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The Homology of Double Loop Spaces of
Complex Stiefel Manifolds

By

Atsushi YAMAGUCHI*

Abstract

The Hopf algebra structure of Hx(2°SU(n+1)/SU(m+1): F,) and the action of the
Steenrod algebra on it are determined.

Introduction

Let 4 be a primitively generated commutative Hopf algebra over
a perfect field K of characteristic p. Then, by Borel’s theorem ([1]),
4 is isomorphic to a tensor product of monogenic Hopf algebras.
Using Kiinneth Formula, calculation of the cohomology of 4 reduces to
calculation of the cohomology of monogenic Hopf algebras. Let us denote
by V, . the complex Stiefel manifold SU(n+1)/SU(m+1) and let C,,,
be the mod p ordinary homology of 2V,,. Since 2V,, is a Hopf
space, C,, has a structure of Hopf algebra. In this case, C,, is
commutative and cocommutative, and we define a certain filtration of
C, . analogous to that of S(n)4 in [5] so that the dual of the
associate graded Hopf algebra is primitively generated. Then we can
calculate Cotori(jc*"'”‘(Fl,, F,) since it is easy to calculate the cohomology
of monogenic Hopf algebras. Showing that the spectral sequence
associated with the filtration of C,, collapses, we determine the
E?~term of the Eilenberg-Moore spectral sequence associated with the
path fibration over £V,,. On the other hand, a splitting of C, .,
enable us to describe explicit cocycles of the cobar complex of C,,
which represent generators of Cotor g (F,, F;), then we can determine
the differentials of the ‘“algebraic” Bockstein spectral sequence and
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the Hopf algebra structure of Cotorg*y(F,, F,).

The Hopf algebra structure of Cotory®” (#,, F,) implies that the
Eilenberg-Moore spectral sequence collapses, and Hy(2%V, . F,) is
given as follows if p is an odd prime (See (4.14), (4.16) for
details);

Hy(V, i Fy) =E(h; ;lm+1=<i<n, pfi or i<mp, j=0)
®F,[g:;Im+1=<i<n, pfi or i<mp, j=0],

where deg h; ;=2ip—1 and deg g ;=2ipt®?*1—2 (e(n, i) =max
{t|ip'=<n}) and #;; and g;; are primitive. Moreover, A;; and g;;
are transgressive.

Section 1 is devoted to calculate the cohomology of monogenic Hopf
algebras by constructing the minimal resolutions, and we examine
induced mappings between the cohomology of monogenic Hopf alge-
bras. In Section 2, we apply the results of Section 1 to calculation
of the E?-term of the Eilenberg-Moore spectral sequence associated
with the path fibration over 2V,,. We examine the E’-term in
detail in Section 3, applying a splitting of H,(2SU:Z,). We find
explicit cycles in the cobar complex which represent generators of the
E’-term and determine the differentials of the (algebraic) Bockstein
spectral sequence of the E*term. We prove in Section 4 that the
spectral sequence collapses and describe the Hopf algebra structure of
Hy(V, ;F,) and morphisms induced by the canonical inclusion
VouTVai1m and projection V,,—V, ... We also determine the
homology suspensions oy: Hy(2V, .+ Fy) >H 2V, i F), 04 Hy
BV ymi Fy) >Hy 1 (2V, i Fy). In Section 5, the Bockstein spectral
sequence of Hy(2*V,,;F,) is examined. Finally, we determine the
action of the Steenrod algebra on H,(2?V, ,.;F,) in Section 6.

Throughout this paper, we denote by H,(—) the mod p ordinary
homology unless otherwise stated and the modifications of statements
required in the case p=2 are indicated inside square brackets.

I am indebted to Daniel Waggoner who showed me his results on
H,(£°SU (n) ; F,). He uses the Serre spectral sequence associated with
a fibering 225U (n) —§25U (n+ 1) —>8228%+! to calculate Hy (225U (n) ; Fy).
And I would like to thank Frederick Cohen, Douglas Ravenel and
Stephen Wilson for helpful conversations. I would also like to express
my gratitude to Akira Kono for his suggestions and for reading my
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messy manuscript.
I am deeply grateful to the referee for reading the manuscript
very carefully and pointing out many errors.

§1. Cohomology of Monogenic Hopf Algebras

Let K be a field of characteristic p#0. We denote by A(n, 7)
(n=1) the monogenic graded Hopf algebra over K generated by x
whose height is p" and degx=2r [degx=r]; that is, A(n, r)=
K[x1/ ().

Let E be a bigraded exterior algebra over K generated by a single
element ~ having bidegree (1, 27) [(l, r)]. And let I' be a bigraded
divided polynomial algebra over K spanned by {l=7y 71, 72 -.->
7 -} with relations 7,;7;= (*t/)7;.;. Each 7; has bidegree (2i, 2irp")
[(2i, 2%r)]. We also assign (0, 27)[(0, )] to x in A(n, r). Consider
a bigraded A(n, r)-algebra X(n, r) =A(n, ) QEXRI. We define a
differential d: X (n, r) ->X(n, r), a coproduct ¢:X(n, r) >X(n, r) QX (n,
7) and an augmentation ¢: X (n, r) >K as follows;

(L) dlhy) =x75 d() =5 "hyi
and d is an A(n, r)-linear map.

(1.2) o (hr) = 2 aa=i (hr Q12+ 7,07 5
P(1r) = 2= i Q1+ Z;ifg"—z( — 1) x°hyQx*hys

=i—1
and ¢ is an A(n, r)-linear map where the A4 (n, r) -module
structure of X(n, r)®X(n, r) is the wusual one, using
coproduct A (n, r)—>A(n, r) RA(n, r)
(1. 3) e(l) =1, e(hy;) =e(r;,) =0 and ¢ is A(n, r)-linear.
It is easy to verify that X(n, r) is a differential Hopf algebra over
A(n, r). We also define a contracting homotopy

_ 0, i=0
s:X(n,r)—>X(n,r) by s(xir;) = {x"‘llzrj, |<isp -1
0, 0=i<p"—1
s(xthy;) = { ) ln<‘b and let » be the unit.
Tivn t=p"—1

Then we have ds+7e=1, ds+sd=1. Therefore K«—X(n, r) is an 4
(n, r)-free resolution of K. It is obvious that the complex Hom,,,
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(X(n, ), K) has a trivial differential and it is isomorphic to E(A*)
XK[g*] [E*#*) ®K[g*] for n>1, K[A*] for n=1] as an algebra,
where #* and g* are the duals of % and 7, respectively. Thus we
obtain the following basic theorem.

Theorem 1.4. Ext}*, (K, K)=Eh*)R@K[g*] where
bideg A*= (1, 2r), bideg g*= (2, 2rp")
[Extiq, (K, K) ZEh*) QK[g*] for n>1, Extiy, (K, K) =K[h*],
where

bideg A*= (1, r), bideg g*=(2, 2"r)].

Let A(co, r) be the monogenic Hopf algebra K[x] (deg x=2r
[deg x=r]), then X (oo, r) =A(c0, r)XE with a differential d(h) =x
gives an A (oo, r)-free minimal resolution of K. Let A* be the dual
of %, then we have

Proposition 1.5. Ext}*, (K, K) =E(h*) where bideg h*= (1, 2r)
[bideg A*=(1, n)].

There is another monogenic Hopf albegra E(y) (deg y=2r—1)
over a field of odd characteristic. This case, E(y)®I" (bideg 7;,=
(i, (2r—1)i)) with a differential d(7;) =pr;-1 gives an E(y)-free
minimal resolution of K. Let g* be the dual of 7, then we get the
following.

Proposition 1.6. Ext}5(K, K) =K[g*] where bideg g*= (1, 2r—1).

Remark 1.7. Let A(n, r)* (1=n=<o0) be the dual Hopf algebra
of A(n, r). A(n, r)* is spanned by {l==xo, %, ..., xp"-1} over A
i+j S
< i >x,~+j,z+]<p and with a coproduct 4x;=
0, i+j=p"

2 ivr=i¥ jQx;, where x; is the dual of x*€4(n, r). The representa-

with relations x,-xj={

tions of A* and g* in the cobar complex 2*(A4(n, r)*) are given by
[x] and Z?:Il[xi,xpn_,-] respectively. It is straightforward to verify
that both A* and g* are primitive in Ext};*, (K, K).

Let c:A(n, r) >A(m, r) (1=m<n<oc0) be a map of graded Hopf
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algebras defined by ¢(x) =x and let #: 4 (n, rp*) > A(k+n,r) (1=n=oo,
1<k<{©) be a map of graded Hopf algebras defined by =(x) —x',
Then ¢ and 7 induce maps of algebras ¢:Ext¥% , (X, K) —»Exti.f, (X,

m.r) n, 1)

K) and #*:Ext}, (K, K) —>Exti} (K, K) respectively.

Lemma 1.8. & is given by #(h*) =h* and #(g*) =0 and =* is given
by ©(h*) =0 and n*(g*) =g* [#*(g*) = (A*)? if n=1] for n<{oo, and =*
(h*) =0 for n=o0,

Proof. ¢ induces a map of complexes over K ¢,: X (n, r) >X(m, r)
such that ¢,(h) =4, &(y;) =0 and ¢; is a map of A(n, r)-Hopf algebras,
where X (m, r) is an A(n, r)-Hopf algebra via ¢. Taking the dual of
¢, 1t is straightforward to see that ¢#(A*) =A* and ¢#(g*) =0. If n<oo,
m* induces a map of complexes over K m,: X (n, rp*) > X (k+n, r) such
that ﬂ#(h)=x’k‘1/z, m(y;) =7, and m, is a map of A(n, rp*)-Hopf
algebras. Taking the dual, we get the result. The case n=o0 is easy.

§2. Calculation of Cotor”™*“@n» (Fy, Fy)

Let V, , (n>>m) be the complex Stiefel manifold SU(n+1)/SU (m+
). Put C,,=H.®V,,), then it is known that C,, is isomorphic
to Fyl ymsts Ymiz -+ -5 ¥n] (deg ,=2i) as an algebra and the coproduct
¢ is given by

o) = .
1®y:+:Q1+ Zlﬁl;'zﬂ.yk@yu 2m+2<i<n

Define an increasing filtration {F;} of C,, compatible with both
product and coproduct by y{-’jEF,.—F,-_l. Consider the associated
graded Hopf algebra E°C, , and let y; ;€ EXC, , be the class ofy‘,?jEF,-.
Then E°C,, is isomorphic to F,[y;;|m+1=<i<n, j=0]/(»?,) as an
algebra and the coproduct is given by
1®p:.;+:,81, m+1<i<2m+1

PYi ;= { .
! 1&y; i+ ,91+ Zﬁz;;ﬂ)’k,j@]z.j, 2m+2=<i<n

Note that the p-th power map of E°C,, is trivial. Using the exact
sequence of Milnor-Moore ([4]), it follows that the canonical map
PEC, ,—QFE’C,, is a monomorphism. Therefore the dual Hopf
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algebra E°C}, of E°C,, is primitively generated. In fact, the canonical
map PE’C},—QEFE°C}, is an epimorphism, which is the dual of
PEC, ,—QEC, ,. Take a basis of E°C,, which consists of monomials
in y; s and consider the dual basis. Let us denote by »f; the dual
of ;. Then, {y¥|m+1=i<n, j=0} is a basis of PE’C},. Easy
calculation shows an equality
(2= {y:;,,., wsn
0, ip>n

This proves the following lemma.

Lemma 2.1. {p};|m+1=<i=<n, pfi or i<mp, j=0} generates E°C},
as an algebra with relations (y¥;) @0 where e(n, 1) =max{icZ|
ip'<n}. Therefore E°C},, is isomorphic to

&  Ale(n, 1) +1, ip?) [ ®< Ae(n, ©) +1,27%4%)]

m+1<isn
plior ismp Z,h or 1§2m
iz iz0

as a Hopf algebra.
Using Kiinneth formula and (1. 4-5), we have the following.

Lemma 2.2. Cotory 2" (Fy, Fy) SExtzts (Fy F) ZE(h,|m+1=
i=n, erz or i<mp, j=0) QF,[g.;|m+1=<iZn, pli or i<mp, j=0]
[Cotor®m(Fy, Fy) SExt:? (P, FZ)“’E(}z,]]m—l—l<z<[2] i or i<
om, ng)@Fz[h,.,.imax{m [—%]}<z§n % or i<2m, ]201®F2[g,.,,.|m

+1<z<[ :I 211 or i<2m, j=0]] for n<loo, and Cotor* (Y, Fy)
"’ExtEc* (Fy, Fy) ZE(h;;lizm+1, pti or i<mp, j=0) for n=c0

where bldeg h; ;= (=1, 2ip’), bideg g, ;= (—2, 2ip*®»2*) Here we
adapted the grading for the Eilenberg-Moore spectral sequence.

Let ¢, n: Vyn—Vau1n be the canonical inclusion and let 7, ,: V...
—V, »+1 be the canonical projection. By an abuse of notations, we
also denote 2%, ,, @z,, (k=1,2) by Coms Tum Tespectively, The in-

duced maps ¢, C,—>Cpri1 and 7, . C, ,—C, .41 are given by
(2.3) o (i) = (m+1§1§n)
0, i=m+1
n'n,m* (_yz) = { . .
9, mF+2=i<n

Since ¢, , and =, , preserve the filtrations on C,,’s, they induce
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bt E°Cpw—>ECri1m and 7, ¢ E°C, ,—E’C, .1 which are obviously
given by
2.4 o (Ji)) =01 (m+1=i=n, j=0)
0, i=m+1, j=0
Tpme (i) = { . .
Vi m+2=i=n, j=0.

Taking the dual of ¢,,. and =,,s we have maps ¢f,: EC¥, .,

n,m°

—E°C¥, and =},: E°C},..—E°C}, which map yf’s as follows.
i, m+1<i<n j=0

2.5 !:m i*' Z{ . . 3

(2.3) m(75) 0, i=n+l Jj=0

Tan(Di) =2f; (m+2=<i<n, j=0).

Consider the case p|n+1 and n=mp, and take an integer s(n, m)
=max{s|(m+1)p'<n+1 and p*|n+1}. Then s(n, m)=1 and ¢,

+1
Diam.)? Tva—)

have (pifum.))? =p¥.,;#0. Next, consider the case n=(m+1)p,
then z},,(YGns) = (Imsr )’

By the above observations, we obtain the following lemma, apply-
ing (1.8) and (2.1).

S (n, m)

=0, where £(n, m)= On the other hand, we

s (n,m)

Lemma 2.6. ¢, , and =,, induce maps ¢, .3: Cotoriolc,,:"’"(Fp, Fy)—
0 0 0
Cotori,c,,:“"(Fi,, F,) and =, 3: Cotori,c,,:'-”‘(Fp, F,) —>Cotori,c*"""“(Fp, )
which are described as follows.
tymt(h; ) =h;; in any cases.
0, pln+1 and n=mp and i=k(n, m)
Comt (8i,7) = { .
g;.;» Otherwise
0, 4|\n+1 and n=4m and i=k(n, m)
[‘n.m# (g: j) = { . ]
g;.»» Otherwise
0, i=m+1
T, b (P s ={ .
' ( 'J) hi,,’, t#F=m-+1
&i. i Z:r&m"{"l
n'n.m*(gi.j): g(m+1)i’,j’ Z:m_l_la (m+1)[’§ﬂ

0, t=m+1, (m+1)p>n
i i#=m+1
(7, mt (g, 5) = Gemiv.jy t=m+1, n=4(m+1) 1

Womiy. s i=m+1, 2(m+1) <n<4(m+1)
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0
Remark 2.7. It is easy to see that the map Cotori,i"'"'(F,, F,)

0
—>Cotori,c;°""(F,,, F,) induced by the canonical inclusion 2V, ,—2V.. .,
maps h;; to h;; and g;; to zero.

The filtration of C,, defines a filtration of the cobar complex
24(C,.»); that is

(2' 8) Fs‘Qk(Cn.m) = Zsl+--+s_k=s-szlcn.m®’ . ®Fs_kcn,m (kéo)

Then we haVC E?,t,u: (Fs‘Qs+i (Cnm) /Fs—lgs+t (C'n,m))uﬂ‘E
‘Qs+t (EOC”. m) —t,utt

Consider the spectral sequence associated with this filtration. Note

that this spectral sequence is trigraded and its E®-term is given by
%
2.9 EZ, ,=Cotor, ;"7 1 (Fy Fy) and h; ;€ 3o o124 o,
g€ Zs+t=—2E§,t.*

In the case n=oco0., E% ., is an exterior algebra generated by #,;
which belongs to }js--1E%;, By the remark (1.7), these 4;’s
are primitive and there are not any primitive elements in )., _2E%, ,.

.. . &%
This implies that the spectral sequence Cotor, ;™ (F,F),) iCotorif‘;"‘
(F,, Fy) collapses. Let /zi,,ECotorij-z’,-'},i(Fp, F}) be the element which

0
. E°C
corresponds to #;; in Cotor =47 g (F,Fy).

Lemma 2.10. The extension is trivial: that is Cotoriﬁ";;"(F[,, F,)
=Eh; ;lizm+1, pfi or i<mp, j=0)

Proof. 1If p is odd, it is obvious that 4?;=0 in Cotor 5= (F,, F,)
because the total degree of 4;; is odd. Let us consider the case p=2.
If m=0, Cotori‘j",,;"(Fz, F;) is the E’term of the Eilenberg-Moore
spectral sequence conversing to H4(2°SU). By Bott periodicity,
2?SU is homotopy equivalent to U whose homology is isomorphic to
E(hy hyy o ..) (deg h;=21—1). Comparing the Poincare series of
H, (2°8U) with that of Cotori"_";k"'(Fz, F,), the Eilenberg-Moore spectral
sequence collapses.  Since squaring map of E~=FE’term is also
trivial.  Thus we have A2;=0 in Cotors*(F, F,). Since h;; (=

m+1, 2fi) in Cotor,c,:’,;!”(Fz, F,) is in the image of the map induced
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by SU-SU/SU(m+1) from Lemma 2.6, we have A;=0 for i=m
+1 and 2/i. So we only have to prove that A?;=0 for m+1=<:i=<2m.
It is easy to see that the representative of %;; in the cobar complex

2,(C...0) is [y%j]. And it is also easy to verify the formula

9+l

d([}’ ]+ Zk-m_z[.ym+1+k)’2ij me1-s] 4 DESTRIL ym+1+ky21—2m—2 l) =
[»7 | y? ], which implies 42 ;=0 for m+1=i<2m.

To prove that the spectral sequence Cotorf&'-m(Fp, F,) :)Cotori’f',;"
(F,, F,) collapses, we use the Frobenius map F which is induced
by the p-th power map of C,,. Since the p-th power map of C,,
preserves the filtration, the Frobenius map F of 24(C, ,) also preserves
the filtration of £2,(C,. where F sends [x;]...|x.] to [x%[...|xZ].
Clearly F commutes with the differential of £24(C,,). Therefore F
induces a map of the spectral sequence.

0
Lemma 2.11. The spectral sequence Cotoric,;"”‘(F,,, F,) >Cotory"
(¥,, F,) collapses.

Proof. Since the inclusion map V, ,—>V.. . induces an isomorphism
C, »n—C. ., for degree <2n+1, .Q*(C',,‘,,,),—»Q* (C...n): is an isomorphism
for t=2n-+1. This yields that the induced map Cotori”;"‘(Fp, Fy)—
Cotor* "(Fy, F,) is an isomorphism for ¢{=<2n+1, and thus we see
that #; OECotor_ol mr(F,, Fy) (m+1=i=<n, pJi or i<mp) is a permanent
cycle by considering the map between the two spectral sequences.
Noting that the Frobenius map F of Cotorio_c*”"”(Fp, F,) maps h;; to
h;;+1, we see that A; s in Cotoriolc*”""(F,,, F,) are all permanent
cycles. Note that the spectral sequence has a structure of a differential
Hopf algebra and that g;;’s are all primitive by (1.7). Moreover,
there is no primitive element in }.,,__3E%, .. Hence g ;s are also
permanent cycles.

0
Lemma 2.12. The extension of the spectral sequence Cotorf,i”"”(Fp, F,)
iGotori’_‘;{"(F,,, ) is trivial. Thus we have

Cotor 2 (Fy, F)) =E(h; ;|m+1=<i<n, pti or i<mp, j=0)
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QFlg.;im+1=<i=n, pti or i<mp, j=0]

[Cotor»2 (F,, F2)=E(h,-_,lm+1§i§|:%} 2fi or i<2m, j=0)

®F2[/z,.,,.1max{[%], m}<i§n, 2%i or i<2m, j=0]

2
where h;; and g;; are the elements corresponding to the permanent cycles
h;; and g;; in the E*~term and bideg h; ;= (—1, 2ip?), bideg g ;= (—2,
2ipi+e(u.i)+1).

®Fz[g,-,,-lm+1§i§[£], ofi or i<2m, j=07],

Progf. If p is odd, triviality of the extension is obvious. Note that

the Frobenius map of Cotori’f',;"(Fp, F,) maps h;; to h; ;.1 for any

prime p. So it suffices to prove that AZ,=0 for m—i—lgigl:g—i] when

p=2. Since bideg A2,=(—2, 4i) and 4i<2n, recalling that Cotori’f-{"

(Fy, Fy) —»Cotori‘j‘;'”’(}?‘z, F;) is an isomorphism for ¢=<2x, we have
k=0 by (2.10).

§3. Splitting of C,, and the Bockstein Spectral Sequence
of Cotor,c,,’f',,:" (Fyy Fy)

Husemoller proved in [3] that the Hopf algebra C., decomposes
as an infinite tension product of certain Hopf algebra on infinitely
many generators. We give an explicit description of a splitting of
C, . in this section.

Let C,,, be a Hopf algebra Zu[ ymi1, Jmszs -« .5 Inl (deg y;=21)
whose coproduct is given by

1&Qy:+:Q1, m+1<i<2m+1
1®y:+9:1 + Zﬁtgﬂ)’k@)’z, 2m+2=<i<n.

Hence C,,=C,.®F, Let f,eC,,(f;€C,,) be the i-th Newton
polynomial. That is, f; is defined inductively by fi=y, and f;=
fia—yafieet. .o + (=D, fi+ (—1)"*%y,. We also use the notation
f: as a reduction of £;,€C, (f;€C,) by a map C,—C, ,.(Cyo—Cy ).

()= {

Lemma 3.1. Let a;; (pli, j=0) be the element of p~*C., defined
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inductively by a;,=j; and a¥ +[m"’ . . +pfa,~,,-=fipj. Then a; ;EC..,
ai_jE(—l)“’j“iyip,- modulo decom[;osables of Cuo and f{a;;|pti, j=0}
generates C..,. Moreover the subalgebra B; of C.., generated by {a;;|j=0}
is a direct summand of C., and a sub Hopf algebra of C..

Progf. The proof of the first assertion is due to Ravenel ([5],
Lemma 1.7). If j=0, a;,=f;€C..o. Assume inductively that a;;
€C.., for j=0, 1, ..., r—1. It suffices to prove that YiZipial; =
S, mod p". Each a;; and f, ; are polynomials of yy, 5 ..., 5, ;. We
consider y, (k=1, 2, ..., ip") as the £k-th elementary symmetric
polynomial of indeterminates ¢, 45, ..., ¢y (N=ip"), thena;; (j=0,1,...,
r—1) is a symmetric polynomial of #, ..., ¢y and we put g ;=a;;
(ty «vesty) ECyoCZylty, ..., ty]. By definition we have

80 s 0T =S = ST ().

Noting that a;;(}, .., t4) =a; ;(ty, .., tx)? mod p, we have pla;;
@ .., )Y " =pia, (ty .., t)? T mod p7 (See (i) of (3. 4) below).
Replacing ¢, by ¢ in (%), we have

Srthpia (b .., t)P T =T =f,p mod p" in Zylty, .., tul.
Since Cy, is a direct summand of Z[t, .., ty], it follows that
Z’Z%p’afz ’:fi » mod p" in Cuo Therefore a,-‘,EC‘N_OCC—Tm_O.

The fact f;=(—1)"*%y, modulo decomposables implies a;;=

r—1

(—l)i"j“iyiﬂ-. We prove that each y, is contained in the subalgebra
generated by {a;;|pti, =0} by induction on k. Since y;=ay, the
assertion is obvious if £=1. Assume that the assertion is true for

. N (—1yi'+
k=1, 2,..,1—1. Putting [=ip’ (pfi, j=0), then y,= a; ;+

Dis214Ys where 4, EZ, and Y, is a monomial of y, .., y,-.. By the

— 1) ipd 41

assumption y,=( a; ;+ DA, where a,€Z, and A4, is a

monomial of a,; (rp*<I). Thus the induction proceeds. Now we have
Cv=Zpla;|pti, j=0]= ®B and the assertion that B; is a direct
summand of C., is obv1ous Therefore, the equality 7 B;nC..=5B;
holds.

Since f; is primitive in C..,, it is obvious that ¢a;,=9¢f;€B.XB..
Assume inductively that ga; ;€B,®B; for j=0, 1, .., r—1. Applying
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the coproduct to the defining formula of a;; we have pTpa;,=
1Qf,,+f Rl = Tizbp! (pa; ¥ ' = = 1® (Djeo pials) + (Dieapial; ) ®1

Z’“lp’ (pa; )¥ 'eB,®B.. Hence ¢a;, €p7'B,®B;. On the other hand,
ga; ;€C..XC.., since a;;€C.., Thus pa; ;€ (p7B.RB) n (C.., RCer.0)
=B;RB; since B, is a dlI‘CCt summand of C.,.

Let B;(r, 0) be the sub Hopf algebra of B; generated by a;,, a;1,
ey @i And let B;(r, s) (0<s=<r+1) be the quotient Hopf algebra
of B;(r, 0) by the ideal generated by a;q, ..., a;;-1. We put B;(r, 5)
=B, (r, s)QF,, and we also use a; ; to represent the reduction of a;;
€B; to C,,, Cpry Bi(r, s) or B;(r, s5).

Remark 3.2. Since a;;=(— 1)"”’.+1iy.j modulo decomposables, the
canonical map B;(e(n, i), e(m, i) +1) —»gn.m (1<i<n, pti) which sends
a;; to a;; is monomorphic, where we put e(m, i)=—1 if i>m. So
we may regard B;(e¢(n, i), ¢(m, i) +1) as a sub Hopf algebra of C,,.
Similarly we regard B;(e(n, i), e(m, i) +1) as a sub Hopf algebra of
Com

The following is a direct consequence of (3.1).

Corollary 3.2. B;(r, 5) (Bi(r, 5)) is a polynomial algebra over Z
(resp. F;) generated by a;s @is41y e,y and we have the following
splittings: C, = ® Bi(e(n, 1), e(m, i) +1), C, = ® B;(e(n, 1), e(m,1)

+1) . lslsn ISzSn

We lift the filtration of C,, defined in the previous section to

C,.. Thatis, we define F;C,, to be the Z-submodule spanned by
{II y;k.o+zk_1t+--+lk,jl”+"|O§lk, i<p, 2n ikl ;<i}. Note that this filtration

k=m+1
is compatible with the product of C,,. We restrict the filtrations of

C,n»and C,, to Bi(e(n, i), e(m, i) +1) and B;(e(n, i), e(m, i) +1), then
F.B;(r, 5) (FB;(r, 5)) is spanned by

([l 0 <, <p, B ip'l, <H)

over Z, (resp. F,).
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To describe the coproduct of E°B;(r, s), we arrange some notations
and lemmas.

Notation 3.3. For a non-negative integer s. We define
d,, (1=0, 1, 2, ..) by s=d,o+ds1p+.. +d; ;p'+.. (0=d; ;<p).

|
We put C(s) = ——
(AN%0ply %1, (pil) i,
ord,s=max{l|d,,=0 ¢f t<l}.

Lemma 3.4. (i) For 1<k<p/, p*(¢) =0 mod p'*.,
(ii) C(s)—ﬂds,' mod p.
(iii) For 0<s<p]
b, [=ord,s
d, ,—f—dpj _, = 1p— 1, ordys<I<j
0, [<ord,s or =] .

(iv) Let 1y, 15 .., 1 be a sequence of non-negative integers such that
Zf’}lz d,,=p—1 and Z”] Mgp—l Sor 1=0,1,2,..,j—1. Then
I, s=t
=0 for all s or there exists ¢ such that isz{
0, s+t .

Proof. (i) It is easy to verify the inequality ord,p**(p'—1) (p’
—2).. (p—(k—1))=j+1+ord,k! which is equivalent to the assertion.
d,
(ii) Just apply the formula <Z>EH< 'l> mod p to

120\d; ,
d

N ” s—dso—dsap—. . —ds.l—lﬁt—l—ipl> .

120 i=0 pl

C(s) =

(iii) The p-adic expansion of p/—s is (p—d,,) p*+ (p—1—d; 441) p**
A (p—=1—d,;2) p (k=ord,s).

(iv) By the assumption, we have Zfi?lis(ds,,—i—dpj_s'l) <2(p—1). Apply-

ing (111)9 we have Zordps=lpis+ Zordps<l<p_1)is§2(p—l) for l:0: 19

2,..,j—1. Now the result follows easily

Theorem 3.5. Fix i (pti) and put y,=C(s) la,so"a,‘ll..e a?f;f...
€B; for s=0,1,2,..., then ¢a,;= L sr s Qri modulo F_;  +(p) where
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F,=F,(B.®B)) = ¥.+:-+F.B.QF,B; and (q) is an ideal generated by q.

Proof. Since a;,=f; is primitive, the above assertion is true if j
=0. Inductively, assume that ¢q;,= ZsH:P,rs@r, modulo Fipk—1+ ()
for k=0, 1,..,j. Put ¢a,=r+patp (7‘=Zs+t=?.rs®rt, aeB,-@B,.,
‘BEFipk—1>‘ Applying (1) of (3.4), we have

j+2-k
).

(pa, )" =G +pP" T mod (p

Since
(& +ﬁ)p1+1—k;—__ FE od F,-pi+1_1’

we have

(e T =(2,,,_ @ mod F i+ (7. ().

On the other hand,

(Z,,, @t = zp,u%n L e
= Zfoz;'+ipk=ﬁj+1—k—i§%!!—ril. .. 7;§k®ripk_l. .. ri,? mod F
0 mod (p7*%F) for £=0,1,.., j—1
= Zfoz;-+ipj=pﬁ7’il. e r;’}j®ri"j“1. .. r;f mod (p? for k=j.
By (*), we have
o k=0, 1, ..j—1
Ppant "= =D L i@ r k=

pH-tho +z -—p

i<t !

z’z‘

modulo F, Tt T (¢’*®. Apply the coproduct ¢ to the both sides of
s+ pabit.. e =1

1

pi+1e Since f . is primitive,

P00, 31+ Shoopt (00, )P T =1Q (0 + pat,
+..+pta ) + (apﬁl‘}‘l’a%"‘- . Fp e 0) QL.

Therefore we have
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p] goa, +1+p1+1210+ +z -—-P z(p_l) ®T1p1_1 7;.?

ig<p i
=1Qp*a; j1+pa; ;11 modulo Fip,-+1_1+(pf+2).
Since B;®B; has no p-torsion, we have, using the fact (p—1)!=—1
mod p,
08;, i1 =1Q0a; 1+ a;, ;@]
+ Dot _p—,_l—i;Tril- TE®7F 7y mod Fpat(p).

ig<p

By definition,

i j Es =1iss,1
rl. HC(S) ,

1 = P

ipi_]_ ’0 H LP]_ l_JI Z}PJO p] dg 5.1
7, ;=1 C(s) I

p { s idpis
ZEC(P’FS) ‘sﬂ iy .

1=0 p T

Therefore we have

1

7 . —i
0a; ;1= 1Qa;, j11+a; ;11 Q1 + ZW {H1 (CECW—s) =}
o e P] . =

it *ok

Here the above ] is the summation over i, .., i, such that i+..
+i;=p, i.<p and Ttid, <p—1, Ntid,i_.,<p—1 for 1=0, 1,..,
J. Under this condition,

i EP—-I s s 1
z:l-;l(:)?_’pl C(Zs ISls) TZH
j Zf'lisd sl o i
HT Yoo =0t — Dt Toitlogpl o
1=0 p s=1""s
Now apply (@iv) of (8.4) to (¥¥),
Pa;, i1 — (l®a, nta, ]+1®1)
= Z‘O+'pJ—P . C(ﬁ Z_!’J) C(pJH —szPJ) Tp] ®TP"+1_P1‘P

io ipi<t

+ 2 D ey COCW =) G+ YO —s— i )
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Tsepis QTpitios_pii .
J p]

By (ii) and (iii) of (3.4), C(p’ ,)C'(p’“—p’z )_.z (p—-z )1, C(s+p?
pJ)C(er_S pfzpj)zC(s)C([J’—s)zp,!(p l—zﬁ,)! for 1<s<pi—1.

Finally we have

Pa;, j+1— <1 ®ai j+1+at J+1®1)
i1 1 _
=21 17’“,;®7’(1, st T 281 20507 T yiv1_ iy = Zsﬁ?ﬁﬂ’s@?’t
S,

modulo F, ;., 4 (p). This completes the proof.

Corollary 3.6. Let r]kEE Bi(r, 0) (0=Zk=p*'—1) be the class
of the mod p reduction of 7% EB,-. And let I';(r, 0, j) be the subalgebra
of E°B;(r, 0) generated by 7;1, 7j2 -, T, i then I';(r, 0, j) is a
Hopf algebra with relations rj,krj,,=<k;:l)rj,k+, and coproduct ©y;,=
2t T = For 0=s=r, let fj_p,EEoBi(r, $) (0ZIZr—s) be the
reduction ofr ,+,EE°B-(r 0) by the map E°B;(r, 0) >E°B;(r, s). Put
7,0=C (k) 5% "kﬂ ‘ik SSOSESp =), and let Ti(r, s, j) be the
sub Hopf algebm of E°B,-(r, s) generated by F;1Fig .., Tip-s+ip then I
(r, s, 7) is a Hopf algebra with relations 7’j,k7j,,=<k2—l>fj,k+, and copro-
duct ©F; 3= 2tof; Q71— And we have the following splittings:

E°B;(r, s) =§)F,-(r, Sy J)y E°Cyn= ® I';(e(n, 1), e(m, i) +1, j)

ph ]ZO

where I';(r, r+1, j) =F,

Remark 3.7. Let a be a non-zero element of F,. Consider the
map [';(r, s, j) >I;(r, s, j) which sends 7;, to a*7;,. Then, it is an
automorphism of Hopf algebra I';(r, s, j). Hence, if we put #;;

(—l) i+ * A * I3 A A
={ : }ﬁ.k, {L, #1505 7, e} spans [i(r, s, j) fand 7,4f;,=

(k;cl_l>fj,k+la OF 0= 21t-0#;.18%; - hold. Moreover P g =Dt modulo
decomposables in E°C, ., where fMZEF,- (e(n, 1), e(m, 1) +1, j), s=e(m,
1) +1.

0
Lemma 3.8. £, gi‘jECotori,i”"”(Fp, Fy) (i=kp’, ptk, m+1=i=n,
s=0 or i=mp, j=0) have representatives [£;.], Z{:s'l[f,-,llf“g_s_l] in
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Q.(EC, ) where e=e(n, k) and $;, (e, s, j). (Note that e(m, k)
=s—1 in this case.)

Progf. This follows from (1.7), (3.6) and (3.7).

Remark 3.9. In 24(EC.. ), a cycle Z 3 1[7,”7 e 1 is boun-
ded by [7’ g_s] Hence we denote Y7 [7,l|r ﬁe_s_l]E.Q* (E°C,.m)
by d[r p“] Similarly, although [a? e+1] &02,(Cpm), dlat 1] is a cycle
of .Q*(C,,,,,,). (3.8) and this remark imply the following theorem.

Theorem 3.10. 4, ,, g, Cotory*(F,, Fy) (z—kp prE, m-%—llizl
<n, s=0 or i<mp, j=0) are represented by-<——k—1)— [a?)] and*—-L (_ )
dlaf 1] in 24(C,.) respectively, where e=e(n, k), at’sEB,(e, s), a,mﬂ
EBk(e+la S)-

Consider the following Bockstein long exact sequence.
Com » o
. >Cotors } ™ (Zy, Zp) ——>Cotor, #™(Zyy, L) —
Cotor, ™ (F}, Fy) —Cotor . WLy Lipy) =

associated with the short exact sequence 0—24(C, ,,,)——>Q*( ) =
24(C,.») —0. Then we have the Bockstein spectral sequence associated
with the above long exact sequence.

Theorem 3.11. hi,jECotori’f';"(Fp, F)) is a permanent cycle if ip? <n.
The differentials of the Bockstein spectral sequence are given by d'h; ;,,=

—g.; for ‘V%']<i§[p?‘l} where we put g; ;=h?; if p=2 and i>[g1.

L -

Proof. Since deg g; ;=2ip ™91 —2>9n—1, h;; is a permanent
cycle by dimensional reason, if ip<n.

Note that r=e(n,1) +1 if [ ]< [ = 1] We put i=kp® where pitk,

then i<mp if s>0 and r=e(n, k) —s+1. Recall the defining relation
of a; /s in C.,. We have Xit5*pla f’jHH—l—fp]J,H_s. Apply the reduc-

. Jj+r+s—1I . =~ .
tion C.,—>C.,, and we have X itr+pla?, =/ pi+res 10 Coo , since
e(m, k) =s—1. Hence fMH,H in C., ,, can be divided by p°. Therefore
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_ j+r=1 1
we have [Sicpatlli1=]

the left hand side is contained in C,,. Noting that ;}fu’ﬁ,ﬂ is

: j—i . ~ .
fkpi+r+s_pr2{=0pla£,l+r+s—,l n 'Q—I<Cn.m) since

primitive, apply the differential of 24(C,,) to the both sides of the
above equality. Then we obtain d[X!=ip'al's1; 1= —p'd[al,,..] modulo
L [orzip {’:III]EQ_I(C,‘ ) Inaps to [a”“] e2_,(C, ») which repre-

sents (—=1)*'%kh; ;, Thus we have d'h; ji,=—g; ;.

Remark 3.12. By (3.10), Cotor,}y” (F, F) =E(h,, |j=0)QF,
[gkts_jleO] if p is odd or p=2 and r>s, where bideghkl)s
(—1,2kp™)), bidegg, . =(—1,2kp"*"*Y). The differential of the
Bockstein spectral sequence is given by 4" Iy AP i

p=2, r=s, then Cotor2*s" (Fy, F) =Fylh,, |j=0] and &y, . =k

2%k, j+1 2%, 5°

Corollary 3.13. & ; and g ; are primitive.

Proof. Since the homological degree of 4;; is —1 and Cotorg™™

o, . . B, (r,s
(Fy, F;) =F,, it is obvious that #;; is primitive. In Cotor, k(r )(Fp, Fy,
8ips is a higher Bockstein image of a primitive element with no

inderminacy by (3.12). So g, ECotor*"(r s)(Fj,, F,) is primitive. The
splitting C, .= ® B,(e(n, k), e(m, k) +1) gives an isomorphism

lsksn

Cotor o (Fy, Fy) = ® Cotor AN S AN

lsk =n

Hence g; ,-ECotor*f‘;,Z”(F,,, F}) is also primitive.

Theorem 3.14. ¢, 4 Cotoren; m(Fy Fy) —>Cotor,,,",,‘f1 "(Fy, F,) and
Ty ms’ Cotor i (F,, F,) —>Cotor 1 (Fy, Fy) map h;; and g; ; as stated in
(2.6). That is;

t.mi (P 5) =i j,

0, plan+l, n=mp and i=k(n, m)
ta,mi (i) = { .
g; ;, Otherwise
l:_ {0, 4|\n+1, n=4m and i=k(n, m) jl
- g;.;, Otherwise
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_— .)={0, i=m+1
T Al . iEm]
(g:.js iE=m+1
Tom(8i) = 8mivpsy  t=m+1, (m+1D)p=n
0, t=m+1, (m+1)p>n
[ (g5 i#=m+1
={&m+v.jy 1=m+l, n=z4(m+1)
Bemin, s i=m+1, 2(m+1) <n<<4(m+1)

Proof. By (3.10), ¢, m(h;;) =h;; is obvious. Suppose p|n-+1,
n=zmp [4|n+1, n=4m] and i=k(n,m) and put i=kp’(ptk). Then
e(n,k)=e(n+1,k) —1 and a-,’:,jeHEC',,H,m where e=e(n, k). Hence
s (@) =P dlatl 1 =0 in Cotor@it=(F, Fp. It i%k(n, m),
an equality e(n, k) =e(n+1, k) (i=kp’, ptk) holds. Therefore ¢, »4(g; ;)
=g, Note that the condition “p|n+1, n=mp [4|n+]1, n=4m]”
equivalent to the condition “m+1=k(n, m) <n I:m—{-l <k(n, m) g[%ﬂ,
prk(n, m) or k(n, m) <mp”. =, ., maps B,(e(n, k), e(m,k)+1)onto B,(e(n,
k), e(m+1,k)+1). If m+1=kp’ for some s>0, ker =,,, is an ideal
generated by a,,. And if p=2, 2(m+1) =n<4(m+1), then e(n, k) =
s+1 where m+1=2%, 2/k. Hence d[a?,,,] = [aﬁ,jsﬂ | ai{m]. These facts
imply the assertions on =, ., by (3.10).

§4. Hopf Algebra Structure of H, (2*V, )

Lemma 4.1. The map H,(2*V,,) >H,(2%V. ) induced by the
inclusion V, >V n s an isomorphism for k=2n—1.

Proof. Since H,(V, n) »>H,(V.. .) is an isomorphism for £k=<2n+2,
the result follows easily by using the theorem of J. H. C. Whitehead.

Lemma 4.2. The Eilenberg-Moore spectral sequence
EZ,=Cotor; 7" (Fp, F) > Hyyi (V. )

collapses.

Proof. The E’-term is generated by {h;;|li=Zm+1, pfi or i<mp,
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Jj=0} which is also a basis of PE% ,. Since the spectral sequence has
a structure of a differential Hopf algebra, the above fact implies the
assertion.

Corollary 4.3. If ip’<n, h,;€E* .= Cotor’»™

? g s (FypFy) is a

permanent cycle in the Eilenberg-Moore spectral sequence converging to
H*(2*V, ). In particular, h;, is a permanent cycle.

Proof. This follows from (3.14), (4.1) and (4.2).

Corollary 4.4. The sub Hopf algebra of Hy(2?V,,) generated by
W H L (%Y, ) is generated by odd dimensional elemenis. Hence it is
primitively generated.

It is well-known that the homology of @22V, ,(=£%§%*") is given

by the following. (See [2] Chapter III, §3, for example.)

(4.5) H* (‘QzVi,i—l) :E(hi,jljgo) ®Fp[‘8hi.jug 1] [H* (QzVi.i—l) =
Fy[h; ;1j=0]] where deg 4; ;=2ip?—1 and B is the mod p
Bockstein homomorphism. And the action of the top
Dyer-Lashof operation & is given by &/4; ;=h; ;.1

(4. 6) The homology suspension oy: Hy(22V, ;1) >H 1 (2V; 1)
=(;,;-1 18 given by o4 (h; ;) =_y€’.

We need the following property of the Eilenberg-Moore spectral
sequence. (See [7] for a proof.)

Proposition 4.7. Let X be a simply connected space.  And let
E%,=Cotorfi® (F,, F)) >H, ,(2X) be the Eilenberg— Moore spectral
sequence associated with a path fibration 2X—>PX—X. Then the following
diagram is commutative,
HQX)=F_13u —— E2;4
%
PH, 1 (X) =CotorZi ¥ (Fy, Fy) =FE2, 411
where o H,(2X) >PH,,.(X) is a map induced by the homology suspen-
sion ay: H,(2X) —>H, . (X). Hence oy is surjective if and only if

2 — Ifoo
E—l.k+1 - E—l. k+1e
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Corollary 4.8. In the E*~ierm of the Eilenberg—Moore speciral sequence
converging to Hy($*V;,_), h ,€E*

corresponds to h; ;& Hy (82V; ;).

Ciuy 5 a permanent cycle which

Proof. Noting that &; ;=cls[ y’ 1eE?
(4.6) and (4.7).

: s the assertion follows from

Lemma 4.9. #;,;€E*  ,=Cotor Cin0 (FnFy) (pfi) is a permanent

—1.2ip) —1,2ip7
cycle of the Eilenberg-Moore spectral sequence converging to Hy(22V, ).
We can choose the unique primitive element h; ;& H(£2%V;,) corresponding
to h;; in the E*~term such that h; ;=m;; se0°°0m; o4 (b ;) EHy(2*V, ;1)
and /z, =5 ;.

Proof. Corollary (4.4) implies that PHy_,(2?V;,) is spanned by
a single element because P (X 4i—z-1EZ%;) is spanned by a permanent
cycle h;,. Hence we can choose the unique primitive element
h; o€ Hy1(22V;y) which corresponds to £;, in the E’-term. Define
hi ;€Hyu (Vo) by h;;=6h;; It is easy to check that #h; ;=
T; i ps0° °oT; o4 (h; ;) holds by applying (3.14) and (4.8). Hence
h,;EPH, ; (£°V;,). Since P(X

2\ - .
a1 ssizipinlse) 1s spanned by a single

element h;;€E? _ ; it is a permanent cycle and there exists some

2 F, such that h; ;€ Hy(£2°V;,) corresponds to Zh;; in the E’-term.
Considering the map between the spectral sequences induced by
T; ;900 °0m; o0 Vo=V, we see that A=1 by (4. 8).

Lemma 4.10. 4, ;€E* L =Cotor’ Pzp!’fl(FP’ F,) is a permanent
cycle of the FEilenberg-Moore speciral sequence converging to Hy(2*V.,)).
We can choose the unique primitive element h;y ;€ Hy (2V.5,) corresponding

to hy; in the E’~term such that hi, ;=T p-040° T 0u (hip ;) and hip ;41
=§1hip.j'

Proof. Since P(Zm:wju_lEf,,) is spanned by a single element

hip , EE* Lupi+ls the same argument as the above proof works.

Theorem 4.11. The spectral sequence 2 t—(]otors n (Fyy Fp) >
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H, . ($V,.,) collapses.

Proof. By (3.14), /z,-_,ECotorif';;”(Fp, F,) is the image of 4 ;E
Cotor gl (Fy Fy) DY Ty mo1s0e * 0T, 0300,-1.050* * i.0q if pii, and if pli, it is
the image of hi.jECOtori‘:'i/p(F 5 Fp) DY Tom—150* O i/pp®ln,i/ps® * * Ol i/ppe
Hence 4; ;’s are all permanent cycles by (4.9) and (4. 10). Since g;;’s
are all primitive and there is no odd dimensional primitive element in
> ss-3E% 4y 8:.;'s are also permanent cycles.

For any n, m=0, we define #; i€H, (2*V, ) for i,j such that
m+1=i=Zn, pti or i=mp and j=0 by 7, ; =7, n-14°° O, 05°Ly—1,040°*°
t0s (hi, ) 1f pfi where h;;€EH,
(4.9) and A =T, no14°* * Oy 1/psOly—1.i/px°* * ot ipw (hi ;) if pli where
h,,€H 82V, s is the element described in (4.10).

2ipi—1

iﬁj_l(QZV,-_o) is the element descrived in

Lemma 4.12. If p=2,12,=0 in Hy(@V,,) for zg[%]

Proof. Suppose that AZ;#0 in Hy(2*V, ), then hZ; is a primitive
element of degree 2/*2{—2. On the other hand, since A?;=0 in the
E’-term of the Eilenberg-Moore spectral sequence, AZ;EH(2°V, n)
belongs to F_;,. However, there is no primitive element in
2., _pit2_ B This contradicts A?;+0.

ss-3

Lemma 4.13. H,(2%V,,) is primitively generated.

Proof. By (4.11), Hyx(2*V,,) has generators in degrees 2ip/—1
and 2ipite®P+1_2 for suitable i,j’s. Hence if p is an odd prime,
there is no indecomposable element in degree 2kp (k=1,2,..).
Therefore the assertion is obvious if p is odd. If p=2, assume that
the square root map { (the dual of squaring map) on Hy(2*V, )
is non-trivial. Let x&H4(2*V, ) be an element having minimum
degree such that {x+0, we may assume that x correspond to some
g.; in the E’-term of the Eilenberg-Moore spectral sequence. Since
Cg.;=0 in the E*level, {x&F_;,. Note that { is a Hopf algebra
homomorphism, since Hy(2?V, ,) is cocomutative. Put 4x=1Qx+xX1
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+2x'®x"" and apply { on the both sides. Then we have 4lx=
1®Cx +Lx®1 by the assumption. Since deg x=deg g; ;=2/"®?+% —2=2
mod 4, {x is a primitive element of odd degree. But there is no odd
dimensional primitive element in F_;,. This contradicts {xEF_g,.
Therefore the square root map on Hy(2?V,,) is trivial. Thus
H,($*V, ,) is primitively generated (cf. [4], (4, 20)).

Theorem 4.14. There are primitive elements h, ;€ H,_ ; (2°V, )

2ipf-1

(m+1=<i=n, pti or i=mp, j=0) and g,,€H, e+l 2%V, ) (m+1
<i<n, [m+l<z<[ szp 2], pti or iSmp, j=0) which satisfy the
Sollowing:

@A) h;; and g;; correspond to h;; and g;; in the E’~term of the
Eilenberg-Moore spectral sequence.

()  Ho(@V,,)=Eh\m+1<i<n, pli or i<mp, j=0)

[H, (27, ) =E(h; |m+1§z§[ﬂ, 24i or i<2m, j=0)

®F2[gi,j[m+l<lél: ] 241 or i=<2m, j=0]
®F2[hi,j[max{[%} m}<i§n, 2/t or i=2m, j=01].

(1) ma (}li.j) Z}Zi.h
0, pln+1, n=mp and i=k(n, m)

ln,m i, ] = .
«(8:) g; »» Otherwise
{0, 4|n+1, n=4m, and i=k(n, m):|
i Otherwise
h; i, 1#FEm+1
ﬂn,m*(kzj ={O ’ Z_m_rl

i i#Fm+1
Tyms (8i7) = g(m+1)?_13 i=m+1, n=(m+1)p
i=m+1, n<(m+1)p
i i#£=m+1
{= Gumsny.jy  t=m+1, n=4(m+1)
Womiv.js i=m+1, 2(m+1) <n<4(m+1)
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iv) &y i= hi. j+1e

V) ko EH, (V) =H;($2°S%") is the image of the canonical
generator of Hy_1(S#7Y) by the map induced by S¥'—Q28§%+,

(Vi)  h;;'s and g ;'s are the unique primitive elements that satisfy the

conditions (1) ~(v).

Proof. We have already specified the primitive elements #&;;’s.
By (4.9) and (4.10), the assertions (iv) and (v) hold. We have
Ty mx (Bmi10) =0 by dimensional reason. It follows that 7, n4 (Amt1,j+1)
=Ty mx (Ertfims1,;) =& ms (Ams1;) =0 inductively. Therefore all of the
above assertions on #;;’s hold. Let us consider the Eilenberg-Moore
spectral sequence converging to H*(QZV@E'G) where pfi and e=0
[ex=1 if p=2]. Since P(X erimzipiterl_g E?,) is spanned by a single
element g ;, there is unique element g, ; in PH, ;... ,(2°V , ) which
corresponds to g ; in the E’-term.

For general n, m=0, we define g,,EHP]M,, ,)+1_Z(.Q2V,,,,,,) so that
the condition (iii) holds. By (3.14), we know that ¢, s (Gino.;) =0
modulo filtrations of the Eilenberg-Moore spectral sequence if
pln+1 [4|n+1]; that is, ¢, s (eno.;) belongs to PE_ inpis DU

Eflz(nﬂ)ﬁj_z_s:O if s=<—3, hence ¢, 04 (Gmo.) =0. The fact that

tymt Gram,y) =0 1f pln+1, n=mp [4|n+1, n=4m] for general m=0
follows from the definition of g ;, If p is odd and »<l(m+1)p,
Tyme (Gmi1.;) EPF_3, by (3.14). By the same argument as above, we
have 7, 4 (gmi1;) =0. If p=2and 2(m+1) <n<4(m+1), 7, ps (Enir.;)
—P3m+n,; EPF_3 4 by (3.14). Similarly we have 7, i (@ni1;) = min. s
The assertion (ii) is straightforward from (4.11) and (4.12) and the
uniqueness is obvious.

Corollary 4. 15. The homology suspension ay: Hy (22V, ) > H 1 (2V, )
maps h; ; to (= 1) a{js(z—kp prk) and o4(g; ;) =0.

Proof. This follows from (4.7).

Theorem 4.16. Al of the generators h;;, g.; of Hy(2V,,) are
in the image of the homology suspension oy: Hy(2%V, ) —H, (2,0
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Proof. hyo=H,(2*V,,) is a image of a generator of H,(§") by
the map induced by $'—=228*->2°SU(n+1), and any element of
H,(SY is in the image of the map induced by Y25'—S$' (the adjoint
of the identity map of £28%). Hence hy, is in the image of the
homology suspension. Let SU(n+1)<{3)> be the three-connective
cover of SU(n+1). Then 2*SU(n+1) is homotopy equivalent to
228U (n+1)<8> X S" and Hy (225U (n+1)<3)) is identified with the sub
Hopf algebra of H,(£2°SU(n+1)) generated by A;; (1=2 orj=1), g,

~ SUm+1)<8>, m=0
We putV, .= {VM” 0"
spectral sequence associated with the path fibration 2%V, ,—>PQW,  —
2V, .. By (1.6) and the calculations in §2, the E’-term is given by

Consider the Eilenberg-Moore

Hx (9217

E?=Cotor @ m (F, F) =F,[h |m+1<i<n, i<mp or pli,
J=0Gzl if m=0, i=1)IQE G ;| m+1=i=n, i<mp or pfi,
JZ0(=1if m=0,i=1),k20)QF,[h;,Im+1<i<n, i<mp or pli,
j=0(G=1 if m=0, i=1), £=0]

where

bideg A; ;= (—1, 2ip’—1), bideg & ;= (—1, 2p*(ipi*e=>+1—1))
bideg hi,j.k: (—2, 2pk+1(ipj+e(n,i)+l_1)) and ‘ggi,j.k-}-l: ~/Zi,j,k

(B is the algebraic Bockstein operator).

217 .
7 =Cotor™ " (Fy F = Ryl | m+1=i<| 5 |, i<2m or 24
J=0 (j=1 if m=0,i=l)]®Fz[g,-,j,k|m+l§i§[%], i<2m or 2/i,

=0 (=1 if m=0, i=1), kgO]@FZ[/Z,.,,,qmax{ %] m}<i§n,
i<2m or 2/1, j=0 (=1 if m=0, i=1), £=0]

where
bideg k; ;= (—1,2*%—1), bideg g, ;,= (—1, 2t (2i*emd+1; 1Y)
bideg %; ;.= (—1, 2¢(27*%—1))].

Note that the Eilenberg-Moore spectral sequence has a structure

of Hopf algebra and the above generators £, ;, &, ;. are all
primitive. Hence, if p is odd, there is no possibility of non-trivial
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differentials by dimensional reason. Therefore the spectral sequence
collapses and the assersion follows from (4.7) if p is odd. We consider
the case p=2. The E*-term of the Eilenberg-Moore spectral sequence
associated with the fibering 2*V.. ,—P2V, ,—2%V,, , is given by

E*=Cotor™ 7= (F,, Fy) = Fy[h, j|lizm+1, i<2m or 2i, j20
G=1 if m=0, i=0)] (bideg #; ;= (—1, 27*%—1)).
It follows that the spectral sequence collapses and we have Hy V.. )
=F[h;lizm+1, i<2m or 2{i, j=0 (=1 if m=0,i=1)].

By (4.7), 04 Hyo(2V.. ) —>H, (.. ,) maps k,; to k; Since
the maps H,(%%V,,) —>H,(2V.,) and H, ., (@QV,,) >H, (2. ,) are
bijective for ¢=<2n—2, h; € Hy(2?V,,) is in the image of o4 The
commutativity of ¢4 with homology operations ([2], Theorem 1. 4)
implies that 4, ;€ H,(2V,,) is in the image of o4 and that hfijH*
(277, . is also in the image of o4 Therefore 4, ;, and 4, ;, are perma-
nent cycles in the Eilenberg-Moore spectral sequence converging to
Hy(2V,,) by (4.7). On the other hand, g ;,’s are permanent cycle
by dimensional reason. Thus the Eilenberg-Moore spectral sequence
collapses and we have the result applying (4.7).

Corollary 4.17. There are the following isomorphisms as algebras.
Hy (Y, ) =F,[h ;|m+1<i<n, i<mp or pfi, j=0 (j=1 if m=0,
i=DIRE@ ;. m+1=i=n, i=mp or pfi, j=0 (=1 if m=0, i=1),
k20) @F,[h; ;4lm+1=i=n, i=mp or pti, j=0 (=1 if m=0, i=1),
k=0]

[H (27, ) =F[h, ,m+1<i< _'2?_} i<9mor 24i, j=0(j=1if m=0,
i=1)]®F2[g;,j,klm+l§i§[~;— i<om or 24, j20 (=1 if m=0,

i=1, k;O]@Fz[ﬁi,j,klmax{{g}, m}<i§n, i<om or 2/i, j=0 (j=1 if
m=0, i=1), k=0]]

where deg A, ;=2ip?—2, beg g, ; ,=2p*(ip/ T+ —1) —1,
deg Ay ;. =2p* (ip e+ —1) —2, deg h; ; ,=24(27*—1) —1.

§5. Bockstein Spectral Sequence of H, (2?V, )

In order to apply (8.11) to calculation of the Bockstein spectral
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sequence of Hy(%V,,), we need the following fact (see [7] for a
proof).

/‘-—>
Theorem 5.1. Let El, If be a fiber square such that the following
B'—>B
conditions are satisfied;
(1) B is simply connected.
(i) E—B is a Serre fibering
(ii)) Hy(B;Zy), Hy(E; Zy) and Hy(B'; Z,) are torsion free. Let
{E% ., d} be the Eilenberg-Moore spectral sequence associated with the fiber
square in the mod p homology and let {E%, d?} be the Eilenberg-Moore
spectral sequence associated with the fiber square in the homology of Z -
coefficients. If yEE2, is a permanent cycle, Sy E?_,, is also a permanent
cycle where
Hy(B:F))

é: E2,=Cotor, ; (Hy(B’; Fy), Hy(E; Fp))—

= Hs(B;Z

B2, ,=Cotoroyy @ (Hy(B'; Zyp), Hy(E; Zyp))

is the algebraic Bockstein homomorphism.  Let JEF,, be the element
corresponding to yE E?,, then 0y F,_,, and 6y corresponds to the permanent
cycle —gy, where 0: Hy(E';Fy) >H, _1(E’;Z ) is the geomeiric Bockstein
homomorphism.

We apply the above theorem to a fiber square

&V, —— P2V,,
y VN

¥ Vunm

Theorems (3.11) and (4.14) yield the following.

Lemma 5.2. 0k, ;€H, ; (2V,.;Zyp) can not be divided by pr"+

if ip">n. Hence d°h; ;%0 for some s<e(n, i) +1 in the Bockstein spectral
sequence of Hy($2°V, ) if ip">n.

Proof. By (8.11), the algebraic Bockstein homomorphism & sends
h;; to an element which can not be divided by pe™?+,

Since 5h,-,jEE2_2 5y 20d E%,=Z, in the Eilenberg-Moore spectral

sequence converging to Hy (2, ,.; Z), 6k, ;is not bounded and repre-
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sents a non-trivial element of Hy(2?V, .; Z»). Hence oh,;EF_,,
—F_;, and 0Oh; ; corresponds to ~—5/z,~,,- by (5.1). Thus d%; ;#0 for
some s. Then we may put 0k; ;=p°' y for some 7 such that 7 is not
divided by p. Consider the reduction of dh; ;=p*' r to the E’~term.
We see that 64 ; is divided by p*% This implies s—1<le(n,i) +1,
that is, s=<e(n,7) +1.

Lemma 5.3. In Hy($%V,;.1), the action of the Bockstein homomor-
phism B is given by Bh; =0, Bh; ;11=g;;, where h;; and g, ; are elements
specified in (4.14). [If p=2, we put g; ;=h ;]

Proof. Bh;y=0 1is obvious. Since 0h; ;. EH(V;io1: Zy) is
represented by —gh,-,jHEEz_z,ij in the Eilenberg-Moore spectral
sequence of Zj-homology and the mod p reduction of —0k; ;. is
gi,jEE"’_zlij by (3. 11), it follows that Bh; j.1€ H«(£2°V;;,) is represent-
ed by g ,€E® 22+t in the Eilenberg-Moore spectral sequence. Bh; ;.1
is a non-zero primitive element and we may put fh; ;.1 =12g; ;(AEF},).
By the above argument, we have A=1.

Lemma 5- 4. In H*(QT[/n'm), ‘Bh,"j+1=g;’j Z:f e(n, 1) =0, /Shi.j+1:0 lf
e(n,1)>0. [We put g, ;=h%; if p=2 and e(n, i) =0.]

Proof. First we show that Bh; ;. =g,; in Hy.(2*V;,) if pfi and
‘Bh;_ 41 =gi,j in H* (ngi.i/p) if p I 1. SinCC dim PHZiiij'H'—Z (QzVi'o) =
dim PHZiP]-H_z(.QZV,-,i/j,) =1, we may put Bh;;.1=2g ;(A=F,) in each
case. Considering the maps induced by Vo=V, Viip—>Vii, we
have 2=1 by (4.14) and (5.3). By (4.14),

( ) {gi,js 6(71, Z) =0: O§m<1
ﬂ”'m_ *O o0 Oﬂn‘ *O[”_ L0y Qeoe O!i' " i. . = .
! oo o 8. 0, otherwize
and
hi. 9 0 §m<l
T m=140* ° 075, 0,005-1,0,% * °C;,0, (A5, ;) = {O, ! i<m

It follows that
8. e(n,1) =0

ﬂhi.i+1= {0, e(n’ l) >0 n H*(‘Q Vn,m) lf ﬁ*l.
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Similarly we have
gi.j: e(n, 1’) :0

ﬁh,-.j+1={0, oy I Ha(@V i pli

Theorem 5.5. The differentials of the Bockstein spectral sequence of
Hy(8%V, ) are given by d*™ ", .\ onn=g.; and h;; is a permanent cycle
if ip<n [We put g, ;=h.; if p=2 and e(n,i) =0].

Proof. Since the Bockstein spectral sequence has a structure of a
differential Hopf algebra, it follows that %, ; (ip?<n) and g;; (any i, j)
are permanent cycles by dimensional reason. We assume inductively
that d*™?*h, ;o nn=g.; if e(n, 1) +1<r and that &h;ji,pa1=0 if
e(n,i) +1=r and 1<s<r. Note that the first assumption implies
that d°%; j1,4.5+1=0 if s<le(n,i) +1<r. By the preceding lemma, the
assumptions are true when r=2. Under the assumptions, the E"~term
of the Bockstein spectral sequence becomes

Er:E(hi.j liﬁjén) ®E(hi.j+e(n.i)+1 le(n, i) =r—1,;=0)
RF,[g,;le(n, i) =r—1, j=0].

For each i such that e¢(n, i) =r—1, d'h; ;,,#0 by the second assumption
and (5.2). Since d'4;;,, is a primitive element of degree 2ip*"'—2,
we may put d'h; ;,,=2g;; (A€F,). This implies that 6k; ;,,=p" 'y for

some rEH 82V, n: Zys) and the mod p reduction of 7y is 4g; ;.

2ipT T2
Let 7 be the permanent cycle corresponding to 7 in the Eilenberg-
Moore spectral sequence. Then we have 6k ;,=—p""'7 by (5.1).
It follows that the mod p reduction of 7 is g;; in the E*-term by
(8.11). This implies that 2=1. Then apply ¢,_1ms0°°o¢

ipr—l.m* on
the both sides of d'h; ., =g ; where 7k ;, g;,,-EH*(QZVqu ) and
n=ip"™'. By (4.11) we have

g:.; if e(n,1) =r—1

dhs jy= in Hy (V).
i {0 if ony>r—1 ™ TRV

This completes the induction.

§6. Steenrod Action on H, (2%*V,,).

Throughout this section, we denote the 2i-th Steenrod square Sg%
by P' when a prime p is 2.
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Lemma 6.1. The action of the Steenrod operation on Hy(28U) =
Fylyy 92 o3 900 1 is given by Piyk=<k“’(f’_ D)_yk__,.@_l),

Proof. Since Pixkz(];)x"*“‘"” in H*(CP~) =F,[x], we have Pip

=<k_z(f]_1))rk_,-@_n in Hy(CP~)=I(y) where 7, is the dual of
xt 3, €H,(28U) is the image of ;€ H,(CP~) by the map induced
by CP=—28U which is the adjoint of the canonical inclusion YCP=—
SU. So we have the result.

Corollary 6.2. The Sieenrod operation acts on the i-th Newton
polynomial ;€ Hy(28SU) (p4i) as follows

PLfi=ifipsr Phfi=dist+ 1) f,_p, ,, Jor k=1 where
Ji=0 if i<0.

Proof. Suppose i%—1 mod p. Since PLf; is primitive and
PH,;(SU) is spanned by a single element f;, we may put Pk f;=24fi-ps1.
Note that f;=(—1)""%y,, fipn=(—1)"*"(@+1)y;_5;1 modulo decompo-
sables and that P} maps decomposable elements to decomposable
elements. Hence PLf,;=(—1)"%(+1)y;—ps1 modulo decomposables.
Thus 2=: and we have P} f;=if;—p;1if iZ£—1 mod p. Note that the
formula PLf;=if; ;4 is valid if p|i since PLf,=PLfi=0. We may
put P fi1=2fu-n, as above. Applying P. on the both sides of
fio-1= 232 (= 1)y fiporms+ (— D ¥y, 1, we have

Afamnp= 2 (= 1)+ D) yompir from1-s H0:P% fip-1-3)
=Zl$ss(k—1)p (= 1)y fa-vp-st 22 (=D "-yinf ms-vs
=Z(k'—m-1( =D fa-p-s+ 222 (= DT Qs+ 1) DiaSf ms-1p
= —fa-0p+ ZEE (= 1) (Qems + 1) Yspf ms-10p-

Therefore (24,4 1) fa-py= 22 (— 1) Qs+ 1) Dp fa—s—vp for k=2,
3, .... Hence 4=—1 and P.fip1=—fa-np We put PLfi=2 A i po

as usual. Comparing the coefficients of y, , we have 1=

(~#4=D) =1,

)

Lemma 6.3. The Steenrod operation acts on ak,EH*(.QV » p"l)
® B;(e(kp', 1), e(kp™, ©) +1) (ptk) as follows.

1s;su:‘
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(dk.l—s+I)ak_pl—su,_l)'ss l>5, k>pl—s+1
Pta, =10, E<pi—tt

l<S, k>pl—s+1

ka
e pr1,

PPSLZ _ {kak—ﬁ+1.s, k>;.ba P*k"‘l
* T o, kE<p or plk+1

Proof. We know that PH*(QVkps,kp"—1> is spanned by af_l(us_l'i)ﬂ
(A =iZkps, phi, 720).  So P{’;fa,,_s is a linear combination of such
elements. Suppose deg Pila,,,szdeg a{jm where e=e(kp*Y, i), then
we have kp*—p'(p—1) =ip’**. Hence kp*'=ipte+p' 1 (p—1) >ipi*e
which means ¢=j+e. Thus j=0 and kps—p'(p—1) =ip*L ... (¥)
The case [>s: By (¥), k—p'~(p—1) =ip**=. Since ptk we have
¢=s—1 and i=k—p"*(p—1). The fact e=s—1 implies ip*>kp*™";
that is, K>p'**., Therefore Pia,,=0 if k<p'=*L If E>p*, w
may put Pf;la,,_s=2a

=P TS -D), 5" P T
( —l)kﬂk_)/kp,_ oD modulo decomposables, comparing the coefficients

Since a;,=(— l)k“/cykps, a

of Yers—spry WE have the result.

The case [<ls: By (*), kp*"'—p+1=ipe*'"", The same argument
as above implies i=kp*~'—p+1, k>p'**! comparing the coeflicients
of DB o1y the result follows.

The case [=s, ptk+1: It follows from (*) that i=k—p+1 and
k>p. We have the result in the same way.

The case [=s, plk+1: We put k=rp—1. Then(*) yields r=1+
ip*~. Suppose such i exists and we put P{a, ,=2a;,,;. Comparing the
coeflicients of Dess-pp-ry WE have 1=0

Theorem 6.4. The action of PZ on by EHx @V, (pti,m+1

<ip'<n, t=0 or ip'<mp, j=0) is given as follows.
(1) The case t=0:

(dip-; +I)hi_1,k—j(p_1)'js k>j, i—pi(p—1)=m+1

k (i+l)hi—1ﬁ+l.i3 k=j, pti+l, i—p=m
Pi h,‘_jz lhl.j+s’ k:j’ z'_p+1=lps’ Szl,
P, I=m+1

0, otherwise
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(ii)  The case t>0:
(dip=jmet DA F=jbt, i>proict,
ip'—pi(p—1D) =m+1
JSE<j+t, i>priTt,
ip'—p i (p—1) zm+1

0, otherwise

ipt—pt I (p-1), ;°

Plh, =\ h

ipt =t~ I (p-1), 7

Proof. By (4.14), each hu:'.j is the image of h;;EH(8%V;,) if
t=0 and the image of hu,l.jEH*(‘QzVipt'ipt—l) if £>0. And we know
that ¢, .. maps the subspace spanned by & ;s injectively and that
kerz, . N (the subspace spanned by #;;’s) is spanned by A, ;(j=
0, 1, 2,..). Hence it suffices to examine the action of P”: on k; ;€
H,($*V;,) and h;pt,jEH*(‘QzV;p',,-p’—l)' The homology suspension
maps the subspace spanned by #;;’s bijectively onto PH(2V, ).

Since the action of P4 commutes with the homology suspension, the
result follows from (4.15), (6.2) and (6.3).

Before we determine the action of P{,’f on g ; in Hy(2V,,), we
first consider the special case e(n, i) =0. We denote g, ; by AZ; if
p=2 and e(n, i) =0 from now on.

Theorem 6.5. If ¢(n, ip') =0, the action of P on gyt € H, (2*V, ..
(pri, m+-1=ip'<n, t=0 or ip'<mp, j=0) is given as follows
(1) The case t=0:
—g i k=0, j=1
(dip-jr+ 18 _pmjmryyy » K25+,

Ppk i
0, otherwise
(i1) The case t>0:
& k=0, j=1

(dip-jmimat I)gi‘bt_Pk—j—l(ﬁ_l).j, k>j+t, i>p,
it =45 (p—1) >max fm, _Z_}
JHISk=sj+1,
i>pk-j—t,
ip'—p* " (p—1) >max {m, %}

0, otherwise

k
2 = .
P*gip’.j Sit—p=i=l(p1y.
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Proof. By Nishida relation and (5.4), we have
—dgf_bt.j—l’ k=03 ]21
Pig, =10, k=j=0
BaPlTh k21
if p is odd. Then, (5.4) and (6.4) yield the result if p is odd. If
p=2, we can verify the result directly from (6.4).

Lemma 6.6. Let B,, be the sub Hopf algebra of Hyx(2%V, )
generated by {g; ;|\m+1=i=<n, pti or i<mp, j=0}, Then, 7, ps: Hx(PV, )
—>Hy(§V, nv1) maps B, . onto B, .., and it maps B, , isomorphically
onto B, . if(m+1)p=n. Hence =, [2]-10° " O ma : B, .—B, [=]

(mp=mn) is an isomorphism and it maps g ; to G and gyi-1.m.; L0 G ;o

Progf. This is immediate from (4. 11).

Since all of the even dimensional primitive elements of Hy (22, )
are contained in B, ,, B, , is closed under the action of the Steenrod
algebra. Hence (6.5) and (6.6) allow us to determine the action

of P¥ on g ;EH(2V,,) when e(n, i)>0.

Theorem 6.7. If e(n, i)>0, the action of P4 on g ,EH.(2*V, )
(m—f—lgig—?]—, prioor i=mp, j=0) is given as jfollows.

_gﬁj—la k=07 ng
(dip=jmemir1 1)gk(ipe(n,i)_pk—j—l(P_D_L .7

k>j+e(n, i) +ordg, i>pt=i—emd,

P{g,;= i@ —p=iT (p—1) >[£1

Sy

Shape D =il ooty 1, m,
JHIZEkZj+e(n, 0) +ord, i>primemd,

i D> |

0, otherwise

Proof. This is straightforward from (6.5) and (6.6).
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