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Modules with Regular Singularities
over Filtered Rings

By

Arno van den ESSEN*

Introduction

In [9] and [10] an impressive theory of 2 and &-modules with regular
singularities is developed. Many of the results are proved using complex analysis
or better micro-local analysis. In this paper we develop a purely algebraic
theory of modules with regular singularities over a large class of filtered rings
(including the rings of differential operators considered in [9], [10] and [1],
in which case we have the same notion of regular singularities). The main result
of this paper (Theorem 7.3) gives several equivalent descriptions of the notion
of a holonomic A-module M with regular singularities (4 is a filtered ring).
One of them is the existence of a so-called very good filtration on M, which makes
the link with the results of [9]. An equivalent description asserts that &.(M)
(the algebraic micro-localization of M at ) is an &x(A)-module with regular
singularities for every minimal prime component . of the characteristic ideal
J(M).

To prove these results we use the algebraic micro-localization developed in
[5] and a theorem of Gabber (cf. Theorem 4.9).

The algebraic micro-localization enables us to generalize the ideas and
results of [4], replacing the usual localization used there by the micro-
localization (compare Theorem 1.26 in [4], with Theorem 7.3 below). \

Now we give a detailed description of the contents.

In §1 we recall some well-known facts on filtrations and establish some
useful facts. A filtration FA on a ring A is called Artin-Rees if all finitely
generated A-modules satisfy the Artin-Rees property (cf. Definition 1.6). We
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also introduce the notion of a noetherian filtration on A and show that both
concepts coincide if gr(A) is left noetherian. A discrete filtration is noetherian
iff gr(A4) is left noetherian. An important result is Theorem 1.11 which shows
that filtrations equivalent to a good filtration are good, if FA is noetherian.
At the end of §1 we give some results on involutive ideals and show that the
notion of an involutive ideal is stable under extension and contraction (cf.
Proposition 1.19).

In §2 we recall some of the basic results on micro-localization obtained in
[5] (universal property, the graded ring of a micro-localization etc.). Following
ideas of commutative algebra we micro-localize in prime ideals of gr(4). More
precisely, if M is a filtered A-module and , a prime ideal in gr(A4) we define a
ring &4(A) and an &4(A4)-module £4(M). Furthermore we introduce the notion
of an I-good filtration on a filtered A-module M (I is an ideal in gr(4)) and
show that this notion is preserved under micro-localization (cf. Proposition 2.9).
If 1=(0) an I-good filtration is simply a good filtration and if I=J(M) (the
characteristic ideal of M) an I-good filtration is called very good. Modules
possessing a very good filtration are said to have regular singularities (Definition
7.1).

In §3 we introduce holonomic A-modules for filtered rings A such that
gr(A) is a commutative Q-algebra and FA is noetherian. We show that
“holonomicity”” is stable under micro-localization in prime ideals of gr(A4)
(cf. Proposition 3.4).

In §4 we define a special class of filtered rings R, the so-called E-rings.
These rings possess an invertible element of order one, which makes it possible
to reduce many problems to problems over the subring R, and its quotient
gro(R). Furthermore we formulate an involutivity theorem of Gabber
(Theorem 4.9) and derive a micro-local criterion to decide when an Ry-submodule
of a holonomic R-module is of finite type (Proposition 4.12). This criterion is
used during the construction of very good filtrations.

In §5 we develop the theory of modules with regular singularities over
E-rings. Following [4] and [9] we give several equivalent descriptions of
R-modules M with regular singularities (Proposition 5.3). If furthermore M is
a holonomic R-module, then we prove (Theorem 5.7) that M has regular singu-
larities iff &4(M) has regular singularities for all minimal prime components of
the characteristic ideal J(M) iff &4(M) has regular singularities for all

€ Spec (gr(A4)).
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In §6 we develop a formalism which makes it possible to obtain results for
arbitrary filtered rings from results over E-rings. Following [9] we introduce a
dummy variable and associate to a filtered ring 4 an E-ring denoted by &x(A[X]).
Similarly to an A-module M we associate an &x(A[X])-module E(M[XT).
We define two maps % resp. ¢ going from good filtrations on M resp. &x(M[X])
to filtrations on &x(M[X]) resp. M and show that ¥ and & preserve good and
very good filtrations (Proposition 6.8).

In §7 we define A-modules with regular singularities when 4 is a filtered ring
satisfying gr(A4) is a commutative Q-algebra, F4 is noetherian and u,=v, (cf.
§7). An A-module M is said to have regular singularities if it possesses a very
good filtration I’ i.e. Ann gr'(M)=J(M). Using the material from §6 the
main theorem (Theorem 7.3) will be derived from the analogous result for
E-rings (Theorem 5.7) by micro-localizing several times.

In §8 we study rings of differential operators, denoted by D, and we show
that they satisfy the condition up=v,. Also we prove that the notion of a
holonomic D-module as introduced in §3 coincides with the usual concept of
holonomic D-modules (cf. [1]).

Finally §9 is a kind of appendix collecting some elementary results of
commutative algebra which we need in the proofs. I would like to thank

Professor Springer for his stimulating discussions and advice.

Throughout this paper we use the following notations.

N is the set of positive integers, N:=/NU {0}, Z is the set of integers and
@ the set of rational numbers.

If R is an arbitrary ring (always having identity) then M(R) denotes the
category of left R-modules of finite type.

All modules considered will be left modules.

If I is an ideal in a commutative ring, r(I) denotes the radical of I. Finally,
“iff> means if and only if.

§1. Generalities om Filtered Rings

1.1. TFiltrations

Definition 1.2. i) Let & be an additive group. A filtration on & is an
ascending sequence of subgroups {G,},.z such that U%,=%. The group ¢
equipped with such a filtration is called a filtered group.
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ii) Let A be a ring. A filtration (4,),ez on A is compatible with the
ringstructure if A,Apn<A,im all n, meZ and 1€ A,. The ring A equipped
with such a filtration is called a filtered ring.

iii) Let A be a filtered ring, with filtration (A,),ez, M an A-module. A
filtration (M,),.; on M is compatible with the module structure on the filtered
ring A if A,M,cM,,,., all n, meZ. The A-module M equipped with such a
filtration is called a filtered A-module.

The subgroups %, in i) above will be denoted by F,¢ and their family
(F,%),z as F%.

Example 1.3. Let ¢’ be a subgroup of ¥. Then F,%':=%'nF,%, all
neZ define the induced filtration on %’. If ¢ is commutative then F,&":=
(F,2+%")/¥%', all neZ define the image filtration on ¢":=%/|%".

Let ¢ be an additive commutative group. Put

grn(g):=gn/gnv1, all neZz, gr(g)=@grn(g)
neZ

The commutative group gr(%) is called the associated graded group (to the
filtered group ¢). In case ii) above gr(A4) becomes a graded ring called the
associated graded ring by defining

(a+A4,-)(b+4,_)=ab+A4,,,-1, all acd, all beAd,.
In case iii) above gr(M) becomes a graded gr(4)-module by defining
(a+4,_ )m+M,_)=am+M,,,_,, all aed, all meM,.

To indicate that gr, (%) and gr(¢) depend on the filtration F we sometimes write
grie(@) resp. grf(%).

Let M be a filtered A-module with filtration F=FM=(F,M),.;. If me
F,M we put o,(m):=m+F,_;M. Furthermore we define an order function v
on M as follows: put v(m)=—o0 if me n F,M and v(m)=n if me F,M\F,_ M.
The symbol map o: M—gr(M) is defined by 6(m)=0 if v(m)= — o0 and o(m)=
o, (m) if v(m)=neZ. To indicate that we work with the filtration F we

sometimes write vf and oFf.

1.4. Good Filtrations

Definition 1.5. Let M be a filtered A-module. A filtration FM on M is
called good if there exist my,..., m,e M and v,..., v, € Z such that

FM=X A, ,m;, all neZ.
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Observe that M possesses a good filtration iff M € M(A) and that all good
filtrations are equivalent (two filtrations F'M and FM on M are called equivalent
if there exists some c € IV such that

F, McF,McF,, M, all neZ).

Definition 1.6. A filtration FA on A is called Artin-Rees if for every
A-module M € M(A) each good filtration on M is separated and all its induced
filtrations on submodules of M are again good.

Lemma 1.7. Suppose FA is Artin-Rees. Then
i) A is left noetherian.
Let M € M(A) and FM is good on M, then
iiy M'=n(M'+F,M) for every A-submodule M' of M.
iii) S=n(S+F,M) for every S=3 1, A, _,my;, with geN, vy,..., v
n'eZ and my,...,mye M.

.€Z,

Proof. 1) Let I be a left ideal in 4. Since FA is good on A, FANI is
good on I. So in particular I € M(A).

i) The image filtration of FM on M/M’ is good, hence separated, which
proves ii).

iii) Put M'=3 Am;. Then M'NFM is good on M’'. Since all good
filtrations on M’ are equivalent there exist ce N with M' N F,Mc Y 4,,.m;, all
neZ. LetngeZsatisfy ng+c<n'—v; all i. By i) nS+F,Mc nM +FM
cM'. Soif me NS+F,M,thenmeM'. AlsomeS+F, M,say m=s+fwith
seScM’ and feF, M. Since m,seM’ we have feM'n F,Mc} A, ..m;
> Ay-,mcS. So feS, implying m=s+feS. Hence NS+F,McS,
which implies iii).

Now we recall some results of [5], §6.

Let te N, wy,..., w,e N. On A" we define the filtration F =F™ A? by F{») 4!
=231 A,— e, Where ¢; denotes the i-th standard basis vector of 4. If M is
an A-submodule of A¢, aF(M) denotes the gr(A)-submodule of grf(A4) generated
by the elements aF(m), me M.

The filtration FA is called Y -noetherian if gr(A4) is left noetherian and
F A satisfies the following condition, Y. :

For every te N, wy,..., w,e Z and every A-submodule M of A’ we have: if
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of(m,),...,6f(m,) generate of(M), then MnFM»A'=Y A,_,m;, where v,
=vf(m,).
In the remainder of this paper we write FA is noetherian (instead of FA is ) -

noetherian).

Proposition 1.8. Let gr(A) be left noetherian. Then are equivalent.
i) FA is noetherian
ii) FA is Artin-Rees.

Proof. 1)—ii) follows from [5], Propositions 6.16 and 6.19.

ii)—»i) Let teN, wy,..,w,eZ and 0#M an A-submodule of A4'. Put
F:=F"A!. So F is good on A’, hence separated. Put o:=c¢f. Then
o(m)=0 iff m=0, all me McA'. Suppose o(m,),..., o(m,) generate o(M).
Then we can assume m;#0, all i. Put v;=v(m;) and F,M:=M n F® A" all
neZ. Let meM. Then o(m)=% o(a,-,)o(m;) for some a,_,€A4,_,.
Consequently meJ,+F,M, where J,:=> A,_,m;, So F,McJ,+F, M,
all neZ. Iterating this formula gives F,McJ,+F M, all n, keZ. So
FMcnNJ,+FM=J, (where the equality follows from Lemma 1.7 iii) and
the factkthat FM is good, because FA is Artin-Rees). Since obviously J,c F,M
we get F,M=J,, all ne Z, as desired.

Corollary 1.9. Let FA satisfy: all subsets Y-, A
closed. Then

i) If gr(A) is left noetherian, then A is left noetherian.

ii) Let FAy:=A,NFA. If gr(Ay) is left noetherian, then A, is left

noetherian.

a; of A are FA

n—uv,

Proof. Since 4,0 is closed, FA is separated.

i) Let M be an ideal of A. Since gr(A) is left noetherian there exists a
finite number of elements m,,..., m;e M such that a(m,),..., a(m,) generate
o(M). Then arguing as in the proof of Proposition 1.8 (with w=0 and t=1)
we find FMcNJ,+FM, all neZ, where J,=3 A,_,m;, mye M, v;=v(m;)
and FLM=A, HkMCAk. So by the hypothesis we get F,M cJ,, whence F,.M
=J,, all neZ. Hence FM is good on M. So M e M(A), implying that A is
left noetherian.

ii) Repeat the proof of i) for A4,.

Proposition 1.10. If FA is complete and separated and gr(A) is left
noetherian, then FA is noetherian.

’
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Proof. This follows from [5], Corollary 6.11.

Without proof we mention if gr(A) is left noetherian, then FA4 is Artin-Rees
iff for every te N the subsets 3 4,_, m; of A’ are closed with respect to the
filtration F(®A* (FA is then called Zariskian). Consequently, if for every
te N each Ay-submodule of A4} is closed, with respect to F(®A* (FA is then
called strong noetherian), then FA is Artin-Rees.

As observed before all good filtrations on an A-module M are equivalent.
Now we will give a kind of inverse, which will be an important tool in the
study of A-modules with regular singularities (cf. Proposition 6.8).

Theorem 1.11. Assume FA is noetherian. Let FM be good on M. If
F'M is equivalent to FM then F'M is good on M.

We need the following lemma, the proof of it is due to Professor T. A. Springer:

Lemma 1.12. Assume gr(A) is left noetherian. Let F'M, FM be
equivalent filtrations on M. If grf(M) e M (gr(A)), then gr¥ (M) e M(gr(4)).

Proof. i) There exists de N with F,_,McF,McF,,,M, all neZ. Put
Ay:=F, M, TI',:=F,M,all neZ and c:=2d. Then A,cI',c4,,,. all neZ.
Observe that gr4(M) e M(gr(4)). We must derive gr'(M) € M (gr(4)).

ii)) Define T;=@®I',NA,.;/I,_1NA,; for all 0<i<c. Observe T,
=@I,/,-,=gr"(M). We have to prove T,e M(gr(4)). First consider Ty,
Observe To=®A4,/I,_1NA, Since A,_,=I,_;NnA, we get gri(M)—T,—0
is exact. Since gr4(M)e M(gr(4)) also Tye M (gr(4)). Using induction on i
we prove T;€ M (gr(A)) for all0<i<c. Hence T, e M (gr(A)) follows as desired.
Consider the canonical map ¢,: T;— T, i.e.

¢ @ N Apiif Ty i NAyyi— LN Apyiit /[Ty N Ay -
Then

Ker ¢i=®rn n An+i n Fn-l n An+i+1/rn—-1 n An+i
=@I,- 1 NAyyi/Ty-y N Apy;=0

and

Coker o=, N Apyis1/Tno 1 N Appiot/TuN Apsy
+Fn-1 n An+i+1/‘rn——1 n An+i+1
3 1 P SETRY) 7 ML QRIS | D SRR
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Using the exact sequence

Uii=@TI'y N Apsiy /[ TaN Ay — @, N Apyiiy /T,
NAprit TN Apyi00—0

we find that coker ¢;e M(gr(4)) if U;e M(gr(4)). However U V=
@Apiiv1/A,+;. Observe that V; is a gr(A)-module isomorphic with gr4(M).
So V,eM(gr(A)). Hence U,;eM(gr(4)), implying coker ¢;e M (gr(4)).

Consider finally the exact sequence

0— T, %, T,,, —> coker ¢; — 0.

Since by induction T,e M(gr(A)) we find T;,, € M(gr(A)), which completes
the proof.

Proof of Theorem 1.11. We can assume M #0. Since F=FM is good
grf(M)e M(gr(4)). So by Lemma 1.12 grf'(M)e M(gr(4)). Put o:=0F".
Then grf'(M)=Y %, gr(A)o(m;) for some m;e M. Since FA is noetherian
FA is Artin-Rees (Proposition 1.8), so FM is separated. Consequently F'M
is separated. So we may assume o(m;)#0 all i, say v;:=vF"(m,;). Similarly as
in the proof of Proposition 1.8 we derive F,McJ,+F M, all n, ke Z where
J, =2 A,_,m; Since FM and F'M are equivalent there exists ce N with
FiMcF, .M, all keZ, whence FFMcNJ,+F, ., M=J, by Lemma 1.7 iii).
Obviously J,=F,M, allneZ. So F,.M =kJ,,, all neZ,ie. F'M is good.

Let ¢, ¢’ be two commutative (additively written) filtered groups with
filtrations (%,),cz 1€SP- (¥, )nez- A group homomorphism h: ¥—%’ is called
a morphism of filtered groups if it respects the filtrations i.e. h(%,)c¥%,, all
neZ. In the obvious way such an h induces a groups homomorphism of the
associated graded groups, denoted gr(h): gr(%)—gr(%’), sometimes written as h.
If #=A, ¥'=A’ are filtered rings, then a morphism h is called a morphism of
filtered rings if h: A— A’ is a ring homomorphism. Then gr(h) becomes a ring
homomorphism. Finally, if =M, ¥=M’ are filtered A-modules, a morphism
h: M— M’ is called a morphism of filtered A-modules if h is an A-module homo-

morphism.

Proposition 1.12. Let h: 9—%' be a morphism of filtered groups.
i) gr(h) is injective iff {(¢,)=%,, all ne Z.
ii) Let ¥ be complete and %' separable. Then gr(h) is surjective iff
g, =h%,), all neZ.
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iii) Let 4, %' be separated and ¥ complete. If gr(h) is bijective then
h is bijective.

Proof. See [3], Chap. III, §2, no. 8, Theorem 1 and Corollary 3.

Corollary 1.14. If ¥, &' are separated, ¢ complete and gr(h) bijective,
then h is an isomorphism of filtered groups.

1.15. The Poisson Product, Involutive Ideals and the Characteristic Ideal

Let again A be a filtered ring. In the remainder of the section assume:
gr(A) is commutative. So if ac4,, be A, then [a, b]:=ab—bac A, ,_1,
all n,meZ. Put fi=a+A, ,, g:=b+A4,_, and define {f, g}:=[a, b]
+ A, m-2€9 nim—1(4). One checks that {f, g} is independent of the choice
of aand b. So for every n, m e Z we get a Z-bilinear map { , }: gr,(4) x gr(A4)
—gry+m-1(A4). Therefore we can extend these maps to a Z-bilinear map { , }:
gr(4)x gr(4A)—gr(4). 1t is easy to verify that { , } is a bi-derivation (cf.
Definition 9.1) called the Poisson-product on gr(A). An ideal I in gr(4) is
called involutive if {a, b} €l for all a, belie. [is { , }-stable (cf. Definition
9.1).

Let M € M(A) and let F=FM be a good filtration on M. Put
I¥=Ann grf(M), JF=r(IF).

Both I¥ and JF are homogeneous ideals in gr(A4) and it is well-known that JF
does not depend on the choice of the good filtration F. We denote this ideal
by J(M) and call it the characteristic ideal of M or the ideal of the characteristic
variety of M.

Theerem 1.16 (Gabber). If gr(A) is a noetherian Q-algebra and M
€ M(A), then J(M) is involutive.

Proof. See [6], Theorem I.

Let 9(J(M)) denote the set of minimal prime components of J(M) (cf. §9).
Since J(M) is homogeneous and involutive (by Theorem 1.16) it is easy to verify
that all its minimal prime components are so. Hence

Corollary 1.17. Assumptions as in Theorem 1.16. If xe@(J(M)), then
4 is involutive and homogeneous.

Finally we study the behaviour of involutive ideals under extensions and con-
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tractions. Therefore let B be a filtered ring with gr(B) commutative and ¢: A—B
a morphism of filtered rings and let { , } resp. { , }’ denote the Poisson-products
on gr(A) resp. gr(B). Put ¢ =gr(¢).

Lemma 1.18.  ¢({f, g)={8(f), ¢(9)}’, all f, g € gr(4).

Proof. Since { , } and { , }' are both Z-bilinear and ¢ is additive, we
may assume f=a+A4,_,, g=b+A4,,_,, a€ A,, be A,, in which case the formula

readily follows.

Proposition 1.19. If I is an involutive ideal in gr(A), then I°:=gr(A)d(I)
is involutive in gr(B). If J is an involutive ideal in gr(B), then J¢:=¢~1(J) is

involutive in gr(A).

Proof. Apply Lemma 1.18 and Proposition 9.2.

§2. Algebraic Micro-localization

Throughout this section A will be a filtered ring with filtration FA=(A4,),z
and M denotes a filtered A-module with filtration FM. In §1.1 we have
associated an order function v to the filtration FM. Now define

|mlpy=2", all meM (where 2-®:=0).

In particular taking M =A4 we get | |, on A. We often write | | instead of | |,,.
It is easy to verify that | | defines a non-archimedean norm on M. i.e. |am|
<|al m|, |m+ m’| <max (|m|, [m'|), all a € 4, all m, m" € M, called the associated
pseudo-norm (to the filtration FM of M). The strong triangle inequality implies
that |m+m'|=max(|m|, [m’]) if |m|#|m’|. Furthermore F,M is the set of
m € M satisfying |m|<2",so | | is a norm on M iff FM is separated.

The following two theorems are proved in [5].

Theorem 2.1. Let A be a filtered ring with associated pseudo-norm | |.
Let S be a multiplicatively closed subset of A such that 6(S) is a multiplicatively
closed subset of gr(A) satisfying the two left Ore conditions and 0¢ o(S).
Then there exists a complete separated filtered ring R with norm | | and
a morphism ¢: A—R of filtered rings satisfying

i) ¢(s) is invertible in R, all se S.
i) o) LIs|™Y, all seS.
iii) For every morphism h: A— B of filtered rings, where B is a complete
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and separated filtered ring with norm | |g, such that h(s) is invertible in B and
[A(s) Yg<|s|™t all s€ S8, there exists a unique morphism of filtered rings
x: R— B satisfying yo¢p=h.

Morebver, if (R, @) and (R', ¢') are two such pairs, then there exists a
unique isomorphism y: R—R' of filtered rings satisfying yo¢p=¢’.

Theorem 2.2. Let A, S be as in Theorem 2.1 and let M be a filtered A-
module with associated pseudo-norm | |,. Let (R, @) be a solution of Theorem
2.1. Then there exists a complete separated R-module M’ and a morphism
¢': M—>M' of filtered A-modules which satisfy: for every morphism of filtered
A-modules h: M— N where N is a complete separated filtered R-module there
exists a unique morphism of filtered R-modules y: M'— N such that yo¢'=h.

Moreover, if (M', ¢") and (M", ¢") are two such pairs, then there exists a
unique isomorphism of filtered modules y: M'—M" satisfying yo¢p' =¢".

The solution of Theorem 2.1 constructed explicitely in [5] will be denoted by
(&5(A), ¢¢). The ring &(A) is called the left algebraic micro-localization
of A with respect to S.

If F denotes the filtration on M, then the solution of Theorem 2.2 constructed
in [5] to the pair (&(A4), ¢p4) will be denoted by (&5(M, F), p¥). The left
&g(A)-module &¢(M, F) is called the left algebraic micro-localization of M
with respect to S. If there is no confusion possible we write ¢ and ¢y instead
of ¢p¥.

During the construction of &¢(M, F) in [S5] we obtained the following
results ([S], Lemma 5.17).

(2.3) The elements ¢(s)"1p(m) with (s, m) € S x M form a dense subset of &(M,
F) in the || ||-topology, where || || denotes the norm associated to the filtration
on &M, F).

Furthermore, the norm of these special elements can be calculated as follows.
To the pseudo-norm | |,, on M we define its localized pseudo-norm, denoted by

| lp,s or simply | |s:
Im|y s:=inf|pl tipmly, all meM.
peS
It is proved in [5], Proposition 3.2 and Corollary 5.20 that | |gis a pseudo-norm
satisfying

24 Ismls=|slaslmls, Isl4,s=Isl4, Imls<|m|, all seS, meM.
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2.5) lo(s) ' ¢(m)l|=Is|"*|mls, all (s, m)eSxM.

Corollary 2.5.1. i) If |m|s#0, then |pm|=|pm|s for some pe S.
ity If |m|=|mls, then |tm|s=|tm| all te S.
iiti) If (&)~ 1¢p(m)+#0 then there exist (I, m)e S x M with

PO p(m) =D~ ¢() and |m|=|m|s=|Pp(#)|.
Proof. 1) Since |m|g#0 there exists peS with |m|s=|p|~!|pm|. So
lpm|=|pm|s by (2.4).
ii) Let teS. Then |tm|<|t||m|=|t]|m|s=|tm|s (by (2.4))<[tm].
iii) By the hypothesis and (2.5) [m|s#0. So |pm|=|pm|s for some pe S
(by i)). Then #:=pt and ri:=pm are as desired, since |rii|g=|@(#)| (by (2.5)).

Consider the filtered &s(4)-module &(M, F). So the n-th “layer’’ of the
filtration on &(M, F), which we denote by £{”(M, F), consists of the elements
neé&s(M, F) with ||u] <2". We want to describe gr(&s(M, F)). First observe:
since o(S) satisfies the two left Ore conditions o(S)~gr(A4), the left localization
of gr(A4) with respect to o(S) exists. In fact it is a graded ring: for ne€ Z the
n-th homogeneous component of o(S)"1gr(A4) is the set of elements o(s) ‘o(a)
with o(a)egr,(A4), o(s)ea(S)ngr(A) and 1—k=n. Similarly o(S) gr(M)
is a graded o(S)~!gr(A)-module (cf. [5], Proposition 5.22).

Theorem 2.6 ([5], Proposition 5.24). There exists an isomorphism ,
of graded rings from o(S) 1gr(A) to gr(&s(A)) defined by
Y 4(0(s) (@) =¢(s) ' p(a)+ €& V(A), all a(s) 'a(a) e a(S)1gr(A)(n).
More generally: there exists an isomorphism Y, of graded modules over

o(S)"1gr(A) from a(S) 1gr(M) to gr(&s(M, F)) defined by

Yu(a(s)"1a(m))=(s) 1 p(m)+ &~ V(M, F),
all o(s)~te(m) e a(S) gr(M)(n).

2.7. Some Consequences of Theorem 2.6
In the remainder of this section we assume: gr(4) is commutative.

Theorem 2.6, the proof of which is a consequence of (2.3), (2.4) and (2.5) plays
a fundamental role in the study of micro-localizations. We derive some
consequences.

If F and F’ are equivalent filtrations on M, then it follows from the con-
struction of algebraic micro-localizations that &y(M, F)=&y(M, F') ([5],
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Proposition 6.7). In particular if M € M(A) then &M, F) does not depend
on the choice of the good filtration F on M. Instead of &4(M, F) we therefore
write &(M). In fact, if FA is noetherian it is proved in [5], Corollary 6.25
that M —&5(M) gives an exact functor from M (A) to M(&s(A)). Using this
result it is shown that there exists a canonical isomorphism of &4(4)-modules
between &5(4)® M and &(M) ([5], Proposition 6.26). Consequently, we
obtain that &(A4) is a flat right A-module ([5], Corollary 6.27).

Let M e M(A) and FM a good filtration on M. The filtration (£§”(M,
FM)),.z on &(M) we denote by L(FM) or Lg(FM) and its n-th layer by L("(FM).
Let I be an ideal in gr(4). Put I¢:=gr(&(A)dsI). So I°=y (o(S) 1)
where ¥, is as in Theorem 2.6.

Definition 2.8. A good filtration FM on M is called I-good if I
cAnn grfM(M). If I=J(M) (see 1.15) FM is called very good.

Propesition 2.9. If FM is I-good on M, then L(FM) is I¢-good on &y M).
In particular L preserves good and very good filtrations and &s(M) € M (&s(A)).

Proof. If FM is good on M then L(FM) is good on &(M) ([5],
Corollary 6.23), hence &¢(M)e M(&s(A)). Furthermore, if I<Anngrf™(M),
then I¢c=(Ann gr(M))e=y 4(o(S) 1Ann gr(M))=Ann gri@FM(g(M)) by
Theorem 2.6. So L(FM) is I*-good. Finally, taking radicals of the last two
equalities we get

(2.10) J(M)* =y ((o(S)"1J(M)) = J(&5(M))

which shows that L preserves very good filtrations.

2.11. Micro-Localizatiens in Prime Idea of gr(4)

Let e Spec(gr(4)). Put S, is the set of all ae 4 with o(a)¢ 4. Itis
easy to verify that S, is a multiplicatively closed subset of 4 with 0¢ (S ) and
that o(S,) is a multiplicatively closed subset of gr(A4) satisfying the two left Ore
conditions, since gr(A) is commutative. So by Theorem 2.1 the left micro-
localizations of A with respect to S, exists. Instead of é"s/i(A) we write &x(A4).
Similarly, if M is a filtered A-module with filtration F on M the micro-localization
of M with respect to S exists and we write £4(M, F) (resp. é’/(;)(M , F)) instead
of é”s/,(M, F) (resp. é’gﬂ(M, F)). Now assume M € M(A4) and F is good on M.
Then we can write &4(M) instead of &4(M, F) by (2.7).

Warning. If F' is another good filtration on M the filtrations



862 ARNO VAN DEN ESSEN

(é’/fi")(M, F)),.z and (é’}')(M , F'),z are not equal. However, by Proposition
2.9 they are good filtrations on &4(M). So they are equivalent and &x(M)e
M(84(A)).

Lemma 2.12. Let F be a separated filtration on M. Then M=0 iff
grf(M)=0.

Proof. If grf(M)=0, then FM=F, M, all neZ. So M=UF,M=
nF,M=0.

Proposition 2.14.  &4(M)#0 iff s>J(M).

Proof. Let F be a good filtration on M. Then Fé&s(M) is good by
Proposition 2.9 and separated. So by (2.12) &4(M)=0 iff gr(64(M))=0 iff
(S )" 'grf(M)=0 (by Theorem 2.6)iff 6(Sx) N Ann gr*(M) #@ iff o(Ss)n J(M)
#Q iff sDJ(M).

Proposition 2.15. If gr(A) is noetherian, then F&4(A) is noetherian.

Proof. Since gr(A4) is noetherian, so is o(S)"'gr(4). Hence gr(¢4(4))
is noetherian by Theorem 2.6. Then apply Corollary 1.10.

2.16. Morphisms between Micro-Localized Rings

We consider the following situation. Let B be a filtered ring with gr(B)
commutative and ¢: A—B is a morphism of filtered rings. Furthermore
¢ :=gr(p): gr(A)—gr(B). If I is an ideal in gr(4) (resp.J an ideal in gr(B))
then I¢:=gr(B)¢(I) (resp.Je:=¢1(J)). If seSpec(gr(4)) then ¢, denotes
the canonical map ¢§/i from A to £4(A4) and || |« denotes the norm on &4(4).
Similar notations we use for , € Spec (gr(B)).

Lemma 2.17. Let seSpec(gr(4)). Assume 4°e Spec (gr(B)) and (4°)°
= . Then
i) |g(s)l=lsl, all s€ Sy and ¢(Sp)=Sp..
ii) Put u:=¢/";eo¢. Then u(s) is invertible in & 4.(B) for all se Sy.
iif)  (u(s) M ze=IsI"1, all se Sy.

Proof. 1) Let se S, say v(s)=n (o(s) #0 since o(s) ¢ 4). Then o(s)¢ 4
=¢71(4°) ie. P(o(s)¢ s°. In particular @(o(s)#0 ie. P(s)+B,—; #O0.
So |¢(s)|=2"=]s|. Hence op(¢(s))=¢(s)+B,_ 1 =(a(s)) ¢ 4° i.e. P(s)€ Sp..

i) follows from i) since @.(?) is invertible in &4.(B) for all 1€ Sx..

iii) Let s€Ss. Then [u(s)'|5.=] ¢}e(¢(s))“1|| .=|¢p(s)|"! (by i) and
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(2.5) with M=A4 and m=1=|s|"! by i).
By Lemma 2.17 ii) and iii) and Theorem 2.1 we obtain

Corollary 2.18. There exists a unique morphism of filtered rings
é: é'}i(A)-———+ Epie (B) with ($°¢/£=¢/ée°¢.

Let M be a filtered A-module and N a filtered B-module with filtration FM
resp. FN. By means of ¢ N becomes a filtered 4-module. Let y: M—N be
a morphism of filtered A-modules. Put h:=¢}go|//. So h is a morphism of
filtered A-modules from M to &x.(N, FN). The &s.(B)-module &s.(N, FN)
is a filtered £4(A4)-module by means of @ from Corollary 2.18. Then Theorem 2.2

gives

Corollary 2.19. There exists a unique morphism : Ex(M, FM)
—&x(N, FN) of filtered &4(A)-modules with lﬁo¢}‘=¢/§eow.

2.20. The Set Spec °(gr(A4))

Let X be a complex analytic manifold. In the micro-analytic study of
sheaves of 2-modules the interesting points to consider are the points (z, {)
€ T*X outside the zero-section i.e. points with {#0. The set T*X\zero-section
is often denoted by T*X. Let 9,=0,[0/0z,,..., 8/0z,] with 0,=C{z,,..., z,}
the ring of convergent power series. Then gr(2,)~0[(,,..., {,] as usual. So
we want to consider primes 4 in gr(2,) not containing all {; i.e. primes » with
the property that there exists a homogeneous element of degree one in gr(9,)
which does not belong to 4. These considerations lead us to the following
definition. Let A be a filtered ring.

Defimition 2.21. Spec®(gr(A)) is the set of . eSpec(gr(4)) such that
o(t) ¢ 4 for some te A;\A,.

Lemma 2.22. If seSpec’(gr(A)) then there exists se é»”/%)(A)\é*’/(g)(A)
invertible in &4(A) with s™' e é”/‘;l)(A).

Proof. Let a(t)¢ o with teA\do. So te€Ss. Put s=¢u(f). Then
Isl =l =It,x (by (2.5)=1tl (by (24) since teSs)=2. Finally s~|=
@)~ [ =l2"" (by 2.5))=27".

Corollary 2.23. If s e Spec®(gr(A)) and gr(A) is a noetherian Q-algebra
then the filtered ring R:=&4(A) satisfies

i) There exists an element s€ R{\R, invertible in R with s"eR_;.
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ii) gr(R) is a commutative Q-algebra.
iii) FR is noetherian.

Proof. i) follows from Lemma 2.22., ii) from Theorem 2.6 and iii) from
Proposition 2.15.

§3. Holonomic 4-Modules

In this section A will be a filtered ring with filtration FA satisfying
a) gr(A) is a commutative Q-algebra.
b) FA is noetherian.

Lemma 3.1. If 0#M € M(A), then J(M)#gr(A). So ¥(J(M))#9D.

Proof. Let F be a good filtration on M. By Proposition 1.8 F is separated,
so gr(M)#0 by Lemma 2.12. This implies 1¢ Anngrf(M), so 1¢ J(M).

Put #,: =the set of involutive homogeneous prime ideals in gr(A4)
uq:=sup ht 4 (where ht 4=height 4).
JStesn

By Corollary 1.17 9(J(M)) < .#,, so ht s <p, for all e Z(J(M)).

Definition 3.2. 0#M e M(A) is called holonomic if ht,s=pu, for all
A€Y(J(M)). Also M=0 is holonomic.

Remark 3.3. If there exists a non-zero holonomic A-module M, then pu,
is finite since gr(A) is noetherian and p,=ht 4 for some . € Spec (gr(4)).

Let ,eSpec(gr(4)). By Theorem 2.6 and Proposition 2.15 it follows
that &7 (A4) with its filtration F&z(A) also satisfies the conditions a) and b) above.
So we also have the notion of a holonomic &7(A4)-module.

Proposition 3.4. Let M be a holonomic A-module and 4 e Spec(gr(4)).
Then &y (M) is a holonomic &z (A)-module.

Proof. i) We can assume &z(M)+#0, whence by Lemma 3.1 £(J(&#(M))
#@. So we can choose 2 e%(J(&x(M))). Since by (2.10) J(&z(M))
=Y (a(Sg) 1 J(M)) 2 =y 4(6(Sy)* ) for some 4 € F(J(M)) with 4N o(Sp)=0
(Corollary 9.3 ii)). Then Corollary 9.3 i) gives ht2? =ht s =u, since M is holo-
nomic. By Corollary 1.17 £ is involutive and homogeneous, hence u. ()2 B
Furthermore the argument above gives that ht2 =y, for all 2 e #(J(&7(M))).
So &z(M) is holonomic if we can prove that p,=pe s It therefore remains
to prove that pe, () <py.
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ii) Let & be an arbitrary involutive homogeneous prime ideal in gr(&z(A4)).
By Proposition 1.19 (applied to 4 and &7(4)) x:=2¢ is an involutive and
homogeneous prime ideal of gr(4). Since 2=y (o(Sg)* 4), Corollary 9.3 i)
implies ht# =ht » <u,. whence Heg(ay<|iy aS desired.

§4. E-Rings and Their Properties

Let A be a filtered ring such that gr(4) is a commutative noetherian Q-
algebra. Just as in the micro-analytic theory of 2-modules the rings &4(A4)
with . € Spec®(gr(A)) play a very important role. As shown in §2 these rings
have the properties of Corollary 2.23. Filtered rings having these properties
will be studied in this and the next section.

Definition 4.1. A filtered ring R will be called an E-ring if the following
conditions are satisfied
i) There exists an element se€ R|\R, invertible in R with s~'e R_j.
ii) gr(R) is a commutative Q-algebra.

iii) FR is noetherian.

Lemma 4.2. Let R be a filtered ring satisfying i) of Definition 4.1 and M
a filtered R-module with filtration FM =(M,),.;. Then
i) sT1¢R_, and v:=s+R, is a unit in gr(R) with inverse v=1=s"1
+R_,.
i) R,=s"Ry=Rys", M,=s"M,, all ne Z.
iii) FM is good iff My e M(R,).

Proof. i) Since se R;\R, gr;(R)#0. So gr(R)#0 whence 1+R_; #0.
Consequently, (s7'4+R_,)(s+Ro)=(s+Ry)(s"!+R_,)=14+R_;#0  which
implies 1).

ii) If reR, then (s!)"re R_,R,=R,, so res"R, implying R,=s"R,.
Similarly, M,=s"R, and R,=R,s".

iii) If FM is good then My=3 %, R_,m;=3% Rys™"'m; (by i)) for some
m;e M, v;eZ. So Mye M(R,). The converse follows from ii).

So if we define #(M,):=(R,M,),z for each R,-submodule of M satisfying RM,
=M we get a one-to-one correspondence between these R,-submodules of M
and the set of filtrations on M. Furthermore, if M e M(R) then iii)) shows
that the restriction of & to the set of finitely generated R,-submodules M, of
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M satisfying RM,=M gives a one-to-one correspondence with the good

filtrations on M.

Proposition 4.3. Notations as in Lemma 4.2. Then y: gro(R)[X, X~ 1]
—gr(R) defined by Y(3 f;X)=3 fu' is an isomorphism of graded rings.

Proof. Left to the reader (cf. §9 for the graded ring structure of gry(R)-
[X, X~1]).

Corollary 4.4. Extension and contraction give a one-to-one correspondence
between the prime ideals of gro(R) and the homogeneous prime ideals of gr(R).

Proof. Apply Proposition 4.3 and Proposition 9.9.
Corollary 4.5. If R is an E-ring then R and R, are left noetherian.

Proof. By Proposition 1.8 Lemma 1.7 ii) (with M =A) the hypothesis of
Corollary 1.9 is satisfied. So by Corollary 1.9 i) R is left noetherian. Finally
by Proposition 9.10 gry(R) is noetherian, whence gr(R,) is noetherian since by
the description of Proposition 4.3 gr(R,) is isomorphic to gro(R)[X1].

4.6. Gabbers Theorem and R,-Modules of Finite Type

From now on we assume: R is an E-ring. So on gr(R) we have a Poisson
product (see 1.15). Let f, gegro(R). Then {f, g} egr_,(R), whence v{f, g}
egro(R) (v=s+R, as above). So putting P(f, g):=v{f, g} all f, gegro(R)
we get a Poisson product on gry(R) which (as one easily checks) is a bi-derivation
on gro(R) (cf. §9). An ideal I in gry(R) is called involutive if it is P-stable
(cf. Definition 9.1).

Proposition 4.7. If I is an involutive ideal in gry(R) then 1¢:=gr(R)I is
an involutive ideal in gr(R). If J is an involutive ideal in gr(R) then J¢
1=gro(R) N J is an involutive ideal in gry(R).

Proof. Apply Proposition 9.2 to A=gry(R), B=gr(R) and ¢ the inclusion
map.

Let M € M(R), FM a good filtration on M and NcM an arbitrary R,-
submodule of M. We want to find outif N e M(R,). Since by Corollary 4.5 R,
isleft noetherian we get NeM(R,) iff NeM,, for some noe N iff M, NN/
M,_; N N=0 for all n>n, and some nye N. We therefore put

O, N):=M,nNN/M,_,nN, all neZ.
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Observe that s (M,NnN)cM,_;nNN. So Q(n, N) is a gro(R)-module. In
fact it is isomorphic to a gry(R)-submodule of gr,(M). Since M,=s"M, and
M,e M(R,) by Lemma 4.2 ii) and iii) we get M, € M(R,), implying gr, (M)
€ M(gro(R)). Consequently Q(n, N) e M(gr,(R)). Put

I(n):=Ann Q(n, N)cgry(R), J(n):=r(I(n)), all neZ.

Lemma 4.8. Left multiplication by s™! induces an injective gry,(R)-linear
map from Q(n+1, N) into Q(n, N), all ne Z.

Proof. Straightforward.

So we get an increasing sequence of ideals I(1)cI(2)<--- in gry(R). Since
gro(R) is noetherian there exists ny e N with I(n)=1I(n,) for all n>n,. Hence
J)<J(2)<--- and J(n)=J(n,) for all n>n,. Put

J:=J(N):=J(ny).
So J= U J(n).
Theorem 4.9 (Gabber). J is an involutive ideal in gry(R).

At the end of this section we give a very simply proof of this important
result, in fact we use algebraic micro-localization, to make a reduction to [6],
Theorem II. We also refer to [7] and [2].

For s e Spec(gr(R)) define N(x) as the é”/(?)(R)-submodu]e of &4(M)
generated by the elements ¢ 4(m), with me N. Put

On, N(4):=&(M) 0 N()/€ 3~V (M) N N( )

where é’};')(M):=é’/(;')(M, FM). Let 4o€Spec(gro(R)) and 4= 4§
(=g7r(R) £¢). So , is a homogeneous prime ideal in gr(R) by Corollary 4.4.
Let ro+R_; €gro(R)\ o. Then ¢u(ro)€Ss and |@u(ro)l=Irol=1, so ¢.(ro)
+é”/‘,;1)(R) is invertible in gro(£4(R)). Hence the canonical map gr(¢,): gro(R)
—gro(64(R)) extends to a ring-homomorphism ¥ : gro(R)s,—gro(&4(R)).
Fix ne N and put B:=gry(R). The canonical map x: Q(n, N)—Q(n, N(4))
is a B-module homomorphism (Q(n, N()) is a B-module by means of gr(¢,)).
Since by ¥ Q(n, N(4)) is a left B, -module, x extends to a B,-module homo-
morphism 7: Q(n, N)z,—Q(n, N(4)).

Lemma 4.10. J is an isomorphism of B -modules.

Proof. By Lemma 4.2 i) o(s) is a unit in gr(R) with inverse a(s”1). So s
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and s~! belong to Ss. Hence s"e€S,, all reZ. Using 2.5.1. i), ii) this gives
(4.11) if me M, then |pm| 4 =|pm|, for some p € S, with v(p)=0.

i) 7 is injective: let meM,nN. Suppose ¢u(m)e e‘*’/(é'“”(M) ie.
Im| ,<2""1. Apply (4.11). Then |pm|=|pm|,<2""'. So pmeM,_;NN,
whence a(p)m =0 in Q(n, N) implying m=0 in Q(n, N)., since a(p) € B\ 4,.

ii) 7 is surjective: put ¢=¢4. Every element of éa/(;')(M) N N( ) is a finite
sum of elements of the form ag(m) with oceé”/‘g)(R) and meN. Therefore it
suffices to show that all these elements a¢(m) belong to the image of 7. Take
such an element a¢(m). Then ¢(m)eé"/‘;‘°’(M) for some no>>n—1. By (2.3)
choose (1, a)e S x R with a—@(t)"¢(a) e é”/(;"°+"‘1)(R). Then ap(m)=@(t)~*-
¢(am) mod (é”/(;“l)(M) NN(x) and @) '¢(a)e é‘}”(R). We may assume
lam| s=|am| (use (4.11) and replace ¢ by pt and am by pam). Similarly we
can assume |a| 4=|a| and v(t)=0. So o(t)e B\ 4o and aeR,. Hence ameN
and |am|=|p(am) <2" ie. ameM,nN. So a¢(m)+é°/(;"1)(M) N N(4)
=) "(am+M,_, N N))e H(Q(n, N)s,).

Corollary 4.12. If N ¢ M(R,) then

) gUJ(N)#9.
ity If po€G(J(N)), then s:= 4§ satisfies ht 5 <pg and N( 4) ¢ 1\={[(é’/(2)(R)).

Proof. 1) Since N ¢ M(R,) Q(n, N)#0 for all ne N (if Q(ny, N)=0 for
some ng, € N then Q(n, N)=0 for all n>n, by Lemma 4.8 implying N € M (Ry)).
So 1¢ I(n) for all ne N i.e. 1¢ J, which proves i).

ii) Let 4,e%(J(N)). Then 4, is involutive (by Theorem 4.9). Hence
4= 4§ is a homogeneous involutive prime ideal in gr(R) by Corollary 4.4
and Proposition 4.7. So ht »<pg. Now suppose N( 4) e]l=l(é"/(2)(R)). Then
Q(n, N(4))=0 for all n>n, (some noeN). So Q(n, N)s, =0 for all n>n,
(Lemma 4.10). However 4,>J(N)>J(n), all neN,so x,>1(n). This gives
Q(n, N)4,#0, a contradiction.

Corollary 4.14. Let M be holonomic and N ¢ M(Ro). If soe%(J(N)),
then s:= 4§eG(J(M)).

Proof. By Corollary 4.12 ii) Q(n, N(4))#0, all ne N, whence E4(M)#0.
So ,x>J(M) by Proposition 2.16. Hence 4> 4’ for some ,'e#(J(M)).
Since ht 4'=pg (M is holonomic) ht 4> pug. Then Corollary 4.12 ii) implies
ht s=pg=ht 4". So = s e F(J(M)) (since ug is finite by Remark 3.3).

Proposition 4.15. Let M be a holonomic R-module. Then are equivalent
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i) NeMR,).
i) N(4) e MEP(R)) for all 4eF(J(M)).

Proof. 1)—ii). If ny,...,n, generate N as R,-module, then ¢p(ny),...,
¢ 4(n,) generate N( ) as é’/(?)(R)-module.

ii)—i). Suppose N ¢ M(R,). Then %(J(N))#@ by Corollary 4.12 1i).
Let s, 9(J(N)). Put s:= 45 Then N(/;)sétM(é"}o’(R)) by Corollary 4.12
and xe%(J(M)) by Corollary 4.14. So by ii) N(/)ellﬁj(é”/‘,?’(R)) a con-
tradiction. Hence N € M(R,).

Proof of Theorem 4.9. i) Obviously it suffices to show that every element
of ¢(J) is involutive. So let s,e%(J). Put x=gr(R),. By Lemma 4.10
the rings gro(R) 4, and gro(&4(R)) are isomorphic. ~We identify them. The
Poisson product on gry(R) can be extended to gro(R)., and equals the Poisson
product on gro(é"/(R)). If we can show that /eogro(R)/go is involutive in
gro(R)z, it readily follows that the contracted ideal in gry(R) i.e. 4, is involutive.

Let noeN be such that J=J(n) for all n>n,. By Lemma 4.10 J(n)s,
=J(Q(n, N(4))) whence J(Q(n, N(4))=J 4,= f0gro(R)s, Therefore we may
replace the triple (N, M, (M,),) by (N( 4), &4(M), (é’}"( M)),) and we are reduced
to a micro-local case. However since o€ %(J(n)) if n>ngy, Q(n, N)s, is a
gro(R)/o-module of finite length so Q(n, N () is a gro(&x(R))-module of
finite length. Hence we can assume:

ii)) Q(n, N) is a gro(R)-module of finite length for all n>n,. Then Lemma
4.8 implies: there exists ny; >n, such that for every n>n, the left multiplication
by s™! gives an isomorphism from Q(n+1, N) onto Q(n, N). So N(n)
=s"IN(n+ 1)+ N(n—1) (where N(k):=M, n N forall ke Z). Put A:=R,/R_,,
u:=s'+R_,€A, M':=N(mn+1)/N(n—1). Then u is a central element in
A with u2=0, A/uA~Ry/R_,;, Q(n+1, N~M'/uM' and uM'=Ker, M'.
Finally ud=XKer, A, whence J=J(n+1)=J(M'/[uM’) is involutive by [6],
Theorem II.

§5. Modules with Regular Singularities over £-Rings

In this section R denotes an E-ring, s its special element (Definition 4.1 1))
and v=0(s) which is a unit in gr(R) with o(s™!) as inverse (Lemma 4.2 i)). By
Corollary 4.5 R and R, are left noetherian. If re R put o,(r)=r+ R, € gr,(R)

(cf. §1). Furthermore, I always (in this section) denotes a homogeneous
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involutive radical ideal in gr(R). Put
s(D:={reR|o(v)el},
R(I):=the subring of R generated by ,(I) over R,.
Lemma 5.1. (1) is an Ry-module of finite type and a Lie-algebra.

Proof. 1t is easy to verify that 4(I) is an Ry-submodule of R;=Rgs.
Since R, is left noetherian 4(I)e M(Ry). Let 1, '€ »(I). Put [r, t']:=17
—1’'t. Then [z, t']eR,. If [z, 7']eR, then o,([7, T'])=0. If [z, T']e R{\R,
then o,([7, 7'])={0(7), o(t’)} € I since I is involutive, which proves the lemma.

Definition 5.2. Let M € M(R). We say that M has regular singularities
along I (M has R.S. along I) if there exists an Ro-submodule M, of M of finite
type such that RMo=M and 4(I)M,<M,.

Proposition 5.3. Let M € M(R). There is equivalence between

i) M has regular singularities along I.

it) If N is an Ry-submodule of M of finite type, then R(I)N € M(R).
iii) If N is an R(I)-submodule of finite type of M, then N € M(R,).
iv) E(Rom):=2 o Rotime M(R,) for all te 4(I), all me M.

Proof. i)—ii). Since Ne M(R,) and RM,=M there exists ke N with
NcRM,. Let t€ 4(I), reR,, meM, Then trm=rim+[r, rlme RM,
since tme M, and [7, r]eR,. So R(I)RM,<RM,, implying R(I)N <R, M,
=s*M,e M(R,). Hence R(I)N € M(R,) since R is left noetherian.

i)—iii). Let N:=Y%L,R(n;. Put Ny:=3 Rgn;. Then N=R(I)N,
and we can apply ii).

iii)—iv). Since E (Rom)<R(I)m € M(R,) (by iii)) we get iv).

iv)>i). By Lemma 5.1 4(I)=3{.; Rot; for some 1;€ 4(I). Let me M.
By iv) there exists k € N with

thme YEZf Rotim, all 1<i<d.

Since by Lemma 5.1 4(I) is a Lie-algebra it follows that R(I)m is generated as
an Ry,-module by the elements tit---ti#m with 0<j<k—1, all je{l, 2,..., d}.
So R()me M(R,) all meM. Since M e M(R), say M=3Y !, Rm; we put
My:=>"%R(I)m; Then M, has the properties of Definition 5.2, which
concludes the proof.

Let M e M(R) and let &, denote the filtration map introduced in §4 (cf.
Lemma 4.2).
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Propesition 5.4. The map & restricted to the set of Ry-submodules of M
satisfying the conditions of Definition 5.2, gives a one-to-one correspondence
with the I-good filtrations on M. In particular the very good filtrations on M
correspond one-to-one with the Ry-submodules of M satisfying the conditions
of Definition 5.2 with I=J(M).

Proof. Let M, be as in Definition 5.2. Put F:=%(M,). Then F is good
on M (Lemma 4.2). It remains to prove that I<Anngrf(M). Let o(r)el
with W(r)=keZ. Then s~ Dre 4(I), so s " DrM,=M, i.e. rMoc=R,_ ;M.
Hence rR,My<R,,,_ M, all neZ (since ram=arm+/[r,a]lm, all aeR,,
me M,). So o(r)gr,(M)=0 all neZ. Consequently I<Anngr(M), since I
is homogeneous. Since & is injective it suffices to show that & is surjective.
Let F' be an I-good filtration on M. By Lemma 4.2 F'=4%(M,) for some
Ry-submodule M, of M satisfying M,e M(R,) and RMy=M. It remains to
prove o(I)Mo<=M,. Let reR, with o,(r)el. We must show rM,cM,.
If re R, we are done. So assume r¢ R,. Then o(r) e gr(R) and o(r)=0,(r)
elcAnngrf'(My). In particular o(r)Mo/R_;My=0 in R,My/M, ie. rM,
< M, as desired.

Corollary 5.5. Let M e M(R). Then M has R.S. along I iff M possesses
an I-good filtration.

Definition 5.6. Let M € M(R). We say that M has regular singularities
(M has R.S.) if M possesses a very good filtration.

So by Corollary 5.5 M has R.S. iff M has R.S. along J(M).

Since o(s)is a unitin gr(R) a(s) ¢ 4 for all 4 e Spec (gr(R)) i.e.s€ Sy all 4.
Since s € R{\R, this means that Spec (gr(R))=Spec°(gr(R)) (see Definition 2.21).
So by Corollary 2.23 &4(R) is an E-ring for every 4 € Spec(gr(R)). The main
result of this section is

Theorem 5.7. Let M be a holonomic R-module. There is equivalence

between
i) M is an R-module with R.S.

i) &4(M) is an E4(R)-module with R.S. for all x e G(J(M)).

iii)  &4(M) is an E4(R)-module with R.S. for all s e Spec (gr(R)).

Proof. 1)—iii). Apply Proposition 2.9 with S:=S,. 1iii)—ii)is obvious.
So it remains to prove ii)—i). Let me M and 1€ 4(J(M)). By Proposition 5.3
it suffices to show that N:=3 Rqtime M(R,). We want to apply Proposition
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4.12. So let se%(J(M)). Then N(y)=X é”/(;’)qﬁ/g(r)igb/(m). Since ¢ 4(7)
€ #(J(64(M))) by (2.10) the hypothesis and Proposition 5.3 imply N( )
€ 1\__4((5’/(2)(R)). So Ne M(R,) by Proposition 4.12, as desired.

Remark 5.8. The assumption M is holonomic in Theorem 5.7 is only
used to prove the implication ii)—i).

5.9. Some Consequences of Theorem 5.7.
From Corollary 5.5 and Definition 5.6 we deduce
(5.10) If M has R.S. along I, then I < J(M).
(5.11) If IcJ(M) and M has R.S., then M has R.S. along I.

Proposition 5.12. Let M be holonomic and htI=pgz. Then M has R.S.
along I iff M has R.S. and 1 <=J(M).

Proof. “if” follows from (5.11). Conversely, let M have R.S. along I.
So IcJ(M) by (5.10). Since htI=pug, hty>pug for all ,e%(I). Let se
g(J(M)) then s>, for some ye%(). So hty<ht,s=pg ie hty=p,
implying 4= 4€%(I). By Proposition 2.9 and Corollary 5.5 £+(M) has R.S.
along Yg(a(S,) ') =Yr(0(Ss) ™" £)=Yr(a(Sp) I (M))=J(64(M)) (by (2.10)).
So M has R.S. by Theorem 5.7 ii)—1).

Let 0-M'->M—-M"—0 be an exact sequence of R-modules of finite type and
7eR;. Then (cf. Proposition 5.3) E(Rom)e M(R,) all meM iff E(R,m’)
e M(R,) and E(R,m")e M(R,) all m'e M’, all m"e M” (left to the reader).
Consequently, using Proposition 5.3 iv) we obtain.

Lemma 5.14. M has R.S. along I iff M’ and M" have R.S. along 1.

Corollary 5.15. Let 0—»M'—M—M"—0 be an exact sequence of holonomic
R-modules. Then M has R.S. iff M' and M" have R.S.

Proof. Observe J(M)=J(M')NnJ(M"). Then apply Proposition 5.12
and Lemma 5.14 with I=J(M).

§6. A Dictionary between E-Rings and Noetherian Filtered Rings

Let A be a filtered ring with filtration FA and order function v. The ring
of polynomials A[X] can be made into a filtered ring with filtration FA[X]
and order function v, by putting
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(X a;X)=supv(a)+i and FA[X](n):={a(X)e A[X]|vx(a(X))<n}.

Similarly starting from an A-module M we can consider the module of poly-
nomials M[X]. It is easily checked that M[X] is an A[ X]-module isomorphic
to A[X]® M. If FM is a filtration on M with order function v, we can define
a filtration FM[X] on M with order function vy by

ve(X mXH)=supv(m)+i and FM[X](n):={m(X)|vy(m(X))<n}.
Write v instead of vy. Then obviously
6.1) (X"m(X))=v(X"w(m(X)), all neN, all m(X)e M[X].

Let i: M—M[X] be the inclusion map. Since i(F,M)cF,M[X] we have the
induced map i: gr(M)—gr(M[X]). Obviously i is injective. Put X:=X+
FoA[X]. Let gr(M)[Y] be the external homogenization introduced in 9.11.
Extend i to a map i: gr(M)[Y]—gr(M[X]) by putting i(X ;Y/)=3; X7,
;e gr(M) all j.

Lemma 6.2. i) i: gr(A)[Y]—gr(A[X]) is an isomorphism of graded rings.
iy i:gr(M)[Y]-gr(M[X]) is an isomorphism of gr(A)[ Y]-modules.

Proof. Left to the reader.

From now on we identify gr(M)[Y] with gr(M[X]) by i. So we write
gr(M[X])=gr(M)[X]. Instead of F,A4 and F,A[X] we write A(n) resp. A[X](n).
Let I be an ideal in gr(4). Then I¢:=gr(A)[X]I in gr(4)[X].

Lemma 6.3. If FM is I-good on M, then FM[X] is I°-good on M[X].
If FM is very good, then FM[X] is very good.

Proof. In particular FM is good on M. So F,M =3 A(n—v;))m; for some
n,€Z, mieM all neZ. We claim: F,M[X]=3 A[X](n—v;)m;. Obviously
“>”" holds. Conversely if meM and mX/eF,M[X] then v(m)+j<n
ie. meF,_ M=% A(n—j—v)m;. So mX/e} A[X](n—v)m; Since all
elements of F,M[X] are finite sums of elements of the form mX/J with v(m)
+j<n it follows that FM[X] is good. ByLemma 9.5 v)and vi) Ann gr(M[X])
=(Anngr(M))¢ and JM[X])=J(M)e. So IcAnngr(M) implies I°¢
cAnngr(M[X]) ie. FM[X] is I¢ good. Finally J(M[X])=J(M)¢ implies
that FM[X] is very good if FM is very good.

Now we introduce the main objects of this section. Put S={X"|ne N}.
Then S is a multiplicatively closed subset of A[X] satisfying the conditions of
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Theorem 2.1. We put
Ex:=6x(A[X]):=6(A[X], FA[X]).
Instead of €§(A[X], FA[X]) we write £% and ¢¢ we denote by ¢,. Since
[¢x(X)|=|X|=2" and [px(X)7!|=|X|"'=2"" we get
(6.4) s:=¢@x(X) satisfies the conditions of Definition 4.1.
Corollary 6.5. If gr(A) is a commutative noetherian Q-algebra, then
&y is an E-ring.

Proof. By Lemma 6.2 and Theorem 2.6 gr(&y)~gr(4)[X, X~']. Conse-
quently since gr(A4) is a commutative noetherian Q-algebra, so is gr(&y). By
Proposition 1.10 it follows that F&y is noetherian.

If M is an A-module with filtration FM we similarly have the &x-module
E(M[X], FM[X]) with filtration £¢(M[X], FM[X])),z. From this fil-
tration we can recover the filtration FM as follows. Put j:=¢yei where
it M->M[X] is the inclusion map and ¢x: M[X] —-&(M[X], FM[X]) the
canonical map.

Lemma 6.6. F,M=j"1(&P(M[X], FM[X])), all neZ.

Proof. “c”’ is obvious. Conversely, let neZ, meM and suppose
jm)e &P (M[X], FM[X]). Then |¢x(m)|<2". So by (6.1) and (2.5) |m|
=|m|y=|px(m)|<2" i.e. me F,M.

6.7. Filtrations on M and &y (M[X])
From now on we assume: gr(A) is commutative.

Let M € M(A) and FM a good filtration on M. Then FM[X] is good on
M[X] (by Lemma 6.3). Hence &(M[X], FM[X]) does not depend on the
choice of the good filtration FM on M (by (2.7)). We denote this &x-module
by My or &x(M[X]). However, the filtration

ZL(FM):=(&x(M[X], FM[X])sez
on My does depend on FM. With the notations of (2.7) we have £(FM)
=L(FM[X]). So by Proposition 2.9 and Lemma 6.3 #(FM)isgood. Hence
My e M(&x). Conversely, let F be a good filtration on M. Put
g(F) =(j—1(Fn))neZ

which is a filtration on M. So we have maps .# resp. ¢ going from good
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filtrations on M resp. My to filtrations on M, resp. M. Let I be an ideal in
gr(A4), J an ideal in gr(&y) and j=gr(j). Putl¢:=gr(&x)j(I) and Je:=j"1(J).

Proposition 6.8. i) If FM is I-good on M, then £(FM) is I1°-good on My.
i) Suppose FA is noetherian. If F is J-good on My, then %(F) is J¢-good
on M. The same conclusions hold for every good filtrations.

Proof. i) follows From Lemma 6.3 and Proposition 2.9 with S=
{X"|n e N} since L(FM)=L(F(M[XY).

ii) Since F is good on My, F=%(4,) where .#, is an &%’-submodule of
My of finite type with &x.#,=My (Lemma 4.2). Choose a good filtration
F'M on M and put F(:=%,(F'M). By i) and Lemma 4.2 #;ec M(&$)
and &xyMg=Mjy. Since these relations also hold for .#, we deduce: there
exists ce N with ¢ ayc#yc&sd 4. Consequently j~U(&E=uf)cj !
(&P M) jUEPT (), all neZ. Then Lemma 6.6 implies F,_ M < % (F)
cF,,.M, all neZ. So %(F) is good by Theorem 1.11. Let o(a)eJ¢ with
v(a)=k and me %, (F). Then o (¢x(a))eJ and ¢y(m)eF, So ¢xlam)=
ox(a)px(m)e F, ., (since JcAnngrf(My)) ie. ame %, _(F). Hence J¢
cAnn gr!®)(M). Finally by (2.10) and Lemma 9.5 vi) J(M)¢=J(M,) and
J(My)¢=J(M) (Lemma 9.5 ii)) which proves the last part of Proposition 6.8.

6.9. Holonomic 4-Modules

Let A, FA satisfy the conditions a) and b) of §3, and let 0#M e M(A4).
As observed before J(My) =y x(gr(A)[X, X 1]J(M)). So Corollary 9.7 implies
that ¥(J(My)) consists of the set of prime ideals x¢ (= (gr(4)[X, X1] 4))
where 4 runs through the set #(J(M)). LetdeN. Sinceht s=ht 4¢ we derive
ht s=d all se¥g(J(M)) iff hty=d, all ,e%(J(My)). Applying this with
d=u, we get: M is holonomic iff ht,=u, for all ;, € ¥(J(My)). From this we
derive

Corollary 6.10. If u,, =pu, then M is holonomic iff M is holonomic.
To investigate when the condition u,=p,, is satisfied we put
:=sup ht
Va /eg 7
where # is the set of involutive prime ideals in gr(A4).
Proposition 6.11. ., =p, iff p4=v,.

Proof. Let , be an involutive homogeneous prime ideal in gr(4). Then
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by Proposition 1.19 and Proposition 9.9 4¢ is an involutive and homogeneous
prime ideal in gr(&x(A[X1)=gr(4A)[X, X~1]. Since by [11], Theorem 1.9,
p- 79 and Corollary 9.3 i) ht £=ht 4° we get u, <p,,.

i) Suppose p,=v,. It remains to prove u,, <p,. By Proposition 1.19
every involutive homogeneous prime ideal in gr(&x(A[X]))=gr(A)[X, X 1] is
of the form y¢=gr(A)[X, X~1], where , is a homogeneous involutive prime
ideal in gr(4)[X] with X ¢ ,. By Corollary 9.31) ht,¢=ht,. By Proposition
9.12 and Proposition 9.18 4, is an involutive prime ideal in gr(4). So hty, <v,.
Hence Corollary 9.15 implies that ht,=hty,,<v,=p,, whence htye<pu,.
S0 pey <py

ii) Suppose p,,=p,. We must show v,<pu, since obviously pu,<v,.
So let 4 be an involutive prime ideal in gr(A), say ht ,=n. By Proposition 9.12
and Proposition 9.18 4* is an involutive prime ideal in gr(4)[X] and X ¢ 4*.
Furthermore hts*=ht s=n by Corollary 9.15. The hypothesis u,, <p,
implies that there exists an involutive homogeneous prime ideal 4 in gr(4)
with n=ht 4*<ht,. Soht<ht,. Consequently v,<u, as desired.

Corollary 6.12. Let u,=v,. Then M is holonomic iff My is holonomic.

Proof. Apply Corollary 6.10 and Proposition 6.11.

6.14. A Special Result

To conclude this section we give a result which will be used in §7 to prove
the main result of this paper. By Theorem 2.6 gr(&s(A4)) and o(S) gr(A) are
isomorphic graded rings. We identify these rings. So we write gr(&s(4))
=0(S)"'gr(4). Let ye Spec (gr(A)). Put ye:=gr(A)[X, X '], in gr(A)[X,
X~'] (=gr(éx(A[X]) and ;:=0(Sp) 'gr(A)[X, X '], in o(Sy) 'gr(4)
[X, X~1] (=gr(&x(&7 (X))

Lemma 6.15. i) There exists an isomorphism of filtered rings y from
&4 (Ex(A[X])) onto &5(Ex(Ep (A XT)).

ii) Let MeM(A). There exists an isomorphism of filtered
&y (Ex(ALX]))-modules y from &, (&x(M[X])) onto E5(&x(&7 (M)[X])).

Proof. Let ¢y: A>&p(A) be the canonical map and ¢y its obvious
extension A[X]-&p(A[X] with dp(X)=X. Let ¢z x: Ep(AD[X]>&
(67(A)[X]) be the canonical map. Applying Theorem 2.1 iii) to the morphism
h: A[X]- &x(&7(A)[X]) defined by h=¢;,xoq3; we obtain a morphism of
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filtered rings p: &x(A[X])—Ex(E#(A)[X]). Take ¢=p in Corollary 2.18
and s:=,4¢ in gr(6x(A[X])=gr(ALX, X~1]. Then s¢=; and (4°)°= 4.
So by Corollary 2.18 we obtain a morphism f: &, .(&x(A[ X))~ E(Ex(Er(A)-
[XT). It is left to the reader to verify that gr(g) is a bijection between the
associated graded rings. Consequently § is an isomorphism of filtered rings
by Corollary 1.14, which proves i). i) By g constructed in i) &5
(6x(8(M)[X])) becomes a left &,.(6x(A[X]))-module. Then arguing as
in i) Corollary 2.19 gives a morphism y: &, (Ex(M[X]))—&;(Ex(E(M)LXD)
which is in fact an isomorphism, using Corollary 1.14 again.

§7. Modules with Regular Singularities over Filtered Rings

In this section A4 denotes a filtered ring with filtration F A satisfying

a) gr(A) is a commutative Q-algebra.
b) FA is noetherian.

) Ha=Vy4.

Furtheremore I (resp.J) is an involutive homogeneous radical ideal in gr(A4)
(in gr(&y)) and M € M (A).

Definition 7.1. We say that M has regular singularities along 1 (M has
R.S. along I) if M possesses an I-good filtration. We say that M has regular
singularities (M has R.S.) if M possesses a very good filtration.

Proposition 7.2. If M has R.S. along I then My has R.S. along I¢. If
Mx has R.S. along J, then M has R.S. along J¢ and M has R.S. iff My has
R.S. (as an &x-module).

Proof. Apply Proposition 6.8.
The main result of this paper is

Theorem 7.3. Let M be a holonomic A-module. There is equivalence
between
i) M has R.S.
i) &4(M) is an &4(A)-module with R.S. for all s e %(J(M)).
i) 64(M) is an &4(A)-module with R.S. for all s e Spec(gr(A4)).

Proof. 1)—iii) follows from Proposition 2.9 with S:=S,. iii)—ii)
is obvious. So it remains to prove ii)—i). Let e #%(J(M)). Then the hypo-
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thesis and Proposition 7.2 give &x(6x(M)[X]) is an &x(64(A)[X])-module with
R.S. Then Theorem 5.7 i)—iii) implies that éig(é’x(e"/z(M)[X D) is an
é:;(é’x(@’/,(A)[X]))-module with R.S., where 4 is as in Lemma 6.15. So by
Lemma 6.15 we find é’/e(e’x(M[X])) is an &,.(6x(A[X]))-module with R.S.
for all 4e%(J(M)), with . as above. As observed in 6.9 the minimal com-
ponents of J(My) are all of the form ¢ with s e #(J(M)). Finally by Corollary
6.12 My is a holonomic &y-module. So we can apply Proposition 5.7 ii)—i)
to the E-ring R:=¢&4. Hence My is an &x-module with R.S. which implies
i) using Proposition 7.2.

Obviously Definition 7.1 implies

(7.4 If M has R.S. along I then IcJ(M).
(7.5) If IcJ(M) and M has R.S. then M has R.S. along 1.

Proposition 7.6. Let htI=p,. There is equivalence between
i) M has R.S. along 1.
i) M is holonomic with R.S. and I =J(M).

Proof. ii)—i) follows from (7.5). Conversely assume i). Then I = J(M)
by (7.4). Let se%(J(M)), then 4>, for some ,e%(I). Hence hts>ht,
>u, (since htI=pn,). Since e @ (J(M)) ht s<pu, (see §3). Sopu,=ht=ht,
hence ,4=,€¥%(). Consequently M is holonomic and #(J(M))=¥().
By Proposition 2.9 &4(M) has R.S. along Y (a(Ss) D)=y 4(0(Ss)! p)=
Y a(0(S4) 1 J(M))=J(4(M)), all e (J(M)). Then apply Theorem 7.3.

Proposition 7.7. Let 0-M'>M—M"—-0 be an exact sequence of holo-
nomic A-modules. Then M has R.S. iff M’ and M" have R.S.

Proof. Put S={X"lne N}<A[X]. As observed in (2.7) the functor
N—-¢&yN) from M(A[X]) to M(&y) is exact. Since the functor M—M[X] is
also exact we obtain an exact sequence 0—»My%—>Myx—M%—0 of holonomic
éy-modules (by Corollary 6.12). Then apply Proposition 7.2 and Corollary
5.15.

§8. Rings of Differential Operators

In this section we will consider special filtered rings, the so-called rings of
differential operators, often denoted by D instead of 4. We show that for these
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rings D the condition v, =y, is satisfied. More precisely we show that v=pu,
=gl.dim D. This enables us to prove that the notion of a holonomic D-module
as introduced in §3 coincides with the usual concept of holonomicity studied in
literature. We begin with some preliminaries.

Let R be a commutative k-algebra, where k is a field with char k=0 and P:
R x R—R a k-bi-derivation i.e. P is a bi-derivation, cf. Definition 9.1 and P(4, r)
=P(r, 2)=0forall Aek, reR. Let Qr=Qg/, be the R-module of differentials
over k.

Lemma 8.1. There exists an R-bilinear form w on Qg such that w(da, db)
=P(a, b), all a, beR.

Proof. Suppose Y gida;=3 gida; and 3 h;db;=3 h; db;. We must
show Y g;h;P(a;, b;)=2 g;h;P(a;, b;). It suffices to prove Y g;P(a; b)
=3 g;P(aj, b), all beR and }_ h;P(a, b;)= 3 h’;P(a, b’;), all aeR. We only
show the first equality. Put D(b):=3 g;P(a;, b), all be R. Then D is a k-
derivation of R. So by the universal property of Qj there exists ¢ € Hom (Qg, R)
with ¢(db)= Db, which implies the first equality.

Proposition 8.2. Let 4 be a P-stable ideal in R.  Suppose that

i) R is a regular ring

ii) Qg is a free R-module of rank n (ne N) with an R-basis (eq,..., e,)
such that det w(e;, e;)} j-; is a unit in R.
Then ht 4> (1/2)n.

Before we prove this proposition we make two observations.

1. Let ¢: R—»R’ be a ringhomomorphism, F a free R-module of rank n
with R-basis (f):=(f1,...,f,) and @ an R-bilinear form on F such that d{w(f))
:=det(w(f;, f})7 j=1) is a unit in R. Then F:=R'®gF is a free R’-module
with R’-basis (f'):=(f1,...,f,), where f;=1®f, and we can extend w to an R'-
bilinear form " on F’ by putting w'(f}, f })=¢(w(f;, f;)). Since ¢p(d(w(f))) is
a unit in R’ d(w’(f")) is a unit in R'.

2. Let S be a multiplicatively closed subset of R. Then the k-bi-derivation
P on R can be extended to a k-bi-derivation P’ on S™!R (in the obvious way).
Identifying ST'R® g Qg with Qg-1p it is easy to verify that the form @’ on S™!R
®Qg as defined in 1. equals the form on Qg-.; induced by P’ (according
Lemma 8.1). Furthermore, if I is an R-stable ideal in R, then S™! [ is a P’-stable
ideal in S7IR.



880 ARNO VAN DEN ESSEN

Proof of Proposition 8.2. Put A:=Rs, m:=R4 K: =A|», Since
char k=0 we have an exact sequence of K-vectorspace (cf. [8], Ex. 8.1, p. 187)

0 — m/m? =5 Q,Q,K

where a(a+~?)=da®1. Apply 1. to the ringhomomorphism R—A. This
gives a form ' on Q, (=Qx®rA) and a basis (ej,..., e,) With d(w(e")) is a unit
in A. By 2. o' is the form on Q, induced by P’ and since , is P-stable,  is
P'-stable. By 1. applied to the ringhomomorphism 4—-K we get a form
" on V:i=Q,8,K and a K-basis (¢"):=(e],..., e}) of V with d(w"(e"))#0.
So w” is non-degenerated. Since - is P’-stable and a(a+~2)=da ®1, all ae A4,
it follows that E:=oa(/»2) is an isotropic K-subspace of Vi.e. w"(e, ¢')=0 for
alle, e eE. So dimg E<X1/2dim V=1/2n. Since « is injective dimg »/»2 <
1/2n. The regularity of R implies that A is a regular local ring, so dimg /2=
dim 4. Since ht s=dim 4, we derive ht 4~ <1/2n, as desired.

8.3. Applications to Rings of Differential Operators

Let B be a commutative noetherian ring which contains a field k of charac-
teristic zero. Put ,=Der, (B, B) and D(B):=U(B, ) the ring of universal
differential operators generated by B and 5 (we refer to [R] for more details).
Let h: B>D(B) and j: ,—D(B) be the canonical maps. Then k is a mono-
morphism. Furthermore, D(B) is a Z-filtered ring by putting

D(B)(v)=0 if v<0, D(B)0)=B and D(B)(v) is the B-submodule of D(B)
generated by the v-fold products of elements in h(B) U j( »).

Let »» € Max (B)=the set of maximal ideals in B. Then every t€ , induces a
B/s-linear map T: #/m?— B[m, since t»?c»; T is called the tangent map at
=. We say that , has maximal rank at » if every B/m-linear map from ms/m?
to B/ is of the form 7, for some 7€ ;. From now on we assume that B satisfies

the following conditions:

1)  has maximal rank at every » € Max (B).

2) B is a regular ring of dimension n (for some n € N).

3) The residue fields Bl are algebraic over k.

4) For every B-module M we have: M € M(B) iff M,,€ M(B,,), all m»€
Max (B).

5) Qg€ M(B).

Let .»» e Max (B). By 2) d:=dimg,,m/»?>=dim B,,<n. Choose y,..., ¥,
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€ such that their images (7,..., y,) form a B/m-basis of .»/~%. Then
Nakayama’s lemma implies that y,,..., y; generate the maximal ideal ~B,,.
By 1) there exist 7,,..., 7€ » such that 7,(y,) €= if j#v and 1(y;)! €m, all
1<j<d. Tt follows (cf. [1], p. 89) that ,,, is a free B,,-module with basis
Ty,..., Tg- Consequently, observing that D(B),,~U(B,,, »,,) as filtered rings,
we get an isomorphism of graded rings

(8.4) gr(D(B),,) =B, [X,..., X;],

where the polynomial ring is graded in the usual way. Furthermore gr(D(B),,)
~gr(D(B)),, (for example by Theorem 2.6). Identify these two rings.
Obviously gr(D(B)) is a commutative ring so we have a Poisson product, denoted
{, } on it, which extends to a Poisson product on gr(D(B)),,. This extension
equals the Poisson product induced by D(B),,~U(B,,, s,,) of gr(D(B),,).
Identify gr(D(B),,) with B, [ X,,..., X;]. So X, corresponds to the class 1,4+ B,,.
Put R:=gr(D(B),,). Let w denote the R-bilinear form on Qy induced by the
Poisson product on R. We have the following obvious relations

(8.5) o(dX;, dy)=1(y;) in B, and w(dy,dy;)=0, all i,j.

Lemma 8.6. Qp is a free R-module with basis (e, ..., €,0):=(dy1,..-, dyy,
dX,,..., dX,) which satisfies: det w(e;, e;)?%—, is a unit in R.

Proof. Q4 is generated as an R-module by the elements dX,..., dX,; and
the elements da, where a runs through A:=B,,. More precisely Qr~(2,® 4, R)
@RIX,@®---®RdX, (see [11], p. 189). Put »:=..B,, and K(A):=A/». Let
ac€A. Then a:=a+~e K(A) is algebraic over k (by 3)). Let P(X)ek[X] be
the monic minimal polynomial of @ over k. In particular P(a)=0 i.e. P(A4)
€x=Y Ay, Consequently ( ¢ X> (a)dacy Ady+2, Since char k= 0
g.cd. <P(X), 8X> =1, so there exist #(X), s(X) € k[ X] with r(X)P(X)+s(X) aX
=1. Hence r(a)P(a)+s(a)< >(a)+ 1, implying that dae Ady;+-2,.
Consequently Q, <= Ady,+~Q,. Since Q, e M(A) (for Qze M(B) by 5))
Nakayama’s lemma gives Q,=3 Ady;, Hence Q=3 Rdy;+Y RdX; Using
the relations of (8.5), it is left to the reader to verify that det (w(e;, ¢;))?% -, is a
unit in B,, and hence in R (=B,,[X,,..., X ]). Finally it follows readily that Qg
is a free R-module with (e,,..., e,;) as an R-basis, which proves Lemma 8.6.

The()}i‘em 8:7., VD(B) = ,LLD(B) = gl. dim D(B) =n.

Proof. i) Let 4 be an involutive prime ideal in gr(D(B)). Put 4,:= 4
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N B (where we identified B with the subring h(B) of gr(D(B)). Choose €
Max (B) with s4ocs. Put S:=B\». Then Sn =@. So ht,s=htS™! .
(Corollary 9.3 1)). Put R=S"!gr(D(B))=gr(D(B))». Since 4:=S"!, is an
involutive prime idealin R Lemma 8.6 and Proposition 8.2 imply that ht, <1/2.
2d=d<n. So ht,<n. Consequently vy <n.

ii) Since dim B=n there exists » € Max (B) with ht~B,,=nin B,,. Hence
g:=(»B,)* in B,,[X,,.... X,] is an involutive homogeneous prime ideal in
B, [X,,..., X,]=gr(D(B)),, with ht,=n. Let ¢: gr(D(B))—gr(D(B)),, be the
canonical map. Put s:=,°. Then ,=(5°)°= 4° gives that . is an invo-
lutive homogeneous prime ideal in gr(D(B)) with ht s=ht,=n. So ppE >n.
Together with i) this gives: up g =vpp =n.

iii) Finally n=gl. dim D(B) by [1], Chap. 3, Theorem 1.2, which completes
the proof.

8.8. Final Comment

Notations and assumptions as above. Put D:=D(B). It is shownin [1],
Chap. 3 that gr(D) is a commutative noetherian ring. Furthermore gr(D),,
~B,[X,,..., X;]is a regular ring of dimension 2d (d <n) for every » € Max (B).
It follows that gr(D), is a regular local ring of dimension<2n for every s€
Max (gr(D)) (since gr(D)s=(gr(D),,)f,n» Where = N Bis a maximal ideal of
B because gr(D)=B® éS gr(D)(n)). It follows that gl. dim gr(D)<2n. So we
can apply the material '6}1[2], p- 103-149.

Let 0#M e M(D). Since n=gl. dim D we obtain the following results

Proposition 8.9. M is equipped with a filtration %,(M)c% (M)c:--c
B, (M)=M of D-submodules (#_,(M)=0) and B, (M)/%B,_ (M) is isomorphic
to a subquotient of Ext%° (Ext 5 °(M, D), D).

Since %,(M)=M we can define:

(8.10) 0(M) is the smallest positive integer with B;n(M)=M .
Furthermore we put

(8.11)  j(M) is the smallest positive integer with Extj) (M, D)#0.
Obviously 0< j(M)<n. More precisely it can be proved that

8.12) JIM)+o6(M)=n.

So we get: 6(M)=0 iff j(M)=n i.e. Ext} (M, D)#0 iff v=n. A consequence of
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the decomposition theorem ([2], Theorem 7.3 p. 143) is:
Proposition 8.14. 6(M)=0iff ht 4=n, all e Z(J(M)).
By Theorem 8.7 we therefore have:

Corollary 8.15. M is a holonomic D-module iff 5(M)=0 iff Exty (M, D)#0
only when v=n.

This shows that the notion of a holonomic D-module, introduced in §3
coincides with the usual definitions given in the literature.

Examples. i) Let 0, be the ring of formal or convergent power series in
X1,..-, X, Over a field k of characteristic zero. Then B:=0, satisfies the con-
ditions 1)-5) and 9,= D(B).

ii) Let V= CN (N € N) be a non-singular n-dimensional irreducible variety.
Let A(V) be the coordinate ring of V. Then B:=A(V) satisfies 1)-5) and 2(V)
=D(A(V)) (see [1], Chap. 3, §2).

§9. Some Results of Commutative Algebra

In this section all rings are commutative. Let ¢: A— B be a ring homo-
morphism. If I is an ideal in 4 we put I¢:=B¢(I), the extended ideal of
A and if J is an ideal of B we put J¢:=¢~!(J), the contracted ideal of J.

Definition 9.1. A bi-derivation on a ring A is a Z-bilinear map
D: Ax A— A satisfying
D(alaz, b)=a1D(a2, b)+D(a1, b)az, all al, az, bGA.
D(a, byb,)=b,D(a, b,)+ D(a, by)b,, all a,b,, b,eA.
An ideal I in A is D-stable if D(a, b)el for all a, b € I.
Proposition 9.2. Let ¢: A—>B be a ring homomorphism and let D,, Dy
be bi-derivations of A resp. B. If for some unit ve B
(D 4(a, a"))=vDy(P(a), p(a’)), all a,a’e4d
then the following holds
i) IfIis D,-stable, then I1¢ is Dg-stable.
i) IfJ is Dg-stable, then J¢ is D ,-stable.

Proof. Left to the reader.
Let 4 be a ring and [ a radical idealin 4. If I can be writtenas 4, N--- N
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i, Where the 4; are distinct prime ideals of A satisfying 4, jf;i s wecall 44
NN 4, the minimal prime decomposition of I (it is unique up to a permu-
tation). The set { 4,,..., 4, we denote by Z(I).

If A is a noetherian ring every radical ideal admits such a decomposition.

Let S be a multiplicatively closed subset of 4. Then there is a one-to-one
correspondence between the prime ideals of S™'4 and the prime ideals of A not
meeting S, given by extension and contraction (under the canonical map ¢:
A—>S"1A4). An easy consequence of this fact is

Corollary 9.3. i) If seSpec(A) and N S=Q, then ht s=ht s°.
ity LetI be a radical ideal in A. If I°&=S™ 1A, then I¢ is a radical ideal
and %(I¢) is the set of 4° where se%(I) with 4N S=0.

9.4. The Adjunction of a Variable

Let 4 be a ring and M and A-module. We can make the ring A[X] of
polynomials and similarly the module M[X] which is an A[ X]-module in the
obvious way (cf. §6). Let i: A—»A[X] be the inclusion map. As before put
I¢e=A[X]i(I) for an ideal I in A4 and J¢=i"1(J) for an ideal J in A[X].

Lemma 9.5. Let I, J, K be ideals in A.
i) If seSpec(A), then 4° € Spec(A[X]).
ii) Iec=I.
iii) r(I®)=r()e.
iv) IfI=JnK, then Ie=Jen Ke.
v) If M is an A-module then Ann M[X]=(Ann M)e.
vi) r(Ann M[X])=(r(Ann M))e.
Proof. Left to the reader. Use the fact that 3 g, X*eI¢ iff a;e! for all
ieN.
Proposition 9.6. Assume A noetherian. Let 0#M and let 4NN 4,
be the minimal prime decomposition of r(Ann M). Then 4$N---N ¢ is the

minimal prime decomposition of r(Ann M[X]). Furthermore ht4;=ht 4§,
all i.

Proof. By Lemma 9.5 vi) and iv) r(dnn M[X])= 450 - N 4¢. The 4f
are all distinct prime ideals of A[X] by Lemma 9.5 i) and ii). If /?Cf\ Vo
then 4f C(f\ ;)¢ by Lemma 9.5 iv), so by Lemma 9.5 ii) /,CK\ Aia contra—
diction. Flnally ht 4,=ht ¢ follows from [11], Theorem 19, p. 79
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Now consider A[X, X~1] and M[X, X ']i.e. the localization of A[ X] resp.
M[X] with respect to S={X"ne N}. So M[X, X 1]is an A[X, X~ !]-module.
Letj: A—>A[X, X '] be the inclusion map. Combining 9.3 and Proposition 9.6
we obtain

Corollary 9.7. Notations as in Proposition 9.6. Then N ---N 2, is the
minimal prime decomposition of r(Ann M[X, X71]) where Z,=A[X, X~ 1] 4,
Furthermore ht 4;=ht Z; all i and r(Ann M)=j"1 (r(Ann M[X, X~ 1])).

9.8. Graded Rings and Modules

A ring R is called a graded ring (of type Z) if there is a family of additive
subgroups {R,|neZ} of R such that R=®R, and R,R,<R, ., all n, meZ.
It follows that 1€ R, and R, is a subring of R. An R-module M is called a
graded R-module if there exists a family {M,|n € Z} of additive subgroups of M
with the properties M=®M, and R,M, =M, ..., all n, meZ. If O0#meM,,
then m is called a homogeneous element of degree n and if V is a subset of M,
h(V) denotes the set of homogeneous elements in V. An ideal I in a graded
ring R is called homogeneous if it is generated by homogeneous elements (equi-
valently: r=3 r,el implies r,e1 for all ne Z).

If A is an arbitrary ring, the ring R:=A[X, X~ '] is a graded ring by putting
R,:=AX", all neZ. Let j: A>A[X, X~ '] be the inclusion map. It is left
to the reader to prove

Proposition 9.9. There is a one-to-one correspondence between Spec(A)
and the homogeneous prime ideals of R given by extension and contraction
(with respect to j).

Proposition 9.10. If R=®R, is a noetherian graded ring, then R, is
noetherian.

Proof. Let I be an ideal in R, and re Ry\I. Then r¢ RI. Consequently
if there exists a strictly increasing chain of ideals in R,, say (I,).y then the
chain (RI,),.y of ideals in R is also strickly increasing, a contradiction.

9.11. External Homogenization, Dehomogenization

We recall some well-known facts of graded rings (cf. [14], Chap. VII, §5
and [12] part A, II.8. Let R be a graded ring. The ring R[X] of polynomials
can be made into a graded ring by putting deg X =1 i.e. R[X], is the set of
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elements ) r; X/ with r;eR; and i+j=n. In the same way, starting from a
graded R-module M we make M[X] into a graded R[X]-module, called the
external homogenization of M. Let r=r_,+---+ro+:--+r,eR. Put r¥:
=Xrtmp_ 4+ X"rg+ - +r,€ R[X], the homogenizedof r. If u=u_ X*+J
+-tug+--+u;e R[X] is in W(R[X]) put uy:=u_g+---+ug+--+u;eR,
the dehomogenized of u. Then (r*),=r and XP(u,)*=u for some peN.
Let I be an ideal in R and J a homogeneous ideal in R[X]. We put I*:=the
ideal in R[X] generated by the f* with fel. J,:={u,Jlueh(J)} this is an
ideal in R.

Proposition 9.12 (cf. [14]). There is a one-to-one correspondence between
the prime ideals of R and the homogeneous prime ideals of R[X] which do
not contain X. The correspondence is described by the maps s— s* and

g% g Which are each others inverse.

Lemma 9.14. If R is noetherian and s a homogeneous prime ideal in R
with ht £ =n, then there exists a chain of homogeneous prime ideals 4y% & 4,
= 4.

Proof. See [12], Corollary I. 1.10, p. 227.

Corollary 9.15. Let R be noetherian. If , is a homogeneous prime
ideal in R[X] with X ¢ g4, then hty=hty,. If 4 is a prime ideal in R,
then ht 4 =ht 4*.

Proof. Let hty=n. By Lemma 9.14 there exists homogeneous prime
ideals 0% --S%4,=5. Hence Proposition 9.12 gives a chain of distinct
prime ideals yoxSE *SEgm=g« in R. So hty,>ht,. Conversely, since
by Proposition 9.12 a chain 4¢% -& 4, =g, of distinct prime ideals in R
gives rise to a chain 4§& & £k =(y4)* =4 of distinct prime ideals in R[X]
we get hty;>hty,. So hty=ht,,. Finally, by Proposition 9.12 ,«=( %),
and 4:= 4* is a homogeneous prime ideal of R[X] with X¢ ,. So ht s=htg,,
=ht,=ht 4%, as desired.

Let D be a bi-derivation on R. We extend it to a bi-derivation on R[X]
by the formula

D(Zf;Xl, Z gJXJ)'—_,ZJD(fu gj)XHj? aH fia ngR, l’JEN
It readily follows that

(9.16) D(F, G)y=D(F4, G,), all F,GeR[X].
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Let f, geR. Then D(f, g)=D((f*)x, (%)) =D(f*, g*) by (9.16). So D(f, g)*
=(D(f*, g*¥)s)*. Consequently

9.17) D(f*, g*)=X?D(f, g)*, for some peN.

Proposition 9.18. If I is a D-stable ideal in R, then I* is a D-stable ideal
in R[X]. IfJ is a homogeneous D-stable ideal in R[X], then J, is a D-stable
ideal in R.

Proof. The first part follows from 9.17 and the fact that each F e h(I¥)
is of the form X?f* for some fe I and pe N. The second part follows from 9.16.
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