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On the Uniqueness of Solutions of Stochastic
Differential Equations with Singular Drifts

By

Satoshi TAKANOBU*

§0. Introduction and Resuits

Let d=2. Let a,7: R‘>R‘®R? and b, f: R‘—>R? be bounded con-
tinuous functions and let u(dn) be a nonnegative bounded measure on R!.

We consider the following stochastic differential equation (SDE) with a singular
drift:

©.1) dXi()= i al(X(D)dBi(t)+ bAX(1)dt
+ i X O)AMID) + FXO)LAXY  i=1,...,d,

the precise formulation of which is given below. We are concerned with the
existence and uniqueness of solutions of the SDE (0.1). This SDE was studied
by Y. Oshima [4], S. V. Anulova [1] and S. Takanobu [6]. Oshima obtained
the existence and uniqueness results in the case of Lipschitz continuous coef-
ficients and general u under the assumption that f¢=0. Anulova discussed
the case u(dn)=0,(dn) but with general ¢ by the method of the submartingale
problem and obtained the existence of solutions. Takanobu obtained the
existence of solutions in a more general case of ¢ and u. Also it should be
remarked that in one dimension Le Gall [3] considered an SDE like (0.1) and
obtained the pathwise uniqueness of solutions.

The purpose of present paper is to obtain the uniqueness of solutions of
(0.1) in the case of general ¢ but u is restricted to a certain class of discrete
measures: The case u=4d, is the most typical case and actually, we consider only
cases which can be reduced to this special case. In Oshima’s case, the method
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of skew product is a fundamental tool but, in our case, this method is not appli-
cable and we have to exploit another method. For this, we use the method of
decomposing the solution into pieces called excursions in R4\{x; x4=0}.
By showing that the point process formed of these excursions is uniquely
represented by means of a Brownian motion and Poisson point process of
Brownian excursions, we can clarify the structure of solutions and consequently,
we can show the uniqueness of solutions. We remark that excursion point
processes have been discussed in Watanabe [8] and [9] with somewhat different
purposes.

Let a, b, 7, § and u be as above. In the following, we enumerate several
conditions considered in this paper on a, b, 7, § and u:

©0.2) inf, él a4(x)*>0

0.2y at=6t  j=1,..,d, bi=0
0.3) W=0 j=1,..d

0.4) éesggllﬁd(ﬁ, nuin}|=1 neR!
(0.5) wdn)= k§ZCk5ak(dU)

where ¢,20 (ke Z), X ycz €<+ 00, inficz (@ +1—a)>0 and supycz (ags 1 —ax)
<+

0.5y p(dn) = do(dn)
(0.6) a, b, 7 and f are Lipschitz continuous.

First of all we give the formulation of SDE (0.1). By a solution of (0.1) we
mean a system of continuous stochastic processes X =[X(t)=(X(¢),..., X4(1)),
B(t)=(B(2),..., B4(1)), M(t)=(M(2),..., M4(¢))] defined on a filtered probability
space (@, #, P, &#,) such that

(i) X(p)is a system of #,-semimartingales,

(i) [B(¥), M(?)] is a system of Z,-martingales with B(0)=M(0)=0 such
that {Bi, B/)(t)=4't, (B!, MJ)(1)=0 and (M‘, M7 )(t)=5:L}(X?),

(iii) with probability one
©.1)  Xi(i)=X'0)+ él S; al(X(s))dBi(s) + S; bi(X(s))ds

+ Jf::l S; T (X(5)dMI(s) + g; BUX(s)dLHXD)  i=1,..,d
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where [L1(X%); t=0, ne R'] denotes the local time of a continuous %,-
semimartingale X4(¢) and L*(X%)= SM) LI X% w(dn).

For a probability measure A(dx) _00;1 R4, we denote by S,[a, b, 1, B, 1] the
totality of all solutions X=[X(), B(t), M(t)] of (0.1) for a, b, 7, B and u such
that the probability law of X(0) coincides with A(dx). We say that the uniqueness
holds for §,[a, b, t, B, u] if whenever X and X' are any two elements of
S,[a, b, 1, B, ul, then the probability laws of X(-) and X'(-) coincide.

The results in this paper are summarized in the following.

Theorem A (Existence theorem). Suppose that a, b, t, B and u satisfy
(0.2), (0.3), (0.4) and (0.5). Then for any probability measure A(dx) on R4,
S;[a, b, 1, B, 1] is nonempty.

Theorem B (Uniqueness theorem). Suppose that a, b, t, f and u satisfy
(0.2), (0.3), (0.4), (0.5) and (0.6). Then for any probability measure A(dx)
on R4, S,[a, b, 1, B, 1] is nonempty and its uniqueness holds.

Remark 0.1. 1In [6], Takanobu proved the existence theorem by assuming
(0.2), (0.3) and

Sup B mutndl <t ne R

Also, Anulova’s assumptions are (0.2), (0.3) and (0.4) with u(dn)=23,(dn).
Thus Theorem A is an extension of Anulova’s, and, under the condition (0.5),
is also an extension of Takanobu’s. In [4], Oshima assumed that (0.2), (0.3),
(0.6) and p¢=0.

In §2 we shall prove Theorem B in the case of (0.5)" and the general case
will be proven by reducing it to the case (0.5) in §4. §1 is devoted to preparing
some propositions which play an important role in §2. In §3 we shall prove
Theorem A.

§1. Preliminaries

Let a: R‘>R?‘®@R? and b: R*->R? be bounded Lipschitz continuous
functions such that a4=64 (j=1,...,d) and b?=0. We denote the Lipschitz
constants of a and b by K, and K,, respectively. Let #°¢ be the set of all con-
tinuous paths w: [0, c0)— R4.

§§1.1. For each xe R?, let P* be the unique solution to the martingale
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problem for % starting from x, where

i: (@a®)(x) gxigmr 6x‘6x1 + Z b(x) 6x' ’

i=1

N]»—-

Setting oo(w)=inf {t=0; w(t)=0} for w e #7¢, we define a probability measure
P> on w4 by
BE(x)=P*{w; w(- A oo(W)) € *}.
§81.2. We introduce the following subspaces of #74:

# ¢+ =the family of all w e #7¢ such that (i) w4(0)=0 and (ii) there exists a
positive a(w) such that wi(t) e R + for O0<t<a(w) and w(z)=w(o(w))
€ R4 1 x {0} for t=o(w),

# &% =the subfamily of # ¢-* such that w(0)=0,

Wi=wituwdT,
WE=wETuHE~
where R, and R_ denote [0, c0o) and (— o0, 0], respectively. Let Z(# &%),

BWLE), B(W°E),... be the o-fields on #' &+, wi*, #74,... generated by
Borel cylinder sets.

§§1.2.1. Let

2 (+x%) exp{— (x%)?/2¢}

Kex(t, %)= (11 sz exp{—(x)2/21})

p40, % 9= (T 37 exp (Gt y2120))

* VW (exp { — (x4 — y9)2[21} —exp { — (x4 + y4)2/21))

for t>0 and x, ye R '!xR,. Then there exists a unique o-finite measure
Q%% on (¢, B(#'§7)) such that

(LD Q%*{w; w(t,) eE,,..., w(t,) €E,, a(w)>t,}

m—1
={ x| dnpe | dnker e, %) TL #40en =t % x40
Ey E; Em i=1

for 0<t;<--<t, and E;e Z(R4 1 x R ) (cf. [9] or p. 124-125 in [2]).
Since Z(# Y NH# &+t=B(# §*), we can define a o-finite measure Q¢ on
(w8, B(#°8)) as follows:

Q) =0"*(xnWE)+Q"(xnH§T) *€BHY).
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Clearly wi(t)e L2(#¢, Q) for t>0 and i=1,...,d. Moreover, denoting by
B{(#¢) the sub o-field of Z(# §) generated by Borel cylinder sets up to time f,
we see easily that if 0<t <" and H is Z(# §)-measurable and belongs to L2(#"8,
09 n L2(w 8, 09, then

S% (Wi(t") — wi(E)HW)Q4dw)=0  i=1,...,d
SM (Wit —wi(D) (wi(t) —wi(D))H(w)Q4(dw)
=5 Sw (' Ao(w)—t A W) HW)QUdw) i, j=1,....d.

By virtue of this property of @4, for a #(# 8)-progressively measurable process
f(t, w) satisfying

tA
0

o(w)
1.2) Sw 04(dw) S F(s, weds< +00 120,
we can define the stochastic integral with respect to Q¢

() ()= S;f(s, wdwi(s)  i=1,...,d

in exactly the same way as ordinary It6’s integral (cf. [9]). Then this stochastic
integral has the following properties:

(i) For almost all w(Q9), t—I'(f)(t) is continuous, Ii(f)(0)=0 and
P ®)=(f)t A a(w)) for t=0.

(i) L)) eL> (w78, Q) for t=0.

(i) If fi(u, w) is a & ,(# ¢)-progressively measurable process satisfying
(1.2) (i=1,...,d), O<t<t’ and H is #,(# ¢-measurable and an element of
L2778, Q%) n L2(#¢, Q%), then

EC[(I'(fH(¥)~ F(f)EPH]=0  i=1,..d
EQ[(F(f)) = F(fHNT(fI)E) = P(fI)e)H]
=syge [ ("9 piyds | i j=1,d
where E2¢ stands for the integration by Q4. We here note the fundamental

inequality of Burkholder-Davis-Gundy type for the stochastic integral with
respect to Q¢: For p>0and T>0

(1.3) c,,EQ"[ max Ig F(s, w) dw"(s)‘zp] < Fo [(SZ“ f(s)st>”]

t

ost<T lJo
t 3 12p

gCPEQd‘_max S f(s, w) dw'(s)] ] i=1,..,d
0

LostsT
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where ¢, and C,, are positive universal constants depending only on p. This can
be derived from the above property (iii).

§§1.2.2. For £e R ! and ¢=0, we now consider the following SDE
with respect to Q¢:

(14)  Fit, wy=Eitc S S; ai(E(s, w), ewd(s))dwi(s)
=1
+c? S;M(W) bi(E(s, w), cw¥(s))ds i=1,..,d—1

where Z(t, w)=(E(t, w),..., 247 1(t, w)) (cf. [9]). Since a and b are bounded
Lipschitz continuous, this SDE is uniquely solvable, and hence we denote the
unique solution by Z . Clearly Z, (tAo(w))=Z,(t) t=20. Using (1.3),
we can observe by the standard argument that for p=1, T>0 and C>0

(1.5) EQ"[orsntanTl(Ea,g' (=&~ (&) - O)I*]
Sconst. {|¢'~c|?? +|¢'=¢|?P} 0=c, ¢'SC, ¢, &' eRY?

where the const. depends only on d, p, T, C, K, and K,. From this estimate,

we can prove the following:

Proposition 1.1. We can choose a nice modification of E_/t) so that the
following is satisfied:

(i) (¢, & t,we[0, 0)x RI"Ix[0, o) x # §—Z, (t, w) e R is Z[0,
0) x B(R¥1) x B[0, 00) x B(W &)/ B(R*')-measurable and w—EZ, ({t, w) is

B W §)-measurable for fixed c, ¢, t, where B(W 8)(B (W 8)) is the completion
of BW'E) (resp. B(#"§)) by Q°.

(ii) For fixed w, (¢, £, )= Z_ (1, w) is continuous.

(ili) Foreveryc, & tand w, E, (t Ao(w), w)=Z_(t, w), Z. A0, w)=¢ and
Eodt, w)=¢.

Set X, (t, w)=(E_«t, w), cw¥(t)). Then X ,e# ¢ for each ¢>0, {e R*!
and we #°§, X, .=(&, 0) and a mapping (¢, &, w) [0, 0) x R x #§— X, o -,
w)—(& 0)e# & U {0} is Z[0, co)x B(R)x B(W &)/ B(w & U {0})-measurable.

Moreover, by the estimates (1.3) and (1.5), we can also have

Proposition 1.2. Let f: R?—>R! be bounded Lipschitz continuous. Then
Ii(e, &, t, w)= S f(X, s, w)dwi(s) i=1,...,d has a following nice modifi-
cation:

(i) (¢, & t,w)e[0, 0)x R1x[0, o) x # §—1Ik(c, & t, we R is Z[0,
00) X B(R41) x B[0, 00) x B(# &)-measurable.
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(i) For fixed w, (c, &, )= I (c, &, t, w) is continuous.

(iii) For every c, &, t and w, I%(c, &, tAa(w), w)=1%(c, & t, w), I%(c, &,
0, w)=0 and I}(0, &, 1, w)=f(&, O)w'(D).

§81.2.3. For each n=1 we define a left continuous function [ -], on [0, o)

by

[s1,=x(0; (5)+ kgo k2" wjam e+ 192 () $20

where y; is the indicator function of an interval I, and for a fixed x, y € R¢ and
n=0 we consider the following SDE with respect to Q¢:

. . d s » .
16 K W=x+ 3 | s y20-gzeai0)II0)

sAa(w) .
+ SO Xina+ 1/2n -2 0b*(¥)d0

d

+ 32t j2n <Y XCTO+L, =1, W)aWI(O)

sAa(w) .
077 1720 -4 <ob RO+ 11, =1), W)dO

i=1,..,d.

The solution of this SDE can be given by the following recursion formula:

xit+ é:laj-(y)wf(s)-{-b"(y)s/\a(w) i=1,..,d
if 0ss=<[nl,+1/2"—9
X[l +k/2"—n, w)

+ ,i ai{(X([nl.+k[2"—n, w) (WI(s) —w/([n].+k/2" —7))

+ b (X([n1,+k/2" —n, w)) (s A o(w) — ([n]. + /2" — 1) A a(w))
i=1,...,d
if [gl,+ki2"—n<s=Z[yn],+(k+1)2"—y and k=1.

Xi(s, w) =

If we denote it by X,(x, y, n; s, w), then the following is easily verified :

(i) For fixed w, a family {X,(x, y, #;s, w)},>o iS equicontinuous in
(x, y, s)e R4x R4 x [0, o0).

(ii) For fixed x, y and 5, X,(x, y,7;s, ) is B(# §)-measurable for
each s=0 and X, (x, y, n;-,-) satisfies (1.6).

(iii) For fixed x, y, s and w, n€[0, 00)—X,(x, y, n; s, w) € R? is left con-
tinuous.

Moreover we have
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Proposition 1.3. For each T>O0 there exists a constant C depending only
on d, |al e, 1bllew> Ks K, and T, and the following estimates hold:

(1.7)  sup EQ[ max|X,(x, y, n; s, w)— X,(x, z, n; s, w)|2] S C(1/27)1/2,
x,yr’yzZEORd 0Ss<T

(1.8) sup sup ETIX,(x, x, 13 0, )= X,(x, %, 1 (L0+ s —m)", w)l*]
sca2mz,
(19)  sup EC'L max [X,(x, X, 1; 5, W)—x—(Xy,4(5, w)—(& O]
" N SC((12)' 2 +|x—(E, 0)1?) xeR? EeR.
Proof. For simplicity we denote X,(x, y, 1; s, w) by Y, (s, w) and X,(x, z,

n; s, w)by Z,(s, w). Since ¥, and Z, satisfy (1.6), we observe by (1.3) and the
Lipschitz continuity of a and b that for each k=1

E%[max {| Y, (s, w)— Z,(s, w)I*; [1],+1/2"—n=s=[n],+(k+ 1D)/2"—n}]
<3E[|Y([n),+1/2"—n, w)— Z ([n],+1/2" =7, w)I*]

([nInt(k+1)/2"=n) Aa(w)

+const. (1+k/27)EQ? B | Y,([0+71,—1, W)

([n1n+1/2"=n) Ao (w)
— Z,([0+n1,~n, w)Id0 |
where the const. depends only on d, K, and K,. By setting
o =E2[| Y ([n]n+k/2"—n, w)= Z([n]u+k/2"—71, W] k=1,

the above yields a series of inequalities of the Gronwall type:
k
041 =30y +const. (1+k/2M1/2" > oy k=1.
=1

Hence, we obtain
(1.10)  E2’[max {| ¥,(s, w)— Z,(s, w)|?;
[l +1/2"—n<s<[nl,+(k+1)/2" —n}]

<3a, 1—43(%’%7 {(1+1/27 const. (1 +(k—1)2)}¢  k=1.

On the other hand, it is easy to see that
E%“[max {| ¥,(s, w)— Z,(s, w)I?; 0=s=[n],+1/2"—n}]<const. (1/2")!/?

where the const. depends only on d, |a|, and |b||,- Therefore, combining
this with (1.10), we have (1.7).
Next, we show (1.8) and (1.9). To be simplified, we set X,(s, w)= X,(x, x, 1;
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s, w) and X(s, w)= X (s, w). We note that X, satisfies the following SDE

d s
WY X5 w=xt+ 2 | af(X(O+nl,—n)*, W)dwi(O)
=
sAa(w) |
* SoA bi(X([0+n],—m*, wdo  i=1,....d.
Noticing that 0=0—([0+1n],—n)T <1/2", we can easily show (1.8). To prove
(1.9), we define &i(s) (i=1,..., d) by

el = £ [\ a0+l =", w)—=al(H, (0, w)ldw(6)

j=1
(7 OO+l = %, W)= DX, w)IdO.
By (1.8), it is easy to see that for each 7>0
(1.11) EQd[OrLlsanTls,,(s)lz] <const. (1/27)1/2
where the const. depends only on d, T, ||a|l, bl K, and K;. And, by (1.4)
and (1.6)’, it holds that
X3(s, w)—xt—(X (s, w)— &)
=+ 3 | [0, ) - a3X(0, w)ldwi(o)
+S:“(w’ [bi[ X0, w)—bi(X(6, w)]d0  i=1,..., d,
in which we set £¢=0 for convenience. Hence, by (1.3), (1.11) and the Lipschitz
continuity of a and b, we observe that for each T>0
E’L max |X,(s, w)—x—(X(s, W)= (& )]
gc;rs;t. @292+ |x—(&, 0)»)
+const. S: EQ[| X,(0, w)—x—(X(8, w)— (¢, 0))[21d0
where the const. depends only on d, T, |a|l», [|blle, K, and K,. Thus (1.9)
immediately follows from Gronwall’s inequality. ]

Let f: R4—>R' be a bounded Lipschitz continuous function with the
Lipschitz constant K. For a fixed x, ye R4 and #=0 we define 1% (x, y, ;
t, w) by

T4, 3, 13 1, W= ] 105 3, 03 [0+l =)', w)Aw'(®).

Then, since fi(x, y, n; t, w) can be written as
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Ia(x, y, 13 1, W)
=fGwi e A ([n],+1/2" =)
+ kif(Xn(x, ¥s 05 [+ k[2" =1, w) (Wit A ([, + (k+ 1)/2" — 1))
— WA (Irlu+k[2"=n))),

it has the same properties on x, y, n, t and w as X,(x, y, n; t, w). Moreover, as
a corollary to Proposition 1.3, we have

Corollary 1.1. For each T>O0 there exists a constant C depending only
ond, ||all,, [bllw, Ks Ky, Ky and T, and it holds that

sup E29° [maxl],,(x, v, 5 t, w)—I%(1, &, t, w)|2]
yeR4,7n=0
éC((1/2")”2+lx ¢ 0 xeR {eR1.
§§1.2.4. For ¢c=0and we# § we define Twe# §U {0} by

ew(-[c)ew if ¢>0
(Tw)(-)= '
if ¢=0,
and we also define a measurable mapping @: R 1x#§U {0}->#"¢U {0} as
follows:

X, w)—=( 0 er§ if wew'§

LE, wl(-)= [ _

0 if w=0
Then, by (1.1) it is easy to see that for each ¢>0
(1.12) Q*{w; Twex}=cQ4*(x) *eB(WE§Y),
and, by using this we can verify that for each ¢>0 and £ e R4™!

X (- [z, w)=X, (-, T,w) for a.a. w(Q%.
Hence, as to @, it holds that for each ¢=0 and ¢ € R4-1
1.13) P[¢, T.wl(2a(w)) =X, (a(w), w)—(£,0)  for a.a. w(Q9.

In view of (1.4), we have the following estimate: For ¢y >0

(1.14) : igp E®* [max [X.,4s) (¢, O)*]<const. L+t
0Sce=c

where the const. depends only on d, ¢q, |a, and |b|,. Using this estimate,
we see easily that for some constant C depending only on d, |la|, and [b]

(L15)  sup B[S, w)eW)I’; sw)sn]=CL+my/n 120
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(1L16) sup EO'TIOLE, wI(o()ls nSo() STIS CL+1 )T~ D)1
O<n=y'.
Further we have
Propesition 1.4. As ¢ | 0, the following holds:

(117)  sup [¢*EQ[OLE, w]'(o(w)); e(c*)? <o(w) =(c*)*]

= ((=em Bt [ | ay(Xee, o) dw(5): o(w)>1]
+(@2B2 [ [ (Ko, (90 d5; o) 51
Eetay (¢, 0)|—0,

(118 sup, [ES“*[B[%, w]'(o(w); e(c2)*<a(w)Se]| — 0.

Here x' denotes (x1,..., x4 1) for x=(x1,..., x¥) e R*.
Proof. From (1.12) and (1.13), we see

cEEQ*[D[E, w]'(a(W)); e(ct)? <o(w) = (c*)?]
=E2"*[E.. o(w), w)—&; e<ao(W)=1].

Since Z. . satisfies (1.4), using the martingale property of stochastic integrals
with respect to Q¢, we observe that the right hand side in the above is equal to

(e[ [ b (e dds; o)1
et [ [ @Ko dNaW(9); 0(0)>1 | etay(E, )
G ¢ O PR
+e2B0% [ [ (@U(Xew )= (e, ODAWHS); 0(w)>e].

Here we have used the fact that E2”*[wi(e); o(w)>e]=+1. Therefore, by
noting that E2**[¢ A ¢]=4,/¢/2n and Q%*(c>¢€)=./2/ne, and by (1.14), (1.17)
follows immediately. By tracing the similar argument as above, we can also
show (1.18).

§2. Uniqueness I

Let a, b, 7, f and p satisfy (0.2)’, (0.3), (0.4), (0.5)" and (0.6). Namely,



824 SATOSHI TAKANOBU

a,7: R®>R?*®@R? and b, B: R‘— R*are bounded Lipschitz continuous functions

satisfying

@.1) ai=8¢  j=1,..,d, bi=0
2.2) =0 j=1,.,d
@3) 5o, 1B, O <1

Our aim of this section is to show the uniqueness of 8,[a, b, t, B, 6y] for any
probability measure A(dx) on R“.

Let A(dx) be a probability measure on R¢ and let [X(t), B(t), M(#)] be an
element of §,[a, b, 7, B, §,] defined on a filtered probability space (2, &#, P,
F,). Weset gp=0yX)=inf {t=0; X%t)=0}. Then
2.4 oo=inf {t=0; X40)+ B4(t)=0}
and since L), (X%)=0 for any 20, it is easy to see that M(tA 0,)=0 for any
t=0. Hence, for i=1,...,d

d
Xi(tAGo)=Xi(0)+ 3 S; al(X(s A 56))dBI(s A ) + S' Bi(X(s Aag))ds A o
i=1 0
which, together with (2.4), implies that
2.5) P(X(- Aog)e®) =S Px(x)A(dx) .
R4
Here, P~ denotes a probability measure on #°¢ introduced in §§1.1 for the
functions a and b. Next we define
X(O=X(t+0o), B()=B(t+0,)—B(o,), M(O)=M(t+0o), F,=F .,

where o, is finite a.s. (P) from (2.4). Clearly [X(t), B(t), M(t)]€ 8px(op)e) [
b, t, B, 8o] and further, with probability one, it belongs to §; (20900 [a, b, T,
B, 8,1 with respect to P(-|%,). Now, if we suppose that for each £ e R4"!

(2.6) the uniqueness holds for S; . , [a, b, 7, B, 6]

and we denote by P, the unique probability law of X(-), then it follows from the
above that

P(X e*|F)=Pz(,,(*) as. (P).

Therefore, putting (2.5) and this together, we have that for 0<1t; <---<t,
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P(X(tl) E* JERERE] X(tn) € *n)

n N
= Zl SRd EX[Pyy (o) (W(s)) € 45, W(S,) €%,) | $;=1;— Oy S,=1,— 0
=

s W(E) €%, Wt ) €%;_ 1, 1 S0 <t]A(dx)

+ 3 B (1) €%y W) € 1y 1, 00)A(dX)
Rd

and thus, the uniqueness for S;[a, b, 1, B, o] follows. Consequently, we
have seen that if we prove (2.6) for each £ € R4~1, then our aim in this section is
attained. In the following, we shall present four propositions and we shall
prove (2.6).

We fix &, e R4™1, and let [ X(¢), B(t), M(t)] be an element of S«s(go,o, [a, b,
7, B, 6] defined on a filtered probability space (@2, #, P, #,). We may assume
that # = v, &, and X(0)=(&,, 0). By (2.1) and (2.2), if we denote 7i(-, 0)
and Bi(-, 0) by 7i(-) and B'(-) respectively, then the SDE (0.1)" is rewritten as
Q7 Xi)=¢&+ ,21 S ai(X(s))dBI(s)+ S; bi (X (s))ds

t
0

Il

N é g;‘r_",-(E(s))de(s)+S; BE()ALAXY  i=1...,d—1

@8) X40=B0+ | pHEOMLIAX
where Z(t)=(X'(1),..., X471(¢)). Applying 1t6’s formula to (2.8), we observe
X001 = | sgn (X()ABAG) + LK),

This implies that [|X4(¢)|, L%(X9)] is a solution of the Skorohod equation and
hence, by setting Bé(1)= St sgn (X4(s))dB4(s), it follows that
0

LY(X4)=— r£1in B4(s),

0=s=st

1 X4(£)| = Bé(t) — min B4(s)

O0ss=st

(cf. [5] or Lemma I11-4.2 in [2]). Therefore, noting that B4(r) is also an
Z,— BM§, we see that L%(X¢) = o0 a.s. (P), and if we set A(¢)=inf {s; LYX%)>1},
then A(f)< oo for any t =0 and #— A(¥) is strictly increasing right continuous with
A(0)=0 and A(o0)=o0 a.s.(P). Moreover we see from the above that with
probability one

X4(A@)=0 (t=0), XUA(t—))=0 (1>0)
IX4u)|>0 if A(t—)<u<A(f) and t>0.
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Now, from this and the fact:
Xe(s+A@ =) A A()=B4(s+ A(t—)) A A(t))— B¥(A(t—)) s=0, >0,
we define & 4,,-point processes p and g on #°§ as follows:
D,=D,=D={t>0; A(t)> A(t—)},
plt](-)=B((- + A(t=)) A A(D))—B(A(t—)) teD,,
gl () =X((- + At -) A AD) - X(A(t—)) teD,.

We also put &()=Z(A(®) (¢20) and (&) ={1+p4&E)}/2 (Ee R4 Y). Then
&(1) is an # 4-adapted (d — 1)-dimensional right continuous process and c*({)
is nonnegative from (2.3).

Firstly, as to an & 4,-point process p on #"§, we state the following. The
idea of the proof is due to S. Watanabe.

Proposition 2.1. An & ,,-point process p on #°§ is of class QL with com-

pensator
N (dtdw)=c*(&(t=))diQ%+(dw N # &) + ¢~ (E(t—)dtQd—(dwn # §-).
Proof. Ttis sufficient to show that for ¢’ >t and I' € Z(#"§*) with Q% *(I")

<400,

(29) E[#se(t, 1]; plsle THFuo]=E| | c*(Es—)dslF ey [044(D).

To do this, we set
t
02(0)= |, 12X,

L= 1 XEDAB() =1 d=1, N4O=1+ [z XeeDB)

where I:Lr =(0, o) and R_ =(—~o00,0). By applying Itd’s formula to (2.8), we
first note that
X40)= N4+ || HEEMLIXY
0]
where X4(H)=X%t)vO0 and X4(f)=(—X4%t))vO0. Similarly as |X4)|, this
expression implies that

S CHEG)ALYAXY) =~ min N4()

(2.10) {
Xi()=Ni(- Olgigt Ni(s).
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Noting that lim,,, Ni(¢) exists and is finite a.s. on [ 4(00)={NiY(o0)< + o0],
we define Bi.(1) i=1,...,d as
B lim Ni(z) if t=0.(0)
Bi(={ "'
Ni(t.() if t<o.(0)
where 7. (t)=inf {s; 6.(s)>t}. Then [BL,..., B4] is a d-dimensional Brownian
motion up to time ¢.(c0) and it is clear that
(2.11) Bi(o+()=Ni(1) i=1,..,d.
Now, like as p[t], we define p.[t]Je# &+ U {0} for t>0 as follows:
l:()=— min Bi(s), (I.)"'(O=inf{s; [.(s)>1}
0<s=st

P+[A()=BL((- +(1)T' =N A1) ()= Bo((L)'(-)).

Then, by the general theory of time change, the following holds: For #' >t and
e B(w &) with Q4 (< + o0

(2.12) E[#{se(t, 1']; P[s]e€ TN FE,) 0]
=B A L4(00) =1 A L ()| & iy 1014 (T)

where =%, ).

On the other hand, we can observe that for >0 and I' e Z(# %)

(2.13) #{se (0, 1]; p[s1el}
=#{s€(0, I (oc(AON]; (P51, P+[s147Y, £p.[s]1)el}.

Indeed, this is shown in the following: Firstly, by virtue of (2.11), we note that
(2.10) becomes

t
.10y { Les®) = | cHEs)Lex
X4()=Bi(o (1) +1:(0:(1)-
From this, it follows immediately that
t
(2.14) (o (AD) = || cHes)ds.
Now, let t>0 be such as p[t]e# §*. Then, since X%u)e Iéi for any u;
A(t—)<u < A(1), it follows from the definition of ¢, and N that
pliliw)  if ie{l,...,d—1}

L(u4A(t—))— ;(A(t—))=[ o
+pl4u) if i=d
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o.(u+A(t—))=0.(A(t—))+u

for 0Su< A(t)— A(t—). Hence, these, together with (2.11), imply that for
0Su AR —A(t-)
plt1i(u) if ie{l,...,d—1}

+p[1]%u) if i=d.

Bi(u+o.(A(t-))—Bi(oL(A(t-))=

On the other hand, if we notic that B4 41, is a 1-dimensional reflecting
Brownian motion up to time ¢, (o), then, by (2.10)" we easily verify that (I,)™?
(I+(0:(AM)N—)=0.(A(t—)) and (1) (I+(o:(A®))))=04:(A(#). Therefore,
combining this and the above, we have
p[t] =(ﬁi[s]1’-« °s 13_-t [S]d-la i I_)i [s]d)
where s=1[,(0.(A(?))), which, as to (2.13), says that the left hand side is less
than or equal to the right one. Next we show the opposite sign of inequality.
For this, we fix t>0and let s>0be suchas 0<s=<1.(c.(A(¢))) and p.[s]e# §*.
We take t,=inf {t'; s=1,(64+(A(¢")))}. Then, by noting that
(1) (1 (0 (AW))=0(A(w)) forany u=0

we observe that

(171 =) 1(0 £ (A(to))) =0 +(A(to))

(1) (s =) =lim (L.)"!(L(0 £ (AWN) = lim 0, (A(t)) =0 +(A(to—)) -

Since (14+)"U(s)>(l4+)"Y(s—), this implies A(t,)> A(t,—), that is, p[t,] e # &*.
Thus, as we saw in the above, it follows that
pltd=(p+[s1%..., P[s147", £P+[s]9).

Therefore, as to (2.13), we obtain the another inequality and consequently,
the proof of (2.13) is complete.

Finally we prove (2.9): We denote &, ) -1, suacy) PY % for simplicity.
Applying the optional sampling theorem, we conclude by (2.12), (2.13) and (2.14)
that for #'>¢ and I' € Z(w §*) with Q¢-*(I')< + 0

E[#{se(t, ]; pls]eT}|%]=E B ci(é(s—))dsm.]gd’i(r).

Thus (2.9) follows immediately by noting that &, >.%# ,,,.
Secondly, as to an & 4,-point process g on #°§, we present the following:

Proposition 2.2. With probability one, it holds that for any te D



STOCHASTIC DIFFERENTIAL EQUATIONS 829

gl (-)=2[&(—), p[11(-).
Here ®[&, w] is introduced in §§1.2.4.

To prove this proposition, we present the following lemma: For each n=>1,
let [ - ], be a left continuous function on [0, o) defined in §§1.2.3 and let [ X ()
=(X1(®),..., X41))] denote a unique solution of the following SDE:

vio=ch+ ¥ | ai(r 1048 + || bi(r(Ts10ds
+ £ [ @Inamie + | pOrEIisEg =t
where Y'(£)=(Y(?),..., Y¥~1(¥)) and £8=0 for convenience. Then we have

Lemma 2.1, For each T>0 and p>0

(2.15) lim E[ sup |X,()—X,([1])I"]=0,
(2.16) liTm E[ OIEELXT [ X(H)—X,(H)|F]1=0.

The proof of this lemma is carried out in the standard way, and so we
omit it.
Proof of Proposition 2.2. For simplicity we denote L?(X9) by L(f). It is

enough to prove that for each ¢>0 and T>0

(2.17) E[o > XA(s)—A(s—)>ao max )Iq[s](t)—@[i(s—), p[s11(8)1=0.

<s<L(T) StSA()-A(s—
To do this, we define an & 4,-point process g, on #°§ as follows:
D, =D
2L () =X,((- +AE-) A AD) - X (A(t-)) teD,,.

This ¢, is well-defined, since

X4 =B+ [ POGIINLAXY
0
And it is easily seen that for any se D

4,[51(-) = Xu(X,(A(s —)), X,([A(s—)1.), A(s—); -, pLs])— X, (A(s—)).

Hence, from this and the definition of ¢ and g, we observe that the left hand
side of (2.17) is dominated by

218)  E[ 3 Zaw-ac-)>e _ _Max )IX(t+A(S—))~Xn(t+A(S—))

<s<L(T) O0St=<A(s)—A(s—
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—{X(A(s =) = X (A= }]

+E[ Z XA(s)—A(s—)>s
0<s<L(T)

X max IXn(Xn(A(S - ))5 Xn([A(S - )]n)a A(S - ) 5 L P[S])

0<t<A(s)-A(s—)
n(Xn(A(s_))s Xn(A(S—))s A(S—), 5 p[s])l]

+E[L Y Xaw-As—)>e
0<s<L(T)

X ersmax A(s_)IXn(Xn(A(S—)), X, (A(s—)), A(s—); t, p[s])— X, (A(s—))
— (X1, pLsD—(&(s =), NI
Noting that A(s)<A(L(T)—)=<T for 0<s<L(T) and [X([A(s—)],); s=0] is
Z 4s)-predictable, we see that each term of (2.18) is also dominated as follows:

L(T)-

the first term§2E[ max lX(t)——X,,(t)lS g ) xa(w)>£Np(dsdw)],
0<t=<T 0 7o

L(T)-
the second terngBO Syg Xo(w)>e

x max X, (x, y, 15 t, w) — X,(x, x, n; t, w)|

0=t=

L(T)
=E[g0 57/’5 XG'(W)>E

x max | X,(x, y, n; t, w)—X,(x, x, 115 t, w)|

0=<t=T

x=Xn(A(s=)) Np(deW)]
y=Xn([4(s—)1n)
n=A(s-)

xataten N(dsdw) ],
Y=Xn([4(s—)1n) —
n= (s—)

. L(T)-
the third term §EBO SVS ow)>e

x max |X,(x, x, n; t, w)—x—(X (t, w)—(&, 0))]]

0=t=T

raten Npldsdw) |
=¢&(s—)

n A(s—)
L(T)
=E [SO SV"XU(W)>8
X X 1,05, %, 15 b W)= 2= (K s )= (& O p(dsd) |
n=A(s—)

Therefore, by (1.7), (1.9), (2.16) and Proposition 2.1 it follows that each term of
(2.18) tends to zero as n 1 oo, which implies (2.17). &

Thirdly, we state the following, which plays an important role in the proof
of Proposition 2.4 below.

Proposition 2.3. Let f: R4—R! be bounded Lipschitz continuous. Then
for each t>0 it holds that
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A(s)At

f(X(0))dB'(6)

Lim. S
el0 s;A(s)—A(s—)>e JA(s—) At

= [\ rxnaB©+54 | f&-), 0pes-ds.

Here L(t) stands for LY(X?).
For the proof of this proposition, we present the following lemma:

Lemma 2.2. With probability one, it holds that for any se D and t=0
A(s)
[i0 FX@MBO)=T(1, =), (—AG=)", pls).
Proof. We take X, introduced just before Lemma 2.1 and set

A t , . t .
10={ fx@yaB®), 10 1, 01)4B0).
Then we easily see by Lemma 2.1 that lim E[ max [Ii(s)—1Ii(s)|*]=0 for
nto O=s=T
each T>0, and so it follows that
(2.19) lim E[ max > |I HAGB)AD—T(A(s=)AD)
nto  0StsT s;A(s)—A(s—)>
—(IL (A A D)=L (A(s =) A1)|]1=0
for each ¢>0 and T>0. We next define Ii(¢t, S, S’) (t=0, S'=S=0) by
I3, S, ")

EAn((5+ (555 -5 )ns)
({5 —5) ) )m((so (552 -5
AO—&QAS».

Then, since |13, S, $) (1A S)~Ii(tAS)) is dominated by2max |B(s)

Lf (Xt A S))—f(X,([t A S],)|, we observe from (2.15) that oses
lim E[ max (it A S)—Ti(t A S)—1Ii(t, S, S)*]=0

nto =

0=
S’

HV

S;O
for each T>0. Hence it follows that
(2.20) lim E[max > II A A —IL(A(s—=)At)
nto OSt=T s;A(s)—A(s—)>
_Ilil(t’ A(S ~')s A(S))!] =0

for each ¢>0 and T>0. On the other hand, since it can be easily verified
that for any se D
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I8, A(s—), A(s)
=I(X,(A(s—)), X ([A(s—)]n), A(s—); (t—A(s—))*, pLs]),
from (2.16), Corollary 1.1 and Proposition 2.1 we observe that
(2.21) lim E[ max > II,f(t, A(s—), A(s)—TI'(1, &(s—),
nto O0Zt=T s;A(s)—A(s—)>
(t—A(s—))*, plsDI]

. L(T)
< o[, o

x max |1, y, 15t W= T(L &t W oy, caqon — Ny(dsdw) |
0=us [y=Xn([4(s=)1n)
|§=8(s—),n=4(s—)

=0

for each e>0 and T>0. Thus, by putting (2.19), (2.20) and (2.21) together, the
lemma follows immediately. ‘

To prove Proposition 2.3, we must trace the proof of Theorem 2 in [8]
almost similarly. We shall here sketch the proof.

A sketch of the proof of Proposition 2.3. For simplicity we denote &,
by &,. Setting p[t]=q[t]=0 if t<= D, we define a family (#)),., of sub o-fields
of & by

Ho=F 1wy V 0(PLLO - awiny—y ALLOTi—awy-) -
Then it is easily checked that #, < #, for 0<t<t' and
(2.22) o(X(s), B(s); 0Ss<f)c#hcF,cFry t>0.

For a bounded Lipschitz continuous f, we observe by Lemma 2.2 that for

each >0 and ¢>0
A(s)A
{2 roxey aBo)

s;A(s)—A(s—)>e JA(s—)

L(t)+ . ~
= [, ¢ tom eI (L, =), (1= AG=))*, W (dsdw)

L(1) _ _
£ 000t 1L 6=, (1= AG=))*, W) R (dsd).

We denote by M (t) and V% (1), the first term and second term in the right
hand side, respectively. Also we define M(t) and V(t) as follows:

Mf(t)——g or S T4, &), (1= AG=)*, )N (dsdw)
vim=8." 1156, 0BEs—)ds.



STOCHASTIC DIFFERENTIAL EQUATIONS 833

Then we see that for each t>0

(2.23) Lim. M (1)=Mi(1), 1.i.rg. Vi ()=Vi@).
el0 el
Hence we have that for each >0

lim. Y S’“s’“ FXOMBHO) =MD+ V(0.

e10 s;A4(5)—A(s—)>e JA(s—)A

Therefore, if we show that for each >0
. t .
(2.24) (D= Sof(X(B))dB'(G) a.s. (P,

then the proof of Proposition 2.3 is completed. To do this, let '>1>0, let
[G,(u); u=0] be a real bounded & ,-predictable process and let G,: #"2¢4— R be
bounded Borel measurable. Setting a bounded s#,-measurable H by
H =G (L(0)G(pLL(O];- 4wy -y aLLO) i ary-)) »

by the same way as in the proof of Theorem 2 in [8] we can show that

E[(M% (t)— M ()H]=0(1) as el0

t t
ELMY, 02— (| rOx@ppao— 1, 2= 7(X(©@)2dopHI=o(1)
as ¢} 0.

Hence, by (2.23) we obtain that
E[M'(t)H] = E[Mi{()H]
ELMy(1 = | FCL@PdOH]= ELM02 - || (X (©)d0)H].
Thus, noting that M¥(u) and S: f(X(0))*dO are s#,-measurable a.s. (P) for each

u>0, from the arbitrariness of t'>t>0, G; and G, we see that for a bounded
Lipschitz continuous f

(2.25) [Mi(t); t>0] and [Mi(t)*— S;f(X(G))ZdG; t>0] are #,-martingales.

Further, from the linearity of 7% with respect to f and (2.25), we see that for a
bounded Lipschitz continuous f and g

(2.26) [Mi()Mi(t)— S;f(X(B))g(X(G))dO; t>0] is also an s#,-martingale.

On the other hand, it can be seen that Mi(f)=B¥(t) a.s.(P) for each t>0.
Therefore, by this, (2.22), (2.25) and (2.26) we observe that for each ¢>0
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R IOIWCOLEI0)

= lim (£ ELM30 (X (k= D2 ){B(k127) — B((k— D2}
+ ELMO S XD EO - B}

— tim (ELM}(1/27) (X(O){BH(1/27) — BHO)}]

+E|  fexqornsexenas |-[ | ™ sex@ndescxon )
—& | rexoyan ],

so that it follows that E[(Mif(t) - g' f(X(B))dBi(0)>2] —0 for each 1>0. Conse-
0
quently we have (2.24), and complete the proof of the proposition.
Fourthly, using Proposition 1.4 and 2.3, we shall derive an SDE of jump
type which ¢(?) satisfies: We define an % ,,)— BM§ B*(t) and a bounded Lipschitz
continuous f: R4 1— R4 as follows:
B¥(1)=M(A(1)),
Bi(©=p®)
a(w) .
et @B [ [ (X o s 0w S1 |
0
a(w) .
@[ |7 (K do)ds; o) S1 |
0

—cH(EEet [ :aé(Xc+(§),§(s))dw"(s); o(w)> 1}
- (OEe" [S; (X, o) L)dWI(s); o(W)> 1} i=1,....d—1.

And we define c(&, w) (Ee R4, wew§) by
(&, wy=c*( Oz W)+~ (Oxzra-(W).-

Then we have

Proposition 2.4. An % ,-adapted (d—1)-dimensional right continuous
process &(t) satisfies the following SDE of jump type:
. . d t . . t .
s=ci+ ) @B+ | pe@s
i=
t+ .
+ g ngg Xe(zs—),wy> 0Xa(wy> eés—) w2 PLEGS =), wIH(a(W)) NV, (dsdw)

0

t+ . ~
+ So gyg Xe(s—)wy> 0Xa(wy<cEs—)wrPLE(S =), w1 (a(w)) N (dsdw)
i=1,....,d—1.
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Proof. First of all we note the following: With probability one, it holds
that ¢(&(s—), p[s])>0 for any se D and
¥{seD; 0<s=t, A(s)—A(s—)>ec(é(s—), p[s])} <+ for any ¢>0.
We define #,,-adapted (d—1)-dimensional right continuous processes (,(?),

(1) and {(1) as follows:

{(t)= 0<Zs:St Xacs)—A(s—)> ees—),pisn ) = E(s =),

SED

= X . Xaes)—ais—y> () —E(s =),

0<s=

SeD

(= [\ BO-F @ +F(OaE Oemgods
+ g:’ Syg Xc(é(s*).w)> 0Xa(w)>c(§(s_)’w)2¢[é(s - ), W],(O'(W))Np(dsdw)

t+ ~
+ SO Syg Xc(é(s— y,w)>0Xo(w) Sc(E(s— ),w)ZQI:é(S - )7 W],(G(W))Np(dew) .

From the above note and the estimate (1.15), {,(¢) and {(¢) are well-defined.
We first show that for each T>0

(2.27) lim E[ sup |{,(5)—{(DI*]=0.
£l0  OSt=T
From the definition of the point process g and Proposition 2.2, we observe that

Ca(t) =0 <§S . Xa'(p[s])> ec(E(s— ),p[s])2¢|:€(S - )a P[S]] I(a(p[s]))

t+
=S SWS Xe(e(s—),wy> 0Xa'(w)>£c(r:(s—),w)2¢[€(s =) W]’(G(W))Np(deW) -

]

By virtue of the estimates (1.15) and (1.16), the last hand side is written as

t+
So SVS Xc({(s—),w)>0Xa'(w)>c(.§(s—),w)z¢[£(s_)s W]'(O'(W))Np(deW)

t+ N
+go SV% Xe(Es—)mwy>0Xawysces—)w2@LE(s =), w]'(e(W)) N (dsdw)
t+ -
- SO S%‘i Xe(es—)mwy>0Xa(wy<zc(es— w2 PLE(S =), w]'(a(W))N (dsdw)
t+
+ So Syg X“(§(S—),W)>0XEC(§(s—),w)2<a(w)§c(§(s_)’w)2
x [&(s—), w]'(a(w)) N (dsdw),
in which O0<e<1. For the third and the fourth term in this expression, the

following is true: By (1.15),
lim E[ sup [the third term|*]=0.

£l 0 O0=t=T
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By (1.17) and by noting that ¢*(&)—c~ (&)= p4(¢),

lim sup_[the fourth term— | {B(©)~F'(&)+ PUEai(& Olz=giods] =0.

£40 O=<t=T
w

Hence, putting all this together, we immediately obtain (2.27). Applying (1.18)
instead of (1.17), by the same way as above we see that for each 7>0

(2.28) lim E[ sup_|{,(0—C.()121=0.
£40 0St=<T
Next, from (2.7) the following is obvious: For each s>0 and =0
X'(A)A)—X'(A(s—) A D)

- é SA“’ M a}(X(G))dBf(0)+S

1 JA(s—)At

(s)At
b'(X(6))do
At

A
A(s—)

+ 3 S"“)” TEO)NMIO)+ S

A(S)A
j=1JA(s—)A A

(s-)

| B(EO)4LEO)

A(s)

where L(6)=L3(X?¢). But, from the fact thatg " dL(6)=0 for s>0and ¢t =0,
A(s=)At

the last two terms in the above formula are identically zero. Hence, for each

t>0, summing up over 0<s= L(?) such that A(s)— A(s—)>¢, we have

(2.29) LL—-)+ XAL@®) - AL —)> (X () = (LD —))
B jd=1 S3A(S)~A(s=)>¢ sz:)—/;i\t a’;(X(0))dBi(6)

A(s) At
S b (X(0))do.

S;A(s)—A(s—)>¢e JA(s—) At
Here, by applying Proposition 2.3, the first term in the right hand side of (2.29)
converges in L2, as ¢ | 0, to

d (t . L(t)

£ { aexonasi@+( e, opzonas.
Also, it is clear that the second term converges, as ¢ | 0, to St b'(X(9))do a.s. (P),

0

because the Lebesgue measure of the set (0, 00)\\U,p(A(s—), A(s)) is zero a.s. (P).
Therefore, we conclude that the right hand side of (2.29) converges in L?, as
¢l 0,to
a (t | . t L)
> | ajx©@aBi©o)+ || xends+ | aice), e,

Jj=1
that is,

x0-t- ¥, | sizenamio- | peoa
+(. ay(e®), opeoas
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where we have to recall (2.7). On the other hand, by (2.27) and (2.28), the left
hand side of (2.29) converges in probability to {(L(t)—)+ X'(#)—&L()—) as
¢ | 0. Thus, combining with these, we have that for each t>0

aun-)=to+ ¥ | sEenamio)+ | oo

L(t)— ,
#0770 et =ootmm s e @LEG =), W (W) (dsdw)

L(t)— -
+ So S%‘i Xc({(s—),w)>OXa(w)§c(§(s—),w)2(D[C(s =), W]’(U(W))Np(deW)
a.s. (P).

But, since both sides are left continuous in ¢, we see that this identity holds for
all t>0a.s.(P). Consequently, replacing ¢t by A(t) and then taking the right
hand limits in ¢, we obtain the conclusion of the proposition.

Putting the above propositions together, we shall prove (2.6).

Proof of (2.6). As before, we denote #,,, by #,. We now take a filtered
probability space (', #', P', #;) and an & ;-stationary Poisson point process
p’ on % ¢ with characteristic measure Q4(dw). And we put a filtered probability
space (Q, #, P, #,) as follows:

Q=0xQ, F=FxF', P=PxP, F,=N\(F ,XFi,).
e>0
Then we may regard the processes &(-), B*(-), p, p’--- as defined on
Q, #,P, #,). Clearly B* is an #,—BM4. Noting that c(&(s—), p[s])>0

for any se D, and D,n D, =¢ a.s.(P), we define an Z -point process p on #"§
as follows:

Dp=D,U{seD,; c(&s—), p'ls])=0}
Teiets—.ptsn-1PLS] for seD,

p'ls] for seD, suchas c(&s—), p'[s])=0.

pls]=

From its definition, it is clear that
[ Dp={S eDﬁ; C(f(S—), p[S])>0}
pls]= Tc(.g(s—),;;[s])ﬁ[sj seD,.

Further, by Proposition 2.1, the point process p is an & ,-stationary Poisson

(2.30)

point process on #°8 with characteristic measure Q4(dw).
By (2.30) and Proposition 2.4, the SDE which () satisfies becomes as
follows:
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. . d t . t o
0=+ 3 | mEonasro+ | pesnds
#00  Hotm= 1OLEG ), Teamy W IEAE5 =), WPOOM)N,(dsdv)
+ S: gﬂ Yot <1PLEG ). TuggisrmyWIH(E(s ). w2a(w) N (dsdw)
i=1,..d—1.
Hence, recalling (1.13), we see that &(¢) is a solution of the following SDE of
jump type:
ey=gi+ 3 (' sienasio)+ [| pends
Jj=1J0 0

¥ S; garg Xoomy> 1L (E(s =), wIN (dsdw)
+ S: Syg Yooms1 S (E(s—), WN(dsdw)  i=1,...,d-1

where (&, w)=2Z ) {0(w), w)—<¢. Therefore, since v and B are bounded
Lipschitz continuous, and since, by (1.5) and (1.14), it holds that
é:gp_lEQ"[!f(é, w)2; e(w)<1]< 4+ o0
EQ[If (&, w)—f(&, w)I?; o(w)<1]<comst. [~¢&'|2 ¢, &'e R,
we apply Theorem IV-9.1 in [2] to obtain the following:

(2.31) An % ,adapted (d—1)-dimensional right continuous process &(t) is a
functional, which is uniquely determined from t, B and f, of &,, an
&,—BM§g B* and an Z stationary Poisson point process p on # 8 with

characteristic measure Q%(dw).

Also, the following is easily verified:

{ A=, @s=), w2a()N (dsdw)
(2.32) o Jri

LY(X%)=L(t)=inf {s; A(s)>1}.
And, by Proposition 2.2 and (2.30) it is easy to see that for each >0
(2.33) X(»)
{ PLUL(D~), Tz -y, piwnPLLO] (1= AL(D) —)) + (S(L(H) —), 0)

if L(t)eD, and c(S(L(H)—), p[L(H])>0
(&(L()-), 0) otherwise.
Thus, from (2.31) ~(2.33) we can clarify the structure of X(-), and as its conse-
quence we establish the uniqueness of S;, ,, [a, b, 7, B, o).
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§3. [Existence

Let a, b, 7, B and p satisty (0.2)', (0.3), (0.4) and (0.5), and A(dx) be a
probability measure on R¢. In this section, we show the nonemptiness of
S;[a, b, 1, B, 1]. The general case is reduced to this case, ifwe use themethods
in [7] or Theorem IV-7.2 in [2], i.e., the following methods; transformation of
Brownian motion by an orthogonal matrix, time change and transformation of
drift.

First we start with the following proposition: Let a:R!— R! be a bounded
and uniformly positive Borel measurable function and let B(t) be an %,—BM}
defined on a filtered probability space (Q, #, P, #,). Let y: [0, 0)x Qx R!
—R! be Z,-progressively measurable and satisfy sup,, ,|y(s, o, n)|<1.
Suppose we are given a I-dimensional continuous Z,-semimartingale Y(¢)
satisfying

3.1 Y(f)=Y(0)+ S; o(Y(5))dB(s) + SO ¥, Y(s)dLEA(Y)

where L2%( Y)=>rezL(Y). Then we have

Propesition 3.1. For any p>0 there exists a constant C depending only
on p and sup, g1 o(y) such that

E[IL{#(V) = L{A(YV)PPISC(L+ | —tp) | —tfr for 1, 1'20.
Proof. By time change by means of Sr o Y(s))?ds, we can assume a=1.
(0]
We set functionals I'; and I', defined on {we#"!; w(0)=0} by
' w)@®O=w)—min w(s), I,(w)()=— min w(s)
0ssst 0ssst

Note that [I";(w), I',(w)] is the unique solution of the Skorohod equation for
0 and w (cf. [5] or Lemma III-4.2 in [2]). Now we define a sequence of %,-

stopping times {7,}2, as follows:
to=Inf {t=0; Y(¢) e Z}

inf{tz7, ; |Y(O)-Y(r,-)l=1} if 7,<+o0
+ 0 if 7,_,=4+0 nzl.
Then we can observe that with probability one,

(3.2) t,<+00 n20
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(3.3) 1, =inf {t=0; Y(0)+B(f) € Z}
(3.4) fys 1 =T, +inf {1205 T,(B)()=1}

=1, +inf {t=0; I'(B)?)=1} n=0
(3.5) LY (Y(-+1,)=T5(B)(1) n20

where B, ()= St sgn (Y(s+1,)— Y(z,))dB(s+7,) and B, ()=B,(tA (1,41 —71,)
0

Indeed, they are shown as follows: From the fact

(3.6) L)% (Y)=0  for any 20,

it immediately follows that 7, < + 0o and (3.3) holds a.s. (P). Tosee (3.2), (3.4)

and (3.5), we assume that (3.2) is true for n=k (k=0). Since

3.7 LYY) is flat on [1y, T4 ,) for any le Z~{Y(z,)},
we see by It0’s formula that

|Y(t A (s 1 — 1)+ T) — Y()| = By(t) + LY ) e (Y- +10).

EA(TK+1
This expression implies that

YA (tr s — )+ 1) — Y(@) =T (B () =T (BY) (t A (Ty 1 — 7))
LYt —ae (Y + 1)) =T 2(B) () =T 2(BY) (1 A (Tes 1 — 7)) -

EA(Tk+1

Hence, noting
(3.8) B, is an #,,, —BM},

we see that (3.2) is true for n=k+1, and so are (3.4) and (3.5) for n=k. Thus,
putting all this together, we conclude that (3.2), (3.4) and (3.5) hold for any n=0.
From (3.6) and (3.7), it is easily seen that

sz( n= kg'o LY(Ik))*A(rkH—:k) (Y(- +74)-

(t—tx

By (3.4) and (3.5), this implies that for every =0
0 ° k=1, o
Li(Y)= 3 T2(B) (1=t~ L inf{s20; Ii(B)o)=1)").
= =

We here note that 7o, By, Bj,... are independent and B,(-) is equivalent in law
to B(- A1), where t=inf {t=0; I' (B)(t)=1}. This is derived from (3.4), (3.8)
and the &Z,

Tn+1

-measurability of B,. By the same way as above, for Y(0)+B(-)

we can observe that for every t=0

LIHYO+B)= 5 Fa(49(t=7o— %, inf {s20; [1(4)(9=11)")
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where {A,},>o possesses the same property as {B‘,,}@O. Thus we see that the
law of L’2(Y) coincides with one of L°2(Y(0)+ B), and if we show that for
p>0andt t'=0

(3.9) E[L2Z(Y(0)+ B)— L2%(Y(0)+ B)|2?] <const. (1 +|t' —t|?) |t' —t|?

where the const. depends only on p, then the proof of the proposition is com-
pleted.

We prove (3.9). By applying It6’s formula to Z(t)=Y(0)+ B(t) with a

function 2 S” (b—[b])db, it is easy to see that for 0=+t
0

2§i)’ (b—[b])db=2 S (Z(s5) ~ [Z(s\)dB(s)+ 1 — 1 — (LY(Z)— L%(Z)).

Hence, we have that for p>0
|Li#(Z)— L;#(2) |
’ 2
<const. {It’—tlzl’-i-|B(t')—B(t)|2P+ IS’ (2(5) ~ [Z()])dB(s)| ”} 0<i<t
1)t

where the const. depends only on p, and therefore, taking the expectation,
we obtain (3.9) at once.

As a corollary to Proposition 3.1, we have

Corollary 3.1. Let a, b, 7, f and p satisfy (0.2)', (0.3), (0.4) and (0.5).
Then, for any probability measure A(dx) on R? and any [X(¢), B(t), M(t)] e
S;[a, b, 1, B, 1], the following estimate holds: For p>0

(3.10) E[| X Lix(X9)— 3 Lox(X4)[2P] < const. (14|t —t?) |t — 1|7 ¢, £ =0
keZ keZ

where {a,}i.z IS a sequence appearing in (0.5) and the const. depends only

on p, infycz (ay+ 1 —ay) and supyz (ay. ;1 —ay).

Proof. Let [X(¢), B(t), M(t)] € S,[a, b, t, B, u] be defined on a filtered
probability space (2, &, P, #,). We define F() e C(R?!) as follows:

Fm)= —"1T7"%  (k+1)4+ H+1~1M S B
(m ak+1_ak( ) Gy —ay k=N =0+

Then

(3.11) F+(’1)=# a =SN<dgy, F(n)= L G <N=apy

+1 7 Ay — Ay

(3.12) P =3 (ol = o a ) e (dn)

kez \ Qr+1 04y Ay —ay—
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where F*(F~) denotes the right (left) derivative of F and F"(dy) denotes the
second derivative of F in the distribution sense. Applying It6’s formula to
X4(t) with this F, we see from (3.11) and (3.12) that

(3.13) F(X41))=F(X40))+ S; F*(X4(s))dB4(s)

+ 5 z St { 71k+11 + : 7“)61‘/34(5(3)’ %)

2 ez Jo —ay Ay —Ag—y

(g - o b,

A1 — 0 Ay —Ag—y

Hence, by noting that for each ke Z
(3.14) LE(F(X%))
= g()( L (@), a0+ g (1—cB(3(), ak)>>

Qg1 —0a A — 0k
dLg<(Xx9),

(3.13) becomes
FOX0)=FXO)+ || FreF{(FXs))BA(s) + 3 | (s, ILEEX)

where

y(s, k) = (@ —ar ) (A + ¢ BUE(S), a) —(arsr —a) (A — ¢ B4E(S), ai)) )
’ (ar—ar-) (L + ¢, fUE(S), a)) + (@ —a) (1 —cfU(E(5), ay)

Thus, we can apply Proposition 3.1 to observe that for p>0
E[|L{A(F(X9)— Ly?(F(X9)|*?] S const. (1+ [t —t|P) [t — 1|7 1, 1’20

where the const. depends only on p and inf,, (a,.,—a,). Since dL;*(X9)
Ssupyz (a;4 1 —apdL¥(F(X?)) for every ke Z, which is clear from (3.14), the
above estimate implies (3.10). B\

Remark 3.1. For the process X(t) considered in the above, we define a
sequence of Z,-stopping times {7,}:-, by
1o=1Inf {t=0; X(t)e F}
inf{t=7,_;; X4 t)e F~{X%z,_,)}} if 7,_,<+0
+ oo if 1,_.,=4+0 nzl
where F={a,; ke Z}. Then, with probability one, it holds that t,< + oo (n=0)

and lim,,, 7,= + o, because {r,}i,defined in the proof of Proposition 3.1
has this property.
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Now, using Corollary 3.1 and the result of [6], we prove the nonemptiness
of S,[a, b, 7, B, u]. Here a, b, 7, p and pu satisfy (0.2), (0.3), (0.4) and (0.5),
and A(dx) is a probability measure on R?.

Proof of Theorem A. Let {a,},z and {c}.z be sequences appearing
in (0.5). For each £¢>0 we take a bounded continuous function f,: R¢—R“

and a sequence {c, ;};.z satisfying ¢, , >0 (kez) and X,z ¢, , <+ 00 such that

(315) iu%‘)lce,k_cd —)0, ”BE—BHOO_’O as Elo
(3.16) sup IBUE, ac,. .l <1 for every ke Z.
EeRd 1

Such a f, and a {c,;}i.z Obviously exist. From (3.15), there exist bounded
continuous functions B,, f: R‘—>R? and 7, 7: R‘*>R‘Q@R* satisfying 7¢;=0
and 74=0 (j=1,..., d) such that

GA7) IB.—Ble—0, [T.—%|,—0 as &l0
58(59 ak)zcs,kﬁs(éa ak)a B(é; ak)':Ckﬁ(éa ak)

fe(é: ak):\/c_s;c T(és ak), f(év ak)=\/c‘k T(i, ak)
for every e RI"! and ke Z.

(3.18)

Now, by virtue of (3.16), on a filtered probability space (2,, #,, P, #,,), we
take a [Xt,(t)’ Be(t)a Ma(t)] € S}.[aﬁ b’ T, ﬁsa luE]’ Where ﬂs(d?])Z Zkez cs,kéak(dn)
(cf.[6]). Sincea, b, 1, B, and u, satisfy (0.2)’, (0.3), (0.4) and (0.5), by Corollary

3.1 we have the following estimate

(319)  E[I 2 Li<(XY) = 2 Ly<(XP)F]const. (1 + [t — ¢ [’ —¢* 1, 20
keZ keZ

where the const. depends only on infy.; (g, ; —a,) and sup,.z (a, 1 —a,). Also,
if we define an &, ,-martingale Ni (i=1,..., d) by

Vi = 3 L (X2 1 dMics)

1
\/Cs.k
and we set L,(t)= X,z Lo%(X?¢) for simplicity, then
(320) (BL ND (D=0, (NLND(O)=8L() i,j=1,..,4d,

G2 Xi=x(0+ ¥ | asoenasio+ | pixons
+ é g; T (X ()ANI(s) + S; BUX(sNAL(s)  i=1,...d

where we have derived (3.21) using (3.18). Hence, by (3.19), (3.20) and (3.21), we
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have the tightness of {[ X (¢), B,(t), N(t), L.(t)1}:>0-

In the following we trace the same argument as done in [6]. We choose a
positive sequence {¢,}s% tending to zero such that the continuous process [ X, (t),
B, (1), N (1), L, (t)] converges in law to a continuous process [X(f), B(t),
N(t), L(t)] as n 1 oo. By the celebrated theorem due to Skorohod, we may
assume the following:

(i) ., #.,, P, )=(2, #,P) for n=1, and [X(1), B(?), N(t), L(z)] is
defined on this probability space (2, &, P).

@) [X. (9, B, (1), N, (1), L, (t)] converges to [X(2), B(t), N(1), L(t)]
uniformly in ¢ on every finite interval asn T co. We set %, =\ ;., 0(X(s), B(s),
N(s), L(s); 0Ss=<t+96). Clearly L(t) is an £,-adapted continuous increasing
process with L(0)=0. Since (B} , B£n>(t)=5jt (i, j=1,..., d) and (3.20) holds
for e=¢,, we see from (3.19) and the above (ii) that [ B(t), N(¢)] is a system of %,-
martingales with B(0)=N(0)=0 such that (B}, B/}(t)=4%t, (B, N7>(t)=0 and
(Ni, Ni)(t)=06iL(t) for i, j=1,...,d. Hence, applying Proposition 2 in [6],
we observe from (ii) and (3.17) that as n 1 oo, (3.21) becomes
(B21Y  Xi(D)= X'(0)+ ,i S;a H(X(s))dBi(s) + S;bi(X(s))ds

+ 3 [ 5@ @aNo+ | PO i1 d,
which especially implies that X(¢) is a system of &,-semimartingales. [t remains
to show that

3.22) L(t)=kZz Li(X%) t=0.

If this is true, then, by setting M(f)= Sr Y kezXiany (X)) cdN(s), [X(1), B(1),
0
M()] e S;[a, b, 1, B, u] follows from (3.18).
To prove (3.22), it is sufficient to show that for each ke Z
(3.23) Li.p. max |L{«(X¢)—L{*(X%)|=0 T>0,

nto 0Lt<T

because (3.22) is the implication of this, (3.30) and (3.28)" below. Now, applying
1t6’s formula to (3.21) for i=d and (3.21) for i=d, respectively, we see that
for each n e R?

(324)  LICXE)=1X4,0) =1l =X 0 —nl - sgn (X¢,9)~maBE(9)
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= | sen (X&) =M BL (XL (ML)
=: |XLO=nl=1X; ) =nl=Lkn; )= V.(n; 1)

(24 LX) =IX40)—nl—1X(O)=nl - | sgn (X4(5)~dBXG)

~ . sgn (X9 ~MBHX()dLS)
=1 X0~ = 1X4O) —nl 10 D= V(n; 0.

By (3.19) and the same estimate for L( - ), which is clear from (3.19), (3.24) and
(3.24)' yield the following estimates:

(3.25)  sup E[L1(X%)], sup E[LW(X%)]<const. (1+./1)\/t 120
neR! neR!

where the const. depends only on infi., (a,s;—ay), SUPez (ar+,—a,) and
sup,s, B¢ |lo. By these estimates and Proposition 2 in [6], we can observe
that for each ne R! and T>0

(3.26) lim E[max |I(n; t)—1I(n; t)|*]=0.
nto OZtsT

In fact, if we choose p;e Cy(R') for 6>0 such that |p;(n)—sgn (NI =X 5,5 (")
for n e R, then by (3.25)

lim lim sup E[ max | I,(n; )— S‘ ps(X ;’,.(s)—?l)dBé’,,(s)‘ 2]:0
0<t<T 0

640 ntoo

lim E( max
610 LOSt=T

t 2
16 0=, pa(x*9)—myaB4s)| " |0
and by Proposition 2 in [6]

tim £ max [{' ps(x2,)=naBL0)- | p(x49)-naBo)|*|=0.
nt0 0=<t=T'JO 0
Hence, by putting all this together, (3.26) follows immediately. On the other
hand, we can also observe that for each ke Z

(3.27) Viag:-) = V(a;-) as ntoo.

Here “ =37’ denotes the compact uniform convergence in t. Indeed, (3.27) is

shown in the following way : Since

(3.28) L, ()= kZ La(X2) 120

eZ

(3.29) L ()==L(-) as nto,
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for any subsequence {n'} of {n}, we find a further subsequence {n"} of {n'} and
a continuous increasing function L*(t) (k € Z) such that

(3.30) Low(Xd )= L) as n"too.
We note that L¥(-) has the following property:
(3.31) S; Yoy XANALKS) =LK1 120.

Hence, letting n” 1 oo in (3.28), we see from (3.29), (3.30) and (3.31) that
(3.28) L(t)= Y L) t=0.
keZ

Therefore, since

Ve 0= % |\ B (X L) -5 [ e, o)aLsxe),

I~k
by (3.17), (3.30) and (3.28), V,.(ay;-) = V(a,;-)as n” 1t oo, which implies (3.27)
from the arbitrariness of {n'}. Conscequently, combining (3.26) and (3.27),
we immediately have (3.23) from (3.24) and (3.24)’. Thus we conclude the proof
of Theorem A.

§4. Uniqueness IT

In this section we prove Theorem B in the general case. By the same reason
as stated in the beginning of §3, we have only to show the uniqueness for §,[a, b,
7, B, 1] in the case when a, b, 7, f and u satisfy (0.2)", (0.3), (0.4), (0.5) and (0.6),
and A(dx) is a probability measure on R*.

Let a, b, 7, B, 1 and A be such those and fixed. Let {¢;};.z and {a;},.z be
sequences appearing in (0.5). For ke Z and xe R4, S§; [a, b, 1, B, ¢,d,] is
nonempty and its uniqueness holds from the conclusions in §2 and §3. Hence,
we denote by P the unique probability law of X(-), where [X(¢), B(f), M(t)] e
S; [a, b, 1, B, c,d,]. Note that for each k € Z, a mapping x> P% is continuous,
which is a consequence of the estimate given in Corollary 3.1 and the uniqueness
for S5 [a, b, 1, B, ;9,1

Now, let [ X(¢), B(t), M(t)] be an element of §,[a, b, 7, B, u] defined on a
filtered probability space (Q, &, P, #,). Let {1,}°, be a sequence of Z,-
stopping times defined in Remark 3.1. Then 7,< + 00 (n=0)a.s. (P) and

“4.1) limz,=+4+o a.s.(P).
nto
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First it is easy to see that 1, =inf {t=0; X4(0)+ B4(t) e F} and
d
Xi(tAt))=XH(0)+ 3 S‘ a¥(X(s A 16))dBI(s A o) + gt B(X(s A 7o))ds A 7,
ji=1J0 0
i=1,...,d
where F={a,; ke Z}, so that it holds that

(4.2) P(X(- Atg)e*)= Sm Br(x)A(dx)

where P* stands for a probability measure on # ¢ given in §§1.1 for a and b.
Next, in view of (0.1)" we observe the following: For each n=0
d
Xi(t+)=X4e)+ £ (| adXs+r)aBis+ o)+ biXG+eds
Jj=1 0
d
+ 3 s ami )+ | B+ o) e, dLim (X +1,)
=1

J
i=1,...,d O0=Zt=Z7,.,—1,,
M- +71,)—Mi(t,), MI(- +1,) —MI(7,)) (1) =ep, Li*n(X (- +7,))
i,j=1,...,d O0Zt=st,.,—1,,
Typ1—T,=Iinf {s20; X9(s+1,)e F~{a,}}.
Here k, is an &, -measurable random variable defined by a4, =X%(,). Hence,
from the uniqueness of S;_[a, b, 1, B, c;d,,] it follows that for each n=0
(4.3) PX(C- A(tps 1 — )+ 1) €| F ) =Pin (W(- Aoy) € %)y, a.8.(P)
where o (w)=inf {t=0; wi(t) e F~{q,}} for we# ¢ and ke Z. Therefore,
putting (4.2) and (4.3) together, we can see that for each n=0
4.4 the probability law of X(- A1,) is uniquely determined.
Indeed, this is shown by induction on n (Z0):
(i) For n=0, (4.4) is clear from (4.2).
(i) We assume that (4.4) is true for n<p (p=0). Then, since
PX(- A1pay) €0)=E[PX((- =) AT 1 —Tp) +7p) € |7, )]
=E[P§{(a’)(w(( T O') A Glc) € *)|a=tp,k=kp]
by using (4.3), our assumption implies that (4.4) is true for n=p+1. Hence,
from (i) and (ii) it follows that (4.4) holds for any n=0. Consequently,
combining (4.1) and (4.4), we conclude that the probability law of X(-) is

uniquely determined, and thus the proof of the uniqueness of S,[a, b, 1, 8, 1]
is completed.
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