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Integral Decomposition of Partial
^-Algebras of Closed Operators

By

Frangoise D. MATHOT*

Abstract

A method of direct integral decomposition for very general classes of unbounded closed
operators is developed. This method is applied to the reduction theory of partial *-algebras
and Op*-algebras.

As a consequence, representations of partial ^-algebras are decomposed into irreducible
ones and some states are decomposed into extremal states.

Introduction

In this paper, we present a method of integral decomposition for
some families of unbounded operators in a Hilbert space. The sets
of operators we consider are fairly general. They consists of closed
operators with a common core ® (dense in Jf) and we only ask our
sets to be invariant under some involution. In particular, the operators
need not leave the domain invariant.

Important examples of such sets are given by partial ^-algebras
(first introduced by Borchers) [1] and developed systematically by
Antoine-Karwowski [2] [3] and Op*-algebras which have been
extensively studied by Lassner and his group [4], VasiFev [5],
Powers [6], Epifanio [7], In the last category of examples, the
domain 3f is left invariant and products between operators are always
denned.

However, in some situations, the use of Op*-algebras is not
sufficient. For instance, there exist some quantum statistical systems
for which the thermodynamical limit does not exist in a C*-topology
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[8] but only in the completion of some Op*-algebra. This completion,
called a quasi-algebra [9], is no longer an algebra itself, but a more
general structure where the product between two elements need not
be defined.

This fact and some other examples (generalized creation and
annihilation operators [10], use of potentials which do not preserve
the invariant domain for the observables in Quantum Mechanics [11])
have motivated the systematic study of the partial *-algebras [2], of
their states and representations [3], [12], This motivates also the
present work.

As long as bounded operators are concerned, the problem of integral
decomposition is well known and it gave rise to the reduction theory
for von Neumann algebras [13], For unbounded operators, several
authors developed different methods of decomposition.

Nussbaum [14] has considered closed operators and has related
their decomposability in a direct integral to the decomposability of
their characteristic matrix (essentially a 2x2 matrix obtained from
the projection in ffl X ffl onto the graph of the closed operator) „ He
also characterized the operators which may be decomposed in a direct
integral of bounded operators.

Borchers and Yngvason [15] have considered families of unbounded
operators defined on a common nuclear domain. By the nuclear
spectral theorem they could define in each ffl(l), occurring in the
decomposition of the Hilbert space, a dense domain & (X), also nuclear,
on which all the A (X), coming from the decomposition of the initial
operators A, are defined.

They applied their method to the decomposition of representations
and states of nuclear ^-algebras. For the decomposition of states into
extremal states, the Ghoquet decomposition theory has been used by
Hegerfeld [16], also for nuclear ^-algebras.

In a previous work [17] [18], we have studied the decomposition
of Op*-algebras defined on a metrizable domain. Our method consist-
ed in the identification of an unbounded operator with a family of
bounded operators between different Hilbert spaces. We then decom-
posed simultaneously all the present Hilbert spaces and the bounded
operators between them. Conversely, the family of bounded operators
we obtain in each ^-component of the direct integral, allowed us to
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reconstruct an unbounded operator A(X) in Jf(A). The same kind

of method will be applied here for partial ^-algebras and more general

families.

The assumption of metrizability of 2 occurs often in the literature.

Interesting properties about topologies [19], states [20], commutants

[21] have been established in that situation.

In our problem of integral decomposition, this hypothesis allowed

us, for Op*-algebras, to define a common invariant dense domain

2 (/O in Jf(/0 on which {^4 (/I)} coming from the decomposition of

the Op*-algebra, forms itself an Op*-algebra. (Actually, the metriz-

ability of 2 prevents us from having to deal with an uncountable

union of null-sets.) For the same reason, we assume all along this

paper that 2 is metrizable. Although it will be more difficult in our

case to define the domain @ (1) (see Section 3) than for Op*-algebras,

the metrizability of @ will be essential to build it and to prove that it

is dense in Jf (/O and a core for each A (/I). It will also be important

in the verification that the algebraic operations (which are very specific

for partial ^-algebras) , go through the integral decomposition.

The first part of the paper is devoted to the decomposition of a

countable set of operators (this automatically gives us a metrizable

domain) and is organized as follows:

Section I: Definitions and preliminaries', ^-invariant sets, partial

^-algebras, Op*-algebras, graph-topology, bounded and unbounded

commutants.

Section II: Integral decomposition of a single operator'. Decomposition

of ffl and of the domain of the operator, characterization of the
decomposable operators.

Section III: Construction of a common domain @ (X) for a countable

set of operators', metrizability condition on ^, existence of 3) (X) »

Section IV: Verification of the algebraic properties'. Adjoint, sum,

products (as defined in partial *-algebras)

The conclusion of this first part is that any countable ^-invariant

set (resp. partial *-algebra or Op*-algebra) may be decomposed in a

direct integral of countable irreducible ^-invariant sets (resp. in
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partial ^-algebras or in Op*-algebras) on a domain &> (2) of

The second part of the paper is devoted to the extension of this
result to non-countable but separable 4= -invariant sets.

In the case of bounded operators [13], this extension is possible
because a von Neumann algebra is separable in the strong operator
topology and because if Al->A and {A1} and A are all decomposable,
then Al(Z) -*A(X) for almost every A (i.e. A(Z) belongs to the von
Neumann algebra generated by {A* (%)}).

The main point here is to find a suitable topology (involving the
strong one in some sense) and assume the family of operators is
separable in this topology. For Op*-algebras we considered in [18]
a quasi-uniform topology [4], [22] and then proved the result that
separable Op*-algebras could be decomposed.

Here, we can actually consider a weaker topology, the strong
^-topology ([23] for bounded operators, [24] for unbounded) which
is a particular case of a quasi-uniform topology. In practice, when
we shall consider representations of abstract partial ^-algebras by
closed operators, the assumption of separability in the strong *-topology
will come from the fact that we shall consider strongly continuous
representations.

In the second part of this paper, we decompose thus ^-invariant
sets (resp. partial ^-algebras and Op*-algebras) separable in the strong
^-topology, into irreducible ^-invariant sets (resp. partial ^-algebras
and Op*-algebras). For Op*-algebras this generalizes the result we
got in [18].

We also apply this decomposition method to some particular clas-
ses : the F*-sets which are sets of operators equal to their unbounded
bicommutant (this is a generalization of the F*-algebras considered
by [25] which are themselves a generalization of von Neumann
algebras).

Finally, we decompose representations of abstract partial ^-algebras
into irreducible representations and states into extremal states. Con-
cerning the last point, the usual notion of state on a ^-algebra has to
be replaced by sesquilinear forms, the so-called /z-states [3], Some
of them, called weakly GNS /z-states give rise to a generalization of
the GNS representation and these are the ones we decompose in this
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paper.

The second part is organized as follows:
Section V: Decomposition of separable 4= -invariant sets'. Strong

^-topology, separability, decomposition of the dense subset 210? topology
on §lo(^), completion of SloC^), decomposition of the whole set. Par-
ticular cases: F"*-sets and F*-algebras.

Section VI: Decomposition of representations of partial ^-algebras:
Abstract partial ^-algebras, representations., closed and fully closed
representations, cyclic and strongly cyclic vectors,, Theorem of decom-
position into irreducible representations,, Continuity property of the
irreducible representations.

Section VII: Decomposition of states of partial *-algebras: Definitions
of /z-forms, A-states, weakly GNS /z-states. Theorem of decomposition
of weakly GNS A-states into extremal ones. Continuity property of
extremal h-states.
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Part one: Decomposition of a Countable Set of Operators

§ I. Definitions and Preliminaries

1.1. =%= -Invariant sets9 partial *-algebra§9 Op*--algebras
Throughout this paper ffl will denote a separable Hilbert space

and Si a dense domain in it.
We shall deal with a family §1 of closed linear operators having

2 as a common core (but not necessarily leaving it invariant).
According to the definitions of [2], 21 is thus a subset of the set

© or S(^) of ^-minimal operators i.e. closed operators A in ffl

such that ®<^D(A) HD(A*) and satisfying A = A \® (where * denotes
the usual Hilbertian adjoint and the bar, the usual closure of an
operator).
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The set S carries a natural involution 4= defined by: A* =A* \ ®.
Moreover, every element A of S satisfies A = A**.

The kind of families we are going to consider in the sequel of
this paper will be 4= -invariant subsets of ®. We shall refer to those
subsets as "^-invariant sets" (of S-minimal closed operators).

Important particular cases are partial ^-algebras [2] and Op*-
algebras [4], For convenience of the reader we recall the basic
algebraic notions involved in those structures.

a) If A, J5eS the sum A3-B=(A+B) \ $ belongs to S again.
b) Two kinds of partial multiplication may be introduced:
- Let A and B be such that B^^D(A) (domain of A) and

in which case we say that A is a left-multiplier of B

(or B is a right-multiplier of A), then the product A*B=A(B \ &) is
a well defined element of ®.

- If A and B satisfy only the weaker condition that B& <^

and A*@ e £)(£*) another product AnB=A**(B \ s) may be defined.
In order to distinguish between the two partial products, we will

denote the corresponding structures by Ss and Ew respectively.
Then ®";= (&, + , D, 4=) is a partial *-algebra in the sense of

[2] : the three operations (sum, involution, partial product) satisfy
the usual properties of distributivity between sum and product

(AU(B-HQ) = (AnB)^2(AnC), 2^C and the usual relation be-
tween involution and product (A\3B)* = B*[3A* is verified.

So, £w and all its vector subspaces, stable under Q and containing
1, are partial ^-algebras.

In contrast to 6% Es= (®, -f, « , 40 is not a partial *-algebra.
Although the sum, involution and partial product » are defined,
examples are known [26] , [27] where distributivity is violated : there
exist operators A, B and T such that T is a left multiplier of A and
B but is not a left multiplier of A3-B (the reason is that D(A^-B)
need not contain D(A) fl-D (/?)). So, ©s itself is not a partial
^-algebra but we may restrict ourselves to vector subspaces of ®s,
containing 1, stable under • and satisfying the distributivity law. We
get in this way another class of partial ^-algebras.

A more restrictive class, the Op*-algebras, is obtained when every
operator in SI maps @ into itself i.e. A I s^eL+(^), the set of all
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closable operators in tf such that A^^^ and
For two such operators A, B, the product is always defined and

coincides with the two partial products introduced above: AB = A* B

An Op*-algebra is a *-subalgebra of L+ (&} containing the unit

operator.

1. 2e Domain considerations
Given a ^-invariant set 21 on the domain ^, the corresponding

graph-topology on @ is given by the set of norms:

1 1/! ft =||/1 12 +H4/I |2 /^S, where A runs over 21

Every A e 21 is continuous from Si with this topology into ffl with

the norm topology.

Moreover, since A is a closed operator, its domain D(A) with the

graph-norm is a Hilbert space that we shall denote by 2ff A. The

graph-topology on Q> , (denote it £a) is then also the protective limit

topology corresponding to the Hilbertian topologies of the ^f/s, ^e2L

The completion @ of 2 with respect to this projective topology

is a closed subspace of 2 (21) = r\ ffl A. A priori, this subspace might
AeSI

be a proper one contrary to the case of Op*-algebras where ^ = ̂ (81)

[6] [28]. In fact, a sufficient condition for this equality is that

the system of norms defining the topology of ^, be directed (i.e.

V4,5eST, there exists CeST such that \\f\\ A, ||/||B<i|/|lc5 V/eS)8

This happens in particular for Op*-algebras but need not hold

for a general partial *-algebra or 4= -invariant set.

Although no explicit counterexample is known so far, we have to

distinguish in the general case between 3f and ® (21) i.e. we have

However [4] [6], we may always assume that ^ = ^, otherwise,

we replace 21 by its "closure" 21 which consists in the same set of

closed operators as 21 but considered as the closure of their restriction

to 3fm 21 is an extension of 21 [15] (in particular 21 is isomorphic to

21 i.e. all the algebraic operations are preserved).

Remark. It is also possible to consider an element of 21 as the

closure of its restriction to ^(21), and by doing this, to get a

=(= -invariant set or a partial *-algebra on ^(21).
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However, as shown in [3], it may happen that the new ^-invariant
set be only homomorphic and not isomorphie to the initial set (for
instance if §TcSs(^)5 the new set will in general be in KW(^(8D)
i.e. the product is not preserved). In that case, we don't have
extension in the sense of [15],

1. 3. Commutants
Since we are dealing with unbounded operators, it is natural to

consider also unbounded commutants. The biggest commutant we
may introduce for a ^-invariant set 31 eg is the "weak unbounded
commutant" :

Some other unbounded commutants have been introduced in [30]
[24] [25] [2] [3], all of them subsets of this one.

However, as far as we are concerned with the problem of irreduc-
ibility of a set of operators, it appears [6] [12] that only the bounded
part of this commutant is relevant i.e. the "weak bounded commutant"

(where B(Jf) denotes the set of bounded opertors in

A ^-invariant set §1 will be called irreducible iff $t'w consists in
the scalar multiple identity only.

Since our operators are defined on some specified domain @9 a
special role will also be played by the "strong bounded commutant" i.e.
the elements of 2C leaving & invariant.

and X*^cs, XAf=AXf,

(Rem: this §£ is the ^-invariant part of the §£ introduced in [6]
[15] [17].)

It is easy to check the elementary properties of those commutants
[6] [15] [17]. We summarize them in three lemmas:

Lemma 1.3.1. a) §C is a weakly closed linear subspace of
containing 1 and ^-invariant.

b) 2ls is an algebra, ^-invariant but not necessarily weakly closed.

c) Sis is weakly closed.

d) «& = %.
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e)

Lemma 1. 30 2e If X ^2Is then X is a bounded operator in the Hilbert
space Jf^ for every A^$t. (Same proof as [17] Lemma 2. 2. 1. We use
the fact that @ is a core for any

Lemma 1.3.3. Let m be a ^-invariant subset of 2G and let
For every ^4^21, M leaves D(A*) invariant and M commutes with A*
(i.e. MA*f=A*Mf \/f^D(A*)). In particular, M commutes with the
self -adjoint operators (l+A*A)±l, (1 + A*A) ±1/2 for any ^EE2T. (Same
proof as [17] Lemma 2.2.2.)

Remark. A* is not a minimal operator. 2 is not necessarily a
core for A*. Nevertheless, A* is a closed operator and its domain
D(A*) provided with the graph-norm is a Hilbert space JfA*.

Lemma 1. 3. 4* Let m be a von Neumann algebra contained in 2C
and denote by mA its restriction to j f A , for any A^tyi. The family
{m^l^teSl} is a set of unitarily equivalent representations of Ttl in
each ffi A respectively. This equivalence is given by the unitary operators
{(l+A*A)±l'2} (between X and

The proof follows from Lemmas 1,3.2. and 1.3.3. and the fact
that the graph-norm in X A may be rewritten as

§11. Integral Decomposition of a Closed Operator

2. L Decomposition of 3ff
The method of integral decomposition we consider here is the one

introduced in [17]. It consists in the identification of an unbounded
closed operator ^4eSl with a bounded operator between XA and Jf0

We then use the reduction theory for bounded operators but between
different spaces. More explicitly, beginning with a ^-invariant set
21, we shall consider an Abelian von Neumann algebra mcg^ con-
taining 1 and maximal in the sense that m=m / fl2C (tnx denotes the
usual commutant for bounded operators) .

By the extension theory developed in [15], we know that any

4= -invariant set SI defined on 2 always admits an extension 2C on a
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domain 3ft dense in a larger Hilbert space $ for which such an m

exists. So, it is actually this extension 21 that we are going to

decompose and, moreover, we may also assume 21 to be closed i.e.

3ft complete with respect to the graph topology (because of Lemma

1.3. l,m is maximal with respect to & as well as with respect to 2C).

Let thus 21 be a closed ^-invariant set and m an Abelian von
Neumann algebra such that mC2£ and m = m'n3I». We may decom-
pose the Hilbert space 3f in a direct integral on the spectrum of m
by the usual reduction theory for von Neumann algebras. More
explicitly, there exists [13] a compact metrizable space A, a positive
regular Borel measure fi on A and a ^-measurable field X~*jF(X) of
Hilbert spaces such that

m consists exactly in the diagonalizable operators in that decom-
position i.e. m~L°°(4//) and the set of bounded decomposable
operators in iff is exactly m'. [13]

2. 2. Decomposition of tf A

Take now some ^4e2l. Between 2tf and ffl A we have the unitary
operator (1 +A*A) ~1/2 (Lemma 1.3.4). Considered as operator in
^f, this is a bounded operator commuting with every AfGEttt. Hence
(l+A*A)~l/2 belongs to m' and is thus decomposable. There exists
a //-measurable field X~*(l +A*A) ~1/2(^) ^B(Jf(X)) essentially bounded
such that:

(l+A*A) ~l/2=
J A

and ||(l+J*4)-1/2|| = ess. sup ||(1 +A*A) ~l/2(V ||

Since (1 +A*A)~l/2(X) e^(Jf (X)) for almost every l^A (i.e.
A\JfA where Jf 'A is a null-set) we may define:

-Range (1 +A*A)

Defined in this way, Iff A (X) appears as a subset of 3ff (X) and it may be
equipped with the following scalar product : If fi (X) =(l



INTEGRAL DECOMPOSITION OF CLOSED OPERATORS 699

i=l , 2 and g,-(J) €=.*(*), put (f1(Z),f2(X»A.i=(gi(Z),g2(X)>).
With those definitions, the field *-»(! + A*A) ~l/2(%) is a field of

unitary isomorphism between Jf (/T) and e^f^C/O for almost every 2.

Therefore [13], the inverses field ^~»[(1 + 4*4) "1/2W]"1 is also

measurable and defines the integral decomposition of (1+4*4)1/2

which is unbounded in Jf but unitary from $P A into Jf7.

Redefining (1 +A*A)m(Z) = [(1 + 4*4) "1/2(^)]"1
3 we can rewrite

the norm in 3^A(X) as:

(for more details, see [17]). Of course, as expected, the field

/l~» 3? A (X) will give the integral decomposition of 3^A and corresponds

to the decomposition of Jf A with respect to the Abelian von Neumann

algebra ttlA (which is unitarily equivalent to m).

In conclusion, we are able to decompose all the Hilbert spaces Jf A

on the same spectrum A and with the same Borel measure JJL.

Moreover, this decomposition is coherent in the sense that, if

f will admit a unique integral decomposition

f={
J

with f(X)

i.e. almost everywhere. Differences will only

appear in expressions of the norms I L / X ^ I U . A and |[/(^) iU.* as given

above.

20 3. Decomposition of a single operator
As we said above, when Jf is decomposed in a direct integral on

the spectrum A of m, the set of ail bounded decomposable operators

is exactly m'.

Here we shall use a slightly more general result [13].

Let MP and ffl' be two Hilbert spaces decomposed on the same A

with respect to the same measure fj,. Every function m Ei L°° (A, fji)

determines a diagonal operator M in Jf and another one Mf in $F '.

In that situation, every bounded operator from Jf into Jf ' which

intertwines M and M' (for any m EE L°° (A, //) ) , is decomposable.

In our case, every A e 21 is a bounded operator from its domain

30* A into Jj? and we have decomposed 3P and 3? A in a direct integral

on the spectrum of m. Any m^L°°(A, //) defines an operator Mem



700 FRANQOISE D. MATHOT

and MA = M \ #A^mA<^B(tf A) (remember Lemmas 1.3.2-
1.3.4). Moreover, since m<=3G, we have MAf=AMAf, V/e^, i.e.
A intertwines M and MA. Hence A is decomposable in the sense that
there exists a measurable field Jt~*A(Z) &B(Jf A(X)9 Jf(Z)), essentially
bounded, such that:

A = A(X)dfi(X)
JA

and H^llacjr jr^ess. sup \\A (Z) \\B(*AA ^ A

If we consider A (A) as an operator in J^(X) with domain Ji?A(X),
we get a closed operator in J^(X). So, the closed operator A in Jtf7

is decomposed in a direct integral of closed operators A (A) in ffl (I)
(for almost every A^A i.e. A^A\Jf'A, where Jf'A is a null-set
containing the previous null-set Jf^).

Since JFA(X), which was already a Hilbert space with its own
scalar product, is now also the domain of the closed operator A(X),
the norm ||/(/OIL;j introduced before, is equivalent to the graph-norm

It may happen that A is also a bounded operator from some $?B

in some fflc (J3, CeSl). This happens for instance if §1 is an Op*-
algebra because then A is continuous from 3f to 2 with the projective
topology. Hence, for any CeSI, there exists B^$t such that \\Af\\c<
K\\f\\B, \/f^& and some constant K. This means that A may
be extended to a bounded operator ACB from $PB into ffl c (in fact
ACB=A j ^p.

Here again, every m^L00 (A, //) determines a diagonal operator MB
in c2fB and a diagonal operator Mc in Jf c and A intertwines those
two operators. Hence A is decomposable and we get a measurable
field 1~>ACB(X)^B(XB(X), JfcW).

Each time ^4 has some boundedness properties between any two
Hilbert spaces, the same boundedness properties hold at (almost)
every /l-level of the integral decomposition,,

All the decompositions we may obtain in this way (between
different pairs of Hilbert spaces) are coherent in the sense that they
are all restrictions of the first one between J^A = D(A) and Jf:
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20 40 Which are the decomposable operators ?

We have been able to decompose an element 4e2l for three

reasons :

a) 3? A and 3C are both decomposed on the same A — Sp m.

b) A is a bounded operator from ffl A into ffl .

c) A intertwines m and mA.
Obviously, elements of SI are certainly not the only minimal closed

operators satisfying those conditions.

Theorem. Every X^m'a is decomposable.

Proof, By definition, m'.= [X^ E: (X*f, Mg} = (AT/, Xg) , V/, 5 e 0,

m}. Using the facts that elements of m are bounded and leave

Of invariant (mC§]Q we have MXg=X**Mg=XMg, Vge^, \/M^m.

Since 2 is a core for X and M is bounded in Jf, the equality

MXg=XMg extends from 2 to 3t?x = D(X). From this, it also follows

that Mis bounded in^x: \\Mg\\2
x= \\Mg\\2 +\\XMg\\2 = \\Mg\\2 +\\MXg\\2<

\\M\\2 \\g\&, Vgt=#x.
Finally, mx, the restriction of m to 3?x^ is an Abelian von

Neumann algebra unitarily equivalent to m in ^f (by the operator

(I+X*X)±l/2 and tf and Jf x are both decomposable in a direct

integral on Sp m.

The three conditions mentioned above are fulfilled, which means

that X is decomposable in a direct integral of closed operator

in 3t?(X) respectively.

Remark. Since we had m^K^K, we get also Hcgi^Cmi and
this explains why the elements of §1 are decomposable. We have just

shown now that they are not the only ones. Moreover, Lemma 1. 3. 3

suggests another class of decomposable operators, namely, adjoints of

elements of m'a. They are no longer minimal operators but maximal
ones [2] and 2 is no longer a core for them. Nevertheless, they

are closed operators and their domains are Hilbert spaces.

Theorem. // X^m'0, X* is decomposable.

Proof: For X^m'a we have seen in the proof of the last theorem
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that MXg=-XMg for every g^D(X) and for every M<Em. Take in

particular M*em and consider h^D(X*). We compute

(Mh, Xg) = (h, M*Xg) = (h, XM*g) = (X*h, M*g).

Since M* is bounded, this means that Mh^D(X*) and X*Mh

= MX*h, Vk^D(X*). So, M commutes with X* and the same

calculation as in the previous theorem shows that M is bounded on

wx*>

Conclusion. In this section, we gave a method of decomposition

of a closed operator into a direct integral of closed operators. We

have seen that if X possesses some boundedness properties, the same

properties will hold at the ^-level for almost every X^A. We did not

say anything so far about the minimality or maximality of the X(X)

so obtained. To do so, we have to specify some domain 3f (X)

dense in 3>(?(X) which will be (or not be) a core for X(X). We shall

consider this problem in the next section in the case of a ^-invariant

family 21. We consider first a countable family of minimal operators

and we decompose them simultaneously. The countability assumption

is necessary to avoid problems of null-sets. The extension to uncount-

able families will be done in Part II. Once we have a common

dense domain 2 (X) on which all A (X) 's are defined, we may also

look at the continuity properties of A (X) with respect to some graph-

topology.

§ III. A Dense Domain Qi (X) for a Countable Set
of Operators-Metrizability Assumption

3.1. In this paragraph, 21 will denote a countable (closed)

^-invariant set. Applying the method of decomposition just explained

to every element -4e8I, we get closed operators A(X) in JP(X) for

X&A\rf"A. Thus, it is only for teA\\j rf"A that all the A(X)'s may
AeSI

simultaneously be considered as a set of closed operators in the

Hilbert space Jf(X). The assumption that 21 be countable guarantees

that the set of exceptional /Ts to disregard is still a null-set.

Under that assumption, we are now able to work at the ^-level

(for almost every X^A) and to ask the next question:
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Can we find a dense domain & (I) of ffl (X) which will be a

common domain for all A (/O 's ?

3o 2a If 21 is countable, @ (= Sf) provided with the graph-topology

t% given by the norms {|| . \\A: ^4^31} is a Frechet space.

However, as we mentioned already, it might be a proper closed

subspace of ® (W) = r\ tf A.
AeSi

In other words and following the terminology of [2], §1 is closed

but not necessarily "fully closed".

An important consequence of the fact that S is a Frechet space

is that every element Xe®(^) will be continuous from @ into Jf=

Indeed, X being a closed operator in 3f is also closed from 2 to ffl

and hence is continuous by the closed graph theorem. In particular,

the topology t^(@} is equivalent to t% on 2,

We can now prove the following result:

Theorem. There exists a countable set &§ = [e^ e23 ...} dense in 2
for the graph-topology t% such that for almost every l^A^ S0(/i) = {tfiC/O,
#2(^)5 • •• 10,-eE.^o} is a core jor A(X),for any -4EE31.

Proof, a) In the explicit construction of a direct integral of
Hilbert spaces

on the spectrum of a von Neumann algebra, there always exists a
countable dense set {xi9 x2, . . .}C^f such that the set of images
{#1(^)5 ^2(^)5 • • • } is dense in ^f(^) for almost every %EiA (see
Dixmier p. 208). Since & is dense in Jf7, we may always choose
this set {xt} contained in &.

Similarly, in the decomposition of fflA in direct integral, we may
find another set {xiiA} dense in tfA such that {xitA(ty} is dense in
J^A(X). Since @ is dense in J%, for the ^4-graph-topology9 {xiiA}
may be chosen in 2. We can do the same thing for every ^4eSl,
but the set [xitA] may be different for each A, However, those dense
sets will be useful later.

b) Since Q) is a separable Frechet space, there exists a countable
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set &0= {#1, £2? ^35 • • • } everywhere dense in St for the Frechet topology
£§,. So, any /GE & is a ^-limit of a sequence {/J of elements of &0

i.e., for any ^4eSt we have |l/— /,-IU-^O (and the sequence {/J is
independent of A) . Decomposing / and ft in a direct integral, we

get:

I l/-/il li = ! !/ W -/, « 1 11,

Since the 1. h. s. tends to zero, there exists a subsequence

such that:

n a.e.

Moreover, since there is only a countable number of different

norms to consider, the subsequence { f t } may be chosen independant

of A i.e., the relation (*) holds in every J^A(X) (for almost every

Finally, f(X) belongs to the completion of ^0(2)-

l^e^ol with respect to the projective topology defined by the

graph-norms of all A(X)9s (V-4^31) :

z@Q(X) (almost everywhere).

c) Now we show that S0(/0 is a core for every

Consider some g(X) ^3?A(X). By the considerations of point a) of

this proof, we know that there exists a sequence {gj ^^3 dense in

3i?A, such that g(X) is the limit of gt(X) in the A (X) -graph-topology.

Since ^eS, point b) tells us that, in the integral decomposition, we

shall have for every i: g{(2) e @Q(X). In turn, gt(X) will be the

limit of elements giin(X) e^0(^)5 in the A (1)-graph-topology. Hence
gW=A(V-limgiW=A(V-limgiM)=A(t)-limgjj(V, by a diag-

i i, n j

onal procedure. Finally, g(2) is a limit of elements of &o(X) in the

A (X) -graph-topology hence @0(X) is dense in 3l?A(X) and is a core

for A(Z).

3. 3. A common domain

Theorem. Define @(X)=30(X) as the completion of &0(X) with

respect to the projective topology defined by all the A (/I) -graph-norms. Then

SI, A(X) is a @ (2) -minimal operator (i.e. A (X) <E S (0 (X))) awrf

z'j continuous from & (X) with this topology into Jf(/0 /or almost
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every

Proof, We just saw that &Q(Z) hence a fortiori &Q(X)=&(X) is

a core for any A (/I) . Thus A(X)=A(X) \ ®Qw=A(Z) \ ®w is a minimal
operator with respect to 2 (2) . Since Sf (Z) is by construction

complete in the projective topology, we get that {A(X) \A^$i} is a

closed set of @ (1) -minimal operators in 3t?(X).

Moreover, the fact that A is continuous from Sf (with £a) to ffl

which is expressed by the inequality:

1 14/1 12< Will V/e^

gives rise in the integral decomposition to inequalities of the form:

for almost every %E:A and for every fZE®. In particular, this is true

for every 0,-EE^oj hence A(X) is continuous from ^0(^) with the
projective topology into 3f(X) and thus can be extended to @ (X) in
a continuous operator.

Remarks. 1. The common domain <& (/I) so defined is in general a
proper closed subspace of r\ ffl A (X) . However, & (^) is large enough

Ae§l
in the sense that it contains the images f(X) of all /e @ so that

expressions of the type

Af={ A(X)f(Z)d/jt(X) make sense
JA

2. In the case where the system of norms defining the topology

of 2 is directed, in particular if 21 is an Op*-algebra, we have
@ = r\ ffl A. In the integral decomposition, the inequalities between

Ae2t
norms are translated in analogous inequalities between the A ( X ) -

norms, for almost every A£=A. The system of A (/O -graph-norms is

thus also directed and this implies that

In particular, we recover the result of [17] where we were decom-

posing Op*-algebras only and where we had introduced the common

domain immediately by this last equality. Moreover, in the case of

Op*-algebras, the elements ^4^21 leave the domain @ invariant and
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are continuous from Qi into itself for the projective topology. Since
inequalities between norms are preserved in the integral decomposition,
the boundedness properties of A are translated in boundedness
properties of A(X). It follows that each A (A) is continuous from
2 (X) into itself with the projective topology defined by the norms

We shall now see that because @ is metrizable and as a conse-
quence of this every J^eE(^) is continuous from (^3^§j) into J"f?

the results of the two previous theorems extend to all decomposable
operators.

Theorem. Let X^m'a (i.e. a decomposable operator). Then @Q(X)

and @ (X) are cores for X(X) and X(X) is continuous from (@(X), £§100)
into 3t?(X) for almost every

Proof. The fact that X is continuous from (&, t%) into <$? is
expressed by an inequality of the type ||J(/*||<^||4/||, V/^^, some
constant K and some ^4^21. In the integral decomposition, we get
a similar inequality with X(X), f(X), A(X), in particular V/^^o
which means that X(X) is continuous from (&Q(X), t^w) into ffl (X)
and may be extended in a continuous operator from (@(X), t^w)
into jf?(X)m As in the theorem of Section 3. 2., any g(X) &JPX(X) is the
limit of a sequence [gi(X)} with g^^. Hence each of those gf's is
a limit of elements of S0 such that gt(X) is a limit of elements of
@0(X) in the SI (X) -graph topology. But this implies that gt(X) is
also a limit of elements of &Q(X) in the X(X) -graph norm. Finally,
this means that &0(X) is a core for X(X).

§IV. Verification of the Algebraic Properties

4. 1. Theorem. Let 21 be a countable ^p -invariant set of @ -minimal
operators. Assume any A£=yt is decomposed in a direct integral following
the method of Section II. The following algebraic relations hold for almost
every X(=A and \/A,

a)
b)
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c) // A. B is defined then A(X). B(Z) is defined and (A. B) (X) =
A(X). B(X).

d) A*(X)dA(X)* and A**(X) cA(X)**.
e) If AHB is defined then A(Z) OB(X) is defined and (AHB) (X) =

Remark, The same theorem holds If we replace in the hypotheses,
Ay J3eSI by A, B^.m'0 i.e. any pair of decomposable operators. In
fact, because m£5(^f) and m^c^ ? it can be shown that m'0 is a
partial *-algebra with respect to the product D and moreover, is also
stable with respect to the product. [30]

Proof, a) The adjoint
Since A(X) is <& (X) -minimal, the definition of A(Z)* Is of course

A(Z)*=A(X)* \ ®w. Take g^D(A) andf^D(A^). For every
we have (/, MAg) — (A*f, Mg) , which gives in the integral decom-
position :

for every m^L°° (A, JJL) .
This implies that for almost every

This relation which holds for g^D(A) and f^D(A*), extends by
Theorem 3. 2 to any g(X) &D(A(Z)) and any f(X) GD(A*(Z)). Hence,
D(A*(X))=3PA*(X)t:D(A(X)*) and A* (Z) and A(Z)* coincide on
3ff +(X) which contains the common domain & (X) . Since we know

A.

that A*(X) is 2 (X) -minimal :

which proves the a) of the theorem.

b} The sum

Let C~A3-B = A \ ® + B \ 2. For any ̂ e^f?/eS, Mem, we have
(g, CMf) = (g, AMf) H- (g, B M f ) . Taking the integral decomposition
as in a) above, we can easily derive that: (g(Z)9 C(X)f(Z)) = (g(Z)9

A(X)f(X) + (g(Z), B(Z)f(Z)). Since the set of g(Z), coming from some
g in j«f is dense in 3f(X), we get: C(Z)f(Z)=A(Z)f(X)+B(X)f(Z) for
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any f^@. This is true in particular for any/eS0? the countable

set dense in @, that we have introduced in 3. 2. Hence, C(X) \ @Qw

= (A(Z)+BW) r . We have seen in 3,3 that &Q(X) is a core

for any C(/0, because CettC Hence, C(Z) t&0w = C(X). On the

other hand, since @o(X) is by construction dense in & (X) for the pro-

jective topology, it is a fortiori dense in & (X) for the topology defined by

the norm || . ||AW)+BW) which is dominated by || . ILw + ll - \\BW- (Remark:
it does not follow from this that &Q(X) is dense in 3? A(X) f} 3? B(X) ,

counterexamples do exist [26]). It follows from this that @Q(X) is

also a core for A(X)3-B(X) and that

(A(X)+B(X»

c) The product
Let A, 5e3l such that A. B is defined (it then belongs to mi). By

definition of the product . , this means that Range (B I &) ̂ D(A) =3? A

and Range (A* l^^D(B^=Jf^.

Since every element of m'a is continuous from 2 with the projective

topology into 3ff , the fact that A, B is defined means in particular

that B maps Sf continuously into D(A) i.e. there exists a finite set

of elements Cl9 C2, ... CV of 2T such that: \\Bh\\ A<K% \\h\\c \/h^@
N £=1

i. e. B maps continuously some closed subset of r\ ^ifc. (the completion
N » = 1

of & with respect to _2 II* l i e . into tff. If we consider the integral

decomposition of By /z, A, Ci, . . . CN, we get a similar inequality for

almost every

which is true in particular for all h^@Q. Hence B(X) maps con-

tinuously @Q(X) (and @ (X) by continuity) with the projective topology

into JPA(X). Finally, Range (B(X) \ 9w) CJf A(X) =D(A(X)). Similarly

with the second condition, we get:

Range (A*(X) I *w)c*B*(Z) =D(B*(X».

In conclusion, if B is a right multiplier of A,B(X) will be a right

multiplier of A(X) i.e. the product A(X). B(Z) is defined almost

everywhere. It remains to show that it is equal to (A, B} (X) . As we

did for the sum, it is easy to get that
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and the closure of the 1. h. s. is by definition (A, B) (X) because A,

ma. On the other hand, since (A. B) (X) is 2 (X) -minimal and since
2 (X) is the completion of ^Q(X) with respect to t^w and a fortiori

with respect to t«9m we have for any f ( X ) ^ ^ ( X ) : B(X)f(X)<=

D(A(X)) and (A. B) (X)f(X)=A(X)B(X)f(X)9 which implies (A. B) (X) =

A(X)0 B(X).

d) Hilbertian adjoint- maximal operators

In the paragraph 2. 4 we saw that not only minimal operators can

be decomposed into a direct integral but also their hilbertian adjoints
which are maximal operators-

However, if we decompose some ^4* C4e2t), we are not able to

prove that A*(X) is & (X) -maximal but only that A*(X) dA(X)* (this
last one being maximal).

Consider indeed (/, MAg) = (/, AMg) = (A*f, Mg) , V/e=.*V, \/g^

By the integral decomposition we get for almost every

\(f(X), A(X)g(X» =\(A*(X)f(X),

This is true \Jg^.2^A and taking a dense set {gt} in 3? \ such that
(gi(X)} is dense in 3t?A(X) and similarly a dense set {fj in jfAt such
that (fi(X)} is dense in JfA*(X)9 we get that for any f(X) e^f A+(X) :
A*(X)f(Z)=A(X)*f(X). That means that, JfA>(X) czD(A(X)*) and that
A*(X) and A(X)* coincide on tfA*(X) i.e. A*(X) <^A(X)*.

Applying this result to A* instead of A, we get A** (X) c (A*(X))*

e) The product D

Let A.B^^L such that AHB is defined (it belongs to mi).

We have: Range (B [ ̂  cD(,4^) =^A^,

Range (A* f *) dD(B*) =jeB, .

In particular, 5 maps ^ continuously in Jf +* i. e. there exists a

finite set of elements Ci, C2, . . . CV in 21 such that :

\\Bh\\ ^<K E\\h\\c., Mh^@0A »=i z

Notice that the set of norms {||"|| *=.} coincides on 2 with the set
of norms {||°|U I A^Vi] and so, defines the same projective topology.
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Following exactly the same proof as in c) above, we get for almost

every X^A an inequality similar to the last one (with B(X), h(X),

A**(A), Ct(X)) and so we conclude that the product A(X)OB(X)

is well-defined. By integral decomposition we get easily that

( A H B ) ( X ) [ 9Qw=A**(Z)B(Z) r^0«) and with exactly the same proof
as in c) (replacing A(X) by A**(X) and using he result of d)) we get

finally: (AUB) (X) =A(X)HB(Z) almost everywhere.

Remark, a) In the proof of this theorem, the existence of the set

S0 dense in @ for the projective topology and such that @Q(X) is

dense in 3t (X), has been used in b), c) and e) i. e. for the sum, the

products . and Q For the part concerning the adjoints * and =|=,

we only need the existence of a dense set {&} in 3CA (resp. Jf A*, 3? A*)

such that [gi(X)} is dense in tf A(Z) (resp. tfA*(X), Jt?A*(X)). In
particular, this set need not be the same for A and A* or A and ^4*.

4. 2. In conclusion of this section, we summarize the situation:

Theorem. Let 31 be a countable ^-invariant set (resp. a partial *-algebra

or an Op*-algebra) of 2-minimal closed operators in a separable Hilbert

space ffl. There exists a Hilbert space $ containing 3? as closed subspace

and a direct integral decomposition ^=\ 3f(X)d/ji(X) where [i is a regular
JA

Borel measure on a compact space A.

For almost every A^A, there exists a dense domain & (X) in jf?(X)

and a countable ^-invariant set $t(X) (resp. a partial *-algebra or an

Op^-algebra) of 3f (X) -minimal closed operators such that

Af=( A(X)f(Z)df*(X)
JA

where A (X) G$t(X) and f(X) <=9(X).

The decomposition is irreducible i.e. (U(Z)YW is trivial for almost every

Remark. The proof of the irreducibility is the same as in [15] and
follows from the choice of m as indicated above.
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Part two: Decomposition of Uncountable Sets9

Representations States

§V9 Separable ^-Invariant Sets

5o 10 In this section, we are going to extend the result of integral
decomposability from countable to uncountable (but separable)
^-invariant sets.

In the previous sections, the fact that the graph-topology on 3f
was metrizable, was very important because it allowed us to define
the domain & (X) and to show that it was dense in 3f(X) for almost
every A^A.

If we had considered an uncountable set of norms on ^3 we
would have been able to define @ (1) but not to prove that it was
different from zero.

For this reason, although we shall consider now uncountable sets
21, we shall assume that 21 is dominated by a countable subset 210 [6]
i. e. for every 4e3l there exists £e2I0 such that \\Af\\<K\\Bf\\, V/e^8

It follows from this assumption that the protective topology t® on
Q) is equivalent to the projective topology t^ (which is metrizable)

and we assume 2 to be complete with respect to those topologies
(i.e. 21 and 2I0 are both closed ^-invariant sets),

5, 20 Topology on 21
It is possible to consider various topologies on a 4^-invariant set0

Here we shall consider the so-called strong ^-topology (shortly s*-
topology) [24] which is denned by the following set of semi-norms:

4e« >gf(A)=max [\\Af\\, \\A*f\\],

/running over @. This topology is a particular case of quasi-uniform
topologies which were introduced for Op*-algebras [4] [22] and it
possesses good properties with respect to commutants and bicommu-
tants [24] [27].

We shall assume that 21 is separable in the .r^-topology i.e. there
exists a countable set S30 dense in 21 for this topology,,

Notice that we have made two assumptions on 2 which give us
two countable subsets: 2I0 which is a dominating subset and S30 which
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is dense In 21 for the .y*-topology. We may assume 210 — 33o otherwise

we consider 210 U S3o which is at the same time dense and dominating.

The j*-topoiogy is very natural to consider because if 210 is dense

in 21 for this topology, 21 and 210 will have the same unbounded and

bounded commutants:

(2t0) i= 2C[24] (2T0) ; - 2C and (2T0) I = K

(similar proof to [18] Lemma 2. 2. 2).

In particular, if we choose mc2ls such that m = 21^0 m', the same

relations will hold for 2t0 instead of 21 so that we may apply the

decomposition method of part I to %.

Moreover, the irreducibility of the 21 (X) we shall obtain later, will

be implied by the irreducibility of the 2ToOO-

We may also consider on E a weaker topology defined by the

same semi-norms as the j*-topology but when f is restricted to be in

&Q (the countable set dense in @ for the projective topology that we

introduced in 3. 2) .

Since &Q is countable, this topology (call it r) will be metrizable

and 21 will also be separable for it.

5.3, Topology on 2t0(^)
Let again 21 be a ^-invariant set with a ^*-dense, countable

dominating subset 810. Since 2T0 is countable, we may decompose it

by the method of part I and we get irreducible =j= -invariant sets

StoM on dense domains & (Z) of ^ (I) with ® (X) complete for the

StoW -graph-topology.

Consider on 2I0('0 a topology TA (analogous to r above) defined by

the following semi-norms:

where C^^Q. Since @Q is countable, this topology is metrizable.

Let us try to determine the completion of 2T0(^) with respect to

this topology.

For this, consider {Ak(A)} a Cauchy sequence in 2I0(^) for the

topology T,. We have \\Ak (X) -Aj(2))ei(2) ||<e and \\(Ak*(X)~

A'j^(X))ei(X)\\<:e for all ^e^0- Hence the limits ht(X) =]imAk(X)ei(X)
k

and gt (X) = lim Ak* (X) e{ (X) exist for i = 1 , 2, . . . and those two relations
k

define two operators T(X) and S(X) on @Q(X) such that:
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and moreover S(Z) =T(2)* \ @QW. In general, such operators need not

be continuous on &Q(%) for the ^(^"graph-topology. However9

those which are actually continuous may be extended to @ (/O and
we get S(X)=T(X)* \ QW. In that case taking the closure of those
operators, we get & (X) -minimal operators T(Z) and S(X) such that
S(Z)=T(X)*. By construction,, such operators may be approximated
by elements of SI0(^) on S0(^)0 At this point, this whole construction
may seem a bit complicated but, as we shall see in a moment, when
we decompose any element ^4eSt\2T0 we get exactly the same type of
operators A (2) as the T(X) we just described.

5o 48 Theorem,, Let SI be a ^-invariant set with a countable dominating

subset §T0 dense in SI for the s* -topology. Let the countable set SI0 be

decomposed in

=c
0 J;

where §10(/0 is a countable set of @ (X) -minimal operators in

(following the method of part I) .

On the other hand, let ^4e2l\SI0 be decomposed as an individual closed

operator in A — \ A(X)d[j.(X) where A (2) is a closed operator in 3l?(X).
JA

Then, for almost every At=A, A(X) is a @ (Z) -minimal operator and

Proof, a) Because (8To)a= ̂  we have

Hence, any element of §1 is decomposable (2. 4). Since the topologies t%

and £§ro are equivalent on S, A is continuous from S[^o] into ffl

so the operators A (2) occurring in the integral decomposition are
continuous from @(X)[lvQ(X)] into Jf (A). Moreover, @ (1) and ^o(^)

are cores for A (X) almost everywhere (see last theorem of 3. 3) .
b) Since 21 is separable in the j*-topology and a fortiori in the

topology r, there exists a Gauchy sequence {A*} in §I0 such that
qe.(A

i — A)-^G for ^eS0, j = l, 2, . . . . This means in particular that
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IK^-^IKO and |iC^-^)^,!|->00

Decomposing those norms in direct integrals, we get that there exists

a subsequence {A*k} c2I0 such that for almost every

\\(Aik(X)~A(X))ej(X)\\-^Q and

Since there is only a countable number of such norms (indexed by

j) we may choose the subsequence {A*k} independent of j and

suitable for the adjoints as well Finally, we have that q^.e. ($>(<£* (X)

— A(X))->Q for j = l,2, ... i.e. A(X) belongs to the completion of

SIo(^) with respect to the topology TK.

In conclusion, all elements of 21 are decomposed into & (X) -minimal

operators which may be approximated on @$(X) by elements of SIoW-

Moreover, they are continuous from @ (X) into J>lf(X).

5.5. Conclusion. Define in SIoW *n@(0(J) ) the subset

[A(X) \A e SI} consisting in the images of the elements of 21 after
decomposition. Then $t(X) is a ^-invariant set of 2f (X) -minimal
operators. We have thus decomposed the ^-invariant set 21 into
irreducible ^-invariant sets $t(X). Moreover, 21 (X) is "generated"
by 210(^) in the same way as 21 was "generated" by 2I0.

Since the algebraic relations pass through the integral decomposi-
tions for almost every Xs=A9 if we begin with a partial *-algebra, we
shall get irreducible partial ^-algebras 21 (X). If 21 is an Op*-algebra,
the 2TWs will be Op*-algebras as well (A(X) G$t(X) will be conti-
nuous from 2 (X) into itself).

This last result about decomposition of Op*-algebras generalizes
the result we got in [18] where we made the stronger assumption
that 21 was separable for some quasi-uniform topology [22] which is
actually a finer topology than the j*-topology we consider here.

5o6. Particular cases. F*-sets and F*-algebras
In an attempt to generalize the von Neumann theory to unbounded

operators, special attention has been paid in [25] to a class of Op*-
algebras satisfying 21 = 21^ (called F*-algebras) or satisfying 21 = 21^
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(called SF*-algebras). Several Interesting results have been obtained

for those classes of algebras. Here, since we are not restricted to

Op*-algebras, we shall call a F*-set (resp. a SF*-set), a ^-invariant

subset 21 of K such that 2l = 2C (resp. 81 = SO. In particular, such

sets are closed for the j*-topology [24].

If we assume that a F*-set possesses a countable dominating subset

210, dense for the j^-topology, we have in fact: 2I = SIS
0 = §1 = (§fo)aa — 21 .̂

If we decompose §1 in a direct integral of ^-invariant sets 21 (J)

as above, it is more coherent to consider Instead of the ST(^) their

bicommutants 21 (^)™ which are (a fortiori irreducible) F*-sets in

&(&(Z)). For every ^£E2T, we shall have A(Z) ^$t(Z)£.

Similarly, if we decompose a SV* -set in a direct integral, we shall

consider 21 (X)'w'a which is equal to S(S (>0) L e. an irreducible SP^-set

Thus, F*-sets (resp. SF^-sets) may be decomposed into Irreducible

F*-sets (resp. SF*-sets).

We end with a remark about those F*-sets (resp8 SF*-sets)

possessing a countable subset 2I0 dense for the ^-topology.,

As we said above, if 210 is dense in 21=21 ,̂ we get (8[o)w=2to-

Conversely, if (8Io)w=^o\ then 8t=(8r0)ai is a F*-set separable in the
^^-topology. Hence we get:

Proposition, a) The V*-sets separable in the s*-topology are exactly

the unbounded bicommutants of countable sets 210 satisfying 210 =(^0)0^

(Notice that this last condition is not at all automatic for unbounded

operators [30]. It holds if, for instance, 2T0 consists in bounded

operators only)0

6) Similarly, the SV*-sets separable in the s*-topology are exactly the

bicommutants (2I0) 'w'a of countable sets 2I0 satisfying 2I0 = (2I0) »o.

We mention this characterization of separable F*-sets and SV*-

sets because it reminds us about the characterization of von Neumann

algebras in a separable Hilbert space as the bicommutant of a counta-

ble number of projections.
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§VI. Representations of Partial *-Algebras

60 1. The decomposition method we have discussed all along this
paper will be used in this section to decompose representations of
abstract partial ^-algebras into direct integral of irreducible represen-
tations, We first recall some definitions following [1], [2], [3] and

[12].

Definition. A partial *-algebra is a complex vector space with an
involution A->A+ and a subset Fc 21x21 such that:

1) C4, 5) er implies (B+, A+) eF
2) (A, A) ^r and (A, BJ eF implies

3) If (A9B)^F9 there exists an element AoB^W such that:

Ao(B + C) = (AoB) + (AoC) and (AoB) + = B+oA+
e

Remark, this partial product o need not be associative.

In the sequel, we shall assume that the partial ^-algebra 21 is
provided with a locally convex topology for which the involution +

is continuous.
We collect some definitions about representations of partial

^-algebras :

6.2. Definitions [3], A representation x of 21 is a homomorphism
from 2T into the minimal closed operators ®(^) of a dense domain
2 of a separable Hilbert space ffl, i. e0 n(A + lB) =x(A) 4 AT (5),

and if C4,5)er, either n(AoB) =n(A). n(B) or

e

In the first case,, TT is called a hermitian representation (i. e0 a
representation of 21 in Ss(-^) in the notations of section I), in the
second case, TT is called a weakly hermitian representation (i. es in

Definitions . As usual, a representation TT of 21 is said to be

closed if 2 = 2 i. e0 ^ is complete with respect to the projective

topology defined by all the graph-norms || . !|S(A)5 V^4^2l (in this
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section, we shall call tw this topology) . Moreover, since we are dealing

with more general sets than Op*-algebras, we must also consider

another notion of "closure" which has been introduced in [2] : A

representation TT is fully closed if

It has been proved in [3] that any hermitian representation of a

partial ^-algebra admits a unique minimal closed hermitian extension

on & and a unique minimal fully closed, but weakly hermitian

extension to S(^(2t)). In particular, we may always assume TT to

be closed but not necessarily fully closed,

Definitions,, As usual, a vector Q^.2 is called cyclic for x if the
set 7r(Sl)£? is dense in Jf» Moreover, a vector Q^@ [s called

strongly cyclic for TT [3] if the set {x(X)Q \AoX is defined VM^Sl} is

firstly contained in ® and secondly is dense in it for t*. (In that

situation, X is called a universal right-multiplier in 21) . This notion

of strongly cyclic vector gets back to the one of Powers [6] for

Op*-algebras because5 in that case, any ^4^81 is a universal right-

multiplier,

Definition,, The representation TT is called strongly continuous if the

map ^4->||7r(^)/|| is continuous from 31 into Jf, for every /e^.

Notice that, because the involution is continuous in 31, a strongly

continuous representation is automatically strongly ^-continuous.

Definition, The partial ^-algebra §1 is said to be dominated by a

subset SI0 if for any representation TT of 31, the set 7r(Sl0) is a

dominating subset of 7r(St) in the sense we used in 5. 1.

In the sequel, we shall also assume that SI is separable in its own

topology i.e., there exists a countable subset S10 dense in SI.

As before, we may find a subset SI0 which is at the same time

dense and dominating-

6.3. Theorem. Let SI be a separable locally convex partial ^-algebra

dominated by a countable subset S10. Let K be a strongly continuous
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representation of §1 by minimal closed operators on a dense domain & of
a separable Hilbert space Jf . Then there exists a separable Hilbert space
$ containing Jf as closed subspace and a direct integral decomposition

where ^ is a positive Borel measure on a compact space A. There exists
for almost every A^A a representation TTA of 21 by minimal operators on a
dense domain @ (X) of Jff(X) such that:

A

2) (xt(%)yw=C i.e. TT^ is irreducible;
3) If n is hermitian, KX is hermitian ;

If it is weakly hermitian, itx is weakly hermitian',
4) Although the x^ are not necessarily strongly continuous representations,

they have some kind of continuity property.

If A = lim Aa in SI there exists a sequence {A1} C [Aa] such that
a ii

\\(n(A)—n(Ai))f\\-*Q and a subsequence {A*k} such that
^(-4))/(^)||-*0 for every f *<=$ 0 (the dense set in $ for the protective
topology} ;

5) If Q £: & is cyclic (res p. strongly cyclic} for TT, then there exist
@(Z) which are cyclic (resp. strongly cyclic) for TT^.

Proof. The proof of 1) and 2) is exactly the same as what we
did in [18] for Op*-algebras, excepted that we consider here the
j*-topology instead of a quasi-uniform one. This proof consists in

showing that the maximal extension [15] ft on ^C^ possesses the

same properties as TT on ^c^f, essentially that 2f is metrizable (this
is because SI0 is dominating) and that ?r(2I) is separable in the
/"-topology (see [18] for the details). Finally, we apply the decom-
position of the previous sections to #(§!) which induces a decomposi-
tion of 7r(8I).

The proof of 3) follows from the fact that if X. Y is defined, then
( X . Y ) ( X ) = X ( X ) . Y(X) almost everywhere and similarly, if XHY is
defined, (XDF) (X) =X(Z)E]Y(Z) almost everywhere. Hence, defining
iCz(A) = (n(A))(X)9 the map 7r^:2l-^S(^(>i)) is a homomorphism from
§t into ©s or E2", hence, defines a hermitian or weakly hermitian
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representation of 3L

Proof of 4). If Aa-»A in ST, we have n(A) =lim TT(^) in S(0) for
a

the strong ^-topology and in particular also in the metrizable topology

T introduced in 5. 2. We have :

But since this topology is metrizable,, we may extract from the net
{Aa} a sequence {A1} converging to A. We have thus ||(^(^4*') — n ( A ) ) e j \ \
— >0 when i->oo and for every e^Q)^ Decomposing this norm in a

direct integral, we get that there exists a subsequence [A k} such that

for almost every 2(=A: ||(^(4**) — 7c^(A))ej(X) ||->0 (since there is only
a countable number of such norms, indexed by j, the subsequence
may be chosen independent of j). This proves point 4) and, in fact

this means that foC^**)} tends to nx(A) in the topology rx considered
in 5.3,

Proof of 5). The fact that Q^Si is cyclic for TT means that
7r(3Q£? is dense in ^. But, if /ejf Is a limit of some sequence

n(Al")Q, {A1} c$[5 then there exists a subsequence {A**} such that for
almost every X^A\ f(X) =lim ^(^*)fi(^). Thus, the set

i

is dense in the set of f(X) ^Jf(X) which are the images
Since we know that this last set is dense in Jf (/!), It follows that
is cyclic for TT^.

Let now Q^.@ be strongly cyclic for TT. Every g^@ is a limit of
the type g=lim7t(Xi)Q such that n(A')g=lim7r(AoXi)Q for every

i z
^4e2l, where the Xi? s are universal right multipliers. That means
g is limit of 7r(Xl) in the topology ts = ^(a). But, by assumption, this
topology is metrizable since it is equivalent to tf(^ where 2T0 is the

countable dominating subset of §1. Because of this, we may extract

a subsequence {JP**} independent of ^4 such that g(X) =lim ni(X*k)Q(Z)
i,

and TT,(^)^(^) =lim^(4^*)fl(^), V^^ST, i. eD £(*) is a limit of this
'*

type In the topology tn($^ which is equivalent to ^(a).

Moreover, since such g(2)'s (coming from g^&) are dense in
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3) (I) for tn (because ^o(^) is contained in this set of g(/0's), every
element of 2 (I) is a limit of the type above. Hence Q(X) is strongly
cyclic for TT^.

§VII. Decomposition of States

7.1. Because the product of two elements of a partial *-algebra
is not always defined, the notion of state has to be modified in
consequence. Indeed, a state co on an Op*-algebra or a C*-aIgebra
gives rise by the GNS construction to a representation in a Hilbert
space. The scalar product of this last one is given by

<*A, ^B> = co(A+oB), A, J3ea, cpA, <f>B^

and thus, an explicit use of the product is made.
When we are working with partial ^-algebras, the notion of state

has to be replaced by the notion of h-state introduced in [3] (see
also [29] for Op*-algebras) and which is in fact a sesquilinear form
on 31

We recall the definitions we shall need in the sequel.

Definition* An h-form on a partial ^-algebra SI is a sesquilinear
form CD on 21X 31 which is moreover positive (co(A, A) >0, V^^Sl)
and multiplication invariant (if AoC and A+oB are defined, then
co(A+oB, C) = co(B, AoC^. This A-form is called a h-state if moreover
co(e, e) = l (where e is the unit element of 31, and we shall assume
it exists).

Beginning with a /z-state w on SI, the authors of [3] [12]
generalized the GNS construction provided two more conditions
hold:

1) SI has to be semi-associative i.e. V^555CeSI such that C is
a universal right-multiplier, we have: if AoB is defined, then Ao (BoC)
is defined and is equal to (AoB)oC*

2) co is weakly GNS, which means that when we construct the
Hilbert space $\ similarly as in the usual case, i.e. the completion
of Sl/ker CD with respect to the scalar product <,</>A9 <fiBy=a)(A,B), the
set ^(0= [<!>x°'X is a universal right-multiplier} is dense in ^^

Under those two assumptions, it has been proved [3] that co gives
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rise in ^f <y to a fully closed, weakly hermitian, cyclic representation ?rffl

on 2to = r\D(Km(A)) such that <o(A,B)=<jc<0(A)Q, ^(5)fl> (where
AeSI

13 is the cyclic vector).
Moreover, the restriction of nm to ^^^ (the completion of ^

with respect to tn ) is a strongly cyclic, closed, weakly hermitian

representation of 31 (We refer to [3] for all the details of the
construction and of the proof).

Now we are in position to write the theorem about decomposition
of A-states. In this theorem, we shall call an /z-state extremal if it gives
rise to a GNS representation it^ whose weak bounded commutant is
trivial. Moreover, since we are going to apply to the GNS represen-
tation the theorem 6. 3 of previous section, it is necessary that this
representation be strongly continuous, and this is obtained by consider-
ing jointly continuous A-states,

7.2. Theorem
Let SI be a semi-associative partial ^-algebra dominated by a countable

subset and separable in its own locally convex topology. Let a) be a jointly

continuous, weakly GNS h-state on 81. Then, there exists a regular Borel

measure n on a compact space A and for almost every AEiA, weakly GNS*

h- states a)^ on 31 such that :

a) (o=
JA

b) a) is extremal',

c) a) need not be jointly continuous, but if Aa-^A in SI, there exists

a sequence {A1} c {Aa} such that o)(A\ A1) ->CD (A, A) and there exists a

subsequence {A*k} such that o)^(Alk, A*k) ->(i)x(A, A\ for almost every 2^A;

d) ker (^cker wx and ker Tracker TT^.

Proof, a) Consider the strongly-cyclic, closed, weakly hermitian

GNS-representation ^ on Q) = £&a> described above and apply the
integral decomposition of Theorem 6. 3 to TT^, i. e. there exist domains
@ (X) in ^a,(^) and weakly hermitian representations TT^J of SI such
that:

and
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In particular, Q^2 hence Q(X)^2(X) for almost every A&A and

we have

A

where we define

01, U, B) = (K..t

We must now show that, so defined, the O)A are weakly GNS A-states

on St. For this, we need to check four properties:

i) the positivity: (o)^(A9 A) >0) is obvious.

ii) the multiplication invariance: Let A9 5, Ce2I such that ^40C

and A+oB are defined. Since co itself is multiplication-invariant

w(A+oB, C) =<o(B, AoC} i.e. since ^ is weakly hermitian:

This equality passes through the integral decomposition since the

product D is decomposed correctly, and we get in this way the

multiplication invariance of wx.

iii) By adding a normalization if necessary, it is always possible

to get a), (*,*)=!.

Those three properties make the cw/s into A-states on ST. We

still must show that they are weakly GNS.

iv) As we did in the proof of 5) of Theorem 6. 3, the fact that

{<f>x=na(X)Q\X is a universal right-multiplier} is dense in 3ffm implies

that {nmiJi(X)Q(^)} is dense in tf^Z) for almost every X^A. On the

other hand, it is obvious from the way we have defined WA that the

GNS representation, TT^ associated to it, is unitary equivalent to TT^.

Remark. Remember that in all this, the domain @ ', which is the

completion of £%<» with respect to tK (a) or equivalently to tn e(8r )5 is

metrizable.

The domain ^0, dense in ^, consists then in a countable set of

elements of the form ej = 7t<a(X
j)f3 where Xj is a universal right-

multiplier of St.

b) trivial by Theorem 6. 3. 2) .

c) follows from theorem 6. 3. 4) and the fact that we may assume
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that Q<=@Q.

d) Let A^ker CD. By integral decomposition, we get:

M

which implies a)A(A, A) =Q for almost every l^A i.e. A^k^r w^

\/A^A\Jr
A, where Jf'A is a null-set depending on A. If we consider

first such A in 2T0? we may get a common null-set W Jf A *• e°

^4 e ker wflSTo implies that ^4eker^f|SIo for almost every /leA Take

now ^4eker o>n(8I\8to). There exists a net { l̂*} in SI0 converging

to A and we know by the point c) above that there exist {^4*} and

[A**] such that o)(A{, A1) -^o)(A, A) =0 and a)x(A
l\ A*k) ->^(A, A) for

almost every A^A. This implies that ojx(A^ A) =0 almost everywhere,

hence

The proof is similar for the associated GNS representations. If

then |K,C4)/|| = 0 V/^S implies ^.^(^)/W=0

such that /e^3 in particular for /e^ 0= Since we

have shown that S0(/0 is a core for every ^^^(A) (§3.2), this implies

^.^(^)==0 hence A e ker ^^ n 2To- If now A(= (Sl\SI0) Hker TT^, there

exists a net {^4a} in 8T0 tending to ^4, and since ^ is a strongly

continuous representation, \\(^Q)(A
a) ~-7r(M(^))/ll|-^0 for every/e^0 If

we restrict ourselves to/e^0? we may find a sequence {^4'} C {Aa} and

a subsequence t4'fe}, independant of/0 such that xQ}(A
i)f-»7i:a}(A)f=Q

and ^>^(4i*)/(^)->;r«^(^)/(^)=0. Since &Q(X) is a core for ^.,(4),

we have that ,4eker TT^ for almost every ^eA
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