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Modules with Regular Singularities
over Filtered Rings

By

Arno van den ESSEN*

Introduction

In [9] and [10] an impressive theory of Q> and £ -modules with regular

singularities is developed. Many of the results are proved using complex analysis

or better micro-local analysis. In this paper we develop a purely algebraic

theory of modules with regular singularities over a large class of filtered rings

(including the rings of differential operators considered in [9], [10] and [1],

in which case we have the same notion of regular singularities). The main result

of this paper (Theorem 7.3) gives several equivalent descriptions of the notion

of a holonomic ^4-module M with regular singularities (A is a filtered ring).

One of them is the existence of a so-called very good filtration on M5 which makes

the link with the results of [9]. An equivalent description asserts that fy(M)

(the algebraic micro-localization of M at /£) is an ^(A)-modu\Q with regular

singularities for every minimal prime component ^ of the characteristic ideal

J(M).

To prove these results we use the algebraic micro-localization developed in

[5] and a theorem of Gabber (cf. Theorem 4.9).

The algebraic micro-localization enables us to generalize the ideas and

results of [4], replacing the usual localization used there by the micro-

localization (compare Theorem 1.26 in [4], with Theorem 7.3 below).

Now we give a detailed description of the contents.

In §1 we recall some well-known facts on filtrations and establish some

useful facts. A filtration FA on a ring A is called Artin-Rees if all finitely

generated ^4-modules satisfy the Artin-Rees property (cf. Definition 1.6). We
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also introduce the notion of a noetherian filtration on A and show that both

concepts coincide if gr(A) is left noetherian. A discrete filtration is noetherian

iff gr(A) is left noetherian. An important result is Theorem 1.11 which shows

that nitrations equivalent to a good filtration are good, if F^4 is noetherian.

At the end of §1 we give some results on involutive ideals and show that the

notion of an involutive ideal is stable under extension and contraction (cf.

Proposition 1.19).

In §2 we recall some of the basic results on micro-localization obtained in

[5] (universal property, the graded ring of a micro-localization etc.). Following

ideas of commutative algebra we micro-localize in prime ideals of gr(A). More

precisely, if M is a filtered ^-module and ^ a prime ideal in gr(A) we define a

ring fy(A) and an <^(y4)-module ^(M). Furthermore we introduce the notion

of an /-good filtration on a filtered ^.-module M (/ is an ideal in gr(AJ) and
show that this notion is preserved under micro-localization (cf. Proposition 2.9).

If 1 = (0) an J-good filtration is simply a good filtration and if / = J(M) (the

characteristic ideal of M) an J-good filtration is called very good. Modules

possessing a very good filtration are said to have regular singularities (Definition

7.1).

In §3 we introduce holonomic yl-modules for filtered rings A such that

gr(A) is a commutative g-algebra and FA is noetherian. We show that

"holonomicity" is stable under micro-localization in prime ideals of gr(A)

(cf. Proposition 3.4).

In §4 we define a special class of filtered rings R, the so-called E-rings.

These rings possess an invertible element of order one, which makes it possible

to reduce many problems to problems over the subring R0 and its quotient

gr0(R). Furthermore we formulate an involutivity theorem of Gabber

(Theorem 4.9) and derive a micro-local criterion to decide when an i?0-submodule

of a holonomic R -module is of finite type (Proposition 4.12). This criterion is

used during the construction of very good filtrations.

In §5 we develop the theory of modules with regular singularities over

E-rings. Following [4] and [9] we give several equivalent descriptions of

]R-modules M with regular singularities (Proposition 5.3). If furthermore M is

a holonomic .R-module, then we prove (Theorem 5.7) that M has regular singu-

larities iff <^(M) has regular singularities for all minimal prime components of

the characteristic ideal J(M) iff <^(M) has regular singularities for all
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In §6 we develop a formalism which makes it possible to obtain results for

arbitrary filtered rings from results over E-rings. Following [9] we introduce a

dummy variable and associate to a filtered ring A an E-ring denoted by #X(A[XJ).

Similarly to an ^4-module M we associate an ^x(^4[X])-module ^x(Ml_XJ).

We define two maps 3? resp. ^ going from good filtrations on M resp. <!>X(M\_XJ)

to filtrations on £X(M\_X~\) resp. M and show that £? and ^ preserve good and

very good filtrations (Proposition 6.8).

In §7 we define ^4-modules with regular singularities when A is a filtered ring

satisfying gr(A) is a commutative g-algebra, FA is noetherian and HA = VA (cf.

§7). An ^4-module M is said to have regular singularities if it possesses a very

good filtration F i.e. Ann grr(M) = J(M). Using the material from §6 the

main theorem (Theorem 7.3) will be derived from the analogous result for

E-rings (Theorem 5.7) by micro-localizing several times.

In §8 we study rings of differential operators, denoted by D, and we show

that they satisfy the condition ^D = vD. Also we prove that the notion of a

holonomic D-module as introduced in §3 coincides with the usual concept of

holonomic D-modules (cf. [1]).

Finally §9 is a kind of appendix collecting some elementary results of

commutative algebra which we need in the proofs. I would like to thank

Professor Springer for his stimulating discussions and advice.

Throughout this paper we use the following notations.

N is the set of positive integers, N: = N(1 {0}, Z is the set of integers and

Q the set of rational numbers.

If R is an arbitrary ring (always having identity) then M(jR) denotes the

category of left ^-modules of finite type.

All modules considered will be left modules.

If I is an ideal in a commutative ring, r(l) denotes the radical of 1. Finally,

"iff" means if and only if.

§ 1. Generalities era Filtered

Beimltion 1.2. i) Let & be an additive group. A filtration on <& is an

ascending sequence of subgroups {Gn}n€Z such that U &„ = &. The group &

equipped with such a filtration is called a filtered group.
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zz) Let A be a ring. A filtration (An\eZ on A is compatible with the

ringstructure if AnAm<=.An+m, all n, meZ and leA0. The ring A equipped

with such a filtration is called a filtered ring.

Hi) Let A be a filtered ring, with filtration (An)neZ, M an A-module. A

filtration (Mn)neZ on M is compatible with the module structure on the filtered

ring A if AmMnc:Mn+m, all n, meZ. The A-module M equipped with such a

filtration is called a filtered A-module.

The subgroups &n in i) above will be denoted by Fn& and their family

(F^Xez as F$,

Example 1.3. Let <9' be a subgroup of <$. Then ¥»&''. = <$' n Fn&, all
neZ define the induced filtration on &' '. If ^ is commutative then Fn<&": =

(Fn& + &')/&', all neZ define the image filtration on #": = #/#'.
Let ^ be an additive commutative group. Put

grn(9): = 9j9n-l9 all neZ; gr(9):= © grj&).
neZ

The commutative group gr(&) is called the associated graded group (to the
filtered group ^). In case ii) above gr(A) becomes a graded ring called the
associated graded ring by defining

(a + Ap.l)(b + Aq_l) = ab + Ap+q_l, all aeAp, all beAq.

In case iii) above gr(M) becomes a graded 0r(X)-module by defining

q_1, all aeAp, all meMq.

To indicate that grn(&) and gr(&) depend on the filtration F we sometimes write

gr**(9) resp. gr^Qaf).
Let M be a filtered ,4-module with filtration F = FM = (FnM)neZ. If me

FnM we put c7n(m): = m + Fn_1M. Furthermore we define an order function v

on M as follows : put v(m) = — oo if m e n FnM and v (m) = n if m e FnM\Fn_ jM.

The symbol map cr: M-+gr(M) is defined by 0-(m) = 0 if t;(m)= — oo and <r(m) =
crn(m) if v(m) = neZ. To indicate that we work with the filtration F we
sometimes write VF and af ' .

1 A Good Filtration®

Definition 1.5. Let M be a filtered A-module. A filtration FM on M is

called good if there exist m l 5 . . .? mqeM and t^,..., vqeZ such that

FnM=^An_Vmh all neZ.
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Observe that M possesses a good filtration iff M e M(A) and that all good

filtrations are equivalent (two filtrations F'M and FM on M are called equivalent

if there exists some c e N such that

Fn_cMdF'nMc:Fn+cM, all neZ) .

Definition 1.6. A filtration FA on A is called Artin-Rees if for every

A-module M e M(A) each good filtration on M is separated and all its induced

filtrations on submodules of M are again good.

Lemma 1.7. Suppose FA is Artin-Rees. Then

i) A is left noetherian.

Let M E M(A) and FM is good on M, then

ii) M' = D (M' + FnM)/or every A-submodule M' of M.

Hi) S= n(S + FnM) for every S= Z?=i An._Vimi9 with q eN, vl9...,vqeZ,

nr eZ and m l 5 . . . , mqeM.

Proof, i) Let I be a left ideal in A. Since FA is good on A, FA fl I is

good on 1. So in particular I e M(A).

ii) The image filtration of FM on M/M' is good, hence separated, which

proves ii).

iii) Put Mf = ̂ Amt. Then M'n FM is good on M'. Since all good

filtrations on M' are equivalent there exist ceN with M' n FnMa ^ An+cmt, all

neZ. Let n 0 eZ satisfy nQ + c<n'-vi9 all i. By ii) n S + F>nMc n M' + FnM

c= M'. So if m e n S + FRM, then m e M'. Also m e S + FnoM, say m = s +/with

seScM' and /eFnoM. Since m, seM' we have /eAT n FnoMc^ v4no+cm^
c Z ^n'-i7,wic^. So /eS, implying m = s+feS. Hence n5 + FnMc:S,

which implies iii).

Now we recall some results of [5], §6.

Let t E N, w l 5 . . . , wt e N. On Af we define the filtration F = F<w>,4r by F(
n

w}A*

'• = S5=i ^n-w^v where ei denotes the i-th standard basis vector of A1. If M is

an y4-submodule of A1, oF(M) denotes the 0r(/i)-submodule of grF(At) generated

by the elements aF(m), m 6 M.

The filtration FA is called ^-noetherian if gr(A) is left noetherian and

FA satisfies the following condition, 2:

For every teN, w l 5 . . .5 w t eZ and every ^4-submodule M of A1 we have: if
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(T^m!),...,^^) generate <7F(M), then M n F<w)4' = X An_Vimi9 where vt

In the remainder of this paper we write FA is noetherian (instead of FA is £-

noetherian).

Proposition 1.8. Let gr(A) be left noetherian. Then are equivalent.

i) FA is noetherian

ii) FA is Artin-Rees.

Proof. i)-»ii) follows from [5], Propositions 6.16 and 6.19.

ii)-»i) Let teN, wl9...9wteZ and O^M an ^4-submodule of A*. Put

F: = F(w>./4f. So F is good on A*9 hence separated. Put a: = aF. Then

<j(m) = 0 iff m = 0, all meMciA1. Suppose a(m 1 ),..., a(mq) generate a(M).

Then we can assume m^O, all j. Put vi = v(m^) and FnM: = M n F<w)v4r all

neZ. Let meM. Then o-(m)=X ̂ (^-^-M^) for some ^-^ eAi-yi-
Consequently meJ n + FMM, where JW: = Z A-y,-

mr So FMMcJn + FM_1M,

all neZ. Iterating this formula gives FnM c= Jw + FfeM5 all n? keZ. So

FnM<^r\Jn + FkM = Jn (where the equality follows from Lemma 1.7 iii) and
fc

the fact that FM is good, because FA is Artin-Rees). Since obviously JncFMM

we get FnM = Jn, all n e Z, as desired.

Corollary L90 Lef FA satisfy: all subsets Z?=iAt-yi
f li °f & are FA

closed. Then

i) If gr(A) is left noetherian, then A is left noetherian.

ii) Let FA0: = A0 n FA. If gr(Ao) is left noetherian, then A0 is left

noetherian.

Proof. Since A00 is closed, FA is separated.

i) Let M be an ideal of A. Since gr(A) is left noetherian there exists a

finite number of elements m1,...,mqeM such that ^(mj),..., cr(m^) generate

cr(M). Then arguing as in the proof of Proposition 1.8 (with w = 0 and t=l)

we find FwMc=n JW + F&M, all neZ, where Jn=^ An-Vimi9 m^eM, t^t^mj)

and FfcM = y4fc n Md^4fe. So by the hypothesis we get FKMc=Jw, whence FnM

= Jn9 all n e Z. Hence FM is good on M. So M e M(A)9 implying that A is

left noetherian.

ii) Repeat the proof of i) for A0.

Proposition 1.10. // FA is complete and separated and gr(A) is left

noetherian, then FA is noetherian.
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Proof. This follows from [5], Corollary 6.11.

Without proof we mention if gr(A) is left noetherian, then FA is Artin-Rees

iff for every te N the subsets X ^n-Vl
mi °f ^ are closed with respect to the

filtration F^A* (FA is then called Zariskiari). Consequently, if for every

t e N each y40-submodule of A*Q is closed, with respect to F^A* (FA is then

called strong noetherian), then FA is Artin-Rees.

As observed before all good filtrations on an ^4-module M are equivalent.

Now we will give a kind of inverse, which will be an important tool in the

study of y4-modules with regular singularities (cf. Proposition 6.8).

olio Assume FA is noetherian. Let FM be good on M. //

F'M is equivalent to FM then F'M is good on M.

We need the following lemma, the proof of it is due to Professor T. A. Springer:

Lemma 1.12. Assume gr(A) is left noetherian. Let F'M, FM be

equivalent filtrations on M. If grF(M) e M(gr(AJ)9 then grF'(M) E M(gr(AJ).

Proof, i) There exists d E N with Fn_dM<=:F'nMciFn+ dM, all n E Z. Put

An:=Fn-dM, rn\=F'nM, all neZ and c: = 2d. Then AacrncAn+c9 all neZ.

Observe that grA(M) E M(gr(AJ). We must derive grr(M) E M(gr(A)).

ii) Define Tt=@rn n An+i/rn_1 n Aa+i, for all Q<i<c. Observe Tc

= @Tn/rn^1=grr(M). We have to prove TcEM(gr(A)). First consider T0.

Observe T0 = ®An/rn_1 n An. Since An_l^rn_l n An we get grA(M)-*T0^>Q

is exact. Since grA(M) e M(gr(AJ) also T0 6 M(gr(A)). Using induction on i

we prove Tt E M(gr(A)) for all 0 < i < c. Hence Tc E M(gr(AJ) follows as desired.

Consider the canonical map $,: Tt^Ti+l i.e.

n 4,+iAVi n An+i — > ®rn n ̂ n+,+1/rn_1 n An

Then

Ker ^= ®rn n An+t (]rn.^ ^w+,+1/rn_1 n An+i

and

=®rn n An+i+lirn_l n An+i+lirH n An+i
+rn-1 ^An+i+1/rn__1 r\An+i+1i

^rn n An+i+1irn n An+i+rn_l n An
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Using the exact sequence

i/,: = ®rn n An+i+ ,irn n An+i — > ®rn n An+i+ jrn

o

we find that coker (f)ieM(gr(A)) if UteM(gr(A)). However

®An+i+l/An+i. Observe that Vt is a ^r(^)-module isomorphic with grA(M).

So VieM(gr(A)). Hence UieM(gr(A)), implying coker <^ e M(gr(A)\

Consider finally the exact sequence

0 - > Tt -*i_> Ti+ ! - > coker fa - > 0.

Since by induction TteM(gr(A)) we find Ti+1 eM(gr(AJ), which completes

the proof.

Proof of Theorem 1.11. We can assume M^O. Since F = FM is good

grF(M)eM(gr(A)). So by Lemma 1.12 grF'(M)eM(gr(A)). Put <r: = <7F'.

Then grF'(M)=^l'}=lgr(A)cr(mi) for some mtEM. Since F^ is noetherian

Jvl is Artin-Rees (Proposition 1.8), so FM is separated. Consequently F'M

is separated. So we may assume 0-(m,-)^0 all i, say vi: = vF'(ml). Similarly as

in the proof of Proposition 1.8 we derive F'nM<^Jn + F'kM, all n, keZ where

Jn — ̂ ^n-vimi' Since FM and F'M are equivalent there exists ceN with
FfeMciFfe+cM, all fceZ, whence F^Mcn Jn + Fk+cM = Jn by Lemma 1.7 iii).

Obviously Jnc:F'nM, all n e Z. So F'nM = Jn, all n e Z, i.e. F'M is good.

Let ^, ^' be two commutative (additively written) filtered groups with

nitrations (^n)nez
 resP- (^«)n6z- A group homomorphism h:&->&' is called

a morphism of filtered groups if it respects the filtrations i.e. h(&n)<^&'n, all

n e Z. In the obvious way such an h induces a groups homomorphism of the

associated graded groups, denoted gr(h): gr(<&)-»gr(<g'}, sometimes written as h.

If & = A9 &' = A' are filtered rings, then a morphism h is called a morphism of

filtered rings if h: A-+A' is a ring homomorphism. Then gr(h) becomes a ring

homomorphism. Finally, if ̂  = M5 ̂  = M' are filtered ̂ -modules, a morphism

h: M-»M' is called a morphism of filtered A-modules if /z is an ^4-module homo-

morphism.

Proposition 1.12. Let h: &->&' be a morphism of filtered groups,

i) gr(h) is injective iff h~l (&'„) = &„ all neZ.

ii) Let & be complete and &' separable. Then gr(h) is surjective iff
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Hi) Let &, & be separated and <g complete. If gr(h) is bijective then

h is bijective.

Proof. See [3], Chap. Ill, §2, no. 8, Theorem 1 and Corollary 3.

Corollary 1.14. // ^, &' are separated, <$ complete and gr(h) bijective,

then h is an isomorphism of filtered groups.

lol5B The Polsson Product9 Involutive the Characteristic Ideal

Let again A be a filtered ring. In the remainder of the section assume:

gr(A) is commutative. So if aeAn, beAm, then \a, b^: = ab — ba E An+m_l,

all 77, meZ. Put f: = a + An_l9 g: = b + Am,1 and define {/, g}'. — [_a, b~]

+ An+m_2egrn+m_1(A). One checks that {/, g} is independent of the choice

of a and b. So for every n, m e Z we get a Z-bilinear map { , } : grn(A) x grm(A)

-*grn+m_l(A). Therefore we can extend these maps to a Z-bilinear map { , }:

gr(A) x gr(A)-^gr(A). It is easy to verify that { , } is a bi-derivation (cf.

Definition 9.1) called the Poisson-product on gr(A). An ideal / in gr(A) is

called involutive if {a, b} el for all a, be I i.e. I is { , }-stable (cf. Definition

9.1).

Let M e M(A) and let F = FM be a good filtration on M. Put

IF = Ann grF(M\ JF =

Both IF and JF are homogeneous ideals in gr(A) and it is well-known that JF

does not depend on the choice of the good filtration F. We denote this ideal

by J(M) and call it the characteristic ideal of M or the ideal of the characteristic

variety of M.

Theorem 1.16 (Gabber)0 // gr(A) is a noetherian Q-algebra and M

eM(A), then J(M) is involutive.

Proof. See [6], Theorem I.

Let ^(J(M)) denote the set of minimal prime components of J(M) (cf. §9).

Since J(M) is homogeneous and involutive (by Theorem 1.16) it is easy to verify

that all its minimal prime components are so. Hence

Corollary 1.17. Assumptions as in Theorem 1.16. // /te&(J(M))9 then

/£ is involutive and homogeneous.

Finally we study the behaviour of involutive ideals under extensions and con-
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tractions. Therefore let B be a filtered ring with #r(F) commutative and <£ : A-*JB

a morphism of filtered rings and let { , } resp. { , }' denote the Poisson-products

on gr(A) resp. gr(B). Put ^ =

Lemma 1.18. £({/, 0}) = {$(/), $(g)}'9 all /, 0 e gr(A).

Proof. Since { , } and { , }' are both Z-bilinear and 0 is additive, we

may assume /= a + An-l9 g = b + Am_l, aeAn, be Am, in which case the formula

readily follows.

Proposition 1.19. /// is an involutive ideal in gr(A), then Ie: = gr(A)(j)(I)

is involutive in gr(B). If J is an involutive ideal in gr(B), thenJc: = f~1(J)is

involutive in gr(A).

Proof. Apply Lemma 1.18 and Proposition 9.2.

§ 20 Algebraic Micro-localization

Throughout this section A will be a filtered ring with filtration FA = (An)neZ

and M denotes a filtered y4-module with filtration FM. In §1.1 we have

associated an order function v to the filtration FM. Now define

\m\M = 2v(m\ all meM (where 2-°°: = 0).

In particular taking M = ̂ 4 we get | \A on A. We often write | | instead of | |M.

It is easy to verify that | | defines a non-archimedean norm on M. i.e. \am\

<\a\A\m\, |m + m'|<max(|m|, |m'|), all a e A, all m, m'eM, called the associa ted

pseudo-norm (to the filtration FM of M). The strong triangle inequality implies

that |m + m'|=max(|m|? |m'|) if |m|^|m'|. Furthermore FnM is the set of

meM satisfying |m| < 2n, so | | is a norm on M iff FM is separated.

The following two theorems are proved in [5],

Theorem 2.1. Let A be a filtered ring with associated pseudo-norm \ |.

Let S be a multiplicatively closed subset of A such that a(S) is a multiplicatively

closed subset of gr(A) satisfying the two left Ore conditions and Q^a(S).

Then there exists a complete separated filtered ring R with norm \\ || and

a morphism $\ A-+R of filtered rings satisfying

i) (j)(s) is invertible in R, all seS.

ii) \\^(s)-^\\<\s\-\allseS.

Hi) For every morphism h: A^>B of filtered rings, where B is a complete
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and separated filtered ring with norm \ \B, such that h(s) is invertible in B and

l^s)"1^^!5!"1 all seS, there exists a unique morphism of filtered rings

X'- R-»B satisfying x°4> = h-
Moreover, if (R, 0) and (Rr, 0') are two such pairs, then there exists a

unique isomorphism y: R-*R' of filtered rings satisfying yo<^ = <£'.

Theorem 202e Let A, S be as in Theorem 2.1 and let M be a filtered A-

module with associated pseudo-norm \ \M. Let (R, 0) be a solution of Theorem

2.1. Then there exists a complete separated R-module M' and a morphism

4>f : M->M' of filtered A-modules which satisfy: for every morphism of filtered

A-modules h: M-*N where N is a complete separated filtered R-module there

exists a unique morphism of filtered R-modules #: M'-+N such that %°0' = /i.

Moreover, i f ( M ' , $') and (M", 0") are two such pairs, then there exists a

unique isomorphism of filtered modules y: M'-*M" satisfying y°(j)f = (/)".

The solution of Theorem 2.1 constructed explicitely in [5] will be denoted by

(&s(A), 0s). The ring #S(A) is called the left algebraic micro-localization

of A with respect to S.

If F denotes the filtration on M, then the solution of Theorem 2.2 constructed

in [5] to the pair (£S(A), </>$) will be denoted by (<?S(M, F), 0^). The left

<fs(X)-module #S(M, F) is called the left algebraic micro-localization of M

with respect to S. If there is no confusion possible we write 0 and 0S instead

of0f.

During the construction of &S(M, F) in [5] we obtained the following

results ([5], Lemma 5.17).

(2.3) The elements 0(5)~10(m) with (s, m) e S x M form a dense subset of ^S(M,

F) in the || \\-topology, where || || denotes the norm associated to the filtration

on £S(M, F).

Furthermore, the norm of these special elements can be calculated as follows.

To the pseudo-norm | |M on M we define its localized pseudo-norm, denoted by

| |MjS or simply ] |5:

. all meM.
peS

It is proved in [5], Proposition 3.2 and Corollary 5.20 that | \s is a pseudo-norm

satisfying

(2.4) \sm\s = \s\Aj\m\s,\s\AtS = \s\A,\m\s£\m\, all seS, m e M .
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(2.5) \\<KsTl<Km)\\ = \s\-l\m\5, all (s, m)eSxM.

Corollary 2o5.1. i) If\m\s^Q, then \pm\ = \pm\sfor some peS.

ii) //|m| = |m|s, r/zen \tm\s = \tm\ all teS.

Hi) If (^(0~1^(m)^0 then there exist (?, m) e S x M with

Proof, i) Since |m|s^0 there exists peS with |m|s = |p|~1|pm|. So

| = |pm|sby(2.4).

ii) Let feS. Then \tm\<\t\\m\ = \t\\m\s = \tm\s (by (2.4))<|*m|.

iii) By the hypothesis and (2.5) |m|s^0. So |pm| = |pm|s for some peS

(by i)). Then 1\ = pt and m: = pm are as desired, since |m|s = |$(m)| (by (2.5)).

Consider the filtered <fsG4)-module <fs(M, F). So the n-ih "layer" of the

filtration on ^S(M, F), which we denote by ^^w)(M, F), consists of the elements

H,egs(M, F) with \\fi\\ <2n. We want to describe gr(£s(M, F)). First observe:

since cr(S) satisfies the two left Ore conditions ff(S)~lgr(A), the left localization

of gr(A) with respect to a(S) exists. In fact it is a graded ring: for neZ the

n-th homogeneous component of a(S)~1gr(A) is the set of elements

with a(d)egrl(A), a(s) e a(S) n grk(A) and l-k = n. Similarly ^(

is a graded (j(S)~1gr(A)-modu\Q (cf. [5], Proposition 5.22).

Theorem 2.6 ([5], Proposition 5.24)0 There exists an isomorphism \JJA

of graded rings from ff(S)~~lgr(A) to gr(#s(A)) defined by

•A>(S)-
1<T(a)) = </»(S)-V(a) + 4"-1)(^), all a(S)^a(a}€a(S)-^r(A)(n).

More generally, there exists an isomorphism \j/M of graded modules over

a(S)-lgr(A)from a(S)~lgr(M) to gr(£s(M, F)) defined by

all o-(s)-%(m) e a(S)~lgr(M}(n} .

2.1, Some Consequences of Theorem 2.6

In the remainder of this section we assume: gr(A) is commutative.

Theorem 2.6, the proof of which is a consequence of (2.3), (2.4) and (2.5) plays

a fundamental role in the study of micro-localizations. We derive some

consequences.

If F and F' are equivalent filtrations on M, then it follows from the con-

struction of algebraic micro-localizations that *fs(M, F) = «fs(M, F') ([5],
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Proposition 6.7). In particular if M e M(A) then #S(M9 F) does not depend

on the choice of the good filtration F on M. Instead of &S(M9 F) we therefore

write <fs(M). In fact, if FA is noetherian it is proved in [5], Corollary 6.25

that M-*£S(M) gives an exact functor from M(A) to M(£S(A)). Using this

result it is shown that there exists a canonical isomorphism of g s(,4)-modules

between £S(A)®AM and &S(M) ([5], Proposition 6.26). Consequently, we

obtain that £S(A) is a flat right ^-module ([5], Corollary 6.27).

Let MeM(A) and FM a good filtration on M. The filtration (*f£n)(M,

FM))neZ on <fs(M) we denote by L(FM) or LS(FM) and its n-th layer by L<">(FM).

Let I be an ideal in gr(A). Put Ie:=gr(^s(A))fs(I). So F = \l/A(a(S)-1I)

where \I/A is as in Theorem 2.6.

Definition 2.8. A good filtration FM on M is called I-good if I

c:AnngrFM(M). If I = J(M) (see 1.15) FM is called very good.

Proposition 2.9. If FM is I-good on M, then L(FM) is Ie-good on &S(M).

In particular L preserves good and very good filiations and #S(M) E M($S(A)).

Proof. If FM is good on M then L(FM) is good on *fs(M) ([5],

Corollary 6.23), hence £s(M)eM(£s(Aj). Furthermore, if Ic:AnngrFM(M),

then Iec:(Ann gr(M))e = \l/A(ff(S)-1Ann gr(M)) = Ann grL(FM\£s(M)) by

Theorem 2.6. So L(FM) is Je-good. Finally, taking radicals of the last two

equalities we get

(2. 10) J(MY = ̂ A(a(STlJ(M)) = J(*S(M))

which shows that L preserves very good filtrations.

2.11. Micro-Localizations in Prime Idea of gr(A)

Let /,eSpec(gr(A)). Put S^ is the set of all aeA with a(a)^/^. It is

easy to verify that S^ is a multiplicatively closed subset of A with 0 ̂  v(S^) and

that a(S^) is a multiplicatively closed subset of gr(A) satisfying the two left Ore

conditions, since gr(A) is commutative. So by Theorem 2.1 the left micro-

localizations of A with respect to S^ exists. Instead of A^(>4) we write fy(A).

Similarly, if M is a filtered ̂ -module with filtration F on M the micro-localization

of M with respect to 5^ exists and we write fy(M, F) (resp. <^}(M, F)) instead

of tfsAM, F) (resp. ^W(M, F)). Now assume M e M(A) and F is good on M.

Then we can write < ( M ) instead of (M, F) by (2.7).

Warning. If F' is another good filtration on M the filtrations
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(<^n)(M, F))neZ and (ty\M, F'))nez are not equal. However, by Proposition

2.9 they are good filtrations on ^(M). So they are equivalent and <^(M) e

Lemma 2.12. Let F be a separated filtration on M. Then M = 0 iff

M) = Q.

Proof. If 0rF(M) = 0, then FnM = Fn+lM, all neZ. So M = u F n M =

Proposition 2.14. fy(M) ^ 0 iff ^ =3 J(M).

Proof. Let F be a good filtration on M. Then F<^(M) is good by

Proposition 2.9 and separated. So by (2.12) fy(M) = Q iff #r(<^(M)) = 0 iff

a(S/)~igrf(M) = 0 (by Theorem 2.6) iff <r(S/) n ̂ nn 0rF(M) ^ 0 iff <r(S» n /(M)

Proposition 2.15. If gr(A) is noetherian, then F^(A) is noetherian.

Proof. Since gr(A) is noetherian, so is a(S)~1gr(A). Hence

is noetherian by Theorem 2.6. Then apply Corollary 1.10.

2.16. Morphisms between Micro-Localized Rings

We consider the following situation. Let B be a filtered ring with gr(B)

commutative and 0: A-+B is a morphism of filtered rings. Furthermore

(j>; = gr(<j)): gr(A)-*gr(B). If 1 is an ideal in gr(A) (resp. J an ideal in gr(B))

then P: = gr(B)<j)(I) (rQsp.Jc: = $-l(J)). If ^GSpec(gr(A)) then (^denotes

the canonical map (/)$* from ^4 to fy(A) and || ||^ denotes the norm on #^(A).

Similar notations we use for ^ e Spec (gr(B)).

Lemma 2.17. Let /& E Spec (gr(AJ). Assume /t* e Spec (gr(B)) and (/^e)c

~ ̂ - Then

0 I<W>)I = M, «» seS/* and ^(S^aS^e.
if) Put w: = <Meo0. Then u(s) is invertible in #^e(B) for all seS^.

in) ||W(s)-1|̂  = |s|-1
JanS6SA

Proof, i) Let s e S^, say v(s) = n (<r(s) ^ 0 since <r(s) ̂  /). Then cr(s) ^ ^

= ̂ "1(/e) i-e. 0(er(s))^/e. In particular ^(<r(5))^0 i.e. ^(

So |^>(s)|=2" = |s|. Hence aB(^>(s)) = 0(s) 4- ̂ .^^(s))^/6 Le-
ii) follows from i) since ^(i) is invertible in ^4e(B) for all

Hi) Let seSA. Then ll^rMI^^II^C^rMU^I^5)!"1 (by i) and



REGULAR SINGULARITIES FOR FILTERED RINGS 863

(2.5) with M = A and m = i = \s\~1 by i).

By Lemma 2.17 ii) and iii) and Theorem 2.1 we obtain

Corollary 2018Q There exists a unique morphism of filtered rings

> i . ( B ) with $00 = .00.

Let M be a filtered ^4-module and N a filtered B-module with filtration FM

resp. FN. By means of (j) N becomes a filtered ^4-module. Let if/: M^N be

a morphism of filtered ^-modules. Put h\ = ̂ e^. So h is a morphism of

filtered ,4-modules from M to ^e(N, FN). The ^e(F)-module ^e(N9 FN)

is a filtered <^(X>-module by means of $ from Corollary 2.18. Then Theorem 2.2

gives

Corollary 2.190 There exists a unique morphism \j/ : ^(M, FM)

->^e(]V, FAO of filtered fy(A)-modules with fa^^ty*0*!*-

2,20, The Set Spec

Let X be a complex analytic manifold. In the micro-analytic study of

sheaves of ^-modules the interesting points to consider are the points (z, Q

e T*X outside the zero-section i.e. points with £^0- The set T*Z\zero-section

is often denoted by t*X. Let ®n = Gn[dldzl9...9 d/dzj with 0n=C{zl9...9 zn]

the ring of convergent power series. Then gr(@n)~ ^[Cl9..., £J as usual. So

we want to consider primes / in gr(@n) not containing all £* i.e. primes ^ with

the property that there exists a homogeneous element of degree one in gr(@n)

which does not belong to ^. These considerations lead us to the following

definition. Let A be a filtered ring.

282L Sj?ec°(0r(v4)) is the set of /> E Spec (gr(A)) such that

a(t) £ /*> for some t e A^A^.

Lemma 2622o // ^ e Spec°(gr(A)) then there exists s

invertible in (A) with s'1 e 1 \ A ) .

Proof. Let a(f)£/> with teA^A^. So teS^. Put s = ̂ (r). Then

\\*\\ = 110X011 = 1 (by (2-5)) = UI (by (2.4) since t€ S/) = 2*. Finally ||s- Ml =

Corollary 2823» If ^eSpec°(gr(A)) and gr(A) is a noetherian Q-algebra

then the filtered ring R\ = fy(A) satisfies

i) There exists an element seR^Rg invertible in R with s~l ejR.j .
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ii) gr(R) is a commutative Q-algebra.

iif) FR is noetherian.

Proof, i) follows from Lemma 2.22., ii) from Theorem 2.6 and iii) from

Proposition 2.15.

§ 3. Holonomfc ^-Modules

In this section A will be a filtered ring with filtration FA satisfying

a) gr(A) is a commutative g-algebra.
b) FA is noetherian.

Lemma 3.1. // 0 / M e M(A\ then J(M) ¥=gr(A). So #(J(M)) ̂  0.

Proof. Let F be a good filtration on M. By Proposition 1.8 F is separated,

so 0r(M)^0 by Lemma 2.12. This implies l£AnngrF(M), so l^J(M).

Put e/^: = the set of involutive homogeneous prime ideals in gr(A)

\JLA : = sup htyi (where ht/s. = height /^) .
/&eSh

By Corollary 1.17 &(J(M))<=Sh, so m></^ for all / e ̂ (J(M)).

Definition 3.2. O^MeM(A) is called holonomic if ht^ = nA for all

Also M = 0 is holonomic.

Remark 3.3. If there exists a non-zero holonomic ^4-module M, then IIA

is finite since gr(A) is noetherian and ̂  = ht^ for some ^ e Spec (gr(AJ).

Let ^ e Spec (gfr(^4)). By Theorem 2.6 and Proposition 2.15 it follows

that £?(A) with its filtration F^(A) also satisfies the conditions a) and b) above.

So we also have the notion of a holonomic *f/(X)-module.

Proposition 3 A Let M be a holonomic A-module and ^eSpec(gr(A)).

Then £(M) is a holonomic

Proof, i) We can assume <f/(M)^0, whence by Lemma 3.1

So we can choose & e ^(J(<f/(M))). Since by (2.10) J(<f/(M))

= ̂ OKS/)-1 J(M)) ^ = ̂ A(a(S^~1/) for some ̂  e ̂ (J(M)) with / n o<S» = 0
(Corollary 9.3 ii)). Then Corollary 9.3 i) gives ht^ = ht^ = p,A since M is holo-

nomic. By Corollary 1.17 <P is involutive and homogeneous, hence /

Furthermore the argument above gives that ht^=/^ for all &

So <jf/(M) is holonomic if we can prove that ^A = ̂ ^(A)- It therefore remains

to prove that fj,*^ (A) < \JLA.
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ii) Let & be an arbitrary involutive homogeneous prime ideal in

By Proposition 1.19 (applied to A and #f(A)) /t: = 0>c is an involutive and

homogeneous prime ideal of gr(A). Since 0> = \l/ A(a(S?)~l /), Corollary 9.3 i)

implies ht^=ht//4<^, whence ^^(A)<^A as desired.

§ 4. JE'-Rings and Their Properties

Let A be a filtered ring such that gr(A) is a commutative noetherian

algebra. Just as in the micro-analytic theory of ^-modules the rings

with ^eSpec°(gr(A)) play a very important role. As shown in §2 these rings

have the properties of Corollary 2.23. Filtered rings having these properties

will be studied in this and the next section.

Definition 4018 A filtered ring R will be called an E-ring if the following

conditions are satisfied

i) There exists an element SER^RQ invertible in R with s~1 eR..^

ii) gr(R) is a commutative Q-algebra.

Hi) FR is noetherian.

Lemma 4,2. Let R be a filtered ring satisfying i) of Definition 4.1 and M

a filtered R-module with filtration FM = (Mn)neZ. Then

i) s~1£R_2 and v: = s + R0 is a unit in gr(R) with inverse v~1 = s~1

+ K-2-

ii) Rn = snR0 = R0s
n, Mn = snM0, all neZ.

Hi) FM is good iff M0 e M(

Proof, i) Since seR^Ro gr^R^O. So gr(R)=£Q whence

Consequently, (s~ l + R _ 2)(s + R0) = (s + R0)(s~ 1+R-2)=^ + R-i^^ which
implies i).

ii) If reRn then (s~l)nreR-nRn<=R09 so rEs"R0 implying Rn = snR0.

Similarly, Mn = snR0 and Rn = R0s
n.

iii) If FM is good then M0 = Xf=i R-Vjmt= X R0s-Vimt (by i)) for some

m{ e M, vt e Z. So M0 e M(R0). The converse follows from ii).

So if we define ^r(M0): = (RnM0)neZ for each K0-submodule of M satisfying RM0

= M we get a one-to-one correspondence between these J^0-submodules of M

and the set of filtrations on M. Furthermore, if MeM(K) then iii) shows

that the restriction of ^ to the set of finitely generated .Ro-submodules M0 of
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M satisfying RM0 = M gives a one-to-one correspondence with the good

filiations on M.

Proposition 4.3. Notations as in Lemma 4.2. Then \l/: gr0(R)[X, X~1J

-»gr(R) defined by iKZ/i^O=Z/i^ is an isomorphism of graded rings.

Proof. Left to the reader (cf. §9 for the graded ring structure of gr0(R)-

IX, X-*]).

Corollary 4.4. Extension and contraction give a one-to-one correspondence

between the prime ideals of gr0(K) and the homogeneous prime ideals of gr(R).

Proof. Apply Proposition 4.3 and Proposition 9.9.

Corollary 4.5. If R is an E-ring then R and R0 are left noetherian.

Proof. By Proposition 1.8 Lemma 1.7 ii) (with M = A) the hypothesis of

Corollary 1.9 is satisfied. So by Corollary 1.9 i) R is left noetherian. Finally

by Proposition 9.10 gr0(R) is noetherian, whence gr(R0) is noetherian since by

the description of Proposition 4.3 gr(R0) is isomorphic to gr0(R)[X~l~\.

4.6. Gabbers Theorem and J?0-Modules of Finite Type

From now on we assume: R is an E-ring. So ongr(R) we have a Poisson

product (see 1.15). Let/, gegrQ(R). Then {/, g}egr_1(R), whence v{f, g}

egrQ(R) (v = s + R0 as above). So putting F(/, g): = v{f, g} all /, gegr0(R)

we get a Poisson product on gr0(R) which (as one easily checks) is a bi-derivation

on grQ(R) (cf. §9). An ideal / in gr0(R) is called involutive if it is P-stable

(cf. Definition 9.1).

Proposition 4.7. /// is an involutive ideal in gr0(R) then Ie:=gr(R)I is

an involutive ideal in gr(R). If J is an involutive ideal in gr(R) then Jc

: = gr0(R) n J is an involutive ideal in gr0(R).

Proof. Apply Proposition 9.2 to A = grQ(R),B = gr(R) and 0 the inclusion

map.

Let M eM(R), FM a good filtration on M and NaM an arbitrary J*0-

submodule of M. We want to find out if N e M(R0). Since by Corollary 4.5 R0

is left noetherian we get N e MC^o) iff N e MnQ
 for some n0eN iff Mn n A/7

MB_1 n IV = 0 for all n>nQ and some n0eN. We therefore put

l^N9 all neZ.
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Observe that s~l(Mn n N)cM I I_1 n N. So Q(n, N) is a 0r0CR)-module. In

fact it is isomorphic to a 0r0(J£)-submodule of grn(M). Since Mn = snM0 and

M0 e M(R0) by Lemma 4.2 ii) and iii) we get Mn E M(R0), implying grn(M)

e M(gr0(R)). Consequently Q(n, N) e M(gr0(R)). Put

/(n) : = 4nn 6(n, N) c 0r0(J*), J(n) : = r(/0)), all n e Z.

Lemma 4e80 Left multiplication by s"1 induces an injective gr0(R)-linear

map from Q(n + l, N) into Q(n, N), all neZ.

Proof. Straightforward.

So we get an increasing sequence of ideals /(l)c/(2)c ••• in gr0(R). Since

gr0(K) is noetherian there exists n0eN with /(H) = /(WO) f°r all n>n0. Hence
J(l) c= J(2) c= • • • and J(n) = J(n0) for all n>n0. Put

So J= \JJ(n).

Theorem 4,9 (Gabber)0 J is an involutive ideal in gr0(R).

At the end of this section we give a very simply proof of this important

result, in fact we use algebraic micro-localization, to make a reduction to [6],

Theorem II. We also refer to [7] and [2].

For />eSpec(gr(R)) define N(/) as the ^)(JR)-submodule of l/,(M)

generated by the elements < ( i r i ) , with meN. Put

6(n, N(/))'. = ty\M} n

where ^\M): = ̂ \M9 FM). Let ^ e Spec (gr0(K)) and /*: = /*§
( = gr(R)/^0). So /^ is a homogeneous prime ideal in gr(K) by Corollary 4.4.

Let rQ + R.lEgrQ(R)\^Q. Then (^(^eS^ and I^i(r0)| = |r0| = l9 so (^(r0)

is invertible in gr0(^(R)). Hence the canonical map gr(<fa): gr0(R)

extends to a ring-homomorphism ^'- gr0(R)/^0-^gr0(^(Ry).

Fix ?ie^¥ and put B: = gr0(R). The canonical map #"• 6(w, N)-*Q(n, N(/>J)

is a B-module homomorphism (6(w, N(/)) is a B-module by means of gr^^J).

Since by if/ Q(n, N(/tf) is a left 5,4o-module, % extends to a jB^-module homo-

morphism ^: Q(n9

Lemma 4.10. # is an isomorphism of B^Q-modules.

Proof. By Lemma 4.2 i) a(s) is a unit in 0r(J?) with inverse ^(s"1). So s
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and s"1 belong to S^. Hence s'eS^, all reZ. Using 2.5.1. i), ii) this gives

(4.11) if meM, then \pm\^t = \pm\, for some peS^ with u(p) = 0.

i) % is injective: let meMnnN. Suppose <^(m)e^|l~1)(M) i.e.

\m\S<2n-1. Apply (4.11). Then \pm\ = \pm\/i<2n-1. So pmeMn_l n N,
whence cr(p)m = 0 in Q(n, N) implying m = 0 in Q(n, ]V)^0 since <r(p)e B\/0.

ii) jf is surjective : put $ = <^. Every element of gty(M) n Af(/0 is a finite

sum of elements of the form a$(m) with a e ̂ \R) and meN. Therefore it
suffices to show that all these elements a$(m) belong to the image of jf . Take
such an element a<£(m). Then 0(m) e <fj|o)(M) for somen0>n — 1. By (2.3)

choose (t, a)eS^xR with a-^f)"1^) e <^no+n-1)(£). Then a0(m) = 0(0"1-
0(am)mod(^-1)(M)n]V(/i)) and ^(f)-^(a)e^\R). We may assume

\am\/t = \am\ (use (4.11) and replace r by p* and am by pam). Similarly we

can assume \a\^ = \a\ and t;(r) = 0. So o(f) e B\^Q and aeR0. Hence ameN

and |am| = |0(am)|<2n i.e. ameMn(]N. So a0(m) + -o(M) n

Corollary 4.12. // N <£ M(

0 sr(j(N))^0.

»') V/*o e ^W)> ^«w /* "• = /6 satisfies ht^ < ^

Proo/. i) Since N £ M(£0) Q(n, N) ̂  0 for all w e AT (if Q(n0, N) = 0 for
some n0EN then Q(n, N) = Q for all n>n 0 by Lemma 4.8 implying AT eM(jR0)).
So 1 ̂  I(ri) for all n e N i.e. 1 ̂  J, which proves i).

ii) Let /i0 e &(J(NJ). Then ^Q is involutive (by Theorem 4.9). Hence

/t:=/>o is a homogeneous involutive prime ideal in gr(R) by Corollary 4.4
and Proposition 4.7. So ht^<fiR. Now suppose N(/) e M(^\R)). Then

G(n, N(/i)) = 0 for all w > n 0 (some n0eN). So Q(n, N)/,0 = 0 for alln>?20

(Lemma 4. 10). However ^Qi=> J(JV)iD J(n), all ne,/V,so /z0=>I(n). This gives
^0, a contradiction.

Corollary 414 L£tf M fcg holonomic and N^M(R0). If
then : =

Proo/. By Corollary 4.12 ii) Q(n, N(/))^Q9 all ne^V, whence
So yi=Dj(M) by Proposition 2.16. Hence ^/ for some ^'

Since ht^f = fiR (M is holonomic) ht^>}j.R. Then Corollary 4.12 ii) implies

= fiR = ht/t'. So /i = yi' e^(J(M)) (since ^R is finite by Remark 3.3).

Proposition 4e15, Let M be a holonomic R-module. Then are equivalent
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0 NeM(R0).
ii) N(/) e M(^\K)) for all />e ̂ (J(M)).

Proof. i)-»ii). If nl9...,nq generate N as J?0-module, then ^(nj),...,
w«) generate N(/) as ^(RJ-modulz.

ii)-»i). Suppose N£M(R0). Then &(J(N))^0 by Corollary 4.12 i).

Let ^ e #(J(N)). Put /i : = /*%. Then N(/)^M(^\R)) by Corollary 4.12

and /<E^(J(M)) by Corollary 4.14. So by ii) N(/)eM(^\R}} a con-

tradiction. Hence N e M(R0).

Proof of Theorem 489«, i) Obviously it suffices to show that every element

of ^(J) is involutive. So let /i0e^(J). Put /, = gr(R)/t,0. By Lemma 4.10

the rings gr0(R)/-0 and gr0(^(RJ) are isomorphic. We identify them. The

Poisson product on gr0(R) can be extended to gr0(R)^0 and equals the Poisson

product on gr0(<^(R)). If we can show that /£00
roW/£0 *s involutive in

gr0(R)^0 it readily follows that the contracted ideal in gr0(R) i.e. /tQ is involutive.

Let n0eN be such that J = J(n) for all n>nQ. By Lemma 4.10 J(n)^Q

= J(Q(n, N(/))) whence J(Q(n, N(/t)) = J/t0 = /*0gr0(R)/io. Therefore we may

replace the triple (N, M, (Mn)n) by (N(/)9 ^(M), (^n)(M))n) and we are reduced

to a micro-local case. However since /IQ e &(J(n)) if n > HQ, Q(n, N)^0 is a

0r0(jR)/*0-module of finite length so Q(n, N (/)) is a ^r0(^(K))-module of

finite length. Hence we can assume:

ii) Q(n, N) is a 0r0(,R)-module of finite length for all n>n0. Then Lemma

4.8 implies: there exists nl>n0 such that for every n>n1 the left multiplication

by s"1 gives an isomorphism from Q(n + l, N) onto Q(n, N). So N(n)

= s~1 N(n +1) 4- N(n -1) (where N(k)\ = Mk(\N for all fceZ). Put A:=R0IR_2,

u\ = s~l+R-2£A, M': = N(n + r)/N(n — l). Then u is a central element in

A with w2 = 0, A/uA^RoIR^^ Q(n + l, N)~M'/uMf and wM' = KeruM'.

Finally uA = KeruA, whence J = J(n + l) = J(M'luMr) is involutive by [6],

Theorem II.

§ §, Modules with Regular Singularities over It-Rings

In this section R denotes an E-ring, s its special element (Definition 4.1 i))

and v = a(s) which is a unit in gr(R) with ^(s"1) as inverse (Lemma 4.2 i)). By

Corollary 4.5 R and ,R0 are left noetherian. If r e R put a1(r) = r-\-R0egrl(R)

(cf. §1). Furthermore, I always (in this section) denotes a homogeneous
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involutive radical ideal in gr(K). Put

R(I): = the subring of R generated by ^(1) over R0.

Lemma 5.1. ^(1) is an R0-module of finite type and a Lie-algebra.

Proof. It is easy to verify that ^(1) is an .Ro-submodule of R1=R0s.

Since R0 is left noetherian ^(J)eM(R0). Let T, T'e^(I). Put [T, T']: = TT'

-T'T. Then [T, T'] el^. If [T, T'] eK0 then ^([T, t']) = 0. If [T, T'] eRi\R0

then (TiCCr, T']) = {CF(T), CT(T')} e/ since / is involutive, which proves the lemma.

Definition 5.2, Let MeM(R). We say that M has regular singularities

along I (M has R.S. along I) if there exists anR0-submoduleM0ofMoffinite

type such that RM0 = M and ^?(/)M0cM0.

Proposition 5.3. Let M eM(R). There is equivalence between

i) M has regular singularities along L

ii) If N is an R0-submodule of M of finite type, then R(I)NeM(R). .

Hi) If N is an R(I)-submodule of finite type of M, then N eM(R0).

iv) ET(R0m): = ̂ f=QR0T:imEM(R0)for al\tef(l\ allmeM.

Proof. i)-»ii). Since N e M(R0) and RM0 = M there exists keN with

NaRkM0. Let Te^(J), reRk, meM0 . Then Trm = rTmH-[T, r]me.RfcM0

since rmeM0 and [T, r^eRk. So R(I)RkM0<=RkM0, implying R(I)N<^RkM0

= skM0 e M(R0). Hence R(I)N e M(R0) since R0 is left noetherian.

ii)->iii). Let N: = ̂ =lR(I)nt. Put N0: = ̂ R0nt. Then N=R(I)N0

and we can apply ii).

iii)-Hv). Since Er(R0m) c ,R(/)m £ M(R0) (by iii)) we get iv).

iv)-»i). By Lemma 5.1 ^(/)=Sf=i ^OTJ f°r some ^-£^(1). Let meM.
By iv) there exists keN with

Since by Lemma 5.1 ^(1) is a Lie-algebra it follows that R(I)m is generated as

an IVmodule by the elements T^- '-T^m with 0< j<k-l, all j e{!3 2,..., d}.

So R(I)meM(R0) all meM. Since MeM(R), say M=SS=i^m i we put

^o : = =Zi=i R(I)mi- Then M0 has the properties of Definition 5.2, which
concludes the proof.

Let MeM(jR) and let &, denote the filtration map introduced in §4 (cf.

Lemma 4.2).



REGULAR SINGULARITIES FOR FILTERED RINGS 871

Proposition 5o4. The map & restricted to the set of R0-submodules of M

satisfying the conditions of Definition 5.2, gives a one-to-one correspondence

with the I-good filiations on M. In particular the very good filiations on M

correspond one-to-one with the R0-submodules of M satisfying the conditions

of Definition 5.2 with I = J(M).

Proof. Let M0 be as in Definition 5.2. Put F: = &(M0). Then F is good

on M (Lemma 4.2). It remains to prove that I<^AnngrF(M). Let a(r)el

with i<r) = fceZ. Then s'^'^re^(I)9 so s-^-^rMocMo i.e. rMoC/^Mo-

Hence rRnM0^Rn+k_-LM0 all neZ (since ram = arm + \r, a~\m, all aeRn,

meM0). So a(r)grn(M) = ® all neZ. Consequently laAnngr(M), since I

is homogeneous. Since J5" is injective it suffices to show that & is surjective.

Let ¥' be an 1-good filtration on M. By Lemma 4.2 F' = ̂ (M0) for some

R0-submodule M0 of M satisfying M0eM(]R0) and RM0 = M. It remains to

prove ^(/)M0cM0. Let reR1 with o-
1(r)6/. We must show rM0^M0.

If r£R0 we are done. So assume r£R0. Then atyegr^R) and ff(r) = a1(r)

e!c:AnngrF'(MQ). In particular 0-(r)M0/J?_1M0 = 0 in R^MQ/MQ i.e. rM0

c=M0 as desired.

Corollary 5.5. Let MeM(R). Then M has R.S. along I iff M possesses

an I-good filtration.

Definition 5o60 Let MeM(R). We say that M has regular singularities

(M has R.S.) if M possesses a very good filtration.

So by Corollary 5.5 M has R.S. iff M has R.S. along J(M).

Since a(s) is a unit in gr(R) a(s) £ /> for all /> e Spec (gr(R)) i.e. s e S^ all /*.

Since s e Ri\R0 this means that Spec (gr(R)) = Spec°(gr(R)) (see Definition 2.21).

So by Corollary 2.23 fy(K) is an £-ring for every ^, e Spec (gr(R)). The main

result of this section is

Theorem §078 Let M be a holonomic R-module. There is equivalence

between

i) M is an R-module with R.S.

ii) fy(M) is an fy(R)-module with R.S. for all /> e #(J(M)).

in') ^i(M) is an fy(R)-module with R.S. for all /> e Spec (gr(R)).

Proof. i)-^iii). Apply Proposition 2.9 with 5: = 5^. iii)->ii)is obvious.

So it remains to prove ii)-»i). Let m E M and T e ^-(J(M)). By Proposition 5.3

it suffices to show that N: = J^ R0i:
imeM(RQ). We want to apply Proposition
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4.12. So let ^e^(J(M)). Then N(/)=E ^0)^(T)^(m). Since

6 ^(J(^(M)J) by (2.10) the hypothesis and Proposition 5.3 imply

6 M(^\K)\ So NE M(RQ) by Proposition 4.12, as desired.

Remark 5.8. The assumption M is holonomic in Theorem 5.7 is only

used to prove the implication ii)-»i).

5e9. Some Consequences of Theorem 5.7.

From Corollary 5.5 and Definition 5.6 we deduce

(5.10) IfM has R.S. along /, then Jc=J(M).

(5.11) ///cJ(M) and M has R.S., then M has R.S. along I.

Proposition 5.12. Let M be holonomic and htI = jj,R. Then M has R.S,

along I iff M has R.S. and /c J(M).

Proof, "if" follows from (5.11). Conversely, let M have R.S. along /.

So JcJ(M) by (5.10). Since hiI = /iR9 ht^>fiR for all ^6^(1). Let ^e

^(/(M)) then /£z> ^ for some ^e^(/). So ht^<ht^ = fiR i.e. ht^ = ̂ R

implying / = ̂ e^(/). By Proposition 2.9 and Corollary 5.5 e^(M) has R.S.

along ^WSy*)-1/)^^^ (by (2.10)).

So M has R.S. by Theorem 5.7 ii)-»i).

Let 0-»M'-»M-»M"-»0 be an exact sequence of .R-modules of finite type and

re/*!. Then (cf. Proposition 5.3) Er(R0m)eM(R0) all meM iff Er(R0m
f)

eM(R0) and Ex(R0m") E M(R0) all m'eM', all m^eM" (left to the reader).

Consequently, using Proposition 5.3 iv) we obtain.

Lemma 5.14 M has R.S. along I iff M' and M" have R.S. along L

Corollary 5.15. Let 0-»M'-»M-»M"-*0 be an exact sequence of holonomic

R-modules. Then M has R.S. iff M' and M" have R.S.

Proof. Observe J(M) = J(M') n J(M"). Then apply Proposition 5.12

and Lemma 5.14 with / = J(M).

§ 6. A Dictionary between ^-Rings and Noetherian Filtered Rings

Let Abe a filtered ring with filtration FA and order function v. The ring

of polynomials A[X~} can be made into a filtered ring with filtration FA[_X~\

and order function vx by putting
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%(Z atX
l) = sup v(at) + i and FA[X] (n): - {a(X) e A[X] \ vx(a(X)) < n}.

Similarly starting from an ^4-module M we can consider the module of poly-

nomials M[X]. It is easily checked that M\_X~\ is an 4[X]-module isomorphic

to A[X~]®A M. If FM is a filtration on M with order function v, we can define

a filtration FM\_X~\ on M with order function vx by

%(Z MiX*) = sup t;(X) + i and FM[JT] (n): = (m(Z) | vx(m(X)) <n}.

Write t; instead of vx. Then obviously

(6.1) v(Xnm(X)) = v(Xn)v(m(X)), all nel?, all m(X) e M [X] .

Let i: M-»M[JT] be the inclusion map. Since i(FMM)cF?JM[^] we have the

induced map i: gr(M)-+gr(M[XJ). Obviously I is injective. Put X: = X +

F0A[X~\. Let gr(M)[Y~\ be the external homogenization introduced in 9.11.

Extend I to a map f: ^r(M)[7]->^r(M[^]) by putting i(Z ^y^O^Ej rhjXJ\

rhjEgr(M) all 7.

Lemma 6.20 /) i: ^r(^4) [YJ-^^r^^]) is an isomorphism of graded rings,

ii) 1: gr(M){Y~\-^gr(M[X~\) is an isomorphism of gr(A)[YJ-modules.

Proof. Left to the reader.

From now on we identify gr(M)[Y^ with gr(M\_X~$ by i. So we write

gr(M\X]) = gr(M)\T\. Instead of FnA and FnA[X] we write A(n) resp. A\X~](n).

Let 1 be an ideal in gr(A). Then P \ = gr(A)[X~]l in ^r(^[)[J].

Lemma 63, If FM is I-good on M, then FM\_X~\ is Ie-good on M\_X~\.

If FM is very good, then FM\_X~\ is very good.

Proof. In particular FM is good on M. So FnM = X A(n — vi)mi for some

u,eZ, m f e M all neZ. We claim: FBM[3T] = £ ^[^(n-^m,-. Obviously

" z> " holds. Conversely if m e M and m^T-7' e FnM[Z] then f (m) + j < n

i.e. meFn_JM=^A(n-j-vi)mi. So mX-' e £ A[X](n-vt)mi. Since all

elements of FnM{_X~] are finite sums of elements of the form mXj with v(m)

+j <nit follows that FM[X~\ is good. By Lemma 9.5 v) and vi) Ann gr(M[_X~\}

= (Anngr(M))e and J(M[_XJ) = J(M)e. So Ic:Anngr(M) implies Ie

aAnngr(M[_XJ) i.e. FM[X] is Je good. Finally J(M[X]) = J(M)e implies

that FM[X] is very good if FM is very good.

Now we introduce the main objects of this section. Put S = {Xn\nEN}.

Then S is a multiplicatively closed subset of A[X~\ satisfying the conditions of
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Theorem 2.1. We put

x =

Instead of £^\A[_X], FA[XJ) we write <^n) and (j)s we denote by $x. Since
\<l>x(X)\ = \X\ = 2i and \^x(Xri\ = \Xr=2^ we get

(6.4) s: = $xpf) satisfies the conditions of Definition 4.1.

Corollary 6.5. // gr(A) is a commutative noetherian Q-algebra, then

$x is an E-ring.

Proof. By Lemma 6.2 and Theorem 2.6 gr(£x}~gr(A)\_X, J"1]. Conse-
quently since gr(A) is a commutative noetherian g-algebra, so is gr($x). By

Proposition 1.10 it follows that F£x is noetherian.

If M is an v4-module with filtration FM we similarly have the ^-module
<fx(M[X], FM[_XJ) with filtration ^\M[X~\, FM[JT]))weZ. From this fil-
tration we can recover the filtration FM as follows. Put j: = ̂ °J where

i: M-»M[JT] is the inclusion map and (j)x: M[Z] -*£X(M\_X^ FM[_XJ) the

canonical map.

Lemma 6.6. FnM =7~1(^")(M[-Xr], FM[J^]))3 all n e Z.

Proof, "c" is obvious. Conversely, let weZ, meM and suppose

FM[X]). Then |0x(m)|<2". So by (6.1) and (2.5) |m|
« i.e. meFHM.

6.7. Filiations on M and ̂

From now on we assume: gr(A) is commutative.

Let M e M(^) an^ ^^ a good filtration on M. Then FM[_X~] is good on
M[X~] (by Lemma 6.3). Hence ^X(M[X], FM[X]) does not depend on the
choice of the good filtration FM on M (by (2.7)). We denote this ^-module
by Mx or &X(M[X~]). However, the filtration

on Mx does depend on FM. With the notations of (2.7) we have <?(FM)

= L(FM[X]). So by Proposition 2.9 and Lemma 6.3 ^f(FM)isgood. Hence

Mx e M(#x). Conversely, let F be a good filtration on Mx. Put

which is a filtration on M. So we have maps <£ resp. ^ going from good
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filtrations on M resp. Mx to filtrations on Mx resp. M. Let / be an ideal in

gr(A), J an ideal in gr(&x) and j = gr(j). Put Ie :=gr(ffx)j(I) and Jc : =j~l(J).

Proposition 6.8= i) If FM is I-good on M, then &(FM) is Ie-good on Mx.

ii) Suppose FA is noetherian. If F is J-good on Mx, then &(F) is Jc-good

on M. The same conclusions hold for every good filtrations.

Proof, i) follows From Lemma 6.3 and Proposition 2.9 with S =

{Xn\neN} since J^(FM) = L(F(M[JT|).

ii) Since F is good on Mx, F = #r(^0) where ^0 is an ^^0)-submodule of

Mx of finite type with ^X^0 = MX (Lemma 4.2). Choose a good filtration

F'M on M and put ^'0: = £>0(F'M). By i) and Lemma 4.2 ^'QeM(^)

and ffxMv = Mx. Since these relations also hold for ^0 we deduce: there

exists ceTVwith <^-c^oc^oc^xc)^o- Consequently J~I(£(X~C}^Q)^J~I-

(^n)^o)cJ~K^x+c)^o)> all neZ. Then Lemma 6.6 implies F'n_cM^^n(F}

c=F;+cM, all neZ. So &(F) is good by Theorem 1.11. Let a(a)eJc with

v(a) = k and me^n(F). Then ak((j)x(a))eJ and <£x(m)eFn. So (t>x(am) =

n + k _ 1 (since JdAnngrF(Mx)) i.e. ame ^B+k_1(/r). Hence Jc

). Finally by (2.10) and Lemma 9.5 vi) J(M)e = J(Mx) and

= J(M) (Lemma 9.5 ii)) which proves the last part of Proposition 6.8.

6o9B Holonomic ^-Modules

Let A, FA satisfy the conditions a) and b) of §3, and let O^M eM(A).

As observed before J(Mx) = \ljx(gr(A)\_X, X-l~]J(M)). So Corollary 9.7 implies

that &(J(MX)) consists of the set of prime ideals />e ( = \l/A(gr(A)[X, X"l~\^))

where /, runs through the set ̂ (J(M)). Let d e N. Since ht^ = ht^e we derive

ht^ = d all ^e^(J(M)) iff ht^ = d, all ?e&(J(Mx)). Applying this with

d = fiAwe get: M is holonomic iff ht^=^A for all ^ e &(J(MX)). From this we

derive

Corollary 6.1IL // ^^x=j^A then M is holonomic iffMx is holonomic.

To investigate when the condition fiA = t*l?x is satisfied we put

where «/ is the set of involutive prime ideals in gr(A).

Proposition 6.11. nfx = pA iff pA = VA.

Proof. Let /> be an involutive homogeneous prime ideal in gr(A). Then
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by Proposition 1.19 and Proposition 9.9 ^e is an involutive and homogeneous

prime ideal in gr(gx(A[X])) = gr(A)\_X, J'1]. Since by [11], Theorem 1.9,

p. 79 and Corollary 9.3 i) ht/^ = ht^e we get ^A<^^x-

i) Suppose HA = VA. ^ remains to prove fi§x<\*>A- By Proposition 1.19
every involutive homogeneous prime ideal in gr(^x(A[XJ)) = gr(A){X, X~l~\ is

of the form pe = gr(A)[X, X'1']^ where ^ is a homogeneous involutive prime

ideal in gr(A)[X] with X £ /t By Corollary 9.3 i) ht/
e = ht/. By Proposition

9.12 and Proposition 9.18 ^ is an involutive prime ideal in gr(A). So ht^* < VA.

Hence Corollary 9.15 implies that htf = htf*<vA = /LiA, whence ht^e<fiA.

So V#X<HA-
ii) Suppose H#X = HA- We must show VA<JJIA since obviously fiA<vA.

So let /> be an involutive prime ideal in gr(A), say ht^ = n. By Proposition 9.12

and Proposition 9.18,4* is an involutive prime ideal in gr(A)[X~] and X £ ^*.

Furthermore ht/i* = ht/^ = n by Corollary 9.15. The hypothesis ^Sx<^A

implies that there exists an involutive homogeneous prime ideal ^ in gr(A)

with n = ht/z* < hi?. So ht^ < ht^. Consequently VA < \JLA as desired.

Corollary 6.12. Let /LLA = VA. Then M is holonomic iff Mx is holonomic.

Proof. Apply Corollary 6.10 and Proposition 6.11.

6.14. A Special Result

To conclude this section we give a result which will be used in §7 to prove

the main result of this paper. By Theorem 2.6 gr(#s(A)) and a(S)~1gr(A) are

isomorphic graded rings. We identify these rings. So we write gr(^s(A))

Let , e Spec (gr(A)\ Put ,<: = gr(A)[X9 X~^ in gr(A)[_X,

and '. = a(S)-igr(A)[_X, X~ in

Lemma 6.15. i) There exists an isomorphism of filtered rings y from

£?*(£x(A\_XJ)) onto £f(<?x(£?(A)\_XT$).

ii) Let M E M(A). There exists an isomorphism of filtered

^e(^x(AlXJ))-modules y from £ye(gx(M\_X~\)) onto <?/(<?x(<?/(M)iXJ)).

Proof. Let $/ : A-*£?(A) be the canonical map and $/ its obvious

extension ^[X]-»<f/G4)[JT] with $f(X) = X. Let <j>rtX\ £?(A}[X~]-*gx

(£f(A)[XJ) be the canonical map. Applying Theorem 2.1 iii) to the morphism

h: A[X~\-*£x(£f(A)[X~]) defined by /i = $/ >x°^/ we obtain a morphism of
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filtered rings p: #x(A[X])-+£x(fy(A)[XD. Take <j) = p in Corollary 2.18

and /i: = ?e in gr(gx(A[_X~\)) = gr(A)[X, J"1]. Then X=/ and (X)C = A
So by Corollary 2.18 we obtain a morphism p: ^e(^x(AlXJ))-^^(^x(^(A)-

[XJ)). It is left to the reader to verify that gr(p) is a bijection between the

associated graded rings. Consequently p is an isomorphism of filtered rings

by Corollary 1.14, which proves i). ii) By p constructed in i) #^-

(£x($y(M)[X~\)) becomes a left <^e(<^(^[^]))-module. Then arguing as

ini) Corollary 2.19 gives a morphism 7: ^/e(^(M[X]))-^>^(^(^/(M)[^]))

which is in fact an isomorphism, using Corollary 1.14 again.

§ ?„ Modules with Regular over Filtered

In this section A denotes a filtered ring with filtration FA satisfying

a) gr(A) is a commutative Q-algebra.

b) FA is noetherian.

c) VA = VA-

Furtheremore 1 (resp. J) is an involutive homogeneous radical ideal in gr(A)

(in gr((?x)) and M 6 M(A).

Definition 7.L We say that M has regular singularities along I (M has

R.S. along /) if M possesses an I-good filtration. We say that M has regular

singularities (M has R.S.) if M possesses a very good filtration.

Proposition 7.2. If M has R.S. along I then Mx has R.S. along Ie. If

Mx has R.S. along J, then M has R.S. along Jc and M has R.S. iff Mx has

R.S. (as an ^-module).

Proof. Apply Proposition 6.8.

The main result of this paper is

Theorem 7030 Let M be a holonomic A-module. There is equivalence

between

i) M has R.S.

ii) fy(M) is an fy(A)-module with R.S. for all /> e 0(J(M)).

Hi) <f^(M) is an fy(A)-module with R.S. for all /*, e Spec (gr(A)).

Proof. i)-»iii) follows from Proposition 2.9 with S: = S^,. iii)-»ii)

is obvious. So it remains to prove ii)-»i). Let /te&(J(M)). Then the hypo-
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thesis and Proposition 7.2 give <^(«yfc(M)[J^]) is an ^x(<^(^)pf])-module with

R.S. Then Theorem 5.7 i)-»iii) implies that ^(^X(^(M)[X])) is an

<^(<fx(<^(^)[Z]))-module with R.S., where ^ is as in Lemma 6.15. So by

Lemma 6.15 we find ^e(<fx(M[X])) is an ^e(<f^[^]))-module with R.S.

for all /* e ^(J(M)), with /*,* as above. As observed in 6.9 the minimal com-

ponents of J(MX) are all of the form /t.e with ^ e ̂ (J(M)). Finally by Corollary

6.12 Mx is a holonomic ^-module. So we can apply Proposition 5.7 ii)-»>i)

to the E-ring R: = #x. Hence Mx is an ^-module with R.S. which implies

i) using Proposition 7.2.

Obviously Definition 7.1 implies

(7.4) IfM has R.S. along I then /cJ(M).

(7.5) If la J(M) and M has R.S. then M has R.S. along I.

Proposition 1.6. Let htI = ̂ A. There is equivalence between

i) M has R.S. along I.

if) M is holonomic with R.S. and Jc J(M).

Proof. ii)-»i) follows from (7.5). Conversely assume i). ThenlciJ(M)

by (7.4). Let ̂ e^(J(M)), then ^ y for some ^£^(1). Hence ht^>ht^

> ILLA (since ht/ = /^). Since /* e ̂ (J(M)) ht^i < JJLA (see §3). So \JLA = ht/i = ht7

hence ^ = ̂ e^(J). Consequently M is holonomic and

By Proposition 2.9 <^(M) has R.S. along \l/A(a(S/)-lI) =

)? all ̂  e ̂ (J(M)). Then apply Theorem 7.3.

Proposition 7«,70 Lef 0-»M'-»M-»M"-»0 be an exact sequence of holo-

nomic A-modules. Then M has R.S. iff M' and M" have R.S.

Proof. Put S = {X"\neN}c:A[X']. As observed in (2.7) the functor

JV-^sC/V) from M(A\_X~]) to M(£x) is exact. Since the functor M-»M[JC] is

also exact we obtain an exact sequence 0-»MX-»MX-»M£-»0 of holonomic

^-modules (by Corollary 6.12). Then apply Proposition 7.2 and Corollary

5.15.

§ So Rings of Differentia! Operators

In this section we will consider special filtered rings, the so-called rings of

differential operators, often denoted by D instead of A. We show that for these
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rings D the condition VD = ̂ D is satisfied. More precisely we show that vD = [iD

= gl. dim D. This enables us to prove that the notion of a holonomic D-module

as introduced in §3 coincides with the usual concept of holonomicity studied in

literature. We begin with some preliminaries.

Let R be a commutative /c-algebra, where k is a field with char k = G and P:

R x R-+R a k-bi-derivation i.e. P is a bi-derivation, cf. Definition 9.1 and P(A3 r)

= P(r, A) = 0 for all 1 e k, re jR. Let QR = QR/k be the R-module of differentials

over k.

Lemma 8d. There exists an R-bilinear form oj on QR such that co(da, db)

= P(a9 b),alla9 beR.

Proof. Suppose ^Qidai^=^g'ida\ and ^hjdbj=^h'j db'j. We must

show E g i h j P ( a i , b j ) = Y , g f i h ' j P ( a f
i , b ' j ) . It suffices to prove ^gtP(ai9b)

= lLg'iP(a'i, b)9 all fee R and £ hjP(a, b,.) = £ h'jP(a, b}), all aeR. We only
show the first equality. Put D(b): = ̂  gf(ai9 b), all beR. Then D is a fe-

deration of JR. So by the universal property of QR there exists 0 E Horn (QR, R)

with (f)(db) = Db, which implies the first equality.

Proposition 8.20 Let ^ be a P-stable ideal in R. Suppose that

i) R is a regular ring

ii) QR is a free R-module of rank n (neN) with an R-basis (el9..., en)

such that deto}(ei3 e/)?,7-=i is a unit in R.

Then

Before we prove this proposition we make two observations.

1. Let (/): R-»Rf be a ringhomomorphism, F a free .R-module of rank n

with .R-basis (/): = (/!,...,/„) and co an K-bilinear form on F such that d(co(f))

: = det(a>(fi,fj)ilj=i) is a unit in R. Then F':=R'®RF is a free ^'-module

with R'-basis (/'): = (/I?...,/D5 where/-==l®/ t and we can extend co to an R'-
bilinear form cw' on F' by putting co'(/'i3/j) = ^(co(/^//-)). Since 0(J(co(/))) is

a unit in R' d(o}'(f')) is a unit in R'.

2. Let S be a multiplicatively closed subset of R. Then the Je-bi-derivation

P on R can be extended to a /c-bi-derivation P' on S~1R (in the obvious way).

Identifying S~1R®RQR with Qs-iR it is easy to verify that the form CD' on S~1R

®QR as defined in 1. equals the form on Qs-iR induced by P' (according

Lemma 8.1). Furthermore, if I is an J?-stable ideal in R, then S"1 / is a P'-stable

ideal in S"1^.
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Proof of Proposition 8.2. Put A : = R^, ** : = /^R^ K : = A/**, Since

char k = 0 we have an exact sequence of K-vectorspace (cf. [8], Ex. 8.1, p. 187)

0 - > ^/^2 -«_> QA®AK

where u(a + m2} = da®l. Apply 1. to the ringhomomorphism R-*A. This

gives a form CD' on QA ( = QR®RA) and a basis (e[,..., e^) with d(co(e'J) is a unit

in A. By 2. co' is the form on QA induced by P' and since ^ is P-stable, ^ is

P'-stable. By 1. applied to the ringhomomorphism A ->K we get a form

co" on V: = QA®AK and a JT-basis (*"): = (*i>-» O of V with d(co"(e"y)*0.
So co" is non-degenerated. Since ̂  is P'-stable and a(a +™2} = da ® 1, all a e A,

it follows that £: = a(^/^2) is an isotropic K-subspace of Fi.e. co"(e, e') = 0 for

all e, e' E E. So dir% E<l/2 dim V= l/2n. Since a is injective dimK ̂ /^2 <

l/2n. The regularity of R implies that A is a regular local ring, so dimK v*/™2 =

dim A. Since hty£ = dim A, we derive hty£ < l/2n, as desired.

8.3. Applications to Rings of Differentia! Operators

Let B be a commutative noetherian ring which contains a field k of charac-

teristic zero. Put ^ = Derfc(B, B) and D(B): = U(B, ^) the rim? o/ universal

differential operators generated by B and ^ (we refer to [i^] for more details).

Let h: B-*D(B) and j: ^-*D(B) be the canonical maps. Then h is a mono-

morphism. Furthermore, D(B) is a Z-filtered ring by putting

(i;) = 0 if i;<0, D(B)(0)=.B and D(B)(i;) is the B-submodule of D(B)

generated by the t;-fold products of elements in h(B) U j(/?)>

Let ^G Max (B)= the set of maximal ideals in B. Then every TE^- induces a

B/^-linear map f: ^/^2-»B/^, since T^2c^; f is called the tangent map at

#*. We say that ^ has maximal rank at ^ if every B/^-linear map from ^/^2

to Bj** is of the form f, for some T e ^. From now on we assume that B satisfies

the following conditions :

1) ^ has maximal rank at every ** e Max (B).

2) B is a regular ring of dimension n (for some neN).

3) The residue fields B/** are algebraic over k.

4) For every B-module M we have: MeM(B) iff M^eM(B^), all **e

Max(F).

5) QB/keM(B).

Let ** G Max (B) . By 2) d : = dim^^^/^2 = dim B^ < n . Choose y l , . . . , yd
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e^ such that their images (ji,..., j^) form a B/^-basis of *^/*^2. Then
Nakayama's lemma implies that j^,...,)^ generate the maximal ideal *»J3W.
By 1) there exist T l 5 . . . ,T d e^ such that T/^) 6 *» if jV^ and i/j^)"1 e»», all

1< j<d. It follows (cf. [1], p. 89) that ^^ is a free B^-module with basis

T l 5 . . . ,T d . Consequently, observing that D(B)^~U(B^, ^^ as filtered rings,
we get an isomorphism of graded rings

(8.4) 0KJ>(*)~)^*j:*i,..., XJ ,

where the polynomial ring is graded in the usual way. Furthermore gr(D(B)^)

^gr(D(BJ)^ (for example by Theorem 2.6). Identify these two rings.
Obviously gr(D(B)) is a commutative ring so we have a Poisson product, denoted

{ , } on it, which extends to a Poisson product on gr(D(B))^. This extension

equals the Poisson product induced by D(B)M ^ U(B^, /f^ of gr(D(B)fJ.

Identify gr(D(E)M) withB^[Xly..., Xd~j. So Xt corresponds to the class i^ + B^.
Put R: = gr(D(B)^). Let CD denote the J^-bilinear form on QR induced by the

Poisson product on R. We have the following obvious relations

(8.5) co(dXh dyi) = ̂ (yj) in B^ and co(dyh dj^) = 0, all i,j.

Lemma 8.6» QR is a free R-module with basis (e1?..., e2d)'- = (dy1,..., dyd,
dXly..., dXd) which satisfies: detco(e,-, e$*j=l is a unit in R.

Proof. QR is generated as an .R-module by the elements dXl9..., dXd and

the elements da, where a runs through A: = B^. More precisely QR^(QA®AR)

®RdX1®---®RdXd (see [11], p. 189). Put **:=**B^ and K(A): = A/~. Let

a E A. Then a : = a + » e K(A) is algebraic over fe (by 3)). Let P(X) e k\X~] be
the monic minimal polynomial of a over k. In particular P(a) = 0 i.e. P(A)

£™ = ̂ Ayt. Consequently (-^^j(a)daE^Adyi + ̂ QA. Since char fe = 0,
/ f ) P \ \v & J *

g.c.d. (PCX), |^ ) = 1, so there exist r(Z), s(X) e fe[X] with
\ C / A / / P P \

= 1. Hence r(a)P(a) + s(a)(^}(a) + l9 implying that dae^
\(7 JC /

Consequently QAa^ Ady^^Q^ Since QAeM(A) (for OseM(B) by 5))

Nakayama's lemma gives QA = X ^WjV Hence O^ = X ^^Ji + Z ^d^. Using
the relations of (8.5), it is left to the reader to verify that det (co(ei3 ej))fs

d
j=1 is a

unit in 5^ and hence in R ( = J3^[X1,..., A"d]). Finally it follows readily that QR

is a free J^-module with (ely..., e2d) as an J?-basis, which proves Lemma 8.6.

Theorem 8070 VD(B) = }iD(B) = gl. dim D(B) = n.

Proof, i) Let ^ be an involutive prime ideal in gr(D(B)). Put /*0°. =
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n B (where we identified B with the subring h(B) of gr(D(BJ). Choose »» e

Max(B) with ^a^. Put S'- = B\™- Then Sn/* = 0. So ht/^ = httS
r~1

/i
(Corollary 9.3 i)). Put R = S~lgr(D(B)) = gr(D(E))^. Since ^^S'1^ is an

involutive prime ideal in R Lemma 8.6 and Proposition 8.2 imply that ht^<l/2.

2d = d<n. So ht^<n. Consequently vD(B)<n.

ii) Since dim B = ?i there exists »» e Max (B) with ht»*B^ = n in B^. Hence

^: = (*^B^)e in B^pfj,..., XJ is an involutive homogeneous prime ideal in

BJ_XlJ...,Xn-\ = gr(D(B)^ with ht, = «. Let 0: 0r(I)(B))^r(l)(B))^ be the

canonical map. Put yi: = ^c. Then ^ = (^c)e = /^e gives that /, is an invo-

lutive homogeneous prime ideal in gr(D(B)) with ht^ = ht^ = n. So ^D(B^>n.

Together with i) this gives: ^D(B) = VD(B) = H'
Hi) Finally n = gl. dim D(B) by [1], Chap. 3, Theorem 1.2, which completes

the proof.

O8 Final Comment

Notations and assumptions as above. Put D: = D(B). It is shown in [1],

Chap. 3 that #r(D) is a commutative noetherian ring. Furthermore gr(D)^

~ B^[X !,..., Xd~] is a regular ring of dimension 2d (d < n) for every ™ e Max (B).

It follows that gr(D}^, is a regular local ring of dimension <2n for every ^e

Max(0r(Z))) (since gr(D)/^c^(gr(D)^)/^^, where ^ = ̂  n B is a maximal ideal of

B because gr(D) = B® ® gr(D)(n)). It follows that gl. dim gr(D)<2n. So we
n=l

can apply the material of [2], p. 103-149.

Let 0=^MeM(D). Since n = gl. dimD we obtain the following results

Proposition 8.90 M is equipped with a filtration

) = M of D-submodules(&_l(M) = Q) and &V(M)I&V-\(M) is isomorphic
to a subquotient ofExtn

D~v (Ext £~y(M, D), D).

Since ^n(M) = M we can define:

(8.10) c5(M) is the smallest positive integer with &d(M}(M) =

Furthermore we put

(8.11) j(M) is the smallest positive integer with Ext£(M)(M,

Obviously 0< j(M)<n. More precisely it can be proved that

(8.12) j(M) + d(M) = n.

So we get : <5(M) = 0 iff j(M) = n i.e. Ext V
D (M, D) ̂  0 iff v = n . A consequence of
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the decomposition theorem ([2], Theorem 7.3 p. 143) is:

8.14. d(M) = 0 iff lit/* = n, all /, e #(J(M)).

By Theorem 8.7 we therefore have:

Corollary 8.15. M is a holonomic D-module iffd(M) = Q iffExtv
D (M, D)^0

on/j; w/zen v = n.

This shows that the notion of a holonomic D-module, introduced in §3

coincides with the usual definitions given in the literature.

Examples, i) Let (9n be the ring of formal or convergent power series in

x!,..., xn over a field k of characteristic zero. Then B\ = 0n satisfies the con-

ditions l)-5) and &n = D(B).

ii) Let Fc CN (N e /V) be a non-singular n-dimensional irreducible variety.

Let A(V) be the coordinate ring of F. Then B: = A(V) satisfies l)-5) and &(V)

= D(A(F)) (see [1], Chap. 33 §2).

§ 9o Some of Commutative Algebra

In this section all rings are commutative. Let 0: A-+B be a ring homo-

morphism. If I is an ideal in A we put Ie: = 50(/)3 the extended ideal of

A and if J is an ideal of B we put Jc: = ^~1(J)3 the contracted ideal of J.

D.I. A bi-derivation on a ring A is a Z~bilinear map

D: Ax A-»A satisfying

D(a1a2, b) = a1D(a2, fc) + D(al3 b)a2, all al9 a2, beA.

D(a, bib2) = blD(a, b2} + D(a, b^b2, all a, bl9 b2eA.

An ideal I in A is D-stable if D(a, b) el for all a, b e I.

Proposition 9,20 Let $: A-»B be a ring homomorphism and let DA, DB

be bi-derivations of A resp. B. If for some unit veB

MDA(a,ay = vDAMa\Ma'))9 all a,a'eA

then the following holds

i) If I is DA-stable, then Ie is DB~stable.

ii) If J is DB-stable, then Jc is DA-stable.

Proof. Left to the reader.

Let A be a ring and I a radical ideal in A. If 1 can be written as /^ n • • • fl
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^ where the ̂  are distinct prime ideals of A satisfying /^(£ C\ /*/, we call /^
j+i

fl ••• n />r the minimal prime decomposition of I (it is unique up to a permu-

tation). The set {^^..., /,r] we denote by ̂ (/).

If A is a noetherian ring every radical ideal admits such a decomposition.

Let 5 be a multiplicatively closed subset of A. Then there is a one-to-one

correspondence between the prime ideals of S~1A and the prime ideals of A not

meeting S, given by extension and contraction (under the canonical map 0:

A-*S~1A). An easy consequence of this fact is

Corollary 9.3. i) If /> e Spec (A) and ^ n S = 0, then ht^ =

ii) Let I be a radical ideal in A. If Ie^S~lA, then Ie is a radical ideal

and &(Ie) is the set of ^e where ^6^(1) with ^05 = 0.

9.4. The Adjunction of a Variable

Let A be a ring and M and ^.-module. We can make the ring A\_X~\ of

polynomials and similarly the module M[X] which is an A[X~] -module in the

obvious way (cf. §6). Let i: A-*A[_X~\ be the inclusion map. As before put

Ie = A[X]i(I) for an ideal 1 in A and Jc = i~l(J) for an ideal J in A[X].

Lemma 9050 Let /, J, K be ideals in A.

i) If ^ e Spec (A), then X e Spec (A\_XJ).

ii) Iec = L

in) r(Ie) = r(I)e.

iv) IfI = J(}K,thenIe = JenKe.

v) If M is an A-module then Ann M\_X~\ = (Ann M)e.

vi) r(Ann

Proof. Left to the reader. Use the fact that X a^el6 iff at el for all

ieJV.

Proposition 9.6. Assume A noetherian. Let O^M and let /*i n ••• fl/* r

be the minimal prime decomposition of r(Ann M). Then ^\ n ••• n /r
e is the

minimal prime decomposition of r(Ann M[^]). Furthermore

all i.

Proof. By Lemma 9.5 vi) and iv) r(Ann M[Z]) = /if n ••• n X- The /*f
are all distinct prime ideals of A[X~] by Lemma 9.5 i) and ii). If ^f c=n /^

j^i
then ^f c=(n ^)e by Lemma 9.5 iv), so by Lemma 9.5 ii) /^cn /tj a contra-

j=£i j=f=i
diction. Finally m>, = ht/if follows from [1 1], Theorem 19, p. 79.
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Now consider A[X, X'1'] and M[X, X~l~\ i.e. the localization of A[X~] resp.

M[X~] with respect to S = {Xn\n e N}. So M\_X, X~l~\ is an A[X, A^j-module.

Let; : A-+A[X, X~l~\ be the inclusion map. Combining 9.3 and Proposition 9.6

we obtain

Corollary 907. Notations as in Proposition 9.6. Then ^4 n ••• n /lr is the

minimal prime decomposition of r(Ann M[_X9 X""1]) where J£~A[_X, X~l~\/ii.

Furthermore ht/^ht^ all i and r(Ann M)=j~1 (r(Ann M\_X, JT"1])).

9Mo Graded and Modules

A ring R is called a graded ring (of type Z) if there is a family of additive

subgroups {Rn\neZ} of R such that .R=©jRn and RnRmc:Rn+m, all n, meZ.

It follows that leR0 and R0 is a subring of R. An .R-module M is called a

graded R-module if there exists a family {MJra E Z} of additive subgroups of M

with the properties M = ®Mn and RnMnaMn+m, all n, meZ. If O^meM,,,

then m is called a homogeneous element of degree n and if V is a subset of M,

h(V) denotes the set of homogeneous elements in V. An ideal I in a graded

ring R is called homogeneous if it is generated by homogeneous elements (equi-

valently : r = £ rn e / implies rn e I for all n E Z).

If 4 is an arbitrary ring, the ring R: = A\_X, X~l~\ is a graded ring by putting

Rn: = AX", all neZ. Let j: A-*A[X, X'1'] be the inclusion map. It is left

to the reader to prove

Proposition 9e9, There is a one-to-one correspondence between Spec (A)

and the homogeneous prime ideals of R given by extension and contraction

(with respect to f).

Proposition 9.10e If R = ®Rn is a noetherian graded ring, then R0 is

noetherian.

Proof. Let 1 be an ideal in R0 and r E R0\I. Then r ^ RI. Consequently

if there exists a strictly increasing chain of ideals in R0, say (In)neN then the

chain (RIn)neN of ideals in R is also strickly increasing, a contradiction.

9.11. External HomogenSzatioa9 Dehomogemizatlom

We recall some well-known facts of graded rings (cf. [14], Chap. VII, §5

and [12] part A, II.8. Let R be a graded ring. The ring R[X] of polynomials

can be made into a graded ring by putting degJf = l i.e. R[X]n is the set of
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elements ]T ri%j with r^ei^ and i+j = n. In the same way, starting from a

graded K-module M we make M[X~] into a graded jR[Jf]-module, called the

external homogenization of M. Let r = r _ m H ----- h r 0 H ----- h r n e R . Put r*:

-- + rrje^[X], r/ze homogenized of r. If u = u_kX
k+J

is in fc(K[-Y]) put M l |,: = i i _ k + - - - + M 0 + »-+ii< /el?,
£/ze dehomogenized of u. Then (r*)J5c = r and XP(M$)* = M for some peJV.

Let / be an ideal in R and J a homogeneous ideal in flpf]. We put l*: = the

ideal in R[X^ generated by the/*, with /el. J*: = {u*\uEh(J)} this is an

ideal in R.

Proposition 9.12 (cf. [14]). There is a one-to-one correspondence between

the prime ideals of R and the homogeneous prime ideals of R[X~\ which do

not contain X. The correspondence is described by the maps /L-* /t* and

?**- ? which are each others inverse.

Lemma 9.14. If R is noetherian and /*, a homogeneous prime ideal in R

with ht/z = n, then there exists a chain of homogeneous prime ideals /*()§=•••§£/*„

= /*•

Proof. See [12], Corollary I. 1.10, p. 227.

Corollary 90158 Let R be noetherian. If ? is a homogeneous prime

ideal in R[X~\ with X £ ?*, then hty = htf*. If /* is a prime ideal in R5

then

Proof. Let ht^ = n. By Lemma 9.14 there exists homogeneous prime

ideals /0So"S^n
 = ^- Hence Proposition 9.12 gives a chain of distinct

prime ideals ^0*S°"£/n*:=/* i*1 R- So ht^^^ht^. Conversely, since
by Proposition 9.12 a chain /40^---g/^m = ^^ of distinct prime ideals in R

gives rise to a chain /*oS""^/ tm = (^*)*=:^ of distinct prime ideals in JR[Jf]
we get ht^^ht^sj.. So ht^ = ht^^.. Finally, by Proposition 9.12 /£ = (/&*)#

and ^ : = /t* is a homogeneous prime ideal of R\_X~\ with X £ /. So ht/^ = ht^^

*, as desired.

Let D be a bi-derivation on R. We extend it to a bi-derivation on

by the formula

*, E 9jXJ) = S DC/i, flfy)Jrl+y, all /lf ^ e JR, i, j e J

It readily follows that

(9.16) D(F9 G)*=D(F+, G»), a// F,
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Let/, 06*.

= (D(f*> 0*)*)*- Consequently

(9.17) D ( f * , g * ) = XrD(f,g)*9 for some peN.

Proposition 9018= If I is a D-stable ideal in R, then I* is a D-stable ideal

in JR[X]. If J is a homogeneous D-stable ideal in R\_X~\, then J* is a D-stable

ideal in R.

Proof. The first part follows from 9.17 and the fact that each Feh(I*)

Is of the form Xpf* for some/e 1 and p e ]?. The second part follows from 9.16.
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