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On Cabannes* 32-VelocIty Models
of the Boltzmann Equation
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Machi MAEJI** and Yasushi SfflZUTA*

§ 1. Introduction

In the preceding papers [8], [9], we studied the general theory
of the discrete Boltzmann equation and formulated several conditions
under which the solutions in the large for the Gauchy problem exist
and approach the Maxwellian corresponding to the initial data as
£->oo. (One of these conditions which we shall use in this paper will
be called simply the stability condition for the discrete Boltzmann
equation.) Also we treated in [9] the 14-velocity model as an applica-
tion of the results. We continue in this paper the study of concrete
discrete models. Our aim is to verify the stability condition for the
32-velocity model introduced by Cabannes [4]. Since the size of the
model is relatively large, the computation needed becomes necessarily
lengthy.

First we recall the definition of the 14-velocity model. We
consider a cube centered at the origin of the velocity space. The
set of eight vertices of the cube defines an element model Mc. (A
discrete model is said to be an element model when the moduli of
the velocities are equal.) The centers of six surfaces of the cube form
an octahedron and define another element model M0, We introduce
here the definition of the similarity. Two discrete models are said
to be similar if one equals the other after the multiplication by a
suitable positive constant. Let 3F'c and 3F0 be the families of discrete
models similar to Me and M03 respectively. Let us consider a
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compound model of these two kinds of element models. We denote
the moduli of the velocities of two element models by Rc and R0,
respectively. In other words, Rc and R0 are the radii of the circum-
spheres of the cube and the octahedron corresponding to these models.
Then the mixed collisions exist if and only if the ratio d=R0/Rc

equals 1/V3 or 2/V3. (See [4].) This means that there exist two
different irreducible 14-velocity models. (Here the similar compound
models are regarded as identical.) It is shown that the dimension of
the space of collision invariants is five for either cases.

Next we give a review of the 32-velocity model. We take a
dodecahedron centered at the origin of the velocity space. The twenty
vertices of the dodecahedron defines an element model Md. The
centers of twelve surfaces of the dodecahedron form an icosahedron
and define another element model Mif Let ^d and ^{ be the families
of discrete models similar to Md and M{, respectively. Let us consider
a compound model of these two kinds of element models. We denote
the moduli of the velocities of two element models by Rd and Ri9

respectively. In other words, Rd and R{ are the radii of the circum-
spheres of the dodecahedron and the icosahedron corresponding to
these models. Then the mixed collisions exist if and only if the ratio
f = Ri/Rd equals one of the four values:

V(5±V5)/6, V(5±2V5)/3.

This fact was noticed by Cabannes [3], [4]. Therefore, we have
four different irreducible 32-velocity models provided that similar
compound models are identified.

In order to check the stability condition for the 32-velocity models,
we need a suitable choice of the cartesian coordinate system. Besides
the geometric description of the 32-velocity models, Gabannes gave
concrete coordinates to the velocities [3], [4], But this cartesian
coordinate system seems to be ill-suited for our purpose. The appro-
priate choice of the cartesian coordinate system, which will be given
in §4, enables us to express each of the 32 velocities by a sextuple
of rational integers. This means that the problem of the verification
of the stability condition for the four 32-velocity models becomes
algorithmically solvable by this choice of the cartesian coordinate
system. We give here the definition of the equivalence between
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discrete models. Two discrete models are said to be equivalent if one
is similar to the other after the action of a suitable orthogonal
transformation. We may say therefore that we study the 32-velocity
models not in its original presentation by Gabannes but in its equivalent
form.

Finally we point out the fact that the dimension of the space of
collision invariants is eight for the 32-velocity models. This is the
striking contrast between the 14- and 32-velocity models. In spite of
the strange appearance of this fact, these models are normal in the
sense that any collision invariant is expressed as a linear combination
of eight particular collision invariants issuing from the conservation
of mass, momentum, and energy.

The contents of this paper is as follows. In §2, we give a survey
of the general results on discrete models obtained in [8], [9]. We
introduced in [10], [11] the definition of the regularity for discrete
velocity models of the Boltzmann equation. This will be summarized
in §3 for later use. It is shown in §4 that the 32-velocity models
are regular and hence the results of [8], [9] are applied to these
models. Our computation follows the lines of [9] except for the
use of the computer. Some of the results of computations are given
in Appendices 2, 3, 4, and 5.

We note that Gercignani [5] formulated a criterion for checking
the stability condition under the hypothesis that the dimension of the
space of collision invariants equals /2+2. Here n is the dimension of
the space in which the discrete model is considered. (Hence /z + 2=5
in case of 72 =3.) We shall give in Appendix 1 a generalization of
this criterion to the cases where the dimension of the space of collision
invariants equals either 2/2+2 or 2/2 + 3. (Note that 2/2+2 = 8 and 2/2
+ 3=9 when n=3.) The regularity of the 32-velocity models can be
verified also by using this criterion.

We would like to thank Professor H. Gabannes for sending one
of us a list of his computer program for writing down the whole
system of equations of the 32-velocity model (7* = ft). Although we
chose a different approach to the problem, we were much stimulated
by his work0 We thank him also for sending us a preprint of his
paper [4].
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§ 2. General Theory of Discrete Models

In this section we give a brief summary of the results on the
discrete velocity models of the Boltzmann equation obtained in [8],
[9], In what follows, we say simply the discrete models in place of
the discrete velocity models.

Let Ui9 . . . , um be a set of distinct vectors in the velocity space
Rn. By a vector we mean a directed line segment starting from the
origin of the velocity space. Since each vector determines, and is
determined by, its end-point, it is usual to identify a vector with its
end-point. Thus we may regard %, . . . , um as a finite set of points
of the velocity space Rn, Let Fi=Fi(t9 x) be the density distribution
function for the molecules with velocity u{ at time t and position
x=(xi9 ..., xJ^R". The following system of equations describing
the evolution of the gas is called the discrete Boltzmann equation:

(2. 1) + M..F^=af.(F, F),

Here PXF{ = (dFJdx^ . . . , dF{/dxn), and u{*VxF{ denotes the standard
inner-product of the /2-dimensional vectors ut and VXF{, The collision
term Qfi(F9 F) is given by

(2. 2) di(F, F) = * 2 (AifaFt-ASlFiFj, i = l, . . . , m,
£ j.k.i

where the coefficients A}}9 I<i9j9 k9 l<m, are non-negative constants
related to the transition probability of the binary collision with initial
state (ui9 Uj} and final state (uk9 wz) . (A]} is set to be zero for all
non-realizable collisions. Otherwise, A}} is a positive constant.) We
assume that

and that

(2.3), A$=A&

for any i9 j9 k9 I. The latter condition (2. 3)2 is called the micro-
reversibility. We assume furthermore the existence of collision. This
means that

(2. 4) A%J±Q for some z, j, A, I.

Now we write (2. 1) in another form. Let ut= («J, . . . ,«*), *' = !,...,
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m, and let

(2. 5) E7' = diag(M{, . . . , «£), j = l, . . . , n.

Then (2. 1) can be rewritten as

(2.6) Ft+&USFx.=QJiF,F)9
j = l 3

where F=' (F1? . . . , FJ, £0% F) ̂ (^(F, F), . e . , ft»(^^)), ^ =
3F/3/, FXj = dF/8xjo

We recall here two basic notions in the discrete kinetic theory,
One is collision invariant and the other is Maxwellian. An element
0 — l (0b • • • ? 0«) of .ffim is called a collision invariant if ^ satisfies

(2.7) 4Jj(& + &— &-&)=0

for any i,j, k, L The set of all collision invariants forms a subspace
of Rm and is denoted by Ji. Since * (1, . . . , 1) e^, it follows from
(2. 4) that 0<dim J?<m. Now let N='(Nl9 ...,NJ ^Rm and let ^>0
for z = !,..., m. Then 7V^ is said to be a Maxwellian if it satisfies

(2.8) AVjWNj-NiNt^O,

for any i,j, k, L This is equivalent to saying that log N=t(log NI, . . . ,
log 7VOT) is a collision invariant. A function F of time t and position
x with values in the set of Maxwellians is called a locally Maxwellian0

A constant Maxwellian N may also be regarded as a function of time
t and position x. In this case, N is called an absolute Maxwellian0

It is well-known that N is a Maxwellian if and only if Q(N, N) =0.
(Here, JV>03 namely, N{^>Q for i = l , a . o , m , is assumed.) Hence an
absolute Maxwellian is a constant stationary solution of (28 1).

Finally we state for later use one of the conditions obtained in
[9], which guarantees the global existence of solutions to (2. 1) and
their asymptotic approach to the absolute Maxwellian0 To this end,
we introduce the following notation,

(2. 9) U(a>) = E U'aj, o> =
y=i

Then we have

(2.10) Stability condition: Let ^e^ and let ^ + C/(o>)^ = 0 for
some fi<=R and aeS1"1. Then 0 = 0.

We refer the reader to [9] for the other equivalent conditions and
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for the precise statements of the global existence theorem. (See

Theorem 5. 1. of [9].)

§3. Regular Discrete Models

In the study of discrete models [10], [11], we singled out a
category which we called the regular discrete models. One of the
basic examples is the 14-velocity model. It will become clear at the
end of this paper that the 32-velocity model is another important
example. We give in this section a review of regular discrete models.

Let M I , . . . , um be distinct vectors in Rn. We set M = [u^ ..., um}
and assume that the linear span of M coincides with Rn. First we
give a general recipe for determing the constants A}} that appear in
the collision term Q,(F, F) of the discrete Boltzmann equation (2.1).
For this purpose, we recall the definition of collision. We define 2
to be the set of all unordered pairs of distinct velocities. The binary
collision means simply a relation on S which will be specified below.
We set for simplicity

(3.1) S={(ui,uj); l<i<j<m}

by using the lexicographical order. Let #, ft&2. Then, a=(uh M;-),
j8=(Mj, Mz) for some i,j,k,l where l<i<^j<m, l<k<^l<m. We write
temporalily (a, ft) for the ordered couple of a and ft. Then (#, ft)
is called a collision if it satisfies the following properties:

(3.2)! a^ft.

(3. 2)2 The momentum of a equals the momentum of ft, i.e.,
ui + uj = uk + ul.

(3. 2)3 The energy of a equals the energy of ft, i.e.,

M2+|«y a = |«J 2 + |Mi l 2 .
It is customary to denote the collision (or, ft) by a-^ft and a, ft are
called the initial and the final states, respectively. If a-^ft is a collision,
then fl-*a is also a collision and vice versa. The collision ft->a is
usually referred to as the restitution collision of the original collision
a->ft. We denote by ^ the totality of collisions and assume that ^
is not an empty set. Let G be the transformation group associated
with the discrete model M. (Note thet G is determined uniquely by
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M as the set of all isometric transformations on M, In particular G

is a finite group.) We introduce an equivalence relation on ^ by

means of G. Let g^G and let a = (ui9 Uj) eS. We define ga to be

the unordered pair (gu^gu^. Two collisions «-»£ and «'-»£' are

said to be equivalent if one of the following two conditions holds:

(3. 3)x a'—>jS' equals got->gfi for some gEiG.

(3. 3)2 a'->fl' equals gfi-*ga for some g^G.

It is easily seen that this is an equivalence relation on &. Hence we

have a partition of ^ by this equivalence relation. Let Ci,..., Cq

be the set of equivalence classes. Then the constants A}} are defined

by

(3.4)

as, if (Ui,Uj)-*(UtoUi) is a collision of Cs, (l<s<q),

0, if the ordered pair of (u^ wy) and (u^ u^ is not a

collision.

Here 0 l 5 . . . , aq are arbitrary positive constants. It is to be noted that
the definitions of collision invariants and Maxwellians do not depend
on the particular choice of the <2/s.

Lemma 30 L Let M= [u^ ,.., um} be a given discrete model. We
assume that the linear span of M coincides with Rn and that there exists
at least one collision. We assume furthermore the constants A\}, l<
i, j, k, l<m, are determined by (3.4). Then

(i) (2.3)! and (2.3)2 hold true.
(i i) the collision term Q,(F, F) defined by (2. 2) is invariant under the

transformation group G. Namely\ for any g^G and FGEj?m, we have
gQ(F, F) = Q,(gF, gF). Here F is regarded as a function defined on M0

More precisely, (gF)i = F0(i} where 0 = p(g)9 p being faithful permutation
representation of G.

Finally we give the definition of regular discrete models introduced

in [10], [11].

Definition 3o 1. The discrete model described by the equations (2. 1) is
said to be regular if the following three conditions are satisfied:

(385)i The equations (2.1) is irreducible in the sense that it does not
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split into two decoupled subsystems,

(3.5) 2 The collision term Q(F,F) is invariant under G in the sense

specified in Lemma 3. 1.

(3. 5)3 The stability condition (2.10) holds true,

It should be noted that, by the definition of A\] (see (3.4)),

(3. 5) 2 is automatically satisfied. We point out also that, by (3. 5)3,

the global existence theorem in [9] can be applied to any regular

discrete model.

§ 4. 32- Velocity Models

1. Velocity Vectors

We consider a dodecahedron of edge of length 2 with center at

the origin of the velocity space. It is well-known that there exist five
inscribed cubes. Each vertex of the dodecahedron belongs to two of the

cubes. The length of edge of these cubes are 2r, where r=(l+V5)/2.

Note that the ratio 1 : r is known as golden section and that r2— r+1.

We look at one of the five inscribed cubes and we let coincide the

three axes of 4-fold rotation of the cube with the x-,y-9 and £-axes of

the cartesian coordinate system. Thus the centers of six surfaces of

the cube are lying on one of the x-9 y-9 and £-axes. The twenty

vertices of the dodecahedron are given by

(4 n (±1,0, ±( l+r ) ) , (0, ±( l+r) , ±1)

(±0+*), ±1,0), (±r, ±r, ±r).

Let the vectors starting from the origin and ending at these vertices

be vf-\ l<z<20. A simple computation shows that the centers of
twelve surfaces of the dodecahedron are expressed as

4-CO, ±(l+3r), ±(3 + 4r)), 4-(±d+3r), ±(3 + 4r),0),
(4.2) 5 5

, 0, ±(l+3r)),

by the same cartesian coordinate system. These twelve centers are

the vertices of an icosahedron that is in a dual position to the

dodecahedron. Let the vectors starting from the origin and ending
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at these vertices be vl2\ l<i<120 We set

(4.3) Ui=vP ( l<i<20), Ui=dv™n (21<z<32).

Here d is a positive constant which will be specified below0 We define

Ma\ M(2\ and M as follows.
) = K ; 21<i<32}3

M(1) and M(2) are the 20- and 12-velocity models of Gabannes [2].

Noting that M(1) and M(2) are element models, we set

Then we have Ri = Rd, R2 — drd, if the respective radii of the circumscri-

bing and inscribing spheres of the dodecahedron are denoted by Rd

and rd. Since it is known that

(4.6) rd/Rd = f(

we obtain

(4.7) r=R2/Ri
Now we introduce notations for collisions. We denote by ^ the

totality of collisions of the 32-velocity model M. The sets of collisions

of the models M (1) and M (2) are denoted by ^ (1) and ^ (2)
3 respectively0

We observe that, if the initial state of a collision consists of an element

of M(V> and an element of M(2\ the same is true for the final state.

Such collisions are called mixed collisions. We denote by ^ (1>2) the

set of mixed collisions of the 32-velocity model M. Clearly we have

(4.8) ^=^ ( 1 ) U^ ( 2 ) U^ ( 1 ' 2 )
9

The following result concerning the existence of mixed collisions was

obtained by Gabannes [3]5 [4].

Lemma 4.1. <^(1-2) is not an empty set if and only if the value of

defined by (4. 7) equals with one of the following number,

= V(5-V5)/6, r2-

Proof. We give a sketch of the proof based on the coordinates
(4. 1), (4.2). The computation can be carried through without using
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the computer. <^(1>2) is not an empty set if and only if there exist
} (l<i=£j<20, !<£:£/< 12) such that

We make up the complete lists of [v^ ~vf} ', i^j] and [v^ ~v

Then it turns out that d coincides with one of the following numbers,

3i=-4 + 3r=(-5+3V5)/2, d2 = 3-T= (5-V5)/2,

if the mixed collisions exist. Here the sign of d is neglected. This

combined with (4. 7) gives (4. 9) .

As a consequence, the 12 velocity vectors ui9 21<i<32, are

determined as follows according to the respective values of f.

(4.12)! (0, ±1, ±r), (±1, ±T, 0), (±r, 0, ±1),

(4.12), (0, ±r, ± ( l+r ) ) , (±r, ±( l+r ) , 0), (± ( l+ r ) , 0, ±r),

(4. 12)3 (0, ±( - l+r) , ±1), (± ( - l± r ) , ±1,0), (±1, 0, ± (-1 +r)),

(4. 12)4 (0, ± ( l+r ) , ± ( l+2r ) ) , (± ( l+ r ) , ±(l+2r) , 0),

(±( l+2r) , 0, ± ( l+ r ) ) .

The 20 velocity vectors ui9 l<i<20, are given by the common

coordinates (4.1) for f^ft , ..., ^4. It should be emphasized that

all the coordinates are algebraic integers of Q(V5), the rationals

adjoined by ^/5. In these situations we can restrict our computation

to the integral arithmetic. Note that the standard integral basis of

0(V5) is {1, r}.

2. Collisions

The number of collisions for the 32-velocity models is given

Cabannes [4], The results, obtained independently by us, agrees with

that of Cabannes.

Lemma 4. 2. Let p be the number of the totality of collisions. Let

p(l\ p(2\ and p(l>2) be the respective numbers of collisions contained in ^(1),

^(2), and &a'2\ Then, in the case of r = fi or f2, we have p = 54Q. When

r = r* or 7-4, we have p = 3QO. In all cases, p(v = l5Q and p™=3Q. We

have p(l'*=36Q for r=Ti> K and pa'» = l2Q for r = n, T+
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The complete lists of collision are omitted here. Next we turn

to the classification of collisions according to the procedure given in

§20 The transformation group G, namely, the symmetry group of

M= [HI, . . „ , w32} is used for this purpose. We have G = ^45X/, where

/ denotes the group of order 2 generated by the inversion in the

center of symmetry. The notation is that of Goxeter [6]. The

following result, as well as the result in Lemma 4. 2, is obtained by

using the computer.

Lemma 4. 3. Let q be the number of equivalence classes contained in

*% . Let q(l\ q(2\ g(1<2) be the number of equivalence classes contained in

<g(l\ tf(2\ and <g(1'2\ respectively. Then, we have q = 7 for r = Ti> 72 and

q = 6 for p = 73, 7*4. In all cases, q(l} = 3 and g(2) = l. More precisely, *& (1)

consists of three equivalence classes and two of them contain 60 collisions.

The rest contains 30 collisions. <$ (2) consists of only one equivalence class

containing 30 collisions. When f = f\ or j-2,
 we have q(l-2)=3. In this

case, <^(1-2) consists of three equivalence classes each of which contains 120

collisions. When ^ = T3 or Tb we have q(l>2) =2. In this case, <g (1>Z)

consists of two equivalence classes each of which contains 60 collisions.

Now we look at the classification of collisions from different view-
point. For each collision (ui9 u^ — » (uk, ut) , we set

Uj} • (Uk-Ut) \/\Ui-Uj\ ' \Uk-Ut\e

Here E}] and M\] represent total energy and the modulus of total

momentum, respectively. I}} equals |cos0|, where 0 denotes the angle

of deflection in the center of mass system. Each of E\], Af*j, and /*j

takes a constant value on any equivalence class. But at least one of

the three quantities is different for distinct equivalence classes. This

can be checked by the computer. We may say therefore that Efj, Af*j,

and 7*j form a complete set of labels. The details will be given in

Appendix 3. It is to be noted that Gabannes [4] used only E1-} and

MIJ. Finally we remark that the collision term Qi(F, F), i~ 1,. .., 32,

can be written down once the enumeration of collisions is finished.

We shall give the concrete forms of Qi(F, F) and Q2i(F, F) for f = f\

and 7- = fo in Appendix 4.
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3* Collision Invariants

We want to determine the space Jt of collision invariants for the

32-velocity models. It is shown that Jl has dimension 8 for 7 =

ft, . . . , ft. The result may also be checked without using the com-

puter. We write Ui = (u}, u2
h uf) for i = ! 5 . . . 3 32. It is a known

fact that the following five vectors

# < r o = f ( l , . . . , D ,
(4.13) 0<»='(ii i . . . , t4), J = l ,2,3,

#<«='( to I',..., life I'),

are collision invariants. We observe that each 0(0, 0<s'<43 is a 32-

tuple of algebraic integers of Q(V5). By means of the standard

integral basis (1, r} of Q(>/5)? we set

(4. 14) ui=vi+Twi9 vi9 w^Z\

for t = l, ..., 32. Let 0f- = (z;J, 4 0?) and let w,- = (zc;J, wf, w?) , We set

^ ='&*...,

Then

0»>=0
(4. 16) ^ ^

^(4)=^

It is easily seen that the vectors ^(1), . . . , ^(6) are lineary independent
for 7*= ft, . . . 5 ft. The vectors ^(0)

? <fi(7\ ^(8) are linearly dependent
but two of these vectors are linearly independent for all cases.

Lemma 49 4. Let 7* = ft, - . . , ft. TTz^Tz £/z# j/?ac^ u? of collision invariants

has dimension 8. A basis of Ji is given by six vectors (f>(l\ . . . , ^(6) supple-

mented by two vectors arbitrarily chosen from $(Q\ <p(7\ ^C8)
0

Remark. Let %(1) be the vector whose i-th component equals 1

for « = !,..., 20 and equals 0 for i = 21, . . . ,32. Let x«> = ^-x«.

Then %(1) and %(2) are linearly independent and both vectors belong

to J(, Moreover the linear span of {%(1)
3 %(2)} equals the linear span
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of {fr°\ <1>«\ ^(8)}. Hence ^\ ..., ^(6), z(1),x(2) form a basis of ^0 It

is this basis that is used in the actual computation. In any case9 all

the collision invariants issue from the conservation of mass, momentum

and energy in the 32-velocity models.

4. F-Sets and the Stability Condition

For the reason that will become clear soon, we introduce here

the definition of P-sets. Let J be a non-empty subset of {1, 2, „ „ . ,

32}. Then J is called a P-set if there exists a plane 77 satisfying

the following properties: u^M lies on 77 if and only if j^J. The

totality of P-sets will be denoted by ^. Any P-set, which is contained

in another P-set as a proper subset, is called a P-set of the second

category. All other P-sets are of the first category,, We denote by

J and &t the totalities of the P-sets of the first and the second

categories, respectively. By definition 2, and ^ are disjoint and

^ = J U ^ B Now we assign to each P-set a subspace of J?32. Let

J^SP. We define Jfj to be the subspace of J232 spaned by [sj\ j^J}.

Here [BJ] l<j<32} denotes the standard basis of B32. Namely, the

i-th component of e; equals 8ijt We rewrite the stability condition

(2.10) by means of P-sets.

Stability condition reformulated: Let Jlf be the space of collision

invariants and let /e^. Let Jf j be the subspace of R32 defined

above. Then

Jtt\JTj= {0}, for any /<E ^0

To see the equivalence of two statements, we suppose that <p^Jt

and that [i<j> + U(co')<f> = Q for some /jt^R and a)^S2. Since U(co) =

diag(Mxe(y, 8 0 0 , w32 'ft)), the set of all j such that ~^ = uj°a) forms

a P-set/. Then 0 = 0 follows from J t f } J f j = { ® } . The converse

assersion holds true also. It is easy to see that in the stability condi-

tion reformulated we may replace & by J. Therefore we have little

interest in the P-sets of the second category. We set

(4.17) £<"={/G=J2; | , / |= i} , i = l, o o e , 32,

where \J\ denotes the cardinality of J.
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Lemma 4. 5. Let r be the number of P-sets of the first category. Let
r(0 be the number of P-sets contained in £(i\ where i = l 5 . . . 3 32 . Then,
in the case of 7* =7*1 or ft, we have r — 1781. When ? = ?$ or ft we have
r = 759. More precisely, if r = r* T* then r(3), r(4), r(5), r(6)

? and r(8) are
1320, 360, 36, 50, and 15, respectively. Other r(i^s are zero. If r = 7*3, ft,
then r(3), r(4), r(5), r(8), r(9), and r(10) are 520, 120, 72, 15, 20, and 12, respectively.

Other r(i^s are zero.

Now we give a classification of P-sets by the symmetry group
G=A$xI associated with M = [u^ ..., w32}. Two P-sets are regarded
as equivalent if one is obtained from the other by the action of a
suitable symmetry transformation. Thus we have a partition of &.
Accordingly, 2, and each J (0 l<z<32, are classified also.

Lemma 4. 6. Let s and SM be the respective numbers of equivalence

classes contained in & and J (0, where z — 1,..., 32. Then, in the case

of ?' = 71 or 72, we have s = 32. When 7 = ft or ft, we have 5 = 17. More
precisely, if r = n> r* then s(3\ j(4), s(5\ s(5\ and s™ are 19, 7, 3, 2, and
1, respectively. If r = T* ft, then s«\ j(4), *(5), ^(8), s(B\ and j(10) are 9, 3,
2, 1, 1, and 1, respectively.

A list of representatives for 7* = 71, . . . , ft will be given in Appendix 5.
We observe that if g^G, then gJf-j = Na(j» where ff = p(g), p being
faithful permutation representation of G. This implies that, if Jl f| ^/
= {0} is checked for a particular /e J , then the same fact holds for
any P~set which is equivalent to J. Note that ^ is invariant under
the action of G, i.e., gJt = Jt for any g^G. These observations lead
to the following.

Stability condition in the reduced form: Let s be as in Lemma
4. 6. Let/C^), \<k<s^ be the set of representatives of equivalence
classes of J. Then

=0, for * = !,.. .,5.

As a basis of uf, we take for example {^(1), . . . , ̂ (6), %(1), %(2)} . A basis

of Ji JQO is {ej'i j^J(k}}- Then the union of these two sets of vectors
is linearly independent if and only if Jt fl ̂ /(*> = {0} . The linear inde-
pendence of these vectors is checked by using the computer for k =
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1, .. 8? s and for ?-l5 ..., 7-4. Here s = 32 when Tf = Ti or T* and s = l7 when

T'==T'3 or TV Thus we arrive at the following conclusion.

Theorem 4.7. 77z0 32-y£/0a'£j; model is a regular discrete model if

and only if ? equals one of ft, ..., 7*4.

As a consequence we obtain the following result by applying
Theorem 5. 1 of [10].

Theorem 4- 8. Consider the initial value problem for the 32-velocity

model with p= Tb • • • > TV Let N be an absolute Maxwellian and let
F(03 x)=FQ(x) be the initial condition. Then we have:

(i) Let s>2 and let F0-N^Hs(R^e It \\F0-N\\S is small enough,
the initial value problem has a unique global solution F(t, x) such that

J5 oo ; HS(H6)) nCu(U5 oo ;

Furthermore,

(4. 18)

for any ££[0,oo)5 where C is a constant not depending on t.
converges to the absolute Maxwellian N uniformly in x^R3 as Z-»oo8

(ii) Let s be as in (i) and let />e[l, 2). Let FQ-N<=HS(R*)
r\Lp(R3). If \\F0 —N\\Sip is small enough (the norm \\ \\Sip denotes the sum
of HS(R3)- and Lp (R3) -norms), the solution obtained in (i) satisfies

where C is a constant not depending on t, and 7*= (3/2) (!//> —1/2).

Appendix 1

A criterion for the stability condition

We consider an ft-dimensional discrete model defined by the velocity
vectors Ui = (u\, ..., M;), f = l, e o . 3 ma Gercignani obtained in [5] a
criterion for the stability condition under the hypothesis that the
space Jl of collision invariants has dimension n + 2 and that the
following vectors,
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(A.

form a basis of Jl. We modify his argument and obtain analogous
results under different circumstances.

Let K be a real quadratic field and let {1, 2] be the standard
integral basis of K. Then we have

(A. 2) P = al + b, a,b<^Z.

We assume that u\^Z\X\ for i = l , . . . , m, j = l 9 . . . , ?z. In other
words, the M,-'S are ^-tuples of algebraic integers of K. Thus,

(A. 3) Ui

for z = l , . . . , m . We set

(A 4) ^
' ^("+

where $*J\j=l9 . . . ,« , and 0(w+1) are defined by (A.I) . Note that
for k = l, a 0 ,,2n + 2, We study the following two cases.

Case 1. The space Ji of collision invariants has dimension
A basis of Jt is given either by the vectors ^(0)

9 ̂
(1), 0 0 e , (p(2n\

or by the vectors ^(0), ^(1), . . . , ^(2n), <p(2n+2\
Case 2. The space Ji of collision invariants has dimension

A basis of Ji is given by the vectors 0(0), <p^\ . . . , ^(2ra)
5 ^

(2w+1)
3 <p(2n+2\

For notational convenience, we define a matrix yl by means of a
set of auxiliary vectors. Let f(i), 37 ̂  C(fe), l<i<r, 1<J, A<J-, be any
ordered sets of vectors of Rm and let r + ^<m. The 2mX2(r + s)
matrix A is defined by

0 ,«,
A = \

0 rd)
°, • • • , £(7)

First we treat Case 1. Let vt = (vl
h ..., y") and let z^ = (ze;J , . . . , w").

Then

for !<;<w. We set
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V* = diag (v{, . . . , »i) , Ws = diag (zc;f , . . . f «£) .

-Lfjt 0/ auxiliary vectors for Case 1 .

1°)
2°)

3°)

Here we understand that the vectors in 2°) and 3°) with indices j,k

are arranged according to the lexicographical order of (/', A).

Proposition A» 1. Consider Case 1. Z.0J r

(3/z2 + 3w)/2e Suppose that the rank of matrix A defined by using the sets

of vectors listed in 1°), 2°), 3°) 0j the auxiliary vectors %(i\ ^\ ^k\

equals 3/z2 + 7?zH-28 Then the stability condition holds true.

Next we turn to Case 2.

List of auxiliary vectors for Case 2.

1°) ^\ F
2°) VjV*$™

3°)

It is to be understood that the vectors in 2°) and 3°) with indices
j, k are arranged according to the lexicographical order of (/, A).

Proposition A8 2a Consider Case 28 L^ r = 2?z + 2 a/zrf to s =

(3n2-\-5n) /2. Define the matrix A by using the sets of vectors enumerated

in 1°), 2°)9 3°) 0j M^ auxiliary vectors, f(0
9 ^(j)

9 C(fe)
a rA^w, t/ ^

q/ J. equals 3?z2 + 9/z + 43 ^/z^ stability condition holds true.

For the proof of these propositionss we use the arguments of

Gercignani with suitable modifications. The following observation is

also useful: Let i(i\ l<i<k, be the elements of JTm
? where K is a

real quadratic field. Then, %(1\ . . . 9 %(&) are linearly independent
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over K if and only if these vectors are linearly independent over R.
Finally we notice that the entries of the matrix A thus defined are
all rational integers. This implies that, in computing the rank of A,
we can avoid the approximate computation.

Appendix 2

Indexing of velocity vectors

20 velocities

v]

w]

*
w\

tf
wl

v]
w]

ti
wl

ti
w!

«1

1
0

0

0

1

1

"11

-1

-1

-1

0

0

0

"2

-1
0

0

0

1
1

Ul2

1

-1
1
0

0

0

U3

-1

0

0

0
1

— 1

«13

0

1
0

1
0

1

u*

1
0

0

0

— 1

-1

UU

0

-1
0

1
0
1

Us

0

0
1
1
1
0

MIS

0

-1
0

— 1

0

1

UG

0

0

1
1

-1
0

Ml6

0

1
0
J

0

1

U7

0

0

-1
— 1

-1
0

«17

0
I

0

-1
0

-1

"s

0

0
-1
-1

1
0

"18

0

1
0

-1
0
J

"9

1
1
1
0

0

0

"19

0

1
0

1
0

-1

"10

1
1

-1
0

0

0

"20

0

-1
0

1
0

-1

12 velocities (7*=7*1)

ti
w}

tf
wl

ti
w}

UK

0
0
1

0

0
1

"22

0
0

-1
0
0
1

"23

0
0

-1
0

0
-1

"24

0
0
1
0

0
-1

"25

1
0
0
1
0
0

"26

-1
0

0
1
0
0

"27

-1
0
0

-1
0
0

"28

1
0
0

-1
0
0

"29

0
1
0
0
1
0

"30

0
1
0
0

-1
0

"31

0
-1

0
0

-1
0

"32

0
-1

0
0
1
0
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12 velocities (7* = 72)

v]

w\

wl

V3
{

w}

"21 "22 "23

0

0

0

1

1

1

0

0

0
J

1
1

0

0

0

-1
-1
-1

"24

0

0

0

1
-1
-1

"25

0

1
1
1
0

0

"26

0
-1

1
1
0

0

"27

0

-1
-1
-1

0

0

"28

0

1
J

J

0

0

"29 "30 "31 "32

1
1
0

0

0

1

1
1
0

0

0

-1

-1
-1

0

0

0

— 1

-1
-1

0

0

0

1

12 velocities (7 =

ti
u>\

it
wl

v\

w\

"21

0

0

-1

1

1

0

"22

0

0

1
J

1
0

"23

0

0

1
J

J

0

"24

0

0
J

1
-1

0

"25

-1

1

1

0

0

0

"26

1

__ J

1

0

0

0

"27

1

-1

-1

0

0

0

"28

-1

1

-1

0

0

0

"29

1

0

0

0

-1
1

"30

1
0

0

0

1
-1

"31

-1
0

0

0

1
-1

1

"32

-1
0

0

0
_ J

1

12 velocities (j = 7-4)

v]
w\

tf
w\

»?
wl

"21

0

0

1

1

1

2

"22

0

0

-1
-1

1
2

"23

0

0

-1
-1
-1
-2

"24

0

0

1
1

-1
-2

"25

1

1

1

2

0

0

"26

-1

-1

1

2

0

0

"27

]

]

-1

2

0

0

"28

1

1

— 1

-2

0

0

"29

1

2

0

0

1

1

"30

1

2

0

0

-1

-1

"31

-1

2

0

0
j

-i

"32

-1

-2

0

0

1
1

Note that

ui+2=-Ui for z' = l, 2, 5, 6, 9, 10, 21, 22, 259 26, 29, 30

and that

"t+4— —"i for i = 13, 14, 15, 160
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Appendix 3

Classification of collisions

Each equivalence class of collisions is called a type. We have 7

types for 7- = 7^ ^ and 6 types for 7* = 73, 7*4-

(r=n)

^(1)

^(2)

«* (1'2)

type

C!

C2

C3

Q

C5

C6

C7

number of
collisions

30

60

60

30

120

120

120

representative

(MI, u3~) -> (az, «4)

(MI, M3) -» (w5, M7)

(MI, M6) -> (w9, MM)

(«a, "23) -» («22» "24)

(«ii "23) -> (MS, "25)

(HI, M26) -> (u2, M25)

(«i i "25) -> (MS, M22)

E

6(1 +r)

6(l+r)

6(l+r)

2(2+r)

5 + 4r

5 + 4r

5 + 4r

Af

0

0

4(1 +r)

0

3

3 + 4r

3 + 4r

7

(-l+2r)/3

1/3

0

(-l+2r)/5

(15-8r)/41

(-27 + 32r)/61

(-5+240/61

(r=r«>

<g>(2)

•T C1'2)

type

C4

C5

C6

C7

number of
collisions

30

120

120

120

representative

(aa, M23) -» (MB, M24)

(«i, M23) -> («4, MM)

(MI, M23) -» (a9, M27)

(Ml,M25)-^(M5,M29)

E

2(3 + 40

6 + 7r

6 + 7r

6 + 7r

M

0

2+r

2+r

3(2 + 30

/

(-1+20/5

(-5 + 320/61

(-19+240/61

(19 + 100/41



MODELS OF THE BOLTZMANN EQUATION 603

(r=rs>

<^(2)

<g o-2>

type

Ci

C5

C6

number of
collisions

30

60

60

representative

(«a, ^23) -* (MM, ^24)

("i, ^23) -» ("is, ^25)

(MI, M2s) -» (MU, w22)

E

2(3-r)

2(3+0

2(3+r)

Af

0

4

4(1 +r)

/

(-l+2r)/5

(-1+20/5

0

^(2)

•Sf cl-»

type

C4

C5

C6

number of
collisions

30

60

60

representative

(«a» ^23) -^ («22» "24)

(MI, M2s) -» ("20, M28)

(MI, M26) -* (MM, Ma)

£

2(7 + llr)

2(5 + 7r)

2(5 + 7r)

Af

0

4(l+r)

4(2 + 30

/

(-1+20/5

0

(-1+20/5

Appendix 4

Collision term

We give here the concrete forms of Q,\(F, F) and Qn.(F, F) for

T = Ti, Tz- The other Q,;'s are obtained by suitable permutation of
indices. The case of 7- = j-2, 7-4 is omitted.

Case: f=Ti-

d^F, F) =al{(F2F,-FlF3)

+ a2{(F5F7-F1F3)

+ (/V^-^Fj,) + (FuFu-FiFJ +
+a3{(FsFu~FlFe) + (FuFv-FiFj) +

+ (/^,-^Fu) +

+ (FuFa-FlFn) + (^^-F

+ (FUFB-F1FM) + (F^F^-F.F^)}

(F8F21 - F1F27)

(F1BFa-F1F»)} ,
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i (F, F) =al[(FaFM-F*FJ + (F25F27-F21F23) + (F26F28-F21F23)
+ (F29F31 — F2iF23) + (F30F32— F21F23)}

+as{(FeF27-F3F2l) + (F12F30-F3F21) + (F6F28-F4F21)
+ (F9F31-F4F21) + (F15F30-F7F21) + (F16F31-F7F21)
+ (F12F28-F17F21) + (F15F24-F17F21) + (F9F27 - F18F20
+ (F16F24-F18F21)}

+ 06{(F15F29-F8F21) + (FjfiFa.-F.Fa) + (FSF22-F10F21')
+ (F16F25-F10F21) + (FaFa - FUF21) + (F15F26 - FnF2l~)
+ (F6F2i~FlsF2l) + (FgFje-FuFa) + (F.F^

a) + (Fj.Fa-FuFa) + (FuF27~FnF2l~)
(Fl3F2t - F19F21)

+ (FMF»-F»Fa)}.

Case: ? = r3.

J2.1(F, F) ^ai{(F2Ft~F,F3) + (
+ aJ{(FBF7-F1F8) + (

+ (FjoF^-FiFa) + (FuFu-FxFa) + (F15F19 -
+ fls{(F9F14-F1F6) + (FUF15-F1F7)

-FiFu) +

F) =a4{(F22F24-F21F23) + (F25F27-F21F23) + (F26F28 - F21F23)
+ (F29F31 - F21F23) + (F30F32 - F21F23) }

+a5{(F20F28-F3F21) + (F19F27-F4F21) + (F8F24-F7F21)
+ (FuF3o-F17F21) + (F10F31-F18F21)}

+a6{(F5F24-F6F21) -t- (F13F20-F9F21) + (FUF31-F12F21)
+ (F2F27-F15F21)

Appendix 5

Classification of F-sets

In what follows, we say simply classes in place of equivalence
classes. The set of integers in bracket denotes a respresentative.
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Case: p = ft.
1°) J(3) consists of 19 classes.

(a) 3 classes containing 20 P-sets: {1, 5, 9}, {21, 22, 29}, {21,
24, 27}.

(6) 11 classes containing 60 P-sets: {1,2, 6}, {1,4,11}, {1,5,11},
{1,2,21}, {1,2,23}, {1,4,26}, {1,5,23}, {1,5,30}, {1,21,22},
{1,23,24}, {1,26,27}0

(c) 5 classes containing 120 P-sets: {1, 6, 22}, {1, 6, 23}, {1, 6, 26},
{1,6,28}, {1,6,30}.

2 °) J (4) consists of 7 classes.
(a) 2 classes containing 30 P-sets: {1, 3, 5, 7}, {1, 4, 25, 28}.
(4) 5 classes containing 60 P-sets: {1, 2, 25, 26}, {1, 4, 21, 24},

{1, 5, 22, 26}, {1, 5, 24, 28}, {1, 5, 27, 31}.
3°) &(5) consists of 3 classes, each of which contains 12 P-sets:

{1, 2, 5, 13, 14}, {1, 4, 9, 15, 17}, {21, 22, 25, 28, 30}.
4 °) J (6) consists of 2 classes.

(a) one classe containing 20 P-sets: {1, 2, 9, 125 19, 20}.
(b) one classe containing 30 P-sets: {1, 5, 10, 19, 25, 29}.

5°) j2 (8) consists of only one class containing 15 P-sets:
{1, 2, 3, 4, 29, 30, 31, 32}.

Case: r = Y2-

1°) J(3) consists of 19 classes.
(a) 3 classes containing 20 P-sets: {1, 5, 9}, {21, 22, 29}, {21,

24, 27}.

(6) 11 classes containing 60 P-sets: {1, 2, 6}, {1, 2, 23}, {1, 4,
11}, {1, 4, 25}, {1, 4, 26}, {1, 53 11}, {1, 5, 23}, {1, 5, 32},
{1, 23, 24}, {1, 25, 28}, {1, 26, 27}.

(<0 5 classes containg 120 P-sets: {1, 6, 21}, {1, 6, 22}, {1, 6,
23}, {1, 6, 28}, {1, 6, 30}.

2°) J(4) consists of 7 classes.
(a) 2 classes containing 30 P-sets: {1, 2, 21, 22}, {1, 3, 5, 7}0

(b) 5 classes containing 60 P-sets: {1, 2, 25, 26}, {1, 4, 21, 24},
{1, 5, 24, 28}, {1, 5, 25, 29}, {1, 5, 27, 31}.

3°) J(5) consists of 3 classes, each of which contains 12 P-sets:
{1, 2, 5, 13, 14}, {1, 4, 9, 15, 17}, {21, 22, 25, 28, 30}.

4 °) J (6) consists of 2 classes.
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(a) one class containing 20 P-sets: {1, 2, 9, 12, 19, 20}.
(i) one class containing 30 P-sets: {1, 5, 10, 19, 21, 30}.

5°) J(8) consists of only one class containg 15 P-sets: (1, 2, 3, 4,
29, 30, 31, 32} .

Case: r=T*
1 °) J (3) consisits of 9 classes.

(a) 2 classes containing 20 P-sets: {1, 5, 9}, {21, 245 27}.
(6) 6 classes containing 60 P-sets: {1, 2, 6}, {1, 2, 23},

(1, 5, 11}, {1, 5, 23}, {1, 5, 32}, {1, 25, 28}.
(c) one class containing 120 P-sets: {1, 6, 28}.

2 °) J (4) consists of 3 classes.
(a) 2 classes containing 30 P-sets: (1, 3, 5, 7}, (1, 5, 10, 19}.
(b) one class containing 60 P-sets: {1, 5, 24, 28}.

3 °) J (5) consists of 2 classes.
(a) one class containing 12 P-sets: {1, 2, 5, 13, 14}.
(V) one class containing 60 P-sets: {1, 4, 11, 29, 30}.

4°) J(8) consists of only one class containing 15 P-sets: {1, 2, 3, 4,
29, 30, 31, 32}.

5°) J(9) consists of only one class containing 20 P-sets: {1, 2, 9,
12, 19, 20, 21, 25, 26}.

6°) J(10) consists of only one class containing 12 P-sets: {1, 4, 9,
15, 17, 22, 23, 27, 29, 30}.

Case: 7=74,
I °) J (3) consists of 9 classes) J (3) consists of 9 classes.

(fl) 2 classes containing 20 P-sets: {1, 5, 9}, {21, 22, 29} .
(A) 6 classes containing 60 P-sets: {1, 4, 11}, {1, 4, 26}, {1, 5,

11}, {1, 5, 23}, {1, 5, 30}, {1, 23, 24},
GO one class containing 120 P-sets: {1, 6, 23}.

2 °) J (4) consists of 3 classes.
(a) 2 classes containing 30 P-sets: {1, 3, 5, 7}, {1, 5, 10, 19}.
(b) one class containing 60 P-sets: {1, 5, 27, 31}.

3 °) J (5) consists of 2 classes.

(a) one class containing 12 P-sets: {1, 4, 9, 15, 17}.
(b) one class containing 60 P-sets: {1, 2, 6, 29, 32}.

4°) J(8) consists of only one class containing 15 P-sets: {1, 2, 3, 4,
29, 30, 31, 32} .
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5°) J2 (9) consists of only one class containing 20 P-sets: {1, 2, 9,

12, 19, 20, 24, 29, 32}.
6°) J (10) consists of only one class containing 12 P-sets: {1, 29 5,

13, 14, 22, 25, 26, 29, 32}.
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