Errata: A Correction to "The Completeness Theorems for Some Intuitionistic Logics in Terms of Interval Semantics"

By

Michiro KONDO*

Reading my paper [1], Mr. Shin'ichi Yokota has taught me that the proof of Theorem 10 in it is wrong.

Hence I correct it as follows.

If $\not\models_{IET} A$, then we have $M \not\models_{x} A$ for a counter *IET*-model $M = \langle W, N, \subseteq, R, V \rangle$ and an $x \in W$ by the completeness theorem.

We apply the filtration method to this IET-model M.

Let Φ_0 be the union of the set of all subformulas of A and $\{\Box T\}$, where T is a tautology. And we define the set Φ of formulas:

 $\Phi = \Phi_0 \cup \{ \Box \Box T' | \Box T' \in \Phi_0 \text{ and } T' \text{ is a tautology} \}.$

By the definition of Φ , it is clear that Φ is a finite set and that it has the property: If T' is a tautology and $\Box T' \in \Phi$, then $\Box \Box T' \in \Phi$. This is an important property to prove the decidability of the *IET*system.

We shall define a filtration model M' of M through Φ .

For every $x, y \in W$, we define $x \equiv y$ when $M \models_x B$ iff $M \models_y B$ for every formula B in Φ .

 $[x] = \{ y \in W \mid x \equiv y \}$

is an equivalence class of x under \equiv , and we put

 $W' = \{ [x] \mid x \in W \}.$

For any [x], $[y] \in W'$, we define N', \subseteq' , R', and V' one by one.

Communicated by S. Takasu, December 23, 1985.

^{*}Department of Mathematics, Rikkyo University, Tokyo 171, Japan

MICHIRO KONDO

N'∋[x] iff M⊨_x□T' for some □T'∈Ø, where T' is a tautology
[y]⊆'[x] iff if M⊨_xB then M⊨_yB for every formula B∈Ø
[x]R'[y] iff if M⊨_x□B then M⊨_yB for every formula of the form □B∈Ø. And for every propositional variable p∈Ø,

$$V'(p, [x]) = 1$$
 iff $V(p, x) = 1$.

Let M' be the structure $\langle W', N', \subseteq', R', V' \rangle$, which is called a filtration of M through Φ .

It is evident that these definitions are well-defined. We note that N' is not empty, because Φ has at least one element of the form $\Box T$, where T is a tautology.

For that structure M', we have to show that it is indeed an *IET*-model in our sence in [1]. We only show that it satisfies the condition (*IET*), that is, if $[x] \in N'$ and [x]R'[y] then $[y] \in N'$.

Suppose that $[x] \in N'$ and [x]R'[y]. Since $[x] \in N'$, we have $M \models_x \Box T'$ for some $\Box T' \in \Phi$, where T' is a tautology. Since $\Box T' \rightarrow \Box \Box T'$ is provable in the *IET*-system, we obtain $M \models_x \Box \Box T'$. The assumption and the property of Φ yield that $M \models_y \Box T'$ and hence that $[y] \in N'$.

For these IET-models M and M', we shall establish the next lemma, which corresponds to Lemma 7 in [1].

Lemma. For every $x \in W$ and formula $B \in \Phi$, we have that $M \models_x B$ iff $M' \models_{[x]} B$.

Proof. (by induction on the length of B) We only consider the case of $\Box B$.

For $\Box B$, suppose that $M' \models_{[x]} \Box B$ but $M \nvDash_x \Box B$. Since $M' \models_{[x]} \Box B$, [x] is in N'. Hence there exists a formula $\Box T$ in \varPhi such that $M \models_x \Box T$. Thus x is in N. The assumption $M \nvDash_x \Box B$ means that there are $y \subseteq x$ and z such that yRz and $M \nvDash_z B$. Clearly $[y] \subseteq '[x]$, [y]R'[z]. And I. H. (induction hypothesis) implies $M' \nvDash_{[x]} B$. Hence we have $M' \nvDash_{[x]} \Box B$. This contradicts our assumption.

610

Conversely, suppose that $M \vDash_x \square B$ but $M' \nvDash_{[x]} \square B$. If [x] is not in N', then $M \nvDash_x \square T$ for every formula $\square T \in \Phi$, where T is a tautology. Since x is in N, there are $y \subseteq x$ and z such that yRz and $M \nvDash_z T$. But this is a contradiction because T is a tautology. Therefore [x] is in N'.

Since $M' \not\models_{[x]} \square B$ and $[x] \in N'$, there are $[y] \subseteq '[x]$ and [z] such that [y]R'[z] and $M' \not\models_{[z]}B$. We have $M \not\models_z B$ by I. H... The definitions of \subseteq' and of R' imply $M \not\models_x \square B$, but this is a contradiction.

This lemma is proved.

Using this lemma, we can prove that the *IET*-system has the finite model property (Theorem 10 in [1]).

Theorem. The IET-system has the finite model property.

I would like to express my gratitude to Mr. S. Yokota for his valuable suggestions.

Reference

Kondo, M., The completeness theorems for some intuitionistic epistemic logics in terms of interval semantics, *Publ. RIMS*, Kyoto Univ., 20 (1984), 671-681.