
Publ. RIMS, Kyoto Univ.
22 (1986), 725-765

An Unbounded Generalization of the
Tomita-Takesaki Theory

By

Atsushi INOUE*

Algebras of unbounded operators have been studying by many
mathematicians (Borchers, Uhlmann, Lassner, Powers, Schmiidgen,
Antoine, Gudder, etc... .) from situations of the physical applications
as well as the sheer mathematical interest. The study of one-
parameter automorphism groups and dynamics in unbounded operator
algebras seems to be hardly done except [8, 17], It is well known
that the Tomita-Takesaki theory plays an important role for such a
study in von Neumann algebras. In this direction we consider an
unbounded generalization of the Tomita-Takesaki theory, and treat
modular automorphism groups of such algebras.

We define the notion of unbounded left Hilbert algebras which is
an unbounded generalization of left Hilbert algebras in the sense that
the left multiplication is not necessarily bounded. Then a bicommutant
2T of an unbounded left Hilbert algebra 21 is defined and becomes
an achieved left Hilbert algebra, and so it induces the fundamental
theorem of Tomita for the left von Neumann algebra ^0(2T) and
the right von Neumann algebra y0(2T) of 2T: /'^oCSO/'^^oCSO,
J""^o(aO^~'''=*o(2r) for all t^R, where f is the modular conjuga-
tion operator of 2T and A" is the modular operator of ST. The first
purpose is to extend the above results to an unbounded left Hilbert
algebra 2L The following question arises.

Question A0 Do there exist 0$-algebras <2f (3Q and ^(21) such that
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for all tt=R?
In order to solve Question A, we need an unbounded generalization

of von Neumann algebras called generalized von Neumann algebra,
and further have to consider the invariance of domains under the
unitary group { d"lt] . From this viewpoint, in Section 3 we define
the notion of modular unbounded left Hilbert algebras, and show that
Question A is affirmative for such an algebra. Thus the notion of
modular is important for our study, so that it is natural to consider
the following question.

Question B. For each achieved left Hilbert algebra 2I0 does there exist

a modular unbounded left Hilbert algebra SI such that 2T = 2I0?
In Section 4 we consider Question B for von Neumann algebras

JIQ with cyclic and separating vector £0, and show that if the fixed-
point algebra Jil of the modular automorphism group of the left
Hilbert algebra ^Ofo in ^o is infinitely dimentional, then Question
B is affirmative.

Gudder and Hudson have studied positive linear functionals on
the canonical algebra j/ for one degree of freedom which induce
unbounded representations of stf on the Hilbert space of Hilbert-
Schmidt operators [8], In Section 5 we investigate under what
conditions trace functionals on Ojf -algebras which are important in
states in quantum physics induce modular unbounded left Hilbert
algebras using Gudder and Hudson's idea, and apply this result to
strongly positive linear functionals on the Ojf-algebra J^T(«^), <?
being the Schwartz space, and the Ojf-algebra generated by the posi-
tion and the moment operators.

In Section 6 we show that modular unbounded left Hilbert algebras
K'%5 are constructed by unbounded Hilbert algebras S3 investigated
in [9, 14] and positive self-adjoint operators Kr satisfying some condi-
tions and give the necessary and sufficient conditions under which an
unbounded left Hilbert algebra 21 is represented as K'%j,

§ 2. Generalized von Neumann Algebras

We begin with the definitions and the basic properties about
Op -algebras. Let 3f be a dense subspace in a Hilbert space $.
We denote by J^(S) the set of all linear operators defined on 3
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and leave 2 invariant, and by ^f f(^) the set of all elements X of
&(&) such that the adjoint X* of X exists and the restriction X*

of X* to 2 is contained in &(&). Then JgP(^) is an algebra under

the usual operations, and &(&) is a ^-algebra with involution
X-^>X\ A *-subalgebra of <&*(&) is said to be an Ojf-algebra on

Let Ji be an O* -algebra on @. A locally convex topology on 3)

generated by the family of seminorrm : f— H l f | l + ll^?ll for X&^tf, is
said to be the induced topology on ^3 which is denoted by t^. If

the locally convex space (@ , t^) is complete, then Jt is said to be

closed. It is well-known that Jt is closed if and only if 2—r\ &(X)0
XZ.JI _

If @=r\@(X*\ then Jt is said to be self-adjoint If X*=Zr for
X<=J{

each X^Jl^ then Ji is said to be standard- It is clear that if Ji is

standard then it is self-adjoint.

In order to generalize the notion of von Neumann algebras to the

unbounded case, we give some topologies on & (@) and commutants

of O* -algebras. A locally convex topology on ^(^} generated by

the family of seminorms: P^(X) — \ (X£ ] 2?) | for <f, ̂ eS (resp.

Pe(X)=\\X£\\ for feS, P f ( X ) =\\X$\\ + \\X^\\ for fe^) is said to
be the weak topology (resp. the strong topology, the strongs-topology) ,

which is denoted by tw (resp. t s , t f ) . We now introduce stronger

topologies than these topologies. We put

pY.eW =\\Yxe\\9 p^(^) = ny^fii + i|y^fii
for X, Ye^fT(S) and fe^. A locally convex topology on ^?r(^)

generated by the family [Py^( • ) ; Fe^T(^), ^@] (resp. {Pf^O ;

Fe^fT(^), feS}) is said to be the ultra strong topology (resps the

ultra strong*-topology) , which is denoted by tus (resp. t*s) . It is

easy to prove the following

Lemma 20 1. Suppose & is a dense subspace in a Hilbert space !Q

such that £e\gi} is closed. Then (^?T(^)5 O w a complete locally
-t*

convex ^-algebra. The closure Jlu* of an Op -algebra Jt on & with respect

to the topology t*s is an Op -algebra on 2.

Definition 28 28 An 0$ -algebra J£ on 2 is said to be a generalized

W* -algebra if Jt=Jli*\
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Suppose «£?r(^) is closed. By Lemma 2. 1 j$us is a generalized
W*-algebra on @ for every Ojf-algebra Jl on <& \

We define a commutant uC (simply, Jl'} of an O| -algebra ^
on & as follows:

for each c, 3?^^ and

where 38 (!Q) is the set of all bounded operators on $. It is well-
known that Ji' is a weakly closed, ^-invariant subspace of ^($),
but it is not necessarily an algebra, and for the following statements:

(1) Jl is self-adjoint;
(2) Jt'3f = ®\

(2)7 X is affiliated with Jl" for each
(3) ^x is a von Neumann algebra,

the implications

(2)

hold, but the converse implications don't necessarily hold [7, 15,23].
Further, for the above statements (2) and (3) we have the following

Lemma 20 3, [16] Suppose Jl is an Op-algebra on 2 such that J£'
is a von Neumann algebra. Put

=i; C,Zf,, Ze^, {CJ cuT, {f J

Then the closure (Jt, &) of the Op-algebra (u^i, 2>^) is the minimum

closed extension of (uT, ^) jwcA ^to J£' — Jtf and Jt'@=<£ia

We next define unbounded commutants u^, ^^ and unbounded
bicommutants ^^c, uT*c of an O| -algebra uT on S as follows:

ur;= {se^T(s, ©) ; (5z? |^) - ore ITO,
/or ^cA f, 37 e

; SX=XS for each
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for each ?, 3?e^ and

; XS = SX for each SeE^C),

where ^T(^, $) is the set of all linear operators X in $ such that

& (X) n&(X*)!3&. The study of unbounded commutants has been

treated in [5, 7, 8, 10, 16, 21], in particular Mathot has investigated

topological properties of unbounded commutants of O| -algebras [21].

We have the following

Lemma 2.4. [16,21] (1) Ji'a is a subspace of <g\2^ g>) whose

bounded part equals JC '.

(2) Jt'c is an Op -algebra on 2 contained in Jt'0.
-i*

(3) Jiwc is an Op -algebra on 2> containing the closure Jt 's of Ji in

(^(@\ tf) such that (Jl"w^>' = Jtf.

(4) Jt"cc is an Op-algebra on 3) containing the closure J%w of Jt in

(5) Suppose Jt'®=-@. Then Jl^c= (X^^(^) ; X is affiliated

with Jl"} Z) Jt"cc z> J[tw.

(6) Suppose J£ is an Op -algebra on @ consisting of bounded operators,
-**Then Jt"wc = Jt* .

Definition 20 50 An Op -algebra Ji on 3f is said to be a generalized

von Neumann algebra if Ji is closed, Ji' Q) = Q) and Jl"wc = Ji.

Remarko (1) Suppose Ji is an Op -algebra on Qi such that Jtf is a

von Neumann algebra. Then it follows from Lemma 2. 3 that Jt"wc is a

generalized von Neumann algebra on 2$.

(2) Suppose Ji is a generalized von Neumann algebra on &> \ Then

it follows from Lemma 2.4, (5) that Jt=-{X^^(@}°, X is affiliated
-i -t*

with Ji"} =- Ji"cc = Jt w — Jl u\ so that Ji is a generalized W*-algebra on

2 . In the bounded case^ these notions are equivalent to that of von

Neumann algebras.

We next consider relations of the bounded part Ji^ and Ji" of

an O*-algebra Jl^ and define the notion of EW*-algebras which is

an another unbounded generalization of von Neumann algebras. Let
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u? be an O/ -algebra on ^. Put

and

Then *Mi<^.Jt"2» Suppose dt is a generalized von Neumann algebra.

Then Jt^Jt"31^ but Jti, and Ji" have not generally relations any
more. We can characterize generalized von Neumann algebras Jl on
3f satisfying Jtl = Jt" as follows.

Proposition 2.6. Suppose Jt is a closed Op-algebra on <& such that
Jl'3l = @. Then Jt is a generalized von Neumann algebra on & satisfying

___*s*
^l = ̂ 'f if and only if Jl^Ji"31 ,

Proof. Suppose Ji is a generalized von Neumann algebra such
that Jl"t~Jt"« Then it follows from Lemma 2.4, (6) that

Conversely suppose Jt = Jt"* . Then Jt'r=W*y. It hence follows
from Lemma 2. 49 (6) that

so that ^ is a generalized von Neumann algebra such that ^" = ^1.
We introduce the notion of EW*-algebras which is another unbo-

unded generalization of von Neumann algebras investigated by [9, 12,
14]. An Op -algebra Jt on 2 is said to be an EW*-algebra on

2 (over ^b) if Ji^ is a von Neumann algebra on JQ and (I+X*X)~1

^J?b for each X^Jt. It is well-known that a closed EW*-algebra
-**

is standard. Let Ji be a closed EW*-algebra on ®. Then J£us and
Jt"wc are closed EW*-algebras on 2 over ^. In particular, J£"wc is
maximum among EW*-algebras on 2 over ^", which equals {^^

^f f(^) ; X is affiliated with Ji"} =J["cc = tJ
t*.

Let stf be a ^-algebra. A ^-homomorphism TT of j/ into ^(^(TT)),
where S (TT) is a dense subspace in a Hilbert space $s, is said to be
a ^-representation of stf on §ff. A ^-representation TT of j/ is said
to be closed (resp. self-adjoint, standard) if the O|-algebra n(jf) on
Si (TT) is closed (resp. self-adjoint, standard). Let TT be a *-represen-
tation of si. We put
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*(*)£ = *(*)

;r**ooe=7r*o
Then ft and TT** are closed ^-representations of sf in $ff such that
TT (jtfyw = u:**(jtf) 'w, and TT* is a closed representation of j/ in ^, but
it is not necessarily a ^-representation. These representations have
the relations: TTCTTC7r**C7r* [7, 15, 23].

Let 0 be a positive linear functional on a ^-algebra j/. It is
easily shown that N$— [ x ^ & f ' , <j)(x*x) =0} is a left ideal in jtf. For
each x^stf we denote by ^00 the coset of <s$/N^ which contains x,

and define an inner product ( ) on ^(j/) by: (^(A;) |^(j^)) ^^(j^*^)
for x,y^jtf. Let ^0 be the Hilbert space which is completion of the
pre-Hilbert space ^(j/). We define a ^-representation T§> of j/ on

^^ by

for A% j; e j/. We denote by TT^ the closure of TT^. We call the triple

(^0? ^? $0) tne GNS-construction for ^. If TT^ is self-adjoint5 then 0
is said to be a Riesz functional on j/.

§30 Modular Unbounded Left Hilbert Algebras

In this section we generalize the notion of left Hilbert algebras to
the unbounded case, and extend the main results of Tomita to the
unbounded case.

Suppose that a ^-algebra 21 with an involution # admits an inner
product ( | ) satisfying the following condition:

(i) C f ? 7 l C ) = (7lf lC) for f 3 >7 ? Ce§L

Let £ be the Hilbert space obtained by completion of 81. By (i)
a ^-representation TZQ of 21 in $ is defined by nQ(^7] = {~7] for £9 3?e2l
whose closure is denoted by ^a (simply TT) . Further, suppose 2t satisfies
the following conditions:
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(ii) 2l2 is dense in 21, where 21* denotes the vector space generated by

(lii) 7r(30' is a von Neumann algebra.

Let #21 (simply, 21) be the closure of a ^-representation ni of 21
defined by:

Then £ is the smallest closed ^-representation of 21 such that
TTCTTCTT*, 7r(2r)' = 7r(2r)' and 7r(2r)'^(7r)=^(7r) [16], We now define
a commutant Ww of 21. For each 37 eS (JT) we define a linear operator
^0(3?) in § by

We denote by S(2l)k the set of all elements 57 of 2 (TT) such that
there exists another element j/ of @ (#) satisfying the equation:

for each fl3 f2e§T. Since 2l2 is dense in $ by (ii), it follows that

is a conjugate linear operator on 2 (21) b satisfying (?/) ^ = 37 and
)*0 Further, we note that the closure 7^(37) (simply, ^'(17)) of

^0(37) is contained in the unbounded commutant 7r0(3I)a of the O|-
algebra 7r0(Sl). We now define a commutant Ww (simply, §10 as
follows :

Then it is easily shown that 21' is a ^-algebra equipped with the
multiplication 571^2— n' (^2) Vi and the involution y->r]\ and TT' is an
anti-*-isomorphism of 2lr into the von Neumann algebra 7r(2i)'a

Definition 3o 1. If a *-algebra 21 with involution $ admits an inner

product satisfying conditions (i) , (ii) , (iii) and the following conditions (z'v) ,

(v), then 2t is said to be an unbounded left Hilbert algebra in §:

(iv) (210 2 is dense in the Hilbert space !Q obtained by completion of

(v)

Suppose 21 is an unbounded left Hilbert algebra in §. Then 21' is
a right Hilbert algebra in !Q. We denote by F'% the closure of the map

r and denote by S* the adjoint of Fi We see that the
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usual commutant (2TJ ' (simply, 2T) of the right Hilbert algebra 2T is
an achieved left Hilbert algebra in $> with involution ?-»££? whose
left von Neumann algebra equals 7r(2l)", so that the fundamental
theorem of Tomita

(3.1) ,7X807; = *

(3. 2)

(3.3)

for all t^R is obtained, where /J is the modular conjugation operator
of SI" and JJ is the modular operator of 2T [32, 34]. In order to
extend the above results of Tomita to the O|-algebra 7r(2l), we
introduce the following notion.

Definition 3* 2» An unbounded left Hilbert algebra 21 is said to be
modular if there exists a subspace ^ of ^ (TT) such that

(1)
(2)
(3) A"£3i = 3i for all

Let §1 be a modular unbounded left Hilbert algebra in $. We
denote by Sa the subspace of @ (#) generated by \J @, where ^

ss^y
is the set of all subspaces of ® (n) satisfying the conditions (l)-^(3)
of Definition 3. 28 Then it is clear that @ % is the largest element
of &.

We show that Question A in Introduction is affirmative for every
modular unbounded left Hilbert algebra0

Theorem 30 3* Suppose 21 is a modular unbounded left Hilbert algebra
in $, Then the following statements hold.

(7) Put

W (21) = {Ze^fr(^si) ; X is affiliated with 7r(2l)//},

-T(^) = {Xs=&(Ji9J ; X is affiliated with 7r(2l) /}0

Then ^(21) and f^(2l) are generalized von Neumann algebras satisfying

In particular, if re is self-adjoint, then ^(21) and i^ (21) are self-adjoint.
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(resp. y(ST)) is said to be the left (resp. right) generalized von
Neumann algebra of §T.

(2) Put

for Xe^(2l) and t^R. Then {af} t(=R is a one-parameter group of
automorphisms of ^r(SI). A similar statement holds for

Proof. It is clear that the restriction £(21) / '3d r
H of the O|-algebra

ft( 21) to £&i is an Op -algebra on Sa such that

(3.4) OKO)/0«)' = *(SO'.

Since 7r(2T) '^ (#) = 0 (£) and (3.3), it follows that the subspace 0
of 3 (it) generated by ;r(8l)'^« satisfies the conditions (1)^(3) of
Definition 3.2; that is, ^eJ^. Since S^ is maximum in J**, we have

=^H, which implies

>" ^ w affiliated with

= *(»). (by 304)

By Lemma 2.4 ^r (§T) is an O/-algebra on S^ with <2r (§1);,=- «r (8T).
Since J«"^H=^H for all £<=!? and (3.3), it follows that

(3.5) j;if«(H)4i-a=«(SO

for all ^e/J, which implies that {^fj^/g is a one-parameter group of
automorphisms of ^(SI). We show that @n= r\ 3(X)^^. Since

it follows that ^a is a subspace of S(jr). For each ^ej^ there is
a net {xa} m &% such that liniA:a = ^ and lim Xxa= Xx for each

a a

. Since *(f)/^«e«r (8t) for each feSt, we have

for each Ze^T(St), which implies ft(8t)^aC^a. Further, we have

)*a (by 3.5)
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for each Ze*(8l) and t^R, which implies £"£& ac ^H for all
Thus, J^e^. Since <^a is maximum in J% we have ^a=^a,
which means that ^(21) is a closed O| -algebra on <^a. Hence

^(21) is a generalized von Neumann algebra on ^«. Suppose TT is

self-adjoint. Then we can similarly show that Sa = r\
*<=#(«

which implies # (SI) is self-adjoint. It is clear that /a"
A similar result for y(2t) holds. This completes the proof,

We next define the notion of standard unbounded left Hilbert

algebras. If a ^-algebra 21 with involution # admits an inner product

satisfying conditions (i), (ii) of Definition 3. 1 and the following

condition (iv) ', then 21 is said to be a generalized left Hilbert algebra,

(iv) ' The involution £— »?* is closable as a real linear operator on the

real pre- Hilbert space 2I2.

We note that if 21 is an unbounded left Hilbert algebra then it

is a generalized left Hilbert algebra. We consider when the converse

holds. Let 21 be a generalized left Hilbert algebra in IQ such that

7r(2l)' is a von Neumann algebra. We denote by Sn the closure of
the map: f e2T2->f*e2r2

3 and put

0(H)*=foe0(H) k ; *'(?) is affiliated with *(«)'}.

Then a /C0(3t)*C0(2tyc^GS'S). It is well-known that in the

bounded case 3f (31) '=,0 (2T)b = ^ (55), which implies (SI7)2 is dense in
the Hilbert space ^ (5*5) ; that is, the converse always holds. But, in
the unbounded case & (21) ^^ (21) b and the converse does not hold

in general. It is easily shown by analogy with the bounded case

([32] Lemma 3.3) that when /<EEl(l)'s, ^(21)" is dense in $ if

and only if 21 is an unbounded left Hilbert algebra in §, and S(2l)'7

is dense in the Hilbert space 2 (6*1) if and only if 21 is an unbounded

left Hilbert algebra in § satisfying $% = $%.

Suppose 21 is a generalized left Hilbert algebra in §0 We denote

by S%=Jyifi£2 the polar decomposition of SH. Then /« is a bounded

conjugate linear operator on @ such that J^=J<& and /!=/, and Ja

is a positive self-adjoint operator in $3 such that A% — S\S% and ^a1 —
M [8],

Suppose 21 is an unbounded left Hilbert algebra in $. Then we

note that S^dS^, however 6^ and S% don3t necessarily equal. Hence
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we introduce the following notion.

Definition 38 48 An unbounded left Hilbert algebra 21 is said to be
standard if it is modular and S^ = S^.

We next consider unbounded left Hilbert algebras induced by
positive linear functionals. Let gtf be a ^-algebra with identity £, ^
be a positive linear functional on j/ and (TT^, 1^ Q$) be the GNS-
construction for <j>. If l^(x) = 0 implies n$(x) = 0, then the pre-Hilbert
space ^(j/) equipped with the multiplication ^M^(y) =A$(xy) and
the involution AtW*=A$(x*), becomes a ^-algebra satisfying conditions
(i), (ii). Then we have TT(^(J^)) =^(j/)? ^(^(«s/))bC3

{^Ya^(^ if 0 is a Riesz functional) and
Here we only consider a ^-algebra ^(jaf) when

6J). We note that if 7r5(jaOlL(£) is
dense in ^^ then ^(«s/) is a generalized left Hilbert algebra in $3$,
and ^(j/) is an unbounded left Hilbert algebra in ^^ if and only
if ^(j/)' is a von Neumann algebra and 7T0(j/)7^(0) is dense in §^
We denote by ^(resp. J& A^ S'^ J'^ A'£ the operators 5^(J/) (resp0

JW*K d*jW> S/^(^ Jty^ ^c^))- Witl1 the helP of ([H Theorem 1)
it is easy to prove the following

Lemma So 5B Suppose 2$ (j/) is a generalized left Hilbert algebra in
$3$. Then /^(jaf) is an unbounded left Hilbert algebra in IQ^ satisfying
Sf = S; if and only if J^Wj^KtW and
for all

Definition 3. 60 A positive linear functional $ on a *-algebra j^ with
identity is said to be modular (resp. standard) if %$(<$/) is a modular (resp,
standard) unbounded left Hilbert algebra in $$.

We investigate positive linear functionals which satisfy the KMS-
condition with respect to a continuous one-parameter group of *-
automorphisms of a locally convex *-algebra0

We denote by ^4(0, 1) the set of all complex- valued functions,
bounded and continuous on OrgTm^^l and analytic in the interior.

Definition 3, 7* Let J/ be a locally convex *-algebra with identity e and
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iat] tes be a continuous one- parameter group of *- automorphisms of jtf. A

continuous positive linear functional <j> on jtf is said to satisfy a KMS-

condition with respect to {at} if for each x, y^.^ there exists a function

fXiy in 4(03 1) such that

for all t^R. Such a system (j/, {aj, <f>) is said to be a KMS-system,

A KMS-system (jtf, [at] , 0) is said to be modular (resp. standard) if 0

is modular (resp, standard),

Lemma 3e 80 Suppose (j/, {aj, 9) w a KMS-system, Then
is a generalized left Hilbert algebra in $3$ satisfying ^(at(x)) = Al^(x)
for all #6=j3f and tELR, and further (j/, {«J,^) is a standard system
if and only if J^^(^YJ^ = ^<f>(^Y ana (AJ^AJ^(e) | ^ ( e ) ) ^0 for
all A^n^jtfY.

Proof, Since ^ is {a J -invariant and 6 and [at] are continuous,
there exists a strongly continuous one-parameter unitary group {Ut}
such that Utl^(x) =A<p(at(x)) for all x^j/ and t^R. Since 0 satisfies
the KMS-condition with respect to [a J 5 it is easy to show that
is a ^-algebra equipped with the multiplication ^O)^(j) =
and the involution ^ (#) — >^ (#*) . Suppose that lim ^(xn) =0 and

«->cx>

(;v*)=f. For eachj;ej/ we have

lim sup fx y
n^oo t^R n>

for all t^R^ and hence there exists an element f of 4(0, 1) such
that /(0 = (^00 £/*?) and/(^ + x ) = 0 for all t^R. Hence, g-00

Thus ^(«5/) is a generalized left Hilbert algebra in $3$, We denote
by Jf^ the closure of ^(j/&), where j/ft={,r^j/; A:* = A;}O Then Jf^
is a closed real subspace of ^ such that Jf^ + iJf^ is dense in ^0.
Further, since the involution ^(^)-»^(A;*) is closable, we have
3f0r\iJfj=[Q}, which implies that S$ equals a closed operator S in
£>0 defined by: ^(f + 57) =? — 57 for fe^f0 and jyeiJf^. It hence
follows from ([25] Proposition 3. 7) that the one-parameter unitary
group {J'J} satisfies the KMS-condition with respect to 3C $ in the
sense of ([25] Definition 3.4) such that Jj^ = ̂  for alHeJK. It
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is clear that U^^tf^ for all t^R. Further, for each f, ^e^f^ we
have

Km sup I/,., (0-(7 |£/ , f ) l=0,
n-~ (efi " "

Km sup |/, ., (t + i) - «/ff | 7) =0
n-"«» *e/e n w

for all t&R, where {#„}, {jyj Cj/ft, which implies that {C/J satisfies
the KMS-condition with respect to Jf^. It hence follows from ([25]
Theorem 3.8) that Ut = 4$ for all t^K The rest follows from the
above result and Lemma 3. 5, This completes the proof.

We next show that a standard system is constructed by every
modular positive linear functional on a ^-algebra.

Let ^ be a modular positive linear functional on a ^-algebra s/
with identity e. Put

Then ^(^(j/)) is a locally convex *-algebra equipped with the weak
topology, {fff} is a continuous one-parametor group of automorphisms
of ^(^(.fiO) by Theorem 3.3 and co$ is a continuous positive linear
functional on ^(

Theorem 3. 9* (/) Suppose 0 is a modular positive linear functional
on a *-algebra stf with identity e. Then (%(%$(£#)), {(7§,^) is a
standard system.

(2) Suppose (<% (^(j/))3 [at}9 co^) is a standard system. Then at = a^
for all ttER.

Proof, (1) It follows from ([32] Theorem 13. 1) that for each
there exists an element fAiB of A(Q, 1) such that

for all t^R. Take arbitary X, Y(E<% (^(j^)). Since Z and F are
affiliated with ^(j/)^ we have
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lim sup! JA .B (0 -a>i(a*t(X)T) \ = 0,
n-xx. t^R n n

lim sup|/A iB (f + i) -a)t(Ya*(X))\ -0

for sequences [An] , {5J in ^(jsT)", which implies that there exists
an element fx>Y of ^4(0, 1) such that

for all *ejR. Hence, (*(^(^)), M},^) is a KMS-system. It is
clear that (^ (/^(e*/)), {tf?}, o^) is a modular system. Further, it
follows from Lemma 3.8 that 2a(ff*t(X))=d%Jta^(X) for all Ze

^(^(X)) and t<E:R, which implies that J* =4, =t/JJt/*, where f/

is the unitary operator obtained by UXX^(e) =Xa (X) for X^<% (^ (««/)).

Hence, (^(/^ (<£/)), {o-?}, ^) is a standard system.
(2) This follows from Lemma 3. 8.

§ 48 Standard Uunbounded Left Hilbert Algebras Constructed by
von Neumann Algebras with Cyclic and Separating Vector

In this section we consider Question B in Introduction for von
Neumann algebras with a cyclic and separating vector.

Let O//Q be a von Neumann algebra on a Hilbert space $ with a
cyclic and separating vector ?0. Then ^Ofo is an achieved left
Hilbert algebra in £> equipped with the multiplication (-4£0) (^?o)
= AB^Q and the involution (^f0)* — ̂ 4*<f0. Let A be the modular
operator of ^Ofo5 ,/ be the modular conjugation operator of ^o?o
and ^o be the fixed-point algebra of the modular automorphism group
[fft] of Jt£t in jit*, that is, y/S={^e^//0; Gt(A)=diiA/l-it = A for all

In this section we construct some O|-algebras ^ such that
are standard unbounded left Hilbert algebras in $ satisfying

Theorem 4« L Suppose ^0 ^ a y<9^ Neumann algebra on a Hilbert

space $ with a cyclic and separating vector f0 and ^ is a dense subspace

in Q satisfying

(i) f0e^;
(ii) 4*21 = 2} for all
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(iii) (Jlffy = J?Q, where

and

^IVy uWf Q -\- «x^? o s

f*

Then Jif s <f0 i-S" a standard unbounded left Hilbert algebra in Q equipped

with the multiplication (X£Q) (Ff0) =XY£0 and the involution
*; t/ t*

such that (^o f o) "

a// ^eU flwrf the left generalized von Neumann algebra % (Jtf 5 ?0)

equals Jtf{*} $ =^fw , where it is a closed *-representation TT t* of

Pf fo induced by the left regular representation n = K t* of Jt® f0-
S

Proof. By (i) and (iii) it is easily shown that ^o ?o is a gener-

alized left Hilbert algebra in %> such that x (Jtf s fo) ' — -^o- Since
**

jlf = (Jtf) "wc by Lemma 2e 45 (6) and (iii), (iv) it follows that
«* -**

now show

(4.1) (uTf sfo)'-^ofo.

Take arbitrary Ceu^i. Then we have C£0, C*f0e^(7r) and

fol C*f0) for all X^Jtf s, and hence Cf0^ S (uTf s f0) '• Further,
^*

since 7r/(Cf0)^rf0
::=3r(^l:o)Cfo—CJffo for all X<^Ji®\ it follows that

*S ?o) 7. Conversely suppose 57 e (^f s f0)'. Then TT'(^) G
t *

) /=:^oj and so r] = x'(r])£0£E^Q£Q. Thus c^f s f0 is an un-

bounded left Hilbert algebra in $ such that (^f s f 0)''
= «^of o and

By (ii) we have J£^f sj---^f s for all fefi, and hence

ON ylit J/3> S £ ^S S £
e Z; Zl ^0 so — ̂ o so

for all t&M, which implies that ^fs f0 is modular. Further, we
have
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_
which implies that Jff * f 0 is standard.

We next show

(4.3) 2 _ ,* =2 (ft).
J02 S £

^0 £0

The statement (4. 2) implies A* 9 (TT) - 3 (TT) and
for all XE:J[ and t^R, so that we have

& (Z Qf,) -
»=1 i

and

t=l

for all Y] C,-f iGE S (TTI) . X<^.J{® and t^R. which implies that
»=i

and J£i7r(Zf0)J-^-3r(^Zfo) for all Ze^fs and

We finally show * (uTf s f0) =uTfA '. Since

and

Z ij affiliated with (

by (4.3) and Lemma 20 4, (6), it is sufficient to show (uTf(")) / = ^.
Take arbitrary ^4e^0 with A/Q)^.Jif, Then it is easily shown that

and 7r(Zf0)^f-7r(Z^f0) f for all Ze^f's and fe
(^)., and hence
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(S C^)
*=1

for each C feuf£ and ^e^fr), which implies A/ 3 (it) euff(ft). Thus

we have ^f = { JT; ^4 e ^f } c uf 7ri C u?f (*} C u?0, which implies

' = ur;. This completes the proof.

We can prove the following in similar to the proof of Theorem

4.1.

Theorem 4. 2. Suppose u?0 is a yora Neumann algebra on a Hilbert

space $ with a cyclic and separating vector ?0 and 2 is a dense subspace

in !Q satisfying the conditions (i) , (ii) and (iii) of Theorem 4. 1 and

(iv)' J2"(0) is closed and

f*s

Then ^f "sf0 fj # standard unbounded left Hilbert algebra in iQ such that

and

We give some examples of the systems (^0? fo5 ^) satisfying the
conditions (i) ~ (iv) , (iv) 7 of Theorem 4. 1 and Theorem 4. 20 We

first prepare the following lemma without the proof.

Lemma 4. 3. Let T be a positive self -adjoint operator in a Hilbert

space $. Put

w a self-adjoint 0^-algebra on ®°°(T}, and the induced

topology ^t(^oo(r)) on @°°(T) is generated by a family of seminorms:\\£\\H

= ||r»f||, n<=NU{0], so that (@°°(T), f^(So.(r))) is a Frechet space.

Further, the ultra-strong topology t*s on ^(£}°°(T)) is generated by a

family of seminorms: P^(X) =\\T»X£\\ + \\T"X^\\ for n^N(J {0} and
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Corollary 4, 48 Suppose T is a positive self-adjoint unbounded operator

in $ affiliated with ^l such that ^^@°°(T)a Then Jif °°(r) MSf0 and

standard unbounded left Hilbert algebras in !Q containing
£0; n^N} such that

and

Proof, We first show that (^0? fo, &°°(T)) satisfies the conditions
(i)^-(iv)' of Theorem 4, 2. Since T is affiliated with u?S, it follows

that dit@°°(T)=@~(T) for all t^R. Let r-T^^^) be the
Jo

spectral resolution of T, Then, for each A^J£Q a sequence [ET(n)

AET(n) ; n^N] in ^f°°(:r)={J; Ze^f°°(r)} converges weakly to A,

and hence (ur?°°(T))' = .̂ o. By Lemma 4. 33 Jg?T(^~(:T)) is self-

adjoint. Since T*ET(k)^jft~™ for », AeJ¥ and
fe-»oo

r«y»f|| = 0 for each fe^°°(r) and m^N, it follows from Lemma
4.3 that

(4.4) (T) '

for ^G7V3 which implies ^°°(T) US^^°°(T). Thus

satisfies the conditions (i) ̂  (iv)x of Theorem 4. 29 so that Jtf°°(T}

is a standard unbounded left Hilbert algebra in $ such that

y® m
to

and

where 71 = 71 t* . Hence, it is sufficient to show
^°°(T) MSP
^0 ^0

By (4. 4) and Lemma 4D 3 we have
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(4'5) t^,^ =t t*
Jt® (T) us

Since a subset {ET(m)AET(n)^ m,neN9 A^Ji^ of ^f°°cr)?o is
dense in the Predict space (@°°(T), t,^ ), it follows from (4.5)

-v T

that Jt® (r) "Sf0 is dense in @°°(T) with respect to the induced topology
t * t *

t ,*, which implies &(x)=@~(T) and 7r(^f~(T) *^0) =^f~(T) MS
a

jj/Qi00^} us

o
Further, since @°°(T) is dense in the Hilbert space 2 (Tn} for n^N,

it follows from (4.4) that Jt%°°(T) "s is a self-adjoint 0|-algebra on
, which implies ^ (jr) = ^ (TT) = Q>

Similar results for Jtf °°(T) s f0 hold. This completes the proof.

Let S be a dense subspace of ^ and Ji be a subset of ^? + (^3 $).

We denote by ^**M^+(^)
 the closure of Jt in ^ + (S? §) with

respect to the topology t* generated by a family {P* ; feS} of
seminorms:

Corollary 4. 5. Suppose Tf is a positive self-adjoint unbounded operator

in Q affiliated with JTj such that £^2~(T') and H^ in^+^°°(T'}

Then Jt,/®~(T'} lus = Jt,/@~(T') *s -Xs "'•*'/&-&'), and
_ t*
JtQ/@°°(T'} s f o w <2 standard unbounded left Hilbert algebra in $ such

that
_

EW*-algebra J^/^(7t) s 0/2

Proof. Since jeQ/&°°(T') =^f °°(T/\ it follows that (^0, fo,^"^'))
satisfies the conditions (i)^-(iii) of Theorem 4. 1. It is clear that

'7"). Take arbi-

trary Xe^os w ' . Then there exists a net {^la} in J£Q such
that lim^af = Zf and lim^f = X*f for each £^®~(T'). For each

£ei¥ and fe^°°(rO we have

lim T'kAa£ = XT'*£, lim T'MSf = -Y*r'*f,
a a

which implies by Lemma 40 3 that {Xa} converges to X with respect

t o * * . Hence, u * *
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Since ^O's cr/)i*> =¥«*„, it follows that (^0, ?„, 0-(7")) satisfies
_ j*

the condition (iv) of Theorem 4. 15 so that JIJ ' S>°°(T'} s f 0 is a standard
_ *

unbounded left Hilbert algebra in $ such that {JlJ &°°(Tr}r s // =

and * (3iTo7^(rO ?0) = f>. Further, it is easy to show
^0/^(^)3 which implies our assertion,,

By Corollary 4, 4 and Corollary 40 5 we have the following

Corollary 40 6, Suppose T is a positive self-adjoint unbounded operator

in $ affiliated with ^Ofl^o such that S0^^°°(T)a Then

X is affiliated with ^0}5 which is a closed EW*- algebra on @°°(T) over
_ t *

^o- Further, ^0/^°°(T) s f 0 is a standard unbounded left Hilbert algebra

in $ such that

We denote by T(J^0) the von Neumann subalgebra {
oe^B(J)=/^ ^(J*) and 4Mf0eu?0fo for all a^C7} of ̂  Then

o is a maximal Tomita algebra in ^ equivalent to Jl£ o? and
similar results to Lemma 4.3 for ® R(A} hold0 Hence, we can prove
the following in the same way as in Corollary 4, 4 and Corollary
4. 5.

Corollary 4.7. Suppose A is not bounded and J^Q*

Then r(^0)/^(^)'*s?o ^^^ T(Jt^ /®R(A)** £i are standard unbounded
left Hilbert algebras is $3 satisfying

jfor all
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The following result is an answer to Question B in Introduction.

Theorem 4.8. Let Jt§ be a von Neumann algebra on a Hilbert space

$ with a cyclic and separating vector f 0, and Jil be the fixed point algebra

of the modular automorphism group {fft} of ^Ofo in «^o- Suppose ^l is

infinitely dimensional. Then there exist standard unbounded left Hilbert

algebras in JQ whose double commutant equals ^Ofo-

Proof. Since Jtl is infinitely dimensional, there exists a sequence
of mutually orthogonal projections {En} in Jtl such that ||£Bfo||<Cl and
log||Enfol|-log||£n+ifoll>l for n<=N. Then it is easily shown that

00

T=£](--log ||£nf0|!)-E» is a positive self-adjoint unbounded operator
M = l

affiliated with Jtl such that fo^^CT). Hence, our assersion holds
by Corollary 4. 4.

Corollary 4.9. Suppose ^0 is a semi finite von Neumann algebra on

a Hilbert space iQ with a cyclic and separating vector f0 and the spectrum

Sp(A) of the modular operator A is an infinite set. Then there exist

standard unbounded left Hilbert algebras in $ whose double commutant

equals ^0?o°

Proof. By ([32] Theorem 14. 2) there exists a positive self-adjoint
operator K affiliated with Jl^ such that A = K2-K'~2, where K'=JKJ.
Then K is affiliated with Jt\. Since Sp(d) is an infinite set, it follows
that SP(K) is an infinite set, which implies that Jtl is infinitely
dimensional. By Theorem 4. 8 our assertion holds.

§5. Standardness of Trace Functionals on Op-Algebras

Gudder and Hudson [8] have studied positive linear functional
on the canonical algebra sf for one degree of freedom which induce
unbounded representations of s$ on the Hilbert space of Hilbert-
Schmidt operators. In this section we study the Standardness of trace
functionals on 0|-algebras using their idea. Woronowicz [36] and
Sherman [30] have dealt with trace representations of positive linear
functionals on the O^-algebra j£?+(^), & being the Schwartz space,
and the 0|-algebra generated by the position and the moment
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operators. Lassner and Timmermann [20] and Schmiidgen [28]
have extended their results to more general 0|-algebras. We here
investigated under what conditions trace functionals on a certain Op-
algebra, are modular (or standard).

We first prepare some lemmas. We denote by $(X)§ the Hilbert
space with inner product < | )> of Hilbert-Schmidt operators on a
separable Hilbert space $, and by S(X)§ the subspace of $(X)§
consisting of Hilbert-Schmidt operators whose range are contained in
a subspace & of §. Let K be a densely defined closed operator in
^. We define densely defined closed operators K" (K) and 7c'(K) as
follows:

Lemma 5.1. (1) TT"(^($)) is a von Neumann algebra on ^?(X)§
such that K \a ($))' = •*'(&(&) and *"(#(£) )=/*'(«($))/, where
J denotes the isometry on $(X)|) defined by

JT=T*.

Let S and K be positive self -adjoint operators in $. Then the following
statements hold.

(2) n"(K) is a positive self-adjoint operator in ©(X)$ affiliated with
the von Neumann algebra n" (&($)).

(3) rc'CK) is a positive self-adjoint operator in ^®§ affiliated with

(4) J@ (TT" (K) ) = 2 (*' (K) ) and x" (K) =Jn' (K)J.

(5) if (K) *n'(S) =7c'(S) *7t"(K}, which is a positive self-adjoint

operator in $(X)§, where A«B denotes the closure AB of closed operators
A, B.

Proof. (1) We can show in the same way as in ([8] Lemma 24)
that 7r / /(J>(^)) / = 7r /(^(^)). In fact, take arbitrary d^n(38 (£)) '.
For each f, y ^ f e a sesquilinear form on $(X)$ defined by

(*, y) e $ X ̂
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is continuous, and hence

for some r(f, ?)£#(£). Since d <^x"(& (£)) ', it follows that r(c, rf)
e# ($) '=C7, so that r (£, 77) =^(f, 37)7 for some Jl(£, 57) eC70 Further,
^ is a continuous sesquilinear form on § X $, and hence 2(f, 37) =
(Cf |ay) for some C<E^($), which implies 3 = ic'(C). The converse
inclusion is obvious. It is clear that if (Si (£)) =Jic'(& ($))/, so that
7r"(^($)) is a von Neumann algebra.

(2) It is clear that if (K) is a positive operator in §(X)§
affiliated with **(#(£)). Take arbitrary AtE 2 (if (K)*) . Then
we can show @ (KA) = $. By the closed graph theorem KA is a
bounded linear operator. Since

where || • |[2 denotes the norm generated by the inner product < | >
on §®^ and [ek] is an orthonormal basis in $, we have KA^$®$.
Hence x"(K) is self-adjoint.

(4) This is trivial.
(3) This follows from (2) and (4).
(5) This is proved by using the theory of spectral resolutions of

self-adjoint operators0

Lemma 5.20 Suppose Q is a non- singular positive Hilbert-Schmidt
operator on $e Then 7r*(^($))fi is an achieved left Hilbert algebra in
©® § equipped with the multiplication (if (A) O} (K (B) Q) =rif (AB) Q and
the involution it" (A) Q-^TZ" (A*} Q0 Further, the modular conjugation operator
JQ °f if(&& ($))•£ equals the isometry J on $(X)§, and the modular operator
^Q ofif(&(S$)}Q equals the operator ic' (Q'2)

Proof, Since Q is non-singular, it follows that 7r"(^($))£ is
dense in $(X)|>. By Lemma 5. 1 we have Jit (SB (^))/=^ /(^ (§))
and JQ = Q. Hence, 7r /(^(§))S is dense in ©(X)§, which implies
that ^(J* ($))£? is an achieved left Hilbert algebra in $(X)|>D Let
SQ be the closure of the involution if(A)Q-*if(A*)Q of TT//(
We show JQ=J, The isometry / on $(g)© satisfies
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<JS\JT> = <T\S> for each S,

(5.1)
j7t"(A')J=n'(A*~) for each

For each T(E £>(?<)§ we have

(5. 2) Jn'(Q-l)n"(Q)

Let {en} n=i.2,... be the orthonormal basis in $ consisting of eigenvectors

of non-zero eigenvalues {4}n=i,2,- of £?. We now put

Since

\\QA*et\\*)*
k=n+l k=n+l

for each ^4e^(^)3 we have

(5. 3) lim TT" (PnAPn") Q = if (A) Q

for each ^<E^(£) 8 Since PnAPn<= $(><)$ for each A^&($), it
follows that K"($®&>® is dense in the Hilbert space ®(SQ).
Hence, we have by (5. 2)

(5.4) ^C/7r'G0-V'C0).

Since n' (Q~1*) if (Q) is a positive self-adjoint operator in §(8)^ by
Lemma 5. 13 we have

(by 5. 4)
K (A) £>

= <jf (A) Q | K' (Q-1) if (Q) if (A) Qy

^0

for each A<^3$($). It hence follows from ([1] Theorem 1) that
J=jQ> BY (5-4) we have ^dn' (Q-l)Kff (Q)a By the maximality of
self-adjoint operators, we have A^ = x' (Q~l}-n:f/ (Q). This completes
the proof,

Lemma 5«,30 Let Of be a dense subspace of § such that
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contains the inverse of a Hilbert- Schmidt operator. Then the following

statements hold.

(1) Put

for X<=&+(@) and Te^(g)§. Then x is a ^-representation o

on £>(X)$ with domain 2®$.

(2) Suppose Ji is a closed (res p. self -adjoint) Op -algebra on @ such

that u?' = C7. Then n(JT) is a closed (resp. self-adjoint) Op -algebra on

S(X)£ satisfying n(Jt)' = n' (&(§)) and

Proof. This is similar to the proofs of ([8] Lemmas 22, 23, 24) .

Theorem 5.4. Suppose (J£, S, Q) is a system satisfying the conditions',

(i) ^ is a closed 0% -algebra on @ with identity I such that Jtr —

CI\
(ii) there exists an element T of &+(@) such that 7L-1

(iii) Q is a positive operator contained in ^(X)^ satisfying

(iii)x 7t(

(iii) 2 Q*3t = 3f for all

Then the following statements hold.

(1) n(^)Q is a modular unbounded left Hilbert algebra in §(x)^ with

satisfying (n(JT)Qy = if(a($»Q9 J^Q=Ja=J,
'(Q-2)7i"(Q2) and W (7t(J{)Q) =K (&+($)). In particular,

is a standard unbounded left Hilbert algebra in £>(

(2) Put

Then {&?} ts=R is a one-parameter group of automorphisms of
satisfying 'K(a?(X)) =Ai^(X}^it for all X^&+(@) and

(3) Put

Then the trace functional <j)Q on Jt is modular and (J£+(@), {<7f},

is a standard system.

(4) Suppose J£+(&) is self-adjoint. Then every strongly positive

linear functional <j) on =£?+(^) which satisfies the KMS-condition with

respect to [of] is represented as <f> = f<f>Q for some constant
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Proof. (1) It follows from (iii)! and Lemma 5, 3 that if (&($))Q

is dense in §®^? which implies that Q is non-singular. By Lemmas

5.2, 5.3 n(Jl)Q is an unbounded left Hilbert algebra in §(x)|> such

that 0(*,cur>o) = 0®& (n(Jt)QY = if(a($»Q and
x"(Q). By (iii) 2 we have

A"it

for all lEiR. Thus n(^}Q is a modular unbounded left Hilbert
algebra in §(x)§ with ^(^)£= ̂ (X)$. We shall show ^OO/)£?)

= 7r(^+(S))8 Since <% (K(Jt)Q) = {^e^+(S(x)§) ; § is affiliated with

K(@ (&))}, we have 7r(^f+(S)) c^T (^(^)fi). Take arbitrary ^e

^(Tr(^)-O). Then there exists a sequence {^4n} in ^ (§) such that

limn"(An)T=dT and lim^(^)r=5+r for all TeS®4 which
re-*C50 «->00

implies that lim AJ- and lim^4*f exist for each feS. We now put

for each f<=S. For each ^e^V and f<ES we have

= 0,

where {ek} is an orthonormal basis in §. Hence we have

*/*^—N (X£9 k = i

for each feS. Similarly we have

for each fe^. By (5.5), (5.6) we have X, YejSf(^). Since

)-(f |y^) for each f, ^e^? it follows that Ze^+(^) and

-F. For each Te^®§ we have
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=lim\\XTek\\
2 (by 5.5)

n-»oo k=n

= 0,

and hence

4=1

Hence, d = ic(
(2) This follows from (1).

(3) This follows from (1), (2) and Theorem 3.9.
(4) Since J£+(&) is self-adjoint and <f> is strongly positive, it

follows from ([36] Theorem 3) and ([20] Lemma 2. 4) that

for some positive operator v in S(x)§. We now put

</>=$+<?>s.
Since <p is strongly positive, it is represented as

for some positive operator p in ^®J§. Then p= (v2 + Q2)*, and so

p is non-singular, which implies

(5.7) ffCJS

In fact, take arbitrary TeS^^. Let {*„} be an orthonormal basis

in § consisting of eigenvectors of non-zero eigenvalues {^} of />, and

let -4f,= Z 4-^(8)^*- Then we have TAn^&+(@) for yze^V and
k=i *k

=iim ;
n^oo k=n+

= 0

for all X^^(2). Hence, re^(^> +(S)) i r C S ? ( S». By Lemmas 5. 2,

5. 3 ff(^?+(^))^ is an unbounded left Hilbert algebra in £>®§ with
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Sp=Jn'(p-l)7t:"(p)a It follows from (5. 7) and Lemma 5.3

that KJ is self-adjoint and (^?+(^)3 {0f}3 0) is a KMS-system. By

Lemma 3. 8 we have

for all X^&+(@) and t^R, which implies

for each X3 Ye^+(^)5 r<ES(x)|) and Jefl. It hence follows from

the self-adjointness of TT(^?+(^)) that

(5.8) 4<S®£c^(x)£ and A*ic(X)A-* = n(o° (X))

for all Ze^f+(S) and t£ER, which implies that (JSf+(^)3 {af}, ^)

is a standard system. By (5. 8) we have

for all X^&+(@) and t^R, and hence p2itXp-2it = @2itXQ~2it for all

Ze^f+(S) and t^R. Hence, p2itQ~2ii^^+ (^} ' = €1 for all

which implies p~?@ for some constant ^>0. Hence we have

$(X) =$(X) -<f>Q(X) = (f-l} f a ( X )

for all Ze^f+(S). This completes the proof.

We give some examples of (^3 S3 Q) satisfying the conditions
(i) , (ii) and (iii) of Theorem 5. 4. Let & = & (R) be the Schwartz

space of infinitely differentiate rapidly decreasing functions and

{/Jn=o,i,2,-.. be the normalized Hermite functions; that is,

/.(O = (2»n!) (-\Y^e^ (ff e^*

Then {/„} forms an orthonormal basis in the Hilbert space L2=L2(R)

contained in & . Then ^ = @°°(N) = r\@ (Nk), where #=£;(« + !)
_ k=l n=0

(/n(X)/n)3 and hence J£+ (£*) is a self-adjoint 0|-algebra containing

the inverse N of a positive Hilbert-Schmidt operator. We put

sup ;z*|afB j<oo /o
n

for n = 0, 1,2, ..
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, I a, \fn0f^, {«„} e s.
n n=0

Then it is easily shown that Q[a }^2~(if(N)) =<9*®L2 and NkQ{a }IDn n

Q[a }N
k for each k^N and [an] ̂ s+. Hence (&, @{a }) satisfies the

conditions (ii) and (iii) 2 of Theorem 5. 43 and so we have the follow-
ing

Corollary 5.5, (1) Let Ji be a dosed Q*p-algebra on SP with
identity I such that Ji' = CI, and {aj <Es+. Suppose K(Jt}Q(aJ*(J^ =

£f(x)L2. Then 7t(^)Q(a } is a modular unbounded left Hilbert algebra in

L2(X}L2 with @^Q(a] = y®L2 and W Or(uf)0(a ,) -TT(^+(^))B In
n

particular, for every {«J £z§+ x(g'+ (£f))Q(a } is a standard unbounded left

Hilbert algebra in L2®L2 with ® ̂ V+&>»Q ^^®^ and

(2) A strongly positive linear functional <j> on ^+(^) which satisfies

condition with resp
for some constant

Q

the KMS-condition with respect to [at
 an}] for (ctj Gs+ is represented as

Let sf be the canonical algebra for one degree of freedom; that
is, the ^-algebra generated by two self-adjoint elements p and q
satisfying the well-known Heisenberg commutation relation: pq—qp
= —i. The Schrodinger representation TTO of s$ on L2 with domain
SP is defined by

(0 = -i (0, (x0(q)f) (0 =

Then TTO is a faithful self-adjoint representation of jtf with a strongly
-I -£

cyclic vector f0(t) =n ^e 2 satisfying ^(^Y = CI [23]. We note by
the following corollary that positive linear functional on j/ given by
Gudder and Hudson [8] are standard.

Corollary 5.6. Suppose Ji is an Op-algebra on £? containing
and {an} es+ satisfies
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for some /3>0 and f>0. Then K(.Jt}®{OLn} is a standard unbounded left

Hilbert algebra in L2®D with 3,^Q{a } = ̂ ®L2 and V (n(Jt)a{aj) =

Proof, By ([8] Lemma 27) we have

( 5 . 9 ) x ( *

Since &®I? =&-(*:"(&)), it follows from Lemma 4.3 that the

induced topology ^+^72) on ^®L2 is generated by a family of

seminorms:!|r||B=||^//(^ll)r||2 for n^N, and further, since N=n0(aa+),

where a = -j=(q + ip) and a+ = -j=(q — ip) , we have

By (5. 9) and (5. 10) we have

(5. 11)

It hence follows from Corollary 5.5 that -K(Jf)Q _n$ is a modular

unbounded left Hilbert algebra in L2(g)L2 with 2%(fM)Q _n =^®L2

and ^(7r(^)^{g_^})-7r(j^+(^))0 By ([8] Lemma 28) and Lemma

5.2 7r(7r0 (jaf))£? _n/3 is standard, which implies that x(^)Qr_n/3 is

standard. It follows from (5. 11) that for each X^&+(^) there is
a net {Xa} in Ji such that lim n(Y}7i(Xa)Q{r^} = 7c(Y}7i:(X}Q{rn^

for each Fe^. Since n'(K) is bounded, where K=^ -
n=o e

we have

for each Ye^, and hence Tc(^(&>))Q(ccn(^)Q[La^\ Since

, we have 7 r ( ^ { a ^^" (g jZA It
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hence follows from Corollary 5.5 that x(^)Q[a] is a modular

unbounded left Hilbert algebra in L2(X)L2 with ^K(^)Q a = ̂ ®L2 anda

(7r(uT)fl{a||1) = n(&+(W). Similarly it is shown that

KWQ ), which implies that x(^)Q{a} is standard. This

completes the proof.

§6. Structure of Some Unbounded Left Hilbert Algebra

In this section we investigate unbounded left Hilbert algebras 21
such that 7r(2T)" are semifinite von Neumann algebras. We first
introduce the notion of unbounded left Hilbert algebras with EW*-
extendable left regular representation.

Definition 6.1. Let 21 be an unbounded left Hilbert algebra in £>.

If there exists a subspace g of 3 (£a) such that 8Tc<£, £ « ( 2 0 < ? C < ?
and ^si (21) "<<? = <f, then 21 is said to be an unbounded left Hilbert algebra

with EW*- extendable left regular representation,

Let 21 be an unbounded left Hilbert algebra in § with EW*-
extendable left regular representation and TT be the left regular
representation of 2t. We denote by (? a the subspace of @ (#)
generated by \J $ 9 where !F is the set of all subspaces ^ of ^ (#)

such that 2IC(T3 ^r(2T) ( T C ^ 3 and ^(8t)V = cf. Then ^ is the
largest element of J^ We denote by ^*(2I) the OJ1 -algebra on
<f a generated by ^(21)7^^ and * (SI) "/<£«, and denote by ^^(2T)
the closure of ^*(2T) in (&*(g^, O-

Lemma 6. 20 Suppose 21 fs a?z unbounded left Hilbert algebra in ^>

ze;zM EW*- extendable left regular representation. Then the following state-

ments hold.

(1) it is standard.

(2) ^*(2T) is a closed EW*-algebra on ff B o^r ^(21)"

minimum among EW*- algebras on $ u over 7r(2l)// containing

z^AicA w cflZ/^rf ^A^ minimum left EW*-algebra of 21.

(3) ^^(81) ^ maximum among EW*-algebras on $ \ over K(W)"

containing 7r(2I)/^§r, wAicA ij jairf ^o be the maximum left EW* -algebra
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of 2T5 which equals (£(21) / & 21) »c= ^ £ (20 « = P^ -^+ ( <? si) I ^ « affiliated
With *(«)'}•

Proof. (2) It Is easily shown that ^* (SI) "-TT (21) " and n(
and ^ @ (X) are contained In ^~0 Since $ n Is maximum In J^

*e=#*(80>M _

it follows that ^ = 7: (21) ' <?a = ^A ^(^T), which implies that

^*(2l) is a closed .EW^^-algebra on (fgj over ^(SI)'7,, It Is clear
that ^*(Sl) is minimum among .EM^-algebras on $ \ over 7r(§l) /x

containing £(2t)/(£H .
(3) As stated In Section 2, it follows that *£(2I) - (^* (St))^ f f =

U(2t) / (fH) ; c={Ze^+(^ a) ; X w affiliated with ^(21) 7/}, which
implies that ^lr(Sl) is maximum among EPP^-algebras on ^a over
TrW containing ^(8t)/<^a .

(1) Since ^*(§l) is a closed EW^-algebra on ^a, it follows
from ([9] Theorem 2.3) that

for each <f ̂ S10 Hence, ?r is standard0

By Lemma 6, 2 we have the following

6038 Suppose 21 ij ^?2 unbounded left Hilbert algebra in §
EW*- extendable left regular representation. Then the following

statements are equivalent.
(1) 2r = 7r; JA0J w, 7T(2r) /S(^)=^(7r)0

(2) TT z'j self -adjoint.
(3) TT z'j standard.

Proposition 6.4. Suppose 21 z'j aw unbounded left Hilbert algebra in
§ zwJ/z EW*- extendable left regular representation such that 7c(^)ff is
semifinite. Then the following statements hold.

(1) 21 is modular.
(2) Put

for t^R and Xs=<tf(W) (resp. ^
one-parameter group of automorphisms of the left generalized von Neumann
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algebra <% (2Q (resp. ^£(2T), #£(S)).

Proof. It follows from ([32] Theorem 14.2) that A"* = K-l-K'

for some positive self-adjoint operator K' in § affiliated with 7r(3l)'

and K=J^K'J^ which implies that Sic <?HcS (£), £(?[) <?Hc ^B

and 4"" < ? « = < ? « for all ^eJJ. Hence, 2T is modular. It follows
from Theorem 3.3, (2) that {at} is a one-parameter group of

automorphisms of «(H). Since tf»fejr(80' and ^««*(8t)J*-« =
#-2^(2r)#2l'f==^*(20 for all J6EJ2, it follows that fo} is a one-

parameter group of automorphisms of ^*(2I). For <%'^(21) we

have the same result as ^

We give some examples of unbounded left Hilbert algebras with
EW^-extendable left regular representation.

We first consider unbounded generalization of Hilbert algebras.

Definition 6.5. A generalized (resp. unbounded) left Hilbert algebra

21 is said to be a generalized (resp. unbounded) Hilbert algebra if A^ = L

A generalized Hilbert algebra 21 in § is said to be an extended Hilbert

algebra if 21* is dense in §, where 210 — {£ £=21; TT(|

Suppose 21 is an extended Hilbert algebra in £>. Then 2I0 is a

Hilbert algebra in § and 21 is an unbounded Hilbert algebra with
standard left regular representation satisfying StoCSTcSIo. In [9] the
structure of extended Hilbert algebras has been decided. Further, the

following relation between extended Hilbert algebras and unbounded
Hilbert algebras holds [14].

Proposition 6.6. Let 21 be a generalized Hilbert algebra. Then the

following statements are equivalent.

(1) 21 is an unbounded Hilbert algebra.

(2) ./,* (80'/. = *(«)'.
(3) 7r(2f)' is a von Neumann algebra, ft is standard and 21 is a

*-subalgebra of an extended Hilbert algebra.

In this case, 21 is an unbounded left Hilbert algebra with EW*-

extendable left regular representation.

We next consider unbounded left Hilbert algebras constructed by
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unbounded Hilbert algebras and positive self-adjoint operators-

Let (^, /O be given, where £% is an unbounded Hilbert algebra
in a Hilbert space § and Kf is a non-singular positive self-adjoint

operator in § affiliated with ^(J*)7 satisfying ^cS(j£7). We now

define a multiplication and an involution on Kr £% by

for ?, 57 G:^. Then A"7^ is a *-algebra satisfying

(6.1) tf'^C^Ofc) and

for each £, 3?GE^. Let j r-^ 'O^) and K=J^KfJa=2dE(X) be
Jo Jo

the spectral resolutions of A"7 and JT? respectively and put Ef ' (ri)

= ^dE'(X) and E(n)=^CdE(Z) for rcGEiV. We consider when K' & is
Jo Jo

an unbounded left Hilbert algebra with -EM/r*-extendable left regular

representation.

Theorem 6.7. Suppose (^, K') is a couple of an unbounded Hilbert

algebra gfi in a Hilbert space § with standard left regular representation

and a non-singular positive self-adjoint operator Kf in § affiliated with

**such that &c:2(K') and K' '38**^ 2 (^) . Then K' @ is an

unbounded left Hilbert algebra in § satisfying xK'@(K'<~) — ̂ (f) for each

fe^ and S"K,<%=J@K*K'~l. Further, suppose &" d@ (K'); for example,

3% has identity. Then Kf 3$ is an unbounded left Hilbert algebra in §

with an EW*- extendable left regular representation.

Proof. Since K' £8 is dense in (S(?r^)? tw ) and the statement

(6. 1), it follows that K1 '3$ is a *-algebra in § satisfying XK>&(%'£)

= **(£) for every feEj*, (K'<%)2 is dense in § and ((£'£) (JT?) \K'Q

= (K'i)\(K'G)*(K'Q) for each f ,^Ce«. Since

(6.2) w E(/2)£rw^ / /cj j / /n^(^) n^(^),
K, msJV

it follows that ^"n ^ (^0 H 9> (K') is a Hilbert algebra in §. Further,

since ^"c^C^) [14] and (6.1) we have
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= (**(?) **!*'£*)
= 0? I

for each f, 57 ̂  ^ and *e^"n^CK) f l^C^O, where ^ is the right
regular representation of 39', and hence .£( J^'n ^ (-K) fl ̂  UO) C
S(TT^) and ng(g)Kx = p#,(x)K'£ for each fe^ and
0 @ (K'} , which implies that

and

for each f, 57 e,^ and ^e^ / x n ̂  (JQ H S (Jf7) . Hence, we have

(6. 3)

for every x^&"n&(K)n&(K')- It is clear that (\jE(n)E'(m) 9»'Y
n,m

is dense in the Hilbert space &(K)9 and hence by (6.2) K(&" ft
@(K)r\@ (/O ) 2 is dense in £. It hence follows from (6. 3) that (Kf SS) '2

is dense in £>, which implies that ^^ is an unbounded left Hilbert
algebra in £>„ We next show S"K,<%=Jg3K*K'~l. Take arbitrary
xG.(K'&Y and y^S^KK'"^. Then, y = K'z for some z<^&(K)
0 S (A:7) . It follows from (6. 2) that J*" f| ^ (A) n ^ (^0 is dense
in the normed space (3 (K) n 0 (#0, ill I I I ) where ||H|| = ||̂ || + ||̂ |̂|
for #e^CK) n^CO, so that there exists a sequence {fj in J^fl
^(^)n^(^0 such that limK$n = Kz and lim K'£n = K'z. Then we

n->°° »-»««

have

iy \ x) = lim (JTf . [ *) (by 6. 3)

which implies that ^e S ((KK'~1)*) = ̂ (K'K'-1) and K°K'-lx

for every x^(K'S8Y9 which means Si^CLj^K-K'"1. On the other
hand, since ^/x n ̂  (#) 0 ^ (^0 C (JT0)", lim ^"7,,=^ and

lim

we
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Suppose 8t"c:&(K'). We denote by E(3$} the ^-algebra generated

by 38 and 38" . Then it follows from ([14] Theorem 3. 3) and (6. 1)

that £(«)c^(JP7), K'&c:K'E(a)^9(njj), nK,a(K'a)K'E(a)ci
K'E(a) and 7uK,a(K'ayK'E(a) c:KfE(@), which implies that K' SI

is an unbounded left Hilbert algebra with EW^*-extendable left regular

representation. This completes the proof.

By Proposition 6. 4 and Theorem 6. 7 we have the following

Corollary 60 8. Suppose (3$, 7T) is of Theorem 6. 7 and 2%"^® (K'} .
Then K1 'a is a modular unbounded left Hilbert algebra with standard left

regular representation. Further, suppose g$ is dense in the normed space

(&(K) n^(7O3 1|] H I ) . Then Kf @ is a standard unbounded left Hilbert

algebra.

We next consider the converse of Theorem 6. 7 : When is an

unbounded left Hilbert algebra 21 represented as $t = K'&?

Theorem 6.9. Suppose 21 is an unbounded left Hilbert algebra in a

Hilbert space § satisfying 7ra(2I)" is a semifinite von Neumann algebra,

7^(21) cZ*2(r") and 7T2r(2I2) is dense in jL2(r")3 where r" is a faithful

normal semifinite trace on ^2t(2I)//. Then 21 is unitarily equivalent to the

unbounded left Hilbert algebra K' '£% \ where (3&, K'} is a couple of an

unbounded Hilbert algebra ^ in a Hilbert space ffl with standard left

regular representation and a non-singular positive self-adjoint operator Kf in

3C affiliated with K@(&}' satisfying &d@(K') and K'& is dense in

Proof. Since 21 is an unbounded left Hilbert algebra in §, it

follows that 2T is an achieved left Hilbert algebra in § such that

jr2t(2I)// equals the left von Neumann algebra ^0(2T) of 21". We

denote by J^7 the set of all left bounded elements f of § with
Tr'C^eS^, where ^(O^^O?) f for ^21' and 31,.= {Ze7r§t(2l)//;

T(X*X)<<x>}. Takesaki has proved in [32] that
(6. 4) TC" is a closable operator of the dense subspace & in 4) onto

the dense subspace K" (<$?} in L2(rff) whose closure II is non-singular,

(6.5) let U=VT' be the polar decomposition of 77. Then V is a
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unitary operator of § onto L2(r") and Tf is a non-singular positive self-
adjoint operator in £> affiliated with %(2l)" satisfying d"* = T~l°T', where

(6.6) let po be the representation of ^(SO" on LZ(T") defined by:
p0(X)Y=XY for J5fe7rK(80" and YeS^,,. Then, the unitary operator
V induces a spatial isomorphism between %(§!)" and /?0(%(2I)") such

that PV(f)F* = ?<»(*'(£)) for $^&\
(6.7) 2T"n^ is dense in the Hilbert space 2 (T'} .
Let A be the inverse of 77 and A=UK' be the polar decomposition

of A. Then we have U=V* and K' = U*T'-1U. It follows from (6.5)
that U is a unitary operator of L2(rff) onto £> and 7T' is a non-
singular positive self-adjoint operator in -L2(r") affiliated with the

von Neumann algebra ^0(^21 (21)0 • Since %(§!) cL2(r")9 it follows
from ([9] Theorem 5) that % is standard, which implies that

^a (£) + % W) = % (O + ̂ a C3?) = fl

'«(?)* = % (f*) f°r each f, ^ e 21.

Hence, ^=7ra(20 is a generalized Hilbert algebra in L2(r /x) equipped
with the strong sum, strong scalar multiplication, strong product
and adjoint. We first show

(6.8) 2TcS(/7) and /7£ = *„(£)

for every £e8T. Take arbitrary feST. Let ^K(f) =£/f| %(f) | be the
Too

polar decomposition of %(?) and |%(O I =\ AdEf(X) be the spectral

resolution of |%(f) | . Then it follows that Ep(n)£^& and

^'(^(n)?) =jB€*(w)7r^(|)"=£p(n) k,(f*) | Ul for ?zeJ¥, so that

lim #,(«)£ = ?,

=o,
where || ||2 is the Z,2-norm on L2(r") and ^r» is the integral on

#(O [26]. Hence, fe^(/7) and /76=jr«(f).
Since /Oo(%(2l)")' —/Oo(%(5l)"); where jOJj is the antirepresentation

of ff,(8D' on Z-2(r") denned by: ^o(^)^=^^ for Ze^a(§t)" and

r», it is easily shown that AjOaW') 'c%(^)', so that jST' is
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affiliated with na(&)'. It hence follows from (6.8) that

and K' '& is a generalized left Hilbert algebra in L2(r), equipped

with (AXCf)) (•£'*« (?)) = #'*•„ (£7) and(^Xi (?))*=#'%(?*),satisfying

(6. 9)

for every £ e SI. Further, since UnK,m (K'n* (£) ) (JT*, (57) ) = £/£'*, (£?) =

r every ?, >?(ESr, it follows that tar^(A%(f))C/* = ;rH(f) for
every f eSl, so that nK,g is standard by the standardness of K^ which

implies by (6.9) that

(6. 10)

for every f e^. Hence, TT^ is standard, which implies that JT'^ is
dense in (

Since TT^ is unitarily equivalent to KK'@ and the statements (6. 6),
(68 10), we have ^(^)//==:i00(%(Sl)//)- We now show that £% is an
unbounded Hilbert algebra in Lz(r /x). Take arbitrary XeS^,/. Then

it follows that X^&tnjg) and x&(7
every feST, so that n'0(X) =p'0(X). Hence, SZ^C^7. Since ^ is an
achieved Hilbert algebra in L2(O, it follows that ^ is an unbounded
Hilbert algebra in L2(r") satisfying 3$" = ̂ ,,. It is clear that the
unitary operator U of Z»2(O onto § induces an isomorphism between
the unbounded left Hilbert algebras Kf 3$ and St. This completes the
proof.

Let jaf be a *-algebra with identity e and r be a tracial positive
linear functional on si (that is, !•(#*#) =T(XX*) for each x£=.st).
Then, the pre-Hilbert space ^r(j/) in the Hilbert space !QZ is a
generalized Hilbert algebra in §r equipped with the multiplication
^(*)*r(jO=<* t(*J>0 and the involution ^(A:)* = ^(A;*). By ([14]
Theorem 3.3) /^(<s/) is an unbounded Hilbert algebra in £>r if and
only if T is standard if and only if /r7rr(jaf) /(/r = ^r(j/)*.

Suppose r is a standard tracial positive linear functional on j/
and A"' is a positive self-adjoint operator in £>r affiliated with ^r(j/)'
satisfying 2(K'}^^(si). Then a positive linear functional K'rK' on
J2/ is defined by

for x ^ j t f . By Corollary 6. 8 and Theorem 6. 9 we have the following
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Corollary 6.10. Let $ be a positive linear functional on a *-algebra
j/ with identity e. Then the following statements are equivalent.

(1) <f> = K'rK', where T is a standard tracial positive linear functional on
j/ and Kf is a non-singular positive self-adjoint operator in $g>T affiliated with

' satisfying 1T(^} d&(K') and K'^jtf) is dense in (® (7rr)3 ^).

(2) 7T0(j/)'^(tf) is dense in $&$ and there exists a faithful normal

finite trace r" on n $(<$$}" such that TCj(jtf) is densely contained in the
Hilbert space L2(r")a

In this case^ $ is modular, and ^ is standard if and only if AT(j/) is

dense in the normed space (2 (K) n^C/O, l l l H I ) , where K=JXK'JZ.
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