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Integral Decomposition of Partial
*-Algebras of Closed Operators

By

Francoise D. MATHOT*

Abstract

A method of direct integral decomposition for very general classes of unbounded closed
operators is developed. This method is applied to the reduction theory of partial *-algebras
and Op*-algebras.

As a consequence, representations of partial *-algebras are decomposed into irreducible
ones and some states are decomposed into extremal states.

Introduction

In this paper, we present a method of integral decomposition for
some families of unbounded operators in a Hilbert space. The sets
of operators we consider are fairly general. They consists of closed
operators with a common core 2 (dense in &) and we only ask our
sets to be invariant under some involution. In particular, the operators
need not leave the domain invariant.

Important examples of such sets are given by partial *-algebras
(first introduced by Borchers) [1] and developed systematically by
Antoine-Karwowski [2] [3] and Op*-algebras which have been
extensively studied by Lassner and his group [4], Vasil'ev [5],
Powers [6], Epifanio [7]. In the last category of examples, the
domain 2 is left invariant and products between operators are always
defined.

However, in some situations, the use of Op*-algebras is not
sufficient. For instance, there exist some quantum statistical systems
for which the thermodynamical limit does not exist in a C*-topology
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[8] but only in the completion of some Op*-algebra. This completion,
called a quasi-algebra [9], is no longer an algebra itself, but a more
general structure where the product between two elements need not
be defined.

This fact and some other examples (generalized creation and
annihilation operators [10], use of potentials which do not preserve
the invariant domain for the observables in Quantum Mechanics [11])
have motivated the systematic study of the partial *-algebras [2], of
their states and representations [3], [12]. This motivates also the
present work.

As long as bounded operators are concerned, the problem of integral
decomposition is well known and it gave rise to the reduction theory
for von Neumann algebras [13]. For unbounded operators, several
authors developed different methods of decomposition.

Nussbaum [14] has considered closed operators and has related
their decomposability in a direct integral to the decomposability of
their characteristic matrix (essentially a 2X2 matrix obtained from
the projection in s X onto the graph of the closed operator). He
also characterized the operators which may be decomposed in a direct
integral of bounded operators.

Borchers and Yngvason [15] have considered families of unbounded
operators defined on a common nuclear domain. By the nuclear
spectral theorem they could define in each (), occurring in the
decomposition of the Hilbert space, a dense domain 2 (4), also nuclear,
on which all the 4(4), coming from the decomposition of the initial
operators 4, are defined.

They applied their method to the decomposition of representations
and states of nuclear *-algebras. For the decomposition of states into
extremal states, the Choquet decomposition theory has been used by
Hegerfeld [16], also for nuclear *-algebras.

In a previous work [17] [18], we have studied the decomposition
of Op*-algebras defined on a metrizable domain. Our method consist-
ed in the identification of an unbounded operator with a family of
bounded operators between different Hilbert spaces. We then decom-
posed simultaneously all the present Hilbert spaces and the bounded
operators between them. Conversely, the family of bounded operators
we obtain in each A-component of the direct integral, allowed us to
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reconstruct an unbounded operator 4(4) in #(4). The same kind
of method will be applied here for partial *-algebras and more general
families.

The assumption of metrizability of £ occurs often in the literature.
Interesting properties about topologies [19], states [20], commutants
[21] have been established in that situation.

In our problem of integral decomposition, this hypothesis allowed
us, for Op*-algebras, to define a common invariant dense domain
2(2) in #(A) on which {4(4)} coming from the decomposition of
the Op*-algebra, forms itself an Op*-algebra. (Actually, the metriz-
ability of &2 prevents us from having to deal with an uncountable
union of null-sets.) For the same reason, we assume all along this
paper that 2 is metrizable. Although it will be more difficult in our
case to define the domain 2 (1) (see Section 3) than for Op*-algebras,
the metrizability of £ will be essential to build it and to prove that it
is dense in #(2) and a core for each A(4). It will also be important
in the verification that the algebraic operations (which are very specific
for partial *-algebras), go through the integral decomposition.

The first part of the paper is devoted to the decomposition of a
countable set of operators (this automatically gives us a metrizable
domain) and is organized as follows:

Section I: Definitions and preliminaries: =-invariant sets, partial
*-algebras, Op*-algebras, graph-topology, bounded and unbounded
commutants.

Section II: Integral decomposition of a single operator: Decomposition
of # and of the domain of the operator, characterization of the
decomposable operators.

Section IIL: Consiruction of a common domain 2 (2) jfor a countable
set of operators: metrizability condition on 2, existence of 2 (4).

Section IV: Verification of the algebraic properties: Adjoint, sum,
products (as defined in partial *-algebras)

The conclusion of this first part is that any countable ==-invariant
set (resp. partial *-algebra or Op*-algebra) may be decomposed in a
direct integral of countable irreducible ==-invariant sets (resp. in
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partial *-algebras or in Op*-algebras) on a domain Z (1) of #(2).

The second part of the paper is devoted to the extension of this
result to non-countable but separable Z=-invariant sets.

In the case of bounded operators [13], this extension is possible
because a von Neumann algebra is separable in the strong operator
topology and because if 4°—>4 and {4’} and A4 are all decomposable,
then A*(2) ->A4(2) for almost every 4 (i.e. A(4) belongs to the von
Neumann algebra generated by {A4°(1)}).

The main point here is to find a suitable topology (involving the
strong one in some sense) and assume the family of operators is
separable in this topology. For Op*-algebras we considered in [18]
a quasi-uniform topology [4], [22] and then proved the result that
separable Op*-algebras could be decomposed.

Here, we can actually consider a weaker topology, the strong
*—-topology ([23] for bounded operators, [24] for unbounded) which
is a particular case of a quasi-uniform topology. In practice, when
we shall consider representations of abstract partial *-algebras by
closed operators, the assumption of separability in the strong *-topology
will come from the fact that we shall consider strongly continuous
representations.

In the second part of this paper, we decompose thus Z=-invariant
sets (resp. partial *-algebras and Op*-algebras) separable in the strong
*—-topology, into irreducible ==-invariant sets (resp. partial *-algebras
and Op*-algebras). For Op*-algebras this generalizes the result we
got in [18].

We also apply this decomposition method to some particular clas-
ses: the V*-sets which are sets of operators equal to their unbounded
bicommutant (this is a generalization of the V*-algebras considered
by [25] which are themselves a generalization of von Neumann
algebras).

Finally, we decompose representations of abstract partial *-algebras
into irreducible representations and states into extremal states. Con-
cerning the last point, the usual notion of state on a *-algebra has to
be replaced by sesquilinear forms, the so-called fA-states [3]. Some
of them, called weakly GNS #A-states give rise to a generalization of
the GNS representation and these are the ones we decompose in this
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paper.

The second part is organized as follows:

Section V: Decomposition of separable =-invariant sets: Strong
*-topology, separability, decomposition of the dense subset %, topology
on (1), completion of Ay(4), decomposition of the whole set. Par-
ticular cases: V*-sets and V*-algebras.

Section VI: Decomposition of representations of partial *-algebras:
Abstract partial *-algebras, representations, closed and fully closed
representations, cyclic and strongly cyclic vectors. Theorem of decom-
position into irreducible representations. Continuity property of the
irreducible representations.

Section VII: Decomposition of states of partial *-algebras: Definitions
of h-forms, h-states, weakly GNS fA-states. Theorem of decomposition
of weakly GNS #h-states into extremal ones.

Continuity property of
extremal h-states.
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Part one: Decomposition of a Countable Set of Operators
§ I Definitions and Preliminaries

1.1. =-invariant sets, partial *-algebras, Op*-algebras

Throughout this paper # will denote a separable Hilbert space
and 2 a dense domain in it.

We shall deal with a family % of closed linear operators having
9 as a common core (but not necessarily leaving it invariant).

According to the definitions of [2], ¥ is thus a subset of the set
€ or €(2) of Z-minimal operators i.e. closed operators 4 in &
such that 2 €D (A4) N D(4*) and satisfying A=4 | g (where * denotes

the usual Hilbertian adjoint and the bar, the usual closure of an
operator).
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The set € carries a natural involution #+ defined by: A*=A* | 5.
Moreover, every element A of € satisfies 4A=A%*,

The kind of families we are going to consider in the sequel of
this paper will be =#-invariant subsets of €. We shall refer to those
subsets as “Z=-invariant sets” (of 2-minimal closed operators).

Important particular cases are partial *-algebras [2] and Op*-
algebras [4]. For convenience of the reader we recall the basic
algebraic notions involved in those structures.

a) If A, BEG the sum A+B=(4A+B) [  belongs to € again.

b) Two kinds of partial multiplication may be introduced:

——Let A and B be such that B2 C€D(A) (domain of 4) and
A*9 CD(B*) in which case we say that 4 is a left-multiplier of B
(or B is a right-multiplier of A4), then the product A-B=A4(B [ ) is
a well defined element of €.

——If 4 and B satisfy only the weaker condition that B2 CD (4%*)
and A*2 CD(B*) another product AOB=A**(B | 9) may be defined.

In order to distinguish between the two partial products, we will
denote the corresponding structures by € and €~ respectively.

Then €= (€, +,[, #) is a partial *-algebra in the sense of
[2]: the three operations (sum, involution, partial product) satisfy
the usual properties of distributivity between sum and product
(AT (B+20))=(A0B) +2(A0C), 2eC and the usual relation be-
tween involution and product (ACB)*=B*[]A4* is verified.

So, €“ and all its vector subspaces, stable under [J and containing
1, are partial *-algebras.

In contrast to €, &=(C, +, -, #) is not a partial *-algebra.
Although the sum, involution and partial product - are defined,
examples are known [26], [27] where distributivity is violated: there
exist operators 4, B and 7T such that 7 is a left multiplier of 4 and
B but is not a left multiplier of A+ B (the reason is that D(4A+B)
need not contain D(4) ND(B)). So, & itself is not a partial
*-algebra but we may restrict ourselves to vector subspaces of &
containing 1, stable under - and satisfying the distributivity law. We
get in this way another class of partial *-algebras.

A more restrictive class, the Op*-algebras, is obtained when every
operator in ¥ maps 2 into itself ie. 4 [ oEL*(2), the set of all
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closable operators in # such that A9 C 2 and 4*2 C 9.

For two such operators 4, B, the product is always defined and
coincides with the two partial products introduced above: AB=A4-B
=AO0B=A(B | 9).

An Op*-algebra is a *-subalgebra of L*(%) containing the unit
operator.

1.2. Domain considerations

Given a =F-invariant set ¥ on the domain 2, the corresponding
graph-topology on £ is given by the set of norms:

WE=IF1E+14f1? fe2, where 4 runs over .

Every A= is continuous from 2 with this topology into J# with
the norm topology.

Moreover, since 4 is a closed operator, its domain D(4) with the
graph-norm is a Hilbert space that we shall denote by 4, The
graph-topology on 2, (denote it fy) is then also the projective limit
topology corresponding to the Hilbertian topologies of the #,’s, A€ .

The completion & of & with respect to this projective topology
is a closed subspace of 2 (%) E,st%’q' A priori, this subspace might

be a proper one contrary to the case of Op*-algebras where 9= 2 (%)
[6] [28]. In fact, a sufficient condition for this equality is that
the system of norms defining the topology of 2, be directed (i.e.
VA, Be¥, there exists CEYU such that ||f|l4, |fl1<ZIflle, VfE2).

This happens in particular for Op*-algebras but need not hold
for a general partial *-algebra or ==-invariant set.

Although no explicit counterexample is known so far, we have to
distinguish in the general case between & and 2 (¥) ie. we have
DCICDU) =N Hy

A
However [4] [6], we may always assume that 2 =9, otherwise,

we replace ¥ by its “closure” % which consists in the same set of
closed operators as % but considered as the closure of their restriction
to 9. % is an extension of ¥ [15] (in particular ¥ is isomorphic to
o i.e. all the algebraic operations are preserved).

Remark. It is also possible to consider an element of % as the
closure of its restriction to 2 (%), and by doing this, to get a
F-invariant set or a partial *-algebra on 2 (%).
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However, as shown in [3], it may happen that the new ==-invariant
set be only homomorphic and not isomorphic to the initial set (for
instance if ACC (), the new set will in general be in €*(2 (Y))
i.e. the product is not preserved). In that case, we don’t have
extension in the sense of [15].

1.3. Commutants

Since we are dealing with unbounded operators, it is natural to
consider also unbounded commutants. The biggest commutant we
may introduce for a ==-invariant set A CE is the “weak unbounded
commutant” :

A, ={XeC: (Xf, A9 = (4%, X*9), Vf, €92, VAcYU}.

Some other unbounded commutants have been introduced in [30]
[24] [25] [2] [3], all of them subsets of this one.

However, as far as we are concerned with the problem of irreduc-
ibility of a set of operators, it appears [6] [12] that only the bounded
part of this commutant is relevant i.e. the “weak bounded commutant”

A, =A,NB(#) (where B(H#) denotes the set of bounded opertors in
H).

A =-invariant set ¥ will be called irreducible iff ¥ consists in
the scalar multiple identity only.

Since our operators are defined on some specified domain 2, a
special role will also be played by the “strong bounded commutant” i.e.
the elements of ¥, leaving 2 invariant.

U={XeB(H): XP2CD and X*9C9, XAf=AXS,
VfED, VAU,

(Rem: this ¥; is the *-invariant part of the % introduced in [6]

[15] [17]1)
It is easy to check the elementary properties of those commutants
[6] [15] [17]. We summarize them in three lemmas:

Lemma 1.3.1. a) A, is a weakly closed linear subspace of B(X)
containing 1 and *-invariant.
b) U; is an algebra, *~invariant but not necessarily weakly closed.

c) U is weakly closed.
d) %=,
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e) WA S

Lemma 1.3.2. If XE%; then X is a bounded operator in the Hilbert
space K 4, for every A=A, (Same proof as [17] Lemma 2.2.1. We use
the fact that 2 is a core for any A€%.)

Lemma 1.3.3. Let m be a *~invariant subset of A and let Mem,
For every A=W, M leaves D(A*) invariant and M commutes with A*
(i.e. MA¥f=A*Mf VfeD(A*)). In particular, M commutes with the
self-adjoint operators (1+A*A)*Y, (1+A*A)** for any A€¥U. (Same
proof as [17] Lemma 2.2.2))

Remark. A4* is not a minimal operator. £ is not necessarily a
core for A*. Nevertheless, 4* is a closed operator and its domain
D(A*) provided with the graph-norm is a Hilbert space #

Lemma 1.3.4. Let ™ be a von Neumann algebra contained in U,
and denote by W, ils resiriction lo H,, for any ASW. The family
[mu|A€¥} is a set of unitarily equivalent representations of W in
each H 4 respectively. This equivalence is given by the unitary operators
{(1+A*%A)*Y?}  (between H and ).

The proof follows from Lemmas 1.3.2. and 1.3.3. and the fact
that the graph-norm in 5, may be rewritten as

WAIG= 1B+ IAfIP=11(1+4*4) f |2
§II. Integral Decomposition of a Closed Operator

2.1. Decomposition of #

The method of integral decomposition we consider here is the one
introduced in [17]. It consists in the identification of an unbounded
closed operator 4= with a bounded operator between #, and .
We then use the reduction theory for bounded operators but between
different spaces. More explicitly, beginning with a ==-invariant set
U, we shall consider an Abelian von Neumann algebra mC; con-
taining 1 and maximal in the sense that m=m'NY, (M denotes the
usual commutant for bounded operators).

By the extension theory developed in [15], we know that any

= -invariant set ¥ defined on & always admits an extension % on a
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domain & dense in a larger Hilbert space 2 for which such an m
exists. So, it is actually this extension 9 that we are going to
decompose and, moreover, we may also assume % to be closed i.e.
7 complete with respect to the graph topology (because of Lemma

1.3.1, m is maximal with respect to o as well as with respect to ).

Let thus % be a closed =-invariant set and M an Abelian von
Neumann algebra such that mC%; and m=m'NY,. We may decom-
pose the Hilbert space # in a direct integral on the spectrum of m
by the usual reduction theory for von Neumann algebras. More
explicitly, there exists [13] a compact metrizable space 4, a positive
regular Borel measure g on 4 and a pg-measurable field A~>#(2) of
Hilbert spaces such that

%:Sﬁx(z) du(d).

m consists exactly in the diagonalizable operators in that decom-
position ie. M=~L<(4, ) and the set of bounded decomposable
operators in J is exactly m’. [13]

2.2. Decomposition of #,

Take now some AU, Between # and #, we have the unitary
operator (14A4*A4)7 (Lemma 1.3.4). Considered as operator in
o, this is a bounded operator commuting with every M&m. Hence
(14+4*A4) 7" belongs to m’ and is thus decomposable. There exists
a p-measurable field 2~ (1 +A4*A4) ~¥2(2) €B(s#(2)) essentially bounded
such that:

(1 4+ 4%4) 1= SA(I FA*A) () dp ()

and [|(1+A4*4) "Y||=ess. sup [[(1+A4*A4) 72 ||
e
Since (1+4A4*A4)72(2) €B(# (2)) for almost every A4 (i.e. VAE
AN, where A, is a null-set) we may define:
{JfA (2) =Range (1 +4*4) 72 (2) YVieA\N 4
H 4 (A) =0 VaAE N 4.
Defined in this way, #,(2) appears as a subset of # (2) and it may be
equipped with the following scalar product:If f;(2) = (1+A4*4)7*(2)g:(3),



INTEGRAL DECOMPOSITION OF CLOSED OPERATORS 699

i=1, 2 and g,() €# ), put (LD, fD) 4= (@D, &D).

With those definitions, the field 2~ (1+A4%*4) Y2(2) is a field of
unitary isomorphism between # (1) and #,(4) for almost every 4.

Therefore [13], the inverses field A~[(1+A4%4)Y2() ] is also
measurable and defines the integral decomposition of (14+4%*4)Y
which is unbounded in 4 but unitary from #, into #.

Redefining (14+4*A4)Y?*(2) =[(1+4*4) 2(2)]"", we can rewrite
the norm in #,(4) as:

D Na=11A+A*D D) f (D]

(for more details, see [17]). Of course, as expected, the field
A~ 4(2) will give the integral decomposition of #, and corresponds
to the decomposition of s, with respect to the Abelian von Neumann
algebra m, (which is unitarily equivalent to m).

In conclusion, we are able to decompose all the Hilbert spaces #,
on the same spectrum 4 and with the same Borel measure p.

Moreover, this decomposition is coherent in the sense that, if
fe# NHs f will admit a unique integral decomposition

F=\ @ dpy with f@) €k, n# 5D

vieAN\(N4UANp) ie. almost everywhere. Differences will only
appear in expressions of the norms [[f(2)|,, and [|f(4)i|z.x as given
above.

2.3. Decomposition of a single operator

As we said above, when J# is decomposed in a direct integral on
the spectrum 4 of m, the set of ail bounded decomposable operators
is exactly m’.

Here we shall use a slightly more general result [13].

Let &## and # be two Hilbert spaces decomposed on the same 4
with respect to the same measure g. Every function meL~=(4, 1)
determines a diagonal operator M in s and another one M’ in #’.
In that situation, every bounded operator from s into ' which
intertwines M and M’ (for any meL=(4, 1)), is decomposable.

In our case, every A% is a bounded operator from its domain
# 4 into # and we have decomposed s and 5, in a direct integral
on the spectrum of m. Any meL>(4, ) defines an operator MEm
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CB(#) and M,=M rermAEB(.%”A) (remember Lemmas 1.3.2-
1. 3.4). Moreover, since m CU;, we have MAf=AM,f, Vi€, ie.
4 intertwines M and M,. Hence 4 is decomposable in the sense that
there exists a measurable field 2~A4(2) €B(# 4(2), # (1)), essentially
bounded, such that:

A= SAA N du )

and ||4|lzee ) =ess. sup [lADlsee w2
el

If we consider 4(4) as an operator in 5 (2) with domain #,(2),
we get a closed operator in #(2). So, the closed operator 4 in #
is decomposed in a direct integral of closed operators 4(2) in #(2)
(for almost every A4 ie. 2€A\/7, where A7 is a null-set
containing the previous null-set A7,).

Since #,(2), which was already a Hilbert space with its own
scalar product, is now also the domain of the closed operator 4(4),
the norm ||f(2)||,.; introduced before, is equivalent to the graph-norm

WD ow=IfDP+IAQ) LD

It may happen that A4 is also a bounded operator from some #j
in some . (B,Cs¥). This happens for instance if ¥ is an Op*-
algebra because then A is continuous from 2 to & with the projective
topology. Hence, for any C&¥, there exists BEY such that |[4f][.<
K||flls, Yf€2 and some constant K. This means that 4 may
be extended to a bounded operator Acp from #5 into #. (in fact
Acp=4 T#B)-

Here again, every m& L= (4, y) determines a diagonal operator My
in #p and a diagonal operator M. in #; and 4 intertwines those
two operators. Hence A4 is decomposable and we get a measurable
field 2~A3(2) €B(#5(2), #H:(2)).

Each time 4 has some boundedness properties between any two
Hilbert spaces, the same boundedness properties hold at (almost)
every Z-level of the integral decomposition.

All the decompositions we may obtain in this way (between
different pairs of Hilbert spaces) are coherent in the sense that they
are all restrictions of the first one between #,=D(4) and #:

Acg(D =4 | H gD
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2.4. Which are the decomposable operators ?

We have been able to decompose an element A& for three
reasons:

a) #, and # are both decomposed on the same 4A=Sp m.

b) 4 is a bounded operator from #, into .

c) A intertwines m and ut,.

Obviously, elements of ¥ are certainly not the only minimal closed
operators satisfying those conditions.

Theorem. Every Xem, is decomposable.

Proof. By definition, m,= {XeC€: (X*f, Mg) = (M*f, Xg), Vf,8€ 2,
VMem}. Using the facts that elements of m are bounded and leave
2 invariant (m CA;) we have MXg=X"*Mg=XMg, Vg2, VMcm.
Since 2 is a core for X and M is bounded in J, the equality
MXg=XMg extends from @ to #x=D(X). From this, it also follows
that M is bounded in #y: ||Mg||%=||Mg| 2+ || X Mg||>=||Mg| 2+ || M Xg|*<
M2 gl VEEH x.

Finally, my, the restriction of m to % is an Abelian von
Neumann algebra unitarily equivalent to m in 5 (by the operator
(1+X*X)*2 and # and #x are both decomposable in a direct
integral on Sp m.

The three conditions mentioned above are fulfilled, which means
that X is decomposable in a direct integral of closed operator X(2)
in S (4) respectively.

Remark. Since we had mCUCA,, we get also ACSYA;,Cm, and
this explains why the elements of ¥ are decomposable. We have just
shown now that they are not the only ones. Moreover, Lemma 1. 3. 3
suggests another class of decomposable operators, namely, adjoints of
elements of m, They are no longer minimal operators but maximal
ones [2] and 2 is no longer a core for them. Nevertheless, they
are closed operators and their domains are Hilbert spaces.

Theorem. If Xem;, X* is decomposable.

Proofs For Xem, we have seen in the proof of the last theorem
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that MXg=XMg for every g&D(X) and for every M&m. Take in
particular M*&m and consider A& D(X*). We compute

(Mh, Xg) = (h, M*Xg) = (h, XM*g) = (X*h, M*g).

Since M* is bounded, this means that MhcD(X*) and X*Mh
=MX*h, YheD(X*). So, M commutes with X* and the same
calculation as in the previous theorem shows that A is bounded on
H xse

Conclusion. In this section, we gave a method of decomposition
of a closed operator into a direct integral of closed operators. We
have seen that if X possesses some boundedness properties, the same
properties will hold at the 2-level for almost every i€4. We did not
say anything so far about the minimality or maximality of the X ()
so obtained. To do so, we have to specify some domain Z (1)
dense in #(2) which will be (or not be) a core for X(2). We shall
consider this problem in the next section in the case of a Z-invariant
family . We consider first a countable family of minimal operators
and we decompose them simultaneously. The countability assumption
is necessary to avoid problems of null-sets. The extension to uncount-
able families will be done in Part II. Once we have a common
dense domain 2 (1) on which all A(2)’s are defined, we may also
look at the continuity properties of 4(2) with respect to some graph-

topology.

§III. A Dense Domain 2 (1) for a Countable Set
of Operators-Metrizability Assumption

3.1. In this paragraph, % will denote a countable (closed)
=-invariant set. Applying the method of decomposition just explained
to every element A%, we get closed operators A() in #(2) for
2eMN\AN7. Thus, it is only for 24\ U 47, that all the A4(2)’s may
simultaneously be considered as a sﬁu of closed operators in the
Hilbert space s#(2). The assumption that % be countable guarantees
that the set of exceptional 2’s to disregard is still a null-set.

Under that assumption, we are now able to work at the 2-level

(for almost every A&€4) and to ask the next question:
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Can we find a dense domain 2 (1) of #(2) which will be a
common domain for all A(2)’s ¢

3.2, If Ais countable, 2 (= Z) provided with the graph-topology
ty given by the norms {|| . ||,: A€} is a Fréchet space.

However, as we mentioned already, it might be a proper closed
subspace of 2 (A) =" H,.

Aed
In other words and following the terminology of [2], % is closed

but not necessarily “fully closed”.

An important consequence of the fact that & is a Fréchet space
is that every element X=@€(2) will be continuous from 2 into .
Indeed, X being a closed operator in 4 is also closed from Z to #
and hence is continuous by the closed graph theorem. In particular,
the topology f,g) is equivalent to ty on 2.

We can now prove the following result:

Theorem. There exists a countable set Do={ey, €5 ...} dense in D
Sfor the graph-topology ty such that for almost every A€ 4, 2,(2) ={e,(3),
e2(2), ... |&;EDo} is a core for AQ), for any A€.

Proof. a) In the explicit construction of a direct integral of
Hilbert spaces

#= SA.;f W du®

on the spectrum of a von Neumann algebra, there always exists a
countable dense set {x, x ...} &# such that the set of images
{x1(2), x2(2), ...} is dense in # () for almost every 24 (see
Dixmier p. 208). Since 2 is dense in J#, we may always choose
this set {x;} contained in 9.

Similarly, in the decomposition of 5, in direct integral, we may
find another set {x;,} dense in #, such that {x; ,(2)} is dense in
H,(A). Since P is dense in #,, for the A-graph-topology, {x; 4}
may be chosen in 9. We can do the same thing for every A€,
but the set {x; ,} may be different for each 4. However, those dense
sets will be useful later.

b) Since 2 is a separable Fréchet space, there exists a countable
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set Do= {e}, €5, €3, ...} everywhere dense in 2 for the Fréchet topology
ty. So, any fED is a ty-limit of a sequence {f;} of elements of 2,
i.e.,, for any A€ we have |lf—f)l,—~0 (and the sequence {fi} is
independent of 4). Decomposing f and f; in a direct integral, we
get:

—-ria={ ro-r@e,  wo.

Since the L h.s. tends to zero, there exists a subsequence {f;}
such that:

(%) WD —f, (D420 in #,(2) ae.

Moreover, since there is only a countable number of different
norms to consider, the subsequence {f;} may be chosen independant
of 4 i.e., the relation () holds in every ##,(2) (for almost every
ied).

Finally, f(4) belongs to the completion of 2,(2) = {e;(2), ¢:(2), ...
le;€ 92, with respect to the projective topology defined by the
graph-norms of all 4(A)’s (VA4€¥):

f(AD e2,(4) (almost everywhere).

¢) Now we show that 2,(2) is a core for every 4(4).

Consider some g(1) €#,(2). By the considerations of point a) of
this proof, we know that there exists a sequence {g} SZ, dense in
H# 4, such that g(2) is the limit of g;(4) in the A(2)-graph-topology.
Since g;E 2, point b) tells us that, in the integral decomposition, we
shall have for every i: g(1) E€9P,(2). In turn, g (1) will be the
limit of elements g ,(4) € 2,(2), in the A(2)-graph-topology. Hence

g =4@Q) —l1m gD =A) —l1m 8., D=4 — lim g;;(A), by a diag-
onal proccdure Finally, g(l) 1s a limit of elcments of 2,(2) in the
A (2)-graph-topology hence 2,(2) is dense in #,(4) and is a core
for A(2).

3.3. A common domain

Theorem. Define 9 (2) =2,(2) as the completion of D,(2) with
respect to the projective topology defined by all the A(R)-graph-norms. Then
VA€, AA) is a D (A)-minimal operator (i.e. AR) EC(D (D)) and
A(2) is continuous from D (2) with this topology into 3 (2) for almost
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every A€ A.

Proof. We just saw that 2,(2) hence a fortiori Z,() =2 () is
a core for any A(4). Thus 4A)=4) [ 9,0=4(4) ! 92w is a minimal
operator with respect to 2 (1). Since 2 (1) is by construction
complete in the projective topology, we get that {4(2) |A€Y} is a
closed set of & (4)-minimal operators in #(4).

Moreover, the fact that 4 is continuous from 2 (with #y) to #
which is expressed by the inequality:

AfIE<KIfIIE V€2
gives rise in the integral decomposition to inequalities of the form:
IAD LD PKIF D) I
for almost every 24 and for every f€ 2. In particular, this is true
for every e¢;€%, hence A(d) is continuous from 2,(1) with the

projective topology into 2#(4) and thus can be extended to 2 (1) in
a continuous operator.

Remarks. 1. The common domain 2 (1) so defined is in general a
proper closed subspace of N ,(2). However, 2 (4) is large enough
A

in the sense that it contains the images f(2) of all f€9 so that
expressions of the type

AfngA(Z) FDdu()  make sense VfED, VASL

2. In the case where the system of norms defining the topology
of @ is directed, in particular if 9 is an Op*-algebra, we have

9= "N #, In the integral decomposition, the inequalities between
AU

norms are translated in analogous inequalities between the A(2)-
norms, for almost every 24, The system of A(4)-graph-norms is
thus also directed and this implies that

DW= N\HsD).

In particular, we recover the result of [17] where we were decom-
posing Op*-algebras only and where we had introduced the common
domain immediately by this last equality. Moreover, in the case of
Op*-algebras, the elements 4% leave the domain 2 invariant and
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are continuous from 2 into itself for the projective topology. Since
inequalities between norms are preserved in the integral decomposition,
the boundedness properties of A are translated in boundedness
properties of A(2). It follows that each A(4) is continuous from
2 (4) into itself with the projective topology defined by the norms
{Il-llaw: A€Y}.

We shall now see that because 2 is metrizable and as a conse-
quence of this every X&€€(2) is continuous {rom (2,ty) into i,
the results of the two previous theorems extend to all decomposable
operators.

Theorem. Let Xem, (i.e. a decomposable operator). Then 2Dy(2)
and D () are cores for X(A) and X () is continuous from (D (R), tuw)
into #(A) for almost every A€ A.

Proof. The fact that X is continuous from (2,ty) into # is
expressed by an inequality of the type || Xf||<K||Af|l, VfE 2, some
constant K and some A&%. In the integral decomposition, we get
a similar inequality with X(2), f(4), A(4d), in particular VfE9,
which means that X (4) is continuous from (2,(4), typ) into H# ()
and may be extended in a continuous operator from (2 (4), fuw)
into #(4). As in the theorem of Section 3. 2., any g(1) E#x(4) is the
limit of a sequence {g;()} with g;=92. Hence each of those g's is
a limit of elements of 2, such that g;(2) is a limit of elements of
2,(2) in the Y (A)-graph topology. But this implies that g;(1) is
also a limit of elements of 2,(4) in the X(4)-graph norm. Finally,
this means that 2,(2) is a core for X(2).

§IV. Verification of the Algebraic Properties

4.1. Theorem. Let U be a countable ==-invariant set of D-minimal
operators. Assume any A€W is decomposed in a direct integral following
the method of Section II. The following algebraic relations hold for almost
every A€/ and VA, BE.

a) A@*=A4*(2).

b) (4+B) () =4() +B(4).
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c) If A.B is defined then A(R). B(A) is defined and (A.B) ()=
A). BQA).

d) A*(A) cA@* and A** (2) CcA(A)**.

e) If AOB is defined then A(2) B(A) is defined and (AIB) () =
A OBQ).

Remark. The same theorem holds if we replace in the hypotheses,
A, BEY by A,Bem, i.e. any pair of decomposable operators. In
fact, because mMCB(#) and mP C 9, it can be shown that m; is a
partial *-algebra with respect to the product [J and moreover, is also
stable with respect to the product. [30]

Proof. a) The adjoint

Since A(2) is 2 (4)-minimal, the definition of A(2)¥ is of course
AQ*=AQ)* | 9. Take geD(A4) and fED(A¥). For every Mem
we have (f, MAg) = (A*f, Mg), which gives in the integral decom-
position:

SAm DLSD, ADgD)) — AT f(A), g(A)1dp(A) =0

for every meL>(4, p).
This implies that for almost every 1e4:

@, ADg) =ATDfD), g)).
This relation which holds for geD(A4) and f&D(A*), extends by
Theorem 3.2 to any g(A) €D(A4(A)) and any f(2) €D(A4*(2)). Hence,
DA (D) =H ,+(H) SD(AD*) and AT(4) and AD* coincide on
%’A* (4) which contains the common domain 2 (1). Since we know
that A*(4) is 2 (A)-minimal:

AT =4"D) Top=AD* [ gp=4D7,

which proves the a) of the theorem.

b) The sum

Let C=A+B=Ag9+B | 4. Foranyge#, fE2, Mcm, we have
(g, CMf) = (g, AMS) + (g, BMf). Taking the integral decomposition
as in a) above, we can easily derive that: (g(2), C(A)f(D))=(g),
A f() + (g, B(A)f(A)). Since the set of g(4), coming from some
g in A is dense in # (), we get: C(A)f(D) =AQ)f()+BA)f(A) for
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any f€92. This is true in particular for any f€ 2, the countable
set dense in 2, that we have introduced in 3.2. Hence, C(4) [‘_a,yow
=A@ +B@A) 9,w- We have seen in 3.3 that 2,(4) is a core
for any C(2), because GC&m;,. Hence, WZC(Z). On the
other hand, since 2,(2) is by construction dense in 2 (4) for the pro-
jective topologys, it is a fortiori dense in 9 (2) for the topology defined by
the norm || . [|4w+sw Which is dominated by ||. |4+l . 3. (Remark:
it does not follow from this that 2,(2) is dense in 4 ,(2) N#z(1),
counterexamples do exist [26]). It follows from this that 2,(2) is
also a core for 4(2) +B(A) and that

(A@D)+BA) Tgw=AMND) +BWA) aw=4@) +B(4).

c) The product

Let A, BEY such that 4. B is defined (it then belongs to m;). By
definition of the product ., this means that Range (B ' g) SD(4) =+#,
and Range (4% | ) SD(B%) =K pe-

Since every element of m, is continuous from £ with the projective
topology into J, the fact that A.B is defined means in particular
that B maps 2 continuously into D(A4) i.e. there exists a finite set
of elements Cy, Cy ... Cy of A such that: HB/Z”ASKi:Wchi Vhe2
i.e. B maps continuously some closed subset of ;v\ He, L(the completion

N i=1
of @ with respect to };||+||c.into s#. If we consider the integral
i=1 :

decomposition of B, h, 4, G}, ... Cy, we get a similar inequality for
almost every 1€4:

N
IBDAD s <KL 1R (D) lle,w
which is true in particular for all A€ %, Hence B(4) maps con-
tinuously 2,(4) (and 2 (1) by continuity) with the projective topology
into #,(2). Finally, Range (B(3) [ gw) C# 4(2) =D(A(A)). Similarly
with the second condition, we get:
Range (47(2) | aw) CH () =D(B*(2)).
In conclusion, if B is a right multiplier of 4, B(2) will be a right
multiplier of A(2) 1i.e. the product A(2). B(2) is defined almost

everywhere. It remains to show that it is equal to (4. B) (). As we
did for the sum, it is easy to get that

(4. B) () f.@o(A):A(l)B(z) f.@ow
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and the closure of the L h.s. is by definition (4. B) (4) because 4. BE
m,. On the other hand, since (4. B) (1) is & (4)-minimal and since
2 (2) is the completion of Z,(2) with respect to fgy and a fortiori
with respect to fg@u we have for any f(He2@): BASfWA)e
D(A(2) and (4. B) (1) f(2) =A(2) B(2)f(2), which implies (4. B) (4) =
A). B).

d) Hilbertian adjoint-maximal operators

In the paragraph 2.4 we saw that not only minimal operators can
be decomposed into a direct integral but also their hilbertian adjoints
which are maximal operators.

However, if we decompose some 4* (A€%), we are not able to
prove that 4*(2) is 2 (4)-maximal but only that A*(2) CcA()* (this
last one being maximal).

Consider indeed (f, MAg) = (f, AMg) = (4*f, Mg), NV fEH 4, VEE
H 4, YMEm. By the integral decomposition we get for almost every
A:

[(f(D), 4Dg) |=14*ADfD, g) [<K||gD].

This is true Vgei#, and taking a dense set {g} in #, such that
{g:(A)} is dense in 4, (4) and similarly a dense set {f;} in 4, such
that {f;(4)} is dense in 4 ,.(4), we get that for any f(1) €# 4.():
A*)f Q) =4)*f (). That means that, #,.(2) CD(A(A)*) and that
A*(2) and A(A)* coincide on H#,4 () i.e. A¥ () CcAA)*,

Applying this result to A¥ instead of 4, we get A¥* () C (4T (A))*
=A(A)F*,

¢) The product [
Let 4, BEYU such that A[JB is defined (it belongs to m,).

We have: Range (B[ g)CcD(4*") = aes
Range (4* | 9) CD(B*) =#3..

In particular, B maps & continuously in J# .. i.e. there exists a
finite set of elements Gy, Cy ... Cy in U such that:

N
1BAll <K %Ik, VEED.

Notice that the set of norms {(HlAﬁ} coincides on 2 with the set
of norms {|[-|[,]A€¥U} and so, defines the same projective topology.
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Following exactly the same proof as in c) above, we get for almost
every A€/ an inequality similar to the last one (with B(2), A(4),
A7 (2, C;()) and so we conclude that the product A(A)OB(4)
is well-defined. By integral decomposition we get easily that
(4A40B) (1) r%w:A**(Z)B(l) rgow and with exactly the same proof
as in c) (replacing A(2) by A**(2) and using he result of d)) we get
finally: (A0B) (1) =A(AH)IB(A) almost everywhere.

Remark. a) In the proof of this theorem, the existence of the set
9, dense in 2 for the projective topology and such that 2,(4) is
dense in 2 (1), has been used in b), ¢) and e) i.e. for the sum, the
products . and [0 For the part concerning the adjoints * and =,
we only need the existence of a dense set {g;} in #, (resp. # 4, H# 44)
such that {g ()} is dense in #,(2) (resp. # 4 (D), # (D). In
particular, this set need not be the same for 4 and A" or 4 and 4*.

4.2. In conclusion of this section, we summarize the situation:

Theorem. Let U be a countable ==—invariant set (resp. a partial *-algebra
or an Op*-algebra) of D-minimal closed operators in a separable Hilbert
space #. There exists a Hilbert space 52 containing # as closed subspace
and a direct integral decomposition fzg H (D) du(d) where pis a regular
Borel measure on a compact space A. !

For almost every A€ A, there exists a dense domain 2 (2) in H# ()
and a countable ==-invariant set () (resp. a partial *-algebra or an
Op*-algebra) of 2 (2)-minimal closed operators such that

Vfe 9, vAeH Af={ ADFDdu

where A(X) €U(A) and fF(DED(A).
The decomposition is irreducible i.e. (A (R)),, is trivial for almost every
ied.

Remark. The proof of the irreducibility is the same as in [15] and
follows from the choice of m as indicated above.
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Part two: Decomposition of Uncountable Sets,
Representations and States

§ V. Separable =-Invariant Sets

5.1. In this section, we are going to extend the result of integral
decomposability from countable to uncountable (but separable)
f-invariant sets.

In the previous sections, the fact that the graph-topology on 2
was metrizable, was very important because it allowed us to define
the domain 2 (4) and to show that it was dense in s (1) for almost
every i€,

If we had considered an uncountable set of norms on 2, we
would have been able to define 2 (2) but not to prove that it was
different from zero.

For this reason, although we shall consider now uncountable sets
oA, we shall assume that U is dominated by a countable subset %, [6]
i.e. for every A€ there exists BEY, such that ||Af||<K||Bf|, VfE 2.

It follows from this assumption that the projective topology ty on
2 is equivalent to the projective topology ty (which is metrizable)
and we assume 2 to be complete with respect to those topologies
(i.e. A and Y, are both closed =-invariant sets).

5.2. Topology on %

It is possible to consider various topologies on a =Z=-invariant set.
Here we shall consider the so-called strong *-topology (shortly s*-
topology) [24] which is defined by the following set of semi-norms:

AEU——q;(4) =max {||Af|l, [|4*fI]},

f running over 2. This topology is a particular case of quasi-uniform
topologies which were introduced for Op*-algebras [4] [22] and it
possesses good properties with respect to commutants and bicommu-
tants [24] [27].

We shall assume that % is separable in the s*-topology i.e. there
exists a countable set B, dense in ¥ for this topology.

Notice that we have made two assumptions on £ which give us
two countable subsets: 2, which is a dominating subset and 8, which
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is dense in ¥ for the s*-topology. We may assume %,=%B, otherwise
we consider U,UB, which is at the same time dense and dominating.

The s*-topology is very natural to consider because if %, is dense
in ¥ for this topology, ¥ and ¥, will have the same unbounded and
bounded commutants:

(o) o=As[24] (W) , =W, and (o) ;=
(similar proof to [18] Lemma 2, 2.2),

In particular, if we choose mC¥; such that m=%, Nm’, the same
relations will hold for %, instead of % so that we may apply the
decomposition method of part I to .

Moreover, the irreducibility of the % (2) we shall obtain later, will
be implied by the irreducibility of the ,(4).

We may also consider on % a weaker topology defined by the
same semi-norms as the s*-topology but when f is restricted to be in
2, (the countable set dense in & for the projective topology that we
introduced in 3. 2).

Since 9, is countable, this topology (call it ) will be metrizable
and ¥ will also be separable for it.

5.3. Topology on %,(2)

Let again ¥ be a ==-invariant set with a s*-dense, countable
dominating subset %, Since ¥, is countable, we may decompose it
by the method of part I and we get irreducible Z-invariant sets
Ay(2) on dense domains Z (4) of H#(4) with & (1) complete for the
Ay (A) —~graph-topology.

Consider on %,(4) a topology z; (analogous to = above) defined by
the following semi-norms:

Qr.e;0 (A D)) =max {|ADe; (D], [[4* (D e; (D},

where ¢;& 9,. Since 9, is countable, this topology is metrizable.

Let us try to determine the completion of %,(4) with respect to
this topology.

For this, consider {4*(4)} a Cauchy sequence in %,(4) for the
topology 7. We have [[4A*(A) —A7(A))e;(D)||<e and |[|(4** (1) —
A™* (D) e; (D) ||<e for all ;€ 2, Hence the limits £;(2) zlim A* (D) e; (D)
and g;(4) =1ikm A¥ (D) e;(2) exist for i=1,2,... and those two relations
define two operators 7°(4) and S(2) on 2,(4) such that:



INTEGRAL DECOMPOSITION OF CLOSED OPERATORS 713

TWe; (D) =h;(D, SAD)e; (D) =g,(2), i=1,2,...

and moreover S(A) =T (A)* I 9,0 In general, such operators need not
be continuous on Z,(2) for the %,(2)-graph-topology. However,
those which are actually continuous may be extended to % (4) and
we get S()=TA)* [ 9. In that case taking the closure of those
operators, we get 2 (1)-minimal operators 7°(2) and S(2) such that
S(A)=T(A)*. By construction, such operators may be approximated
by elements of %;(2) on Z,(4). At this point, this whole construction
may seem a bit complicated but, as we shall see in a moment, when
we decompose any element A=W \Y, we get exactly the same type of
operators A(4) as the 7T(2) we just described.

5.4. Theorem. Let U be a +-invariant set with a countable dominating
subset Uy dense in U for the s*-topology. Let the countable set U, be
decomposed in

= H@dp

where o(A) is a countable set of 2D (2)-minimal operators in H (R)
(following the method of part I).
On the other hand, let AU\, be decomposed as en individual closed

operator in AngA(l)d/u(l) where A(2) is a closed operator in #(2).
Then, for almost every Acd, A(R) is a 2D (2)-minimal operator and
AQ) €A (D)™

Proof. a) Because (¥,),=%,, we have
A, cAC (Yp) o= UseC 11,
Hence, any element of ¥ is decomposable (2. 4). Since the topologies ¢y
and lq, are equivalent on 2, A4 is continuous from @[t%] into 7
so the operators 4(4) occurring in the integral decomposition are
continuous from 2 (2) [ty »] into 5#°(2). Moreover, Z(2) and Z,(4)
are cores for A(2) almost everywhere (see last theorem of 3. 3).

b) Since ¥ is separable in the s*-topology and a fortiori in the
topology 7, there exists a Cauchy sequence {47 in %, such that
qej(A"—A) —0 for ¢,;€9,, j=1,2,.... This means in particular that
Ve, €D,
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[[(Ai—A)e;||->0 and [|(4**—A*)e;]|—0.
Decomposing those norms in direct integrals, we get that there exists
a subsequence {4% C ¥, such that for almost every Aie4:

1(A*() —4(2))e;(2)||>0 and

1A% () = 4* () ;D 150, Ve;(D) € Do(D.
Since there is only a countable number of such norms (indexed by
J) we may choose the subsequence (4% independent of j and
suitable for the adjoints as well. Finally, we have that e, (Ai”(l)

—A))—-0 for j=1,2,...1.e. A(2) belongs to the completion of
Ap(2) with respect to the topology z,.

In conclusion, all elements of % are decomposed into 2 (1) -minimal
operators which may be approximated on 2,(1) by elements of %,(4).
Moreover, they are continuous from 2 (1) into #(4).

5.5. Conclusion. Define in %(2) *NE(2 (1)) the subset AQ) =
{A(2) |A€YU} consisting in the images of the elements of U after
decomposition. Then U (2) is a =F-invariant set of 2 (4)-minimal
operators. We have thus decomposed the ==-invariant set % into
irreducible +-invariant sets 2(4). Moreover, (1) is “generated”
by %,(4) in the same way as ¥ was “generated” by U,

Since the algebraic relations pass through the integral decomposi-
tions for almost every A€4, if we begin with a partial *-algebra, we
shall get irreducible partial *-algebras € (4). If A is an Op*-algebra,
the 2 (2)’s will be Op*-algebras as well (4() &U(A) will be conti-
nuous from 2 (1) into itself).

This last result about decomposition of Op*-algebras generalizes
the result we got in [18] where we made the stronger assumption
that ¥ was separable for some quasi-uniform topology [22] which is
actually a finer topology than the s*-topology we consider here.

5.6. Particular cases. V*-sets and V*-algebras

In an attempt to generalize the von Neumann theory to unbounded
operators, special attention has been paid in [25] to a class of Op*-
algebras satisfying =%, (called V*-algebras) or satisfying A=9,,
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(called SV*-algebras). Several interesting results have been obtained
for those classes of algebras. Here, since we are not restricted to
Op*-algebras, we shall call a V*-set (resp. a SV*-set), a #-invariant
subset A of € such that A=A, (resp. A=,,). In particular, such
sets are closed for the s*-topology [24].

If we assume that a V*-set possesses a countable dominating subset
Uy, dense for the s*-topology, we have in fact: 2I=§[s;=§fs*= () se=Uree

If we decompose ¥ in a direct integral of s-invariant sets 2 (2)
as above, it is more coherent to consider instead of the € (4) their
bicommutants 2 ()., which are (a fortiori irreducible) V*-sets in
€(2(2). For every A€, we shall have 4(2) €U ().

Similarly, if we decompose a SV*-set in a direct integral, we shall
consider % (2),, which is equal to €(2 (1)) i. e. an irreducible SV*-set.

Thus, V*-sets (resp. SV*-sets) may be decomposed into irreducible
V*-sets (resp. SV*-sets).

We end with a remark about those V*-sets (resp. SV*-sets)
possessing a countable subset %, dense for the s*-topology.

As we said above, if ¥, is dense in A=, we get (2[0);;=ﬁ;*.
Conversely, if (%) 2 =%y, then A= (Uy),, is a V*-set separable in the
s*-topology. Hence we get:

Proposition. a) The V*-sets separable in the s*-topology are exactly
the unbounded bicommutants of countable sets U, satisfying —‘lﬁ*: (o) oo

(Notice that this last condition is not at all automatic for unbounded
operators [30]. It holds if, for instance, ¥, consists in bounded
operators only).

b) Similarly, the SV*-sets separable in the s*-topology are exactly the
bicommutants (o), of countable sets Uy satisfying Ay = (Uy) oo

We mention this characterization of separable V*-sets and SV*-
sets because it reminds us about the characterization of von Neumann
algebras in a separable Hilbert space as the bicommutant of a counta-
ble number of projections.
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§ VI. Representations of Partial *-Algebras

6.1. The decomposition method we have discussed all along this
paper will be used in this section to decompose representations of
abstract partial *-algebras into direct integral of irreducible represen-
tations. We first recall some definitions following [1], 2], [3] and

{12].

Definition. A partial *-algebra is a complex vector space with an
involution A—A4* and a subset I'CU XY such that:
1) (4,B)erl implies (BY, AN el’
2) (4,B) el and (4, By) I' implies
(4, B;+1By) el’, Yiel
3) 1If (4, B) I, there exists an element AoBE¥ such that:

Ao(B+C) = (40B) 4 (4oC) and (AoB)*=B*oA*.

Remark. this partial product o need not be associative.

In the sequel, we shall assume that the partial *-algebra U is
provided with a locally convex topology for which the involution *
is continuous.

We collect some definitions about representations of partial

*-algebras:

6.2. Definitions [3]. A representation = of U is a homomorphism
from ¥ into the minimal closed operators €(2) of a dense domain
2 of a separable Hilbert space #, i.e. w(A+2B)=n(4)Fix(B),
n(4%) =(w(A4))* and if (4, B)el', either n(4oB)=zn(A4). =(B) or
w(doB) =z (A)=(B).

In the first case, = is called a hermitian representation (i.e. a
representation of ¥ in €(2) in the notations of section I), in the
second case, 7 is called a weakly hermitian representation (i.e. in

€ (2)).

Definitions. As usual, a representation = of % is said to be
closed if 2=2 i.e. 9@ is complete with respect to the projective
topology defined by all the graph-norms ||. |z, VAEX (in this
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section, we shall call ¢, this topology). Moreover, since we are dealing
with more general sets than Op*-algebras, we must also consider
another notion of “closure” which has been introduced in [2]: A
representation = is fully closed if

2=2 W) =NDx(4).

It has been proved in [3] that any hermitian representation of a
partial *-algebra admits a unique minimal closed hermitian extension

on 2 and a unique minimal fully closed, but weakly hermitian
extension to Z (x(¥W)). In particular, we may always assume =7 to
be closed but not necessarily fully closed.

Definitions. As usual, a vector 2€ 2 is called ¢yclic for = if the
set 7(W) 2 is dense in H#. Moreover, a vector 22 is called
strongly c¢yclic for = [3] if the set {#(X)2|A4oX is defined VA€Y} is
firstly contained in & and secondly is dense in it for Z. (In that
situation, X is called a universal right-multiplier in %). This notion
of strongly cyclic vector gets back to the one of Powers [6] for
Op*-algebras because, in that case, any A% is a universal right-
multiplier.

Definition. The representation = is called strongly continuous if the
map A—||x(4)f]] is continuous from U into s, for every f&9.
Notice that, because the involution is continuous in %, a strongly
continuous representation is automatically strongly *-continuous.

Definition. The partial *-algebra ¥ is said to be dominated by a
subset ¥, if for amy representation = of %, the set =(Yy) is a
dominating subset of #(%) in the sense we used in 3. 1.

In the sequel, we shall also assume that ¥ is separable in its own
topology i.e., there exists a countable subset %, dense in L.

As before, we may find a subset ¥, which is at the same time
dense and dominating.

6.3. Theorem. Let U be a separable locally convex partial *-algebra
dominated by a countable subset ¥,. Let m be a sirongly continuous
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representation of U by minimal closed operators on a dense domain 2 of
a separable Hilbert space H#. Then there exists a separable Hilbert space
P containing # as closed subspace and a direct integral decomposition

y?=§ H (D) dp(R)
A

where p is a positive Borel measure on a compact space A. There exists
Sor almost every A€ A a representation w; of U by minimal operators on a
dense domain 2 (2) of # (A) such that:

D Viea, VASY, x(A)f={ mAfDdu@);

2) (@mA)),=C i.e. =, is irreducible;

3) If m is hermitian, ©, is hermitian;
If © is weakly hermitian, m; is weakly hermitian;

4)  Although the mt; are not necessarily strongly continuous representations,
they have some kind of continuity property:

If A=lim A% in U there exists a sequence {A} C{A°} such that

[|(w(A) = (A))f||=>0 and a subsequence {Aik} such that H(n'l(Ai")——
T (A f (D=0 for every f€ D, (the dense set in D for the projective
topology) ;

5) If Q€2 is cyclic (resp. strongly cyclic) for =m, then there exist
Q) €D (A) which are cyclic (resp. strongly cyclic) for =,

Proof. The proof of 1) and 2) is exactly the same as what we
did in [18] for Op*-algebras, excepted that we consider here the
s*-topology instead of a quasi-uniform one. This proof consists in
showing that the maximal extension [15] # on D P possesses the
same properties as © on 9D C#, essentially that 9 is metrizable (this
is because %, is dominating) and that #(%) is separable in the
s*-topology (see [18] for the details). Finally, we apply the decom-
position of the previous sections to #(¥) which induces a decomposi-
tion of = ().

The proof of 3) follows from the fact that if X. Y is defined, then
(X.Y)()=X(A). Y(2) almost everywhere and similarly, if XOY is
defined, (XOJY) () =X(A)OY(2) almost everywhere. Hence, defining
m,(4) =(x(4)) (4), the map 7;:¥A—>E (2 (2)) is a homomorphism from
% into € or €“ hence, defines a hermitian or weakly hermitian
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representation of «.

Proof of 4). If A4 in ¥, we have n(4) =lim z(4%) in €(2) for
the strong *-topology and in particular also in the metrizable topology
7 introduced in 5.2. We have:

q.,(x(4%) —x(4)) =max {|[(z(4*) == (4)) e/,

[(@AHF—a(A)Dejll}, Ve, €D0, j=1,2....
But since this topology is metrizable, we may extract from the net
{4°} a sequence {4} converging to A. We have thus ||(z(4?) —7(4) )¢/
—0 when i—co and for every ¢;€ 9, Decomposing this norm in a
direct integral, we get that there exists a subsequence {4 such that
for almost every 1€ 4: ]|(n'1(Ai") —m,(A4))e;(2)||—>0 (since there is only
a countable number of such norms, indexed by j, the subsequence
may be chosen independent of j). This proves point 4) and, in fact

this means that {r,;(4™)} tends to 7;(4) in the topology 7; considered
in 5. 3.

Proof of 5). The fact that 292 is cyclic for # means that
(A2 is dense in H#. But, if fe# is a limit of some sequence
(492, {4} €YU, then there exists a subsequence {Aik} such that for
almost every 2&€4: f(2) =lim (A Q2(2). Thus, the set z,(A)2(2)
is dense in the set of f(2) é%(l) which are the images of some f&s#.
Since we know that this last set is dense in # (2), it follows that £2(2)
is cyclic for =,.

Let now 2€ 2 be strongly cyclic for =. Every g€ 2 is a limit of
the type g=limz(X*)£2 such that 7(4)g=limz(4oX")2 for every
A€, where ihe X? s are universal right mlllltipliers. That means
g is limit of #(X?) in the topology t,=t,&. But, by assumption, this
topology is metrizable since it is equivalent to tzy where ¥, is the
countable dominating subset of 2. Because of this, we may extract
a subsequence {X" k} independent of A such that g(2) ~hm n-l(Xk)Q(Z)
and 7,(A4A)g(2) —hm n'l(AoX")Q(l), VAed, i.e. g(d) is a limit of this

type in the topology tzwy which is equivalent to tq).

Moreover, since such g(2)’s (coming from gE£2) are dense in
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2 (1) for ¢, (because Z,(2) is contained in this set of g(1)’s), every
element of 2 (1) is a limit of the type above. Hence 2(2) is strongly
cyclic for ;.

8 VII. Decomposition of States

7.1. Because the product of two elements of a partial *-algebra
is not always defined, the notion of state has to be modified in
consequence. Indeed, a state w on an Op*-algebra or a C*-algebra
gives rise by the GNS construction to a representation in a Hilbert
space. The scalar product of this last one is given by

$Ps, $pp=w(4%0B), 4, BEU, ¢4, prEH

and thus, an explicit use of the product is made.

When we are working with partial *-algebras, the notion of state
has to be replaced by the notion of A-state introduced in [3] (see
also [29] for Op*-algebras) and which is in fact a sesquilinear form
on .

We recall the definitions we shall need in the sequel.

Definition. An A-form on a partial *-algebra % is a sesquilinear
form ® on AXY which is moreover positive (w(4, 4) >0, VA4<)
and multiplication invariant (if AoC and A*oB are defined, then
w(4%0B, C) =w(B, AoC)). This A-form is called a A-state if moreover
w(e, ) =1 (where ¢ is the unit element of U, and we shall assume

it exists).

Beginning with a A-state @ on %, the authors of [3] [12]
generalized the GNS construction provided two more conditions
hold:

1) U has to be semi-associative i.e. VA4, B,C=¥ such that C is
a universal right-multiplier, we have: if 40B is defined, then Ao (BoC)
is defined and is equal to (4oB)oC.

2)  is weakly GNS, which means that when we construct the
Hilbert space &, similarly as in the usual case, ie. the completion
of U/ker w with respect to the scalar product <¢,, éz>=w(4, B), the
set £,= {¢x:X is a universal right-multiplier} is dense in #,,.

Under those two assumptions, it has been proved [3] that w gives
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rise in 4, to a fully closed, weakly hermitian, cyclic representation =,
on QQZK\ﬂD(n’w(A)) such that (4, B) =<{=,(4)82, =,(B)2> (where
2 is theAsyclic vector).

Moreover, the restriction of =, to 2 =%, (the completion of %,
with respect to f;) is a strongly cyclic, closed, weakly hermitian
representation of ¥ (We refer to [3] for all the details of the
construction and of the proof).

Now we are in position to write the theorem about decomposition
of h-states. In this theorem, we shall call an A-state extremal if it gives
rise to a GNS representation 7, whose weak bounded commutant is
trivial. Moreover, since we are going to apply to the GNS represen-
tation the theorem 6.3 of previous section, it is necessary that this
representation be strongly continuous, and this is obtained by consider-
ing jointly continuous A-states.

7.2. Theorem

Let A be a semi-associalive partial *-algebra dominated by a countable
subset and separable in its own locally convex topology. Let w be a jointly
continuous, weakly GNS h-state on A, Then, there exists a regular Borel
measure p on a compact space A and for almost every A€ A, weakly GNS,
h-states ®; on W such that:

@) w=SAwld/,z(2) ;

b) ® is extremal;

¢) o need not be jointly continuous, but if A*—A in U, there exists
a sequence {A} C{A4°} such that w(A', AY) »w(A, A) and there exists a
subsequence {Aik} such that w, (Ai", A —w,(4, 4), for almost every 2 4;

d) ker wCker w; and ker n,Cker =, ;.

Proof. a) Consider the strongly-cyclic, closed, weakly hermitian
GNS-representation 7, on 2 =2, described above and apply the
integral decomposition of Theorem 6.3 to =z, i. e. there exist domains

2 (A in #,(A) and weakly hermitian representations =, ; of % such
that:

VfED and VCEU: :ra,(C)f:SAna,J(C)f(Z)dy(l).
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In particular, 2€ 2 hence 2(2) €2 (2) for almost every A€4 and
we have VA4, BeU:

W (4, B) =<xa(d) 2, 7(B) @)=
| @ 2@, 7s(B)2@)du) = 0i(4, BYdu(@),

where we define
0, (4, B) = (7,,,(A) 2(2), 7,;(B)2(2)).

We must now show that, so defined, the w, are weakly GNS A-states
on . For this, we need to check four properties:

i) the positivity: (w;(4, 4) =0) is obvious.

ii) the multiplication invariance: Let 4, B, CE¥ such that A4oC
and A*oB are defined. Since o itself is multiplication-invariant
w(4%0B, C) =w(B, 40C) i.e. since =, is weakly hermitian:

(@ (A) T Omy (B) R, 7, (C) 2> =<7, (B) 2, (z,(4) 07, (C)) 2.

This equality passes through the integral decomposition since the
product [J is decomposed correctly, and we get in this way the
multiplication invariance of w,

iii) By adding a normalization if necessary, it is always possible
to get w;(e,¢) =1.

Those three properties make the w;’s into #A-states on UA. We
still must show that they are weakly GNS.

iv) As we did in the proof of 5) of Theorem 6.3, the fact that
{px=7,(X)2|X is a universal right-multiplier} is dense in &, implies
that {m,(X)2(2)} is dense in #,(2) for almost every A&4. On the
other hand, it is obvious from the way we have defined w,; that the
GNS representation, «,, associated to it, is unitary equivalent to z,,;.

Remark. Remember that in all this, the domain 2, which is the
completion of £, with respect to f; @, or equivalently to #; cqupy, is
metrizable,

The domain Z,, dense in &, consists then in a countable set of
elements of the form ¢;=x,(X?)2 where X’ is a universal right-

multiplier of 2.

b) trivial by Theorem 6. 3. 2).
¢) follows from theorem 6. 3. 4) and the fact that we may assume
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that Q€ 9,.
d) Let Acker w. By integral decomposition, we get:

0=w(4, 4) =§Aw1<A, Ay dp(d),

which implies ;(4, 4) =0 for almost every A1€4 i.e. AEker o,
Va€A\N,, where A4, is a null-set depending on 4. If we consider

first such 4 in %, we may get a common null-set U A7, l.e.
A,

A€ker oN Y, implies that A&ker w,N Y, for almost every 2&/4. Take
now A€ker wn (Y\Y,). There exists a net {4° in ¥, converging
to 4 and we know by the point c) above that there exist {4’} and
{4™ such that w(4, 4") >0 (4, 4) =0 and w,(4"* A% —w,(4, A) for
almost every 2=4. This implies that w;(4, A) =0 almost everywhere,
hence A&ker ;.

The proof is similar for the associated GNS representations. If
Ad€kerm,N Yy, then |lr,(A)f||=0 VS €2 implies =, ;(4)f(4)=0
Vf(A) €2 (2 such that f€2, in particular for f€ 2, Since we
have shown that 2,(4) is a core for every =, ,(4) (§3.2), this implies
7, 2(A) =0 hence Ackerr, ;NY,. If now A= (A\¥,) Nker=, there
exists a net {4° in ¥, tending to 4, and since =, is a strongly
continuous representation, ||(x,(4%) —=,(4))f!|—0 for every f€ 2. If
we restrict ourselves to f& 9, we may find a sequence {4’} C {4°} and

a subsequence {Aik}, independant of f. such that z,(49)f-=r,(4)f=0

and nm_l(Aik)f(Z) -7, ,(A)f(2) =0. Since 9,(2) is a core for =, ,(4),
we have that A€&kerz,,; for almost every 1€ 4.
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