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Note on the Eilenberg-Moore Spectral Sequence

By

Atsushi YAMAGUCHI*

Abstract

In this paper, we prove two theorems on the Eilenberg-Moore spectral sequence. We
give a relation between the Bockstein homomorphism in the E2-term and the Bockstein
homomorphism of the space to which the spectral sequence converges and also relate the
homology suspension to the Eilenberg-Moore spectral sequence.

Introduction

The purpose of this note is to prove two theorems on the Eilenberg-Moore
spectral sequence; one relates the algebraic Bockstein homomorphism between
the E2-terms to the geometric Bockstein homomorphism between the homologies
of the spaces to which the spectral sequences converge (Theorem 2.2), and
the other relates the homology suspension to the Eilenberg-Moore spectral
sequence associated with a path fibration (Theorem 3.5).

In order to prove these theorems, we recall the definition of the Eilenberg-
Moore spectral sequence. After the original work of Eilenberg and Moore
([2]), various constructions have been done by Hodgkin ([4]), Smith ([7], [8]),
Rector ([6]) and Heller ([3]). In this note, we adopt a point of view of Hodgkin
and Smith who construct the Eilenberg-Moore spectral sequence as the Kiinneth
spectral sequence on the category of pointed spaces over some fixed base space.

In Section 1, we construct the Kiinneth spectral sequence for a generalized
homology theory, dualizing the argument of Smith ([8]). We give a sufficient
condition for convergence of the spectral sequence ((1.11), (1.23) (ii)) and one for
identification of the E2-term ((1.17), (1.22)). These results are also obtained in
[3] under a categorical framework. Our concrete construction enables us to
prove the main theorems in the following sections.
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In Section 2, we prove that the algebraic Bockstein homomorphism between
the E2-terms of the Kiinneth spectral sequence “converges’’ to the geometric
Bockstein homomorphism. Our assertion (2.2) is quite similar to the main
theorem on the boundary homomorphism of [11], although the proof is much
easier.

In Section 3, we consider the Eilenberg-Moore spectral sequence for a
generalized homology h,, associated with the path fibration over a space B.
Then, under suitable assumptions, there is a homomorphism ﬁ,,(QB)—»EEl,,,+1
and a natural equivalence E2, ,,,—Ph,.,(B). We show that the composition
of these coincides with the homology suspension.

The results of Sections 2, 3 are applied to determine the structure of the
homology of double loop spaces of complex Stiefel manifolds ([10]).

I would like to thank J.P. Mayer, J. M. Boardman, J. Morava and
W. S. Wilson for useful conversations and encouragement. And I am also
grateful to A. Kono for helpful suggestions and his interest on the materials of
Sections 2 and 3.

§1. Recollections on the Eilenberg-Moore Spectral Sequence

First, we define a category Top,./B to formulate the Eilenberg-Moore spectral
sequence as the Kiinneth spectral sequence in this category. We will use the
notations and some results of Section 1 of [8]. (See also [4], [7].)

Definition 1.1 ([8]). Let B be a fixed topological space. We define a
category of pointed spaces over B, denoted by Top, /B as follows. An object of
Top, /B is a pair of maps (f, s) (f:T(f)—B, s: B=>T(f)) between topological
spaces T(f) and B such that fos=1g and sB is a neighborhood deformation
retract of T(f). A morphism ¢: (f, s)—(g, t) of Top,/B consists of a continuous
map T(p): T(f)— T(g) such that g-T(p)=f, T(p)es=t.

We denote by Top, the category of pointed topological spaces with non-
degrerate basepoints. We define functors I': Top,—Top,/B and &: Tep./B
—Top, which play a central role in the construction of the Eilenberg-Moore
spectral sequence.

Definition 1.2 ([8]). For each pointed topological space (X, x,), let
p: Bx X—B be the projection onto B and let s: B->Bx X be the canonical
inclusion s(b)=(b, x,). We define a functor I' by I'(X, xo)=(p, s). And we
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define a functor @ by @(f, s)=(T(f)/sB, sB/sB).

Lemma 1.3. The functor I' is a right adjoint of ®; that is, there is a

natural equivalence

Moryep s ((f, 5), T(X, X0))= Moty (D(f, 5), (X, Xo))-

Proof. We construct a natural map a: Morye,, 5 ((f, 5), I'(X, xo))
—Morg,p,, (D(f, 5), (X, xo)) as follows. Let ¢: (f, s)—I'(X, x,) be a morphism
of Top,/B, and let q: Bx X—X be the projection onto X. Then the compo-
sition T(f) Z{2), Bx X % X maps sB to the base point x,. We define a(p) to be
the map T(f)/sB— X induced by qoT(¢). The inverse o ! of a is described as
follows. For a morphism ¢ : &(f, s)—(X, xo), we put T(a '(WY))(x)=(f(x),
Yom(x)) where n: T(f)— T(f)/sB is the canonical projection.

In the category Top./B, we can construct mapping cones, suspensions,
products, smash products and other constructions which we usually do in the
category Top,. And we can define a cofiber sequence in Top,/B as in Top,.
Here we give the constructions of mapping cones, products, smash products,
and suspensions. (See Section 1 of [8] for details.)

Constructions 1.4. (i) Let ¢: (f, s)—(g, t) be a morphism of Top,/B.
We define the mapping cone of ¢, denoted by (Cx(), S¢,(4)) as follows:

(x, D~To(x): xe T(f)
TCx(@)=(T(f)xI) 1L T(g) | (s(b), r)~t(b): beB, rel
(x', 0)~(x",0) if f(x)=f(x")
for x', x"eT(f)
Cg(p): TCx(p)—B and Scu(oy: B—»TCy() are defined by Cy(o)([x, r])=f(x)

for xe T(f), rel, Co)[y])=9g(y) for y € T(g) and Sc,,)(b)=[#(b)] for be B
where [x, r] and [y] are the elements of TCg(¢) represented by (x, r)e T(f)x I

and ye T(g) respectively. Note that there is a natural inclusion ¢: (g, t)—

(Cp(®)s Sca(p) defined by T()(y)=Ly].
(ii) Let (f, s) and (g, t) be pointed space over B, their product (f, s)=

(f, s)>;(g, 1)."s,(g, t) is defined by the following; We put (f, s)>;(g, t)=(f;< g,
sxp)and  T(fxg)=T()x T(g)={(x. N e TNxT@I/(x)=g0)}. fxg:
T(fx9)~B, sxt: B-T(fxg), T(): T(/x9)~T(f) and n(x): T(fx 9)~T(g)
are given by fxg(x, y)=f(x)=9(»), sx#(b)=(s(b), #(b)), T(m,)(x, y)=x and
T(m)(x, y)=y.
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@iii) Let (f, s) and (g, t) as above. We define their smash product (f, s)g
(9, D=(frg,snt) by
T(fng)=T(f x g)/(x, tb))~(s(b), y) for (x, y) e T(fxg), be B. frg: T(fA 9)
—B and sAt: BoT(fAg) are given by fAag(xAy)=f(x)=g(y) and sA #b)
—s(b) A 1(b). ’ rr ’
(iV‘S Let (f, s) be a pointed space over B. Let us define a suspension
functor Top,/B—Top,/B by > p(f, s)=I(S!, *)/z\;(f’ 5), where (S!, %) is a

circle with a base point *.
We give some propositions we need without proofs.

Propositions 1.5 ([8]). (i) The functor &: Top,/B—Top, preserves
cofibrations.

(ii) Let A :Topy/BxTop,/B—Top,/B be the smash product over B.
For any pointizd space (f, s) over B, the functors (f, s)n(—), (=)A(f, s):
Top,/B—Top,/B preserve cofibrations. ’ ’

(iii)) Let > =3 g: Topy/B—Top,/B be the suspension functor on Top,/B,
then there is a natural map A: (h", u")—Y (h', u') for each cofiber sequence
(0, u)—is(h, u)—(h", u") in Topy/B such that (h, u)~.(h", u")-4.3 (h', u')
and (h", u)-4.Y (W, u')-ELY (h, u) are cofiber sequences.

(iv) > p preserves cofibrations and commutes with ®: that is, o3 p
=>"o®, where 3 in the right hand is the usual suspension functor on Top,.

Definition 1.6. Consider the natural transformation @=0"'(14): lyop.s
—I'o®. For a pointed space (f, s) over B, let C,(f, s) be the mapping cone of
Oy (fs )=Te@(f,s), and let ¢ : To®(f, s)=>C,(f,s) be the natural
inclusion. Thus we define a functor C,: Top,/B—Top,/B and a natural cofiber

sequence (f, 8) 2220, [o@(f, 5) 2205 C(f, 5).
Let /i, be a reduced homology theory on Top,. Putting ph, =h,®, we
have a homology theory gh, on Tep,/B ([8], Corollary 2.2).

Construction 1.7. Let /i, and ph, as above, and let (f, s) and (g, t) be
pointed spaces over B. We form a sequence of natural cofibrations.

(f. )L To®(f, 5)—- Cy(f, 5) -

Co(f, 8)-2-To@C,(f, s)—->C%(f,s), where CiL=C,o---oC,
(i=0,1,2,.)
Ci(f, )2 To®Ci(f, s) — CLI(f, 5)
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We apply the functor (g, ) A (—) to the above cofibrations to have the following
sequence of cofibrations by (1.5).

(9, DA (S, 5) 145 25 (g, DAL, 5) 225 (9, DA Co9, 1)
(9, DACH(S, 5) 125 (g, D AT DCo(f, 5) 42 (9, DA CE(9, 1)
(9. DA Cy(f: 5) 425 (9, t)/\F@C‘ (f; 5) 25 (9, DA CGTH(g, 1)

Thus we obtain the followmg long exact sequence for each i=0, 1, 2,....
— ghy+1((g, t)/\ CHH(f, 9)) 4= shy((g, t)/\C (f, 5)) 1ok,
sh (9, t)/\T c®CL(f, 5)) 1225 ph (g, t)/; Cori(f, ) 4 -

We st D}, = ph((g, DA C2(f, ), Epy=shi((g, ) AT0C(S, 9) (p=0,—1,
—2,...,q€ Z). The Kiinneth spectral sequence in the category Tops/B is

defined to be the spectral sequence associated with the exact couple (D}
E} o (LA @)y, (LA )y, 44).

To discuss the convergence problem, we have to define a filtration

D,

on ghe((g, )A(S, s)). Considering the suspension category associated with
the category BT@p*/B ([31), we “desuspend”’’ the map (g, t)/\C"“(f 5)Lad,
(g9, t)/\Z Ci(f, 9)=2 (g, t)AC (f, s) and obtaina map >.~ 1(g, t)/\C AR A
—(g, t)/\ Ci(f,s). Thus we have the following sequence of maps of the sus-

pension category.
@ DA 8) —— Z7Hg, DA Colf 8) = X739, D ACH(f, ) -
— X7 (g nA Co(f, ) — X7 (g, nA Co(fys) —
WC put Fp,q=Im {th((g’ t);\C;p(f’ S));Bhp+q(zp (g3 t)/; C;p(f’ S))—>
Bhp+q((g’ t)/; (f’ S))} (péoa q € Z)
Ap=Im {gh(g, ) A TPCP(f, )= 5hy((g, ) A CoP*I(f, )}
NNz Im {gh (277 (g, DA CPT (S, )= shy(g, )4 CoP (S, SPH-
By the construction of the spectral sequence, we have El"F>EZFP>...-5E;, o

Efis.... We set Ep,=N,z;-, E} ,, and note that zh,((g, t)/}\;(f, sN=Fo,

DF—l,n+1D "'DFm,n—mDFm—l,n—m+13

Proposition 1.8. There is a short exact sequence
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O0— F, JF 1 461— Ey,— 4,,— 0 (p=£0,q€ Z).
See [9] p. 464 ~p. 470 for a proof.
Remark 1.9. There is an edge homomorphism zh,((g, ) A(f, 5))=F,,
B

g 2
_)FO,n/F— 1,n+ 1_)E0,n < EO,n'

Propositions 1.10. Let (f, s), (g, t) be pointed spaces over B, then the
following facts hold.

(1) @oI'o®(f, s)=(B,)AT(f)/sB, where B,=B1l {x} (disjoint union).
Hence ghy(I®(f, 5))=h4((B) A T(f)/sB).

(ii) Let T(9)x T())={(y, )€ T(g)x T(NIg()=f(x)}, then &((g, ) A
f, )= T(g);; T(f)/iT(g) UST(f) where i: T(g)—>T(g)>B< T(f), s: T(f)—>T(g)>;
T(f) are maps defined by i(y)=(y, s°g(y)), 5(x)=(tof (x), x).

(iii) o((g, t){e\ I'~®(f, s)) is naturally homeomorphic to T(g)/tBA T(f)/sB
=T(g9)x T(f)/T(g) x sB U tBx T(f).

(iv) The mcjp (A @)s: sh((g, t);}(f, s))—sh,((g, t);\]"odi(f, s)) coincides
with the map h(T(g) X T(f)/iT(g) UST(f)—~h(T(g)x T(f)/T(g)x sBU tB x
T(f)) induced by the inclusion T(g): T(f)=T(f)x T(g).

Proofs are immediate from the definitions.

Lemma 1.11. Let B be a simply connected space and let (f,s) be a
pointed space over B such that gH(f, s)=H(T(f)/sB)=0 for i<k. Then
sH{(C,(f, 5))=0 for i<k+2, where H; is the ordinary homology theory.

Proof. By the Kiinneth theorem of the ordinary homology, we have
gH (T ®(f, s))=H/((B,)A T(f)/sB)=0 for i<k and the smash product H,(B,)
®HA(T(f)/sB)»H((B,)AT(f)/sB) is an isomorphism for i=k, k+1. It
follows that (gA1)y: gH;(Io®(f, s)) = H,(B.) A T(f)/sB)— H(S° A T (f)/sB)
= gH{(, s)is an isomorphism for i < k+2, where ¢: B, —S°is the collapsing map.
Since the composition gH(f, s)-2%zH(To®(f, s)) “e2D=, JH(f, s) is the identity
map, ¢, is an isomorphism for i<k+2. Consider the long exact sequence
associated with the cofibration (f, s)-2-I'°®(f, s)—-C,(f, s), then the result
follows.

Corollary 1.12. Let h, be a connective homology theory and let B be a
simply connected space. For any pointed space (f, s) over B, Bﬁi(C,’;(f, 5)=0
for i<2p.

Proof. Applying 1.11, we see that zH,(C5(f, 5))=0 for i<2p by induction
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on p. Then we have ITIi(diC;(f, 5); h«(S°)=0 for i<2p by the universal
coefficient theorem of the ordinary homology. Consider the Atiyah-Hirzebruch
spectral sequence H(PCE(f, 5); h(S°)=h;, (PC5(f, s)), then we have the
result.

Lemma 1.13. Let (f, s), (g, t) be pointed spaces over B. If f: T(f)—B
is a Serre fibering whose fiber F is path connected, and if gH{(f, s)=0 for i<k,
then gH{((g, t) A(f, 5))=0 for i<k.

B

Proof. Since sB is a retract of T(f), the long exact sequence associated
with the cofibering sB—T(f)— T(f)/sB splits into short exact sequences 0—
H{(sB)—»H{(T(f))—»H{T(f)/sB)-»0 (i=0,1,2,...). The assumption implies
that Hy(sB)— H{(T(f)) is an isomorphism for i<k. Hence f,: H(T(f))—H{(B)
is an isomorphism for i<k. Since the composition H(F)—H(T(f))—H«B) is
zero unless i=0, we have H(F)=0 for 0<i<k. Consider the Serre spectral
sequence associated with the induced fibering F—T(g) x T(f)—T(g) by the
map g. Then E2 =H,(T(g); H(F))=0 for 0<g<k Ii;mplies E? ,=0 for
0<g<k. Hence we have F;_; ;=0 for i<k which yields that the edge
homomorphism H{T(g)x T(f))=F; = E, cE%,=H{(T(g)) is injective for
i<k. Since T(g) is a rgtract of T(g9)x T(f), it follows that 7,: H(T(g))—
H(T(g)x T(f)) is an isomorphism for 1P< k. Noting that iT(g) NST(f)={*}
x sB, colilsider the long exact sequence associated with the cofibering T(g)—-
iT(g) UST(f)—T(f)/sB. Since T(g) is a retract of iT(g) UST(f) and H(T(f)/
sB)=0 for i<k, i: H(T(9))>H{(iT(g) UST(f)) is an isomorphism for i<k.
By the commutativity of the diagram

Hi(iT(g) UST(f)) — H(T(g) x I(f))

=
1) [

H(T(9))

H(T(g)UsT(f ))—»H,.(T(g)>; T(f)) is an isomorphism for i<k. Since
D((g, 1) /; (f, s)) is the cofiber of the inclusion iT(g) UST(f) < T(g)>; T(f) by
(1.10), we have gH((g, t)/;(f, 5))=0 for i<k.

Lemma 1.14. Let (f, s) be a pointed space over B.
(i) Iff: T(f)>B is a Serre fibration, so is C,(f): T(C,(f, s))—B.
(ii) If the total space T(f) is path connected, each fiber of C,(f):
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T(C,(f, 5))—B is also path connected.
(i) If B is path connected, so is the total space T(C,(f, s)).

Proofs are straightforward from the construction of C,.

Corollary 1.15. Let h, be a connective homology theory and let B be a
simply connected space. Then, for pointed spaces (g, t), (f,s) over B such
that f: T(f)—B is a Serre fibration, we have gh,((g, t);\Cff,(f, 5))=0 for g<2p
and p=2.

Proof. By the above lemmas, Ci(f): T(CE(f, s)—»B is a Serre
fibration whose fiber is path connected if p=2 and zH (C4(f, 5))=0 for g<2p.
Hence (1.12) implies gH((g, t) A C5(f, 5))=0 for g<2p and p=2. Applying

B

the Atiyah-Hirzebruch spectral sequence, the result follows.

It follows from (1.15) that 4, ,=0 for p<0, g€ Z, and N ,<o F
fact, F,,_,
for the convergence.

pn—p=0 (in
=0 for p<min {—n, —1}). Now we have a sufficient condition

Theorem 1.16. Assume that h, is a connective homology theory and
(f, s) is a pointed space over a simply connected space B such that f: T(f)—B
is a Serre fibration. Then, for any pointed space (g, t) over B, the Kiinneth
spectral sequence constructed in (1.7) converges to gh.((g, ?) )/g\ (fs 5)).

In order to make an identification of the E?-term in terms of homological
algebra, we have to assume some conditions. Let (f, ), (g, t) be pointed spaces
over B.

Assumptions 1.17. (i) h, is a multiplicative homology theory on Top,
(not necessarily connective).

(ii) h.(B,) is a flat 7,(S°)-module.

(iii) Either h.(T(f)/sB) or h,(T(g)/tB) is flat over h,(S°).

Under the above assumptions, the smash products (B, )®h.(X)—h.(B.)
AX), ho(X)®hyW(B,)—h (X A(B.)) are isomorphisms for any pointed space
(X, x,), where the tensor products are taken over 1,(S°). Define y/: T(f)/sB
—(B)AT(f)/sB and y&: T(9)/tB->T(g)/tBA(B,) by ylon(x)=f(x)An(x)
and YRop(y)=p(y) A g(x) respectively, where =: T(f)—T(f)/sB and p: T(g)
—T(g)/tB are collapsing maps. Note that YL =R =(the diagonal map of B) if
(f, s)=(g, )=T(S% ). We put C=h,(B,) (=gh(I'(S° %)) and define a
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coproduct C—»C®C to be the composite of the map induced by the diagonal
map and the inverse of the smash product. The counit C—/,(S°) is the map
induced by the collapsing map ¢: B, —»S° Let us define a left coaction of C
on ghy(f, s) and a right coaction on gh,(g, t) as follows.
shalfy ) =hu(T(N)sB) 5 (B A T(f)/sB) 2
ﬁ*(B+)®E*(T(f)/SB)=C®Bh*(f, s)
~ YR o~ -1
shi(g, D=hu(T(9)/tB) > hy(T(g)/tBA(B.)) >
ﬁ*(T(g)/tB)®E*(B+)=Bh*(g, HR®C
Note that the following diagrams are commutative, where T'is the swiching map.
shs(f, s) 2= ghy(I'9(f, 5))
|
| |
ha(T(f)/sB) %> hi((B1) A T(f)/sB),
sh«(g, 1) x » pha(Fo®(f,7s))

| |

Fe(T(g)/1B) Y%, hy(T(g)/tB A (B,)) ~I= hy((B.) A T(g)/tB)

We construct a natural map 6: gh.((g, ) A (f, $))—ghs(g, D ghs(f, 5)
under the assumption 1.17, where the cotenso? products are taken over
the coalgebra C. Let 5, f be maps defined in (1.10), then the composition
of maps T(g) x T(f)/1T(9) UST(f)-*-T(9) x T()/T(g) x sBU tBx T(f)=T(g)/
tB A T(f)/sBLAYE, T(s)/tB A (B, ) A T(f)/sB coincides with the composition T(g)
X T(NIT(GUST(S) - T(g) x T(f)/T(g) x sBU tBx T(f)=T(9)/tB A T(f)/sB
LEAL T(g)/tB A(B,) A T(f)/sB, where u is induced by the inclusion T(g)>; T(f)
cT(g)x T(f). Noting that the smash products h.(T(g)/tB)®h.(T(f)/sB)
k4 (T(g)/tB A T(f)/sB) and hy(T(g)/tB)®h+(B.)®h(T(f)/sB)--h,(T(g)/tB
~/\(B+)/\ T(f)/sB) are isomorphism~s, we see that the map Bhf((g, t)/;( £ s))~=
ha(T(9) x T())IT(g) UST(f)) £ ha(T(g)/tB A T(f)/5B) 2= hu(T(9)/1B) @ hy-
(T(f)/sB)=jgh«(g, H®gh.(f, s) is lifted to the map 6.

Lemma 1.18. A, (Io®(f, s)) is an injective C-comodule. In fact the
smash product gives an isomorphism as comodules

C®sha(f, $)=hu(BL)®K(T(f)[sB)2-hi((B+) A T(f)/sB) = pha( T2, 5)).

Proof is straightforward.
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Lemma 1.19. The natural map 0: gh,((g, t) AT o ®@(f, s))—> ghy(g, 1)
B
Oghy(I®D(f, 5)) is an isomorphism.

Proof. Just note that the geometric fact T(g)x (B x T(f)/sB)=T(g) x
B
T(f)/sB corresponds to the algebraic fact

Bh*(ga t)D(C®Bh*(f’ S))gBh*(ga t)®Bh*(fa S).

Lemma 1.20. 0-phy(f, )25 phy(To®(f, 5)) 2222 ghy(Io@C(f, 5))—---—
pha(Lo@oCL(f, 5)) 225 ghy([o®@CiFI(f, s))—--- is an injective resolution of
sh«(f, ).

Proof. The composition phy(Ci(f, 5))25phy(Io@CL(f, 5)) = C® ghs(CL(f,
5))-=81, sh«(CL(f, 5)) is the identity. Thus ¢, is a monomorphism, and the
long exact sequence associated with the cofibration CL(f, s)—I®@-CL(f, s)
—CH1(f, s) splits into a short exact sequence 0— ghy(CL(f, 5))-2= ghy(I o®o
Ci(f, 9))-2 ghs(CLF(f, 5))—0 of C-comodules. Splice these exact sequences
for i=0, 1, 2,..., and use (1.18), we have the result.

Remark 1.21. Under (i), (i) of (1.17), the category of C-comodules
becomes a relative abelian category ([1], [5]) and gh, is a homology theory
Top,/B—(the category of C-comodules). By the proof of (1.20), the C-comodule
homomorphism @y : ghy(f, )= ghe(I-P(f, s)) is a split monomorphism as a
h(S°)-module homomorphism.

Theorem 1.22. Under Assumptions 1.17, the E?-term of the Kiinneth
spectral sequence is naturally isomorphic to Cotor§ i (ghi(g, t), ghi(f, s))
(Elzl,ngOtorg,q (Bh*(g, t)s Bh*(fs S)))-

Proof. This follows from (1.19) and (1.20).

Remarks 1.23. (i) The edge homomorphism gh.((g, DA (f, s))—E3 ,=
Cotor§ , (gh«(g, 1), ghi(f, 5))=3gh.(g, DT ph.(f, s) coincides wli;th the natural
map 6.

(ii) (1.17) is always satisfied if &, is ordinary homology theory over a
field or Morava K-theory.

(iii) We consider the category of spaces over B, denoted by Top/B. An
object of Top/B is a continuous map f: T(f)— B, and a morphism ¢: f—g in
Top/B is a continuous map T(¢): T(f)— T(g) such that goT(p)=f. Define a
functor G: Top/B—Top,/B as follows. Put G(f)=(f, s,) and T(G(f))=T(f;)
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=T(f).L B (disjoint union), f, and s; are given by f.(x)=f(x) for x e T(f)

f+(b)=>b for be B and s(b)=>b. Then it is easy to verify that &(G(f))=T(f).
and &(G(g) A G(f))=(T(g) x T(f)), where fand g are spaces over B. Therefore,
if a fiber prgduct of f and 5 is given, the Kiinneth spectral sequence associated
with G(f) and G(g) is the Eilenberg-Moore spectral sequence ([ 7], [8]).

§2. A Relation between the Algebraic Bockstein Homomorphism and the
Geometric Bockstein Homomorphism

Throughout this section, we assume that B is a simply connected space
such that Hy(B: Z ;) is flat and that (f, s), (g, t) are pointed spaces over B such
that both H.(T(f)/sB: Z)) and H.(T(g)/tB: Z ;) are flat and f: T(f)—B is
a Serre fibration, where [ is a fixed prime number. Note that a Z;-module is
flat if and only if it is torsion free.

Lemma 2.1. Under the above assumptions, gH. (CL(f, s): Z;)) (i=0, 1,
2,...) is flat.

Proof. Inductively, assume that zH.(CL(f, s): Z;) is flat. The cofibration
CL(f, 8) 2> To@oCi(f, s) —— CLF(f, s) gives a short exact sequence 0— zH,
(Ci(f, 8): Z )= gH (I o@Ci(f, 5): Zyy)—gH(CL(f, 5): Z;))—0 which splits
as Zg-modules. By (1.18), gHy(I'o®@CL(f, 5): Z,)is isomorphic to Hy(B: Z ;)
®pH(CL(f, 5): Z,) which is also flat. Hence gH.(CL(f, 5): Z;) is flat.

Consider two Kiinneth spectral sequences converging to gH.((g, H) A ([, s):
B
F)and gH.((g, ) A (S, 5): Z,). Weput

D}),q=BHq((ga t) ;\ C;p(f’ S): Fl)’ E}J,quHq((g7 t) /; F°¢°C;p(fa S): Fl)

l_)gl:,q=BHq((gn t)/;C;,P(f, s): Zyy), EL,=gH((g, t);\FMPoC;P(f, $): Zyy).

By (1.19) and (2.1), E}, is torsion free. Hence the Bockstein exact sequence
associated splits into short exact sequences 0—E! , ', El _*,El —0. Note
that the multiplication by [ and the mod ! reduction p induce maps of exact
couples. Taking the homologies of complexes {E} , d'} and {EL ,, d'}, we
have the algebraic Bockstein homomorphism §: E2 ,—~E2_, , as the boundary
homomorphism.

Theorem 2.2. If xeE2, is a permanent cycle, dxeE2_,  is also a
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permanent cycle. Let XeF,, be the element of gH.((g, ) A(f, 5); F)) corre-
_ B

— D1 D1 X
p—1,g=1m{D}_, =D ,.,_,} and 5x corresponds

to the permanent cycle —dx, where &: gH,((g, ) A(f, 5); F)—gH,_ (g, t);}(f,
B

s); Zgy) is the geometric Bockstein homomorphism.

sponding to x, then 6xe F

Remark 2.3. 1In the case x=0 in the E®-term, the above statement means
that 6x=0 in the E®-term. If x#0 and §x=0 in each E®-terms, we assert that

6xeF, 5441
The following lemma implies the above theorem.

Lemma 2.4. Let X—1,Y.2,Z be a cofibration such that H,(Y; Zy) is
torsion free. Suppose that a space W and a map k; Z— W such that H (W ;
Z,y) is torsion free are given. Let 8, 8'; H(X; F)—>H (W ; Z;)/Im kyoj, be
the maps defined as follows, for each xeﬁq(X; F), take yeﬁq(Y; Z ) such
that py=i,x. We can take zeﬁq(Z; Zy) such that lz=j,y. Then Ox is
defined to be the image of kyz by the projectionn: H(W: Z,)»H (W: Z,)/
Im kyoj,. On the other hand, there exists z’eﬁq(Z; Z ) such that Az’ =6x,
where 6: H(X; F)—»H, (X: Z,) is the Bockstein homomorphism and
4: H(Z; Z,)~H, (X; Z,) is the boundary homomorphism. &'x is defined
to be nokyz'. Then 0= —0" holds.

Proof. 1t is easy to check that 0 and 0’ are well-defined. We may assume
XcYand replace A(Z; Z,) by H(Y, X; Z;). Let Si(X) and S,(Y) be the
singular chain complexes of X and Y with Z ,-coefficients. For x el X5 F),
we take a chain o € S,(X) such that x is represented by the cycle pyo (p, is the
mod [ reduction map). We put do=Ix (x€S,_;(X)), where d is the differential
of S.(X). Since FIq(Y; Z ) is torsion free, we can take a cycle 6 € S(Y) such
that p,d is homologous to iyep,o. Therefore o—3& e 1S (Y)+d(S,.,(Y)), and
we put 6—c=If+dt (BeS(Y), 1€S,,4(Y)). Since G is acycle, ¢ +dr is also
a cycle homologous to . So we may replace G+ dt by & and we have o=+ If.
It follows from do=Ix that df=ca. Since j,6=—I1f, —df=—a represents
Az’ eFIq_l(X; Z). On the other hand, éx eITIq_I(X: Z ) is represented by
«. This completes the proof.

Proof of (2.2). We put X=4%&((g, 1) /; C,o(f, 5), Y=o, t)/;l‘ocbo C,o(f,
5), Z=9((g, 1) 2\ Crr(f, 5)), W=d((g, 1) ;\ Lo®eC,7*!(f, s)). Suppose xe€
E ,is a permanent cycle. Letx'e€E} , =H Y ; F) be a cycle which represents
x. Since x’ is also a permanent cycle, there exist y € D},,q=ﬁ X F)) such that
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(1A@).y=x". Then, it is easy to see that dy=34x in EZ_,, 0dyisan element
coming from D}_, ,=H/(Z: Z,)) by the definition of 6. Thus dx is a permanent

cycle. By the preceding lemma, 6X belongs to F,_; , and corresponds to — ox.

§3. On the Homology Suspensions

Let B be a path connected topological space with a base point * and let
PB be the space of paths in B starting from . And let us denote by p: PB—B
the evaluation map at 1, and also denote by i: *— B the inclusion. We fix
these notations throughout this section. The following lemma is easily verified.

Lemma 3.1. (i) The total space of I'e®-G(p) is given by (Bx PB)ILB
and the projection (B x PB)1. B—B maps both (b, ])e Bx PB and beB to b.
The section B—(Bx PB)1L B maps b to b. Moreover, ¢: G(p)—I®G(p) is
given by T(p)(1)=((1), I) for Le PB, T(¢)(b)=>b for be B.

(ii) The total space of C,oG(p) is the quotient space of (PBxI)1L(Bx PB)
by the equivalence relation generated by (I, 1)~(I(1), 1) and (I', 0)~(1", 0) if
I'(1)=1"(1). The projection is given by [, r]—I1(1), [b, I1-b for le PB, rel,
be B, and the section is given by b—[l,, 0], where I, is any element of PB
such that ,(1)=b. And the inclusion ¢: I'o®-G(p)—C,,°G(p) is given by T(¢)-
(b, )=[b, 1], T(c)(b)=[1,, 0], where be B, l€ PB and l, is as above.

We denote the total space of C,°G(p) by Ty and denote the projection and
the section by j: Tz—B and §: B> Tp.

Lemma 3.2. (i) Let (f,s) be a pointed space over B, then we
have D(G(U)A(f, s))=f"Y(x). In particular, we have ®(G(i)A G(p))=QB,,
D(G(i) A FOQfG(p))=PB+, D(G(i) A C,oG(p))=PB U CQB, whereB CQB is the
unredui(’:ed cone QB xI/QB x {0} wBith a base point QB x {0}/Q2Bx {0} and we
identify we QB(< PB) with [w, 1]e CQB. Moreover, ®(1 A @) and ®(1A¢)
are natural inclusions @B, —»PB,, PB, —»PBU CQB.

i) @(G@) A I'o®-C,oG(p)) = @-C,°G(p) = Tp/SB = (PBxI)1L
@ xPB)[( )7 UDD  and a1 1 ¢): PBU COB-Ty5B is given by @1 1 )
([D=Lx 1, 21 A ¢)([w, th=[w, 1]
Proof. (i) is straightforward. (ii) is verified by applying (1.10), (iii).
Lemma 3.3. Define n: Tg/SB—B by n[b, I1=>b, n[l, t{]=It), then m is a
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natural (stable) homotopy equivalence and the diagram

®oTo®G(p) = (B x PB), —2%), ¢oC,oG(p) = T;/5B

I |

B+_ 1plls , B

is commutative, where pr: B x PB— B is the projection pr(b, I)=b.

Proof. Commutativity of the above diagram is obvious. Consider the
following homotopy commutative diagram.

@oG(p)=PB, 29, ¢oIoPoG(p) 2 ®oC,G(p)
S0={x, +} ‘=, B, 12, B
where ¢: PB—#. The both horizontal rows are cofiber sequences and &, and
pr, are homotopy equivalences. Hence we have the result.

Lemma 3.4. Let c: PBUCQB—Y QB be the map which collapses PBU
{[wq, r]lw, is the constant loop at =} to the base point and let o: Y QB—B
be the adjoint of the identity map of QB; that is, o is defined by o([w, t])=w(1).
Then, c is a homotopy equivalence and the following diagram is commutative.

D(G(i) Q C,oG(p))=PBUCQB - Y QB

l@(lA(p) lo‘

@(G(i) ATo@oCyoG(p)) = Ty/SB > B

Proof. 1t is obvious that ¢ is a homotopy equivalence, and we can verify

that the diagram commutes, applying (3.2) and (3.3).

Let i, be a multiplicative homology theory on Top,, and let us consider
the Kiinneth spectral sequence associated with &, and the pointed spaces G(i),
G(p). In other words we consider the Eilenberg-Moore spectral sequence as-
sociated with the path fibering QB—PB—B. The preceding lemma implies
the following.

Theorem 3.5. Assume that hy(B) is a flat h,(pt)-module. Then F_, ,,,
= h,(QB)=ker {h,(2B)— h,(pt)} and the composition h,(QB)=F _ 1n+1—=F o1 ne1
JF_3p42<E® . <E%; . =Ph,,(B)ch,,B) coincides with the homology
suspension h,(QB)=h,, (X QB)-2%h,, (B), where Phy(B) is the submodule of
hy(B) consists of primitive elements which is naturally identified with Cotorh+(B).
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(h.(pt), hy(pt)) and we identify E2, ., with Cotor"{B) (h.(pt), h.(pt)) as
in Section 1.

Corollary 3.6. Under the same assumption as above, if the homology
suspension oy h,(QB)—h,, ,(B) maps surjectively onto Ph, (B), every element
of E2, ., is a permanent cycle. Assume further that the Kiinneth spectral
sequence converges. 1f every element of ELl, ., is a permanent cycle, o,
maps h,(QB) surjectively onto Ph,, (B).
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