among EW?*-algebras on &4 over
m(A)" containing #(A)/ & .

(1) Since Z}(¥) is a closed EW#*-algebra on &4, it follows
from ([9] Theorem 2.3) that

#(E)DR(EF)/ Ey=(2(E)/ E)*DA(E*

for each é%. Hence, # is standard.
By Lemma 6.2 we have the following

Corollary 6.3. Suppose U is an unbounded left Hilbert algebra in 9
with EW*-extendable left regular representation.  Then the following
statements are equivalent.

(1) #=m; that is, #(N)'D (x) = D (n).

(2) = is self-adjoint.

(8) = is standard.

Proposition 6.4. Suppose U is an unbounded left Hilbert algebra in
O with EW%*-exiendable left regular representation such that =(N)" is
semifinite. Then the following statements hold.
(1) U is modular.
(2) Put
0, (X) =4 X4

Sor t€R and XU (N) (resp. X4 (N), U5(N)). Then {6},cr is a
one-parameter group of automorphisms of the left genmeralized von Neumann
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algebra U (N) (resp. U 5N), UHN)).

Proof. 1t follows from ([32] Theorem 14.2) that 4"*=K"'.K’
for some positive self-adjoint operator K’ in O affiliated with = (%)’
and K=J,K'Jy, which implies that UC &,C P (#), #(A) E4C Ey
and 4§ 4= &y for all teR. Hence, ¥ is modular. It follows
from Theorem 3.3, (2) that {s¢,} is a one-parameter group of
automorphisms of # (¥). Since K#*exn(A)” and 4"*Y:(AW)4" "=
K%y x (M Ku=9*(A) for all :=R, it follows that {o,} is a one-
parameter group of automorphisms of #j;(U). For #%;(A) we
have the same result as % ¥ (¥).

We give some examples of unbounded left Hilbert algebras with
EW#*-extendable left regular representation.
We first consider unbounded generalization of Hilbert algebras.

Definition 6.5. A generalized (resp. unbounded) left Hilbert algebra
A is said to be a generalized (resp. unbounded) Hilbert algebra if dy=1.
A generalized Hilbert algebra % in O is said to be an extended Hilbert

algebra if Ui is dense in O, where Uy={£€U; 7 () eF(D)}.

Suppose ¥ is an extended Hilbert algebra in . Then ¥, is a
Hilbert algebra in © and % is an unbounded Hilbert algebra with
standard left regular representation satisfying €,C U’ C U5 In [9] the
structure of extended Hilbert algebras has been decided. Further, the
following relation between extended Hilbert algebras and unbounded
Hilbert algebras holds [14].

Proposition 6.6. Let U be a generalized Hilbert algebra. Then the
Sollowing statements are equivalent.

(1) U is an unbounded Hilbert algebra.

@ Jur () Je=(0)".

B) =mA)’ is a von Neumann algebra, # is standard and U is a
x—subalgebra of an extended Hilbert algebra.

In this case, W is an unbounded left Hilbert algebra with EW*-
extendable left regular representation.

We next consider unbounded left Hilbert algebras constructed by
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unbounded Hilbert algebras and positive self-adjoint operators.

Let (#, K’) be given, where # is an unbounded Hilbert algebra
in a Hilbert space  and K’ is a non-singular positive self-adjoint
operator in O affiliated with 74(#)’ satisfying # 2 (K’). We now
define a multiplication and an involution on K'# by

(K'€) (K'p) =K’&y,
(K'§)i=K'é*
for §, n&%. Then K'% is a x-algebra satisfying
(6. 1) K'#C 2 (tg) and #4(8) K'n=K'&y

for each & ne4%. Let K’:SmZdE’(Z) and KE‘]@K'J_@:S«Z dE (2) be
0 0
the spectral resolutions of K’ and K, respectively and put E’(n)
zgna’E'(Z) and E(n) =YdE(Z) for neN. We consider when K’# is
0 0

an unbounded left Hilbert algebra with EW*-extendable left regular
representation.

Theorem 6.7. Suppose (%, K') is a couple of an unbounded Hilbert
algebra B in a Hilbert space $ with standard left regular representation
and a non-singular positive self-adjoint operator K’ in O affiliated with
rg(B)" such that 2D (K') and mtnﬂ:@(ng). Then K'# is an
unbounded left Hilbert algebra in O satisfying wy.5(K'E) =ng(§) for each
EERB and Sy g=JgK K . Further, suppose B"C D (K'); for example,
B has identity. Then K'F is an unbounded left Hilbert algebra in 9
with an EW*-extendable left regular representation.

Proof. Since K'# is dense in (2 (ng), t,,g) and the statement
(6. 1), it follows that K'# is a *-algebra in 9 satisfying zx.4(K’€)
=ng4(§) for every §€ %, (K'#)”? is dense in O and ((K'§) (K'p) |K'0)
=(K'p| (K'&)¥(K'C)) for each &, 79, {es#. Since

(6.2) UNE(n)E’(m) BB N2 (K ND K,

it follows that 2N 2 (K) N 2 (K’) is a Hilbert algebra in . Further,
since #"C 2 (ng) [14] and (6.1) we have

(ng(&) 7| Kx) = (JKx|7*E%)
= (x* | K'7*E%)
= (x*| g (7*) K'6%)
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= (mg () x* | K'€¥)
= (7] ogn (%) K'€%)

for each ¢, €% and x€ %N 2 (K) N 2 (K’), where pg. is the right
regular representation of #”, and hence K(#'N2K) N2 K))C
D (ng) and 7gz(8) Kx=pg4 (x)K'€ for each é€%# and x&€%4'N 2 (X)
N 2 (K’), which implies that

(Kx| K'§9) = (K'p*E*| Kx*)
and
Tirg(Kx) K'6 =n4(8) Kx=pg (x) K'&
for each &, =% and x€Z"'N2(K) N2 (K'). Hence, we have

(6. 3) K#B " N2K)N2K))C(K'F)’,
(Kx)'=Kx* and 7wyg(Kx)=pg (x)

for every x€e 2N 2 (K) N 2 (K’). It is clear that (\JE(n)E (m) #")*
is dense in the Hilbert space 2 (K), and hence by (6.2) K(#'N
2(K) N2 (K"))?%is dense in . It hence follows from (6. 3) that (K'#) 2
is dense in 9, which implies that K’% is an unbounded left Hilbert
algebra in ©. We next show Skg=JzK-K'".  Take arbitrary
x&(K'A)" and ye2(KK'™"). Then, y=K’z for some z€ 2 (K)
N2 (K’). It follows from (6.2) that Z'N2(K) N2 (K" is dense
in the normed space (2 (X) N2 (K), ||| ll) where |[|x|||=||Kx||+ || K x||
for x€ 2 (K) N 2 (K'), so that there exists a sequence {£,} in Z'N
2(K) N 2 (K’) such that lim K§,=Kz and lim K'6,=K’z.  Then we

n—>o0 n—>o0

have
(KK'"Y|x) =lim (K&,| x) (by 6. 3)
=lim (S gx| KEF)

n—>00

= (Skgx|JaK'2)
= (}’]J.@S}/{/gx) 5
which implies that x€ 2 ((KK'™)*) =2 (K-K'™) and K:K'"'x =] zS% 4%
for every x= (K'#)", which means Sz,zCJzK-K’~. On the other
hand, since Z'N2(K)N2K")cCc(K'#)”, lim K'§,=y and
lim S”K/‘%K,E” =JQKZ,

we have JzK-K''CS% 4.
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Suppose #°C 2 (K’). We denote by E(Z) the x-algebra generated
by # and #”. Then it follows from ([14] Theorem 3.3) and (6. 1)
that E(#Z)C 2 (K", KB CK'E(B)CD (rg), 7rg(K'B)K'E(H)C
K'E(#) and 7y 4(K'#)'K'E(#) CK'E(#), which implies that K'#
is an unbounded left Hilbert algebra with EW*-extendable left regular
representation. This completes the proof.

By Proposition 6.4 and Theorem 6.7 we have the following

Corollary 6.8. Suppose (A, K’) is of Theorem 6.7 and #B'C D (K').
Then K'# is a modular unbounded left Hilbert algebra with standard left
regular representation. Further, suppose B is dense in the normed space
(2K)N2K), Il ID. Then K'# is a standard unbounded left Hilbert
algebra.

We next consider the converse of Theorem 6.7: When is an
unbounded left Hilbert algebra U represented as =K' R?

Theorem 6.9. Suppose U is an unbounded left Hilbert algebra in a
Hilbert space O satisfying wy(N)” is a semifinite von Neumann algebra,
mg (A) CL(z") and ng(U?) is dense in L*(z"), where 7 is a faithful
normal semifinite trace on wy(N)". Then A is unitarily equivalent to the
unbounded left Hilbert algebra K'#, where (%, K') is a couple of an
unbounded Hilbert algebra % in a Hilbert space A with standard left
regular representation and a non-singular positive self-adjoint operator K’ in
A affiliated with ngz(B)’ satisfying D (K') and K'H is dense in
(D (g), L)

Progf. Since ¥ is an unbounded left Hilbert algebra in 9, it
follows that 2" is an achieved left Hilbert algebra in O such that
7y (A)” equals the left von Neumann algebra #,(¥") of ¥'. We
denote by % the set of all left bounded elements & of © with
(&) €N, where 1" (&)n=ny(n)& for €W’ and N, ={Xca, (A)";
" (X*X)<oo}. Takesaki has proved in [32] that

(6.4) = is a closable operator of the dense subspace & in O onto
the dense subspace =" (&) in L*(z") whose closure Il is non-singular;

(6.5) let II=VT’ be the polar decomposition of II. Then V is a
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unitary operator of © onto L*(z") and T’ is a non-singular positive self-
adjoint operator in O affiliated with wy (N)" satisfying 4'F=T72T’, where
T=JuT Ju;

(6.6) let po be the representation of mwy(A)” on L*(z") defined by:
0o(X)Y=XY for Xeny(N)" and YEN,..  Then, the unitary operator
V induces a spatial isomorphism between wy(N)” and py(my(A)") such
that Vi’ (&) V*=p,(a"(§)) for E€Z;

6.7) AN is dense in the Hilbert space 2D (T’).

Let 4 be the inverse of I and A=UK’ be the polar decomposition
of 4. Then we have U=V* and K'=U*T'"'U. It follows from (6. 5)
that U is a unitary operator of L?(z") onto § and K’ is a non-
singular positive self-adjoint operator in L%*(z") affiliated with the

von Neumann algebra g,(my(2)”). Since my(Y) CL(z"), it follows
from ([9] Theorem 5) that =, is standard, which implies that

7wy (&) + 7y () =g (§) + 7y () =7y (§+7), Aoy (§) =Amy (§) =my (26),
Ty (&) *my (n) =y (8) wy (1) =7y (En) and my(§) * =my () for each &, nE .
Hence, # =y () is a generalized Hilbert algebra in L*(z"") equipped

with the strong sum, strong scalar multiplication, strong product
and adjoint. We first show

(6. 8) AC D) and [e=rg(E)

for every £€¥. Take arbitrary £€U. Let 7y4(§) =U,|my(§)| be the
polar decomposition of 7y (&) and |7y (8) | 28:2 dE:(2) be the spectral
resolution of |7y(§)|. Then it follows that E.(n)§€¥ and
7' (Ep(n) €) = Epe(n) 7y (§) =Ee(n) g (§%) |U¥ for nEN, so that

lim Eq(n) §=6,

n—>co

lim || /7 e (n) § ~7¢ @) |3=limllx"” (Ees () ©) =7 ()

=lim 1 (I~ Egs(n)) [74(8) [?)

=0,
where || ||; is the L*-norm on L2%(z") and g, is the integral on
L'(z") [26]. Hence, £E€2 (II) and [IE=my ().
Since py(7y (X)) '=pp(7y (A)"), where pg is the antirepresentation
of 7y ()" on L*(z") defined by: 0(X)Y=YX for XEr, ()" and
YeN,, it is easily shown that py(ry(N)")'Crg(F)’, so that K’ is
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affiliated with 74(#)’. It hence follows from (6. 8) that # C 2 (X')
and K'# is a generalized left Hilbert algebra in L%*(z), equipped

with (K'my (£)) (K'ny (7)) = K'ny (§7) and (K'my (§) ) *=K'my (§), satisfying
(6.9 Tgg(K'my(8)) Crg(my(€))

for every £ ¥. Further, since Ung,5(K'my(§)) (K'ny(9)) =UK'ny (§7) =
Ty (&) 7y for every &, nEY, it follows that Urng.g(K'my (§)) U* =y (§) for
every £, so that 74 is standard by the standardness of 7y, which
implies by (6.9) that

(6.10) Txg(K'my(§)) =ng(my(§))

for every §é=4%. Hence, ng is standard, which implies that K'#Z is
dense in (2 (ng), t,rg).

Since 7y is unitarily equivalent to 7y, and the statements (6.6),
(6.10), we have 74(#) " =py(7y (A)"). We now show that # is an
unbounded Hilbert algebra in L*(z"). Take arbitrary XN, Then

it follows that XE 9 (n5) and 74(ng(8)) X=71q(8) X=04(X) 7y (€) for
every £, so that 7gx(X) =p(X). Hence, N, H#’. Since N, is an
achieved Hilbert algebra in L?(¢"), it follows that & is an unbounded
Hilbert algebra in L%*(z") satisfying #"=RN.,. It is clear that the
unitary operator U of L*(z”) onto © induces an isomorphism between
the unbounded left Hilbert algebras K'# and %. This completes the
proof.

Let o be a x-algebra with identity ¢ and = be a tracial positive
linear functional on ./ (that is, z(x*x) =t(xx*) for each x&.).
Then, the pre-Hilbert space 4,(&/) in the Hilbert space 9, is a
generalized Hilbert algebra in O, equipped with the multiplication
2. (x)2,(y) =2,(xy) and the involution 2 (x)*¥=2.(x%). By ([14]
Theorem 3. 3) 2,(&/) is an unbounded Hilbert algebra in 9, if and
only if = is standard if and only if Jz (&) ], =7 ()"

Suppose 7 is a standard tracial positive linear functional on ./
and K’ is a positive self-adjoint operator in O, affiliated with = (&)’
satisfying 2 (K’) D4.(&). Then a positive linear functional K'7K’ on
&/ is defined by

(K'zK") (x) = (K'2.(x) | K'2.(e))
for xe/. By Corollary 6.8 and Theorem 6.9 we have the following
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Corollary 6.10. Let ¢ be a positive linear functional on a *-algebra
& with identity e. Then the following statements are equivalent.

(1) ¢=K'tK’, wheret is a standard tracial positive linear functional on
& and K’ is a non-singular positive self-adjoint operator in . affiliated with
m. ()" satisfying 2. () C 2 (K') and K'2. (L) is dense in (D (x,), t,rz).

(2) my(A) 24(e) is dense in D4 and there exists a faithful normal

finite trace ©' on wy(sf)" such that wy(sf) is densely contained in the
Hilbert space L*(z").

In this case, ¢ is modular, and ¢ is standard if and only if 2.(f) is
dense in the normed space (2 (K) N2 (K| |, where K=J.K'J..
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