Note on the Eilenberg-Moore Spectral Sequence

By

Atsushi Yamaguchi*

Abstract

In this paper, we prove two theorems on the Eilenberg-Moore spectral sequence. We give a relation between the Bockstein homomorphism in the E^2 -term and the Bockstein homomorphism of the space to which the spectral sequence converges and also relate the homology suspension to the Eilenberg-Moore spectral sequence.

Introduction

The purpose of this note is to prove two theorems on the Eilenberg-Moore spectral sequence; one relates the algebraic Bockstein homomorphism between the E^2 -terms to the geometric Bockstein homomorphism between the homologies of the spaces to which the spectral sequences converge (Theorem 2.2), and the other relates the homology suspension to the Eilenberg-Moore spectral sequence associated with a path fibration (Theorem 3.5).

In order to prove these theorems, we recall the definition of the Eilenberg-Moore spectral sequence. After the original work of Eilenberg and Moore ([2]), various constructions have been done by Hodgkin ([4]), Smith ([7], [8]), Rector ([6]) and Heller ([3]). In this note, we adopt a point of view of Hodgkin and Smith who construct the Eilenberg-Moore spectral sequence as the Künneth spectral sequence on the category of pointed spaces over some fixed base space.

In Section 1, we construct the Künneth spectral sequence for a generalized homology theory, dualizing the argument of Smith ([8]). We give a sufficient condition for convergence of the spectral sequence ((1.11), (1.23) (ii)) and one for identification of the E^2 -term ((1.17), (1.22)). These results are also obtained in [3] under a categorical framework. Our concrete construction enables us to prove the main theorems in the following sections.

Communicated by N. Shimada, March 14, 1986.

^{*} Department of Mathematics, University of Osaka Prefecture, Sakai 591, Japan.

In Section 2, we prove that the algebraic Bockstein homomorphism between the E^2 -terms of the Künneth spectral sequence "converges" to the geometric Bockstein homomorphism. Our assertion (2.2) is quite similar to the main theorem on the boundary homomorphism of [11], although the proof is much easier.

In Section 3, we consider the Eilenberg-Moore spectral sequence for a generalized homology h_* , associated with the path fibration over a space B. Then, under suitable assumptions, there is a homomorphism $\tilde{h}_n(\Omega B) \to E^2_{-1,n+1}$ and a natural equivalence $E^2_{-1,n+1} \to Ph_{n+1}(B)$. We show that the composition of these coincides with the homology suspension.

The results of Sections 2, 3 are applied to determine the structure of the homology of double loop spaces of complex Stiefel manifolds ([10]).

I would like to thank J. P. Mayer, J. M. Boardman, J. Morava and W. S. Wilson for useful conversations and encouragement. And I am also grateful to A. Kono for helpful suggestions and his interest on the materials of Sections 2 and 3.

§ 1. Recollections on the Eilenberg-Moore Spectral Sequence

First, we define a category Top_*/B to formulate the Eilenberg-Moore spectral sequence as the Künneth spectral sequence in this category. We will use the notations and some results of Section 1 of [8]. (See also [4], [7].)

Definition 1.1 ([8]). Let B be a fixed topological space. We define a category of pointed spaces over B, denoted by \mathbf{Top}_*/B as follows. An object of \mathbf{Top}_*/B is a pair of maps (f, s) $(f:T(f)\to B, s: B\to T(f))$ between topological spaces T(f) and B such that $f\circ s=1_B$ and sB is a neighborhood deformation retract of T(f). A morphism $\varphi: (f, s)\to (g, t)$ of \mathbf{Top}_*/B consists of a continuous map $T(\varphi): T(f)\to T(g)$ such that $g\circ T(\varphi)=f$, $T(\varphi)\circ s=t$.

We denote by $\mathbf{Top_*}$ the category of pointed topological spaces with non-degrerate basepoints. We define functors $\Gamma: \mathbf{Top_*} \to \mathbf{Top_*}/B$ and $\Phi: \mathbf{Top_*}/B$ $\to \mathbf{Top_*}$ which play a central role in the construction of the Eilenberg-Moore spectral sequence.

Definition 1.2 ([8]). For each pointed topological space (X, x_0) , let $p: B \times X \to B$ be the projection onto B and let $s: B \to B \times X$ be the canonical inclusion $s(b)=(b, x_0)$. We define a functor Γ by $\Gamma(X, x_0)=(p, s)$. And we

define a functor Φ by $\Phi(f, s) = (T(f)/sB, sB/sB)$.

Lemma 1.3. The functor Γ is a right adjoint of Φ ; that is, there is a natural equivalence

$$\operatorname{Mor}_{\operatorname{Top}_{\mathfrak{T}}/B}((f, s), \Gamma(X, x_0)) \cong \operatorname{Mor}_{\operatorname{Top}_{\mathfrak{T}}}(\Phi(f, s), (X, x_0)).$$

Proof. We construct a natural map $\alpha \colon \operatorname{Mor}_{\mathbf{Top}_*/B}((f, s), \Gamma(X, x_0)) \to \operatorname{Mor}_{\mathbf{Top}_*}(\Phi(f, s), (X, x_0))$ as follows. Let $\varphi \colon (f, s) \to \Gamma(X, x_0)$ be a morphism of Top_*/B , and let $q \colon B \times X \to X$ be the projection onto X. Then the composition $T(f) \xrightarrow{T(\varphi)} B \times X \xrightarrow{q} X$ maps sB to the base point x_0 . We define $\alpha(\varphi)$ to be the map $T(f)/sB \to X$ induced by $q \circ T(\varphi)$. The inverse α^{-1} of α is described as follows. For a morphism $\psi \colon \Phi(f, s) \to (X, x_0)$, we put $T(\alpha^{-1}(\psi))(x) = (f(x), \psi \circ \pi(x))$ where $\pi \colon T(f) \to T(f)/sB$ is the canonical projection.

In the category $\mathbb{T}op_*/B$, we can construct mapping cones, suspensions, products, smash products and other constructions which we usually do in the category $\mathbb{T}op_*$. And we can define a cofiber sequence in $\mathbb{T}op_*/B$ as in $\mathbb{T}op_*$. Here we give the constructions of mapping cones, products, smash products, and suspensions. (See Section 1 of [8] for details.)

Constructions 1.4. (i) Let $\varphi: (f, s) \to (g, t)$ be a morphism of $\mathbb{T}op_*/B$. We define the mapping cone of φ , denoted by $(C_B(\varphi), S_{C_B(\varphi)})$ as follows:

$$TC_{B}(\varphi) = (T(f) \times I) \perp \!\!\! \perp T(g) \begin{vmatrix} (x, 1) \sim T\varphi(x) \colon x \in T(f) \\ (s(b), r) \sim t(b) \colon b \in B, r \in I \\ (x', 0) \sim (x'', 0) & \text{if } f(x') = f(x'') \\ & \text{for } x', x'' \in T(f) \end{vmatrix}$$

 $C_B(\varphi)\colon TC_B(\varphi)\to B$ and $S_{C_B(\varphi)}\colon B\to TC_B(\varphi)$ are defined by $C_B(\varphi)([x,\,r])=f(x)$ for $x\in T(f),\,r\in I,\,C_B(\varphi)([y])=g(y)$ for $y\in T(g)$ and $S_{C_B(\varphi)}(b)=[t(b)]$ for $b\in B$ where $[x,\,r]$ and [y] are the elements of $TC_B(\varphi)$ represented by $(x,\,r)\in T(f)\times I$ and $y\in T(g)$ respectively. Note that there is a natural inclusion $\iota\colon (g,\,t)\to (C_B(\varphi),\,S_{C_B(\varphi)})$ defined by $T(\iota)(y)=[y]$.

(ii) Let (f, s) and (g, t) be pointed space over B, their product $(f, s) \underset{B}{\leftarrow} (f, s) \underset{B}{\times} (g, t) \xrightarrow{\pi_g} (g, t)$ is defined by the following; We put $(f, s) \underset{B}{\times} (g, t) = (f \underset{B}{\times} g, s \underset{B}{\times} t)$ and $T(f \underset{B}{\times} g) = T(f) \underset{B}{\times} T(g) = \{(x, y) \in T(f) \times T(g) | f(x) = g(y)\}.$ $f \underset{B}{\times} g: T(f \underset{B}{\times} g) \to B, \ s \underset{B}{\times} t: B \to T(f \underset{B}{\times} g), \ T(\pi_f): T(f \underset{B}{\times} g) \to T(f) \ \text{and} \ \pi(\pi_g): T(f \underset{B}{\times} g) \to T(g)$ are given by $f \underset{B}{\times} g(x, y) = f(x) = g(y), \ s \underset{B}{\times} t(b) = (s(b), t(b)), \ T(\pi_f)(x, y) = x \ \text{and} \ T(\pi_g)(x, y) = y.$

- (iii) Let (f, s) and (g, t) as above. We define their smash product $(f, s) \underset{B}{\wedge} (g, t) = (f \underset{B}{\wedge} g, s \underset{B}{\wedge} t)$ by $T(f \underset{B}{\wedge} g) = T(f \underset{B}{\times} g)/(x, t(b)) \sim (s(b), y)$ for $(x, y) \in T(f \underset{B}{\times} g), b \in B$. $f \underset{B}{\wedge} g \colon T(f \underset{B}{\wedge} g)$ $\to B$ and $s \underset{B}{\wedge} t \colon B \to T(f \underset{B}{\wedge} g)$ are given by $f \underset{B}{\wedge} g(x \underset{B}{\wedge} y) = f(x) = g(y)$ and $s \underset{B}{\wedge} t(b) = s(b) \underset{B}{\wedge} t(b)$.
- (iv) Let (f, s) be a pointed space over B. Let us define a suspension functor $\mathbf{Top}_*/B \to \mathbf{Top}_*/B$ by $\sum_B (f, s) = \Gamma(S^1, *) \wedge_B (f, s)$, where $(S^1, *)$ is a circle with a base point *.

We give some propositions we need without proofs.

Propositions 1.5 ([8]). (i) The functor $\Phi: \mathbf{Top_*}/B \to \mathbf{Top_*}$ preserves cofibrations.

- (ii) Let $\wedge : \mathbf{Top_*}/B \times \mathbf{Top_*}/B \to \mathbf{Top_*}/B$ be the smash product over B. For any pointed space (f, s) over B, the functors $(f, s) \wedge (-), (-) \wedge (f, s)$: $\mathbf{Top_*}/B \to \mathbf{Top_*}/B$ preserve cofibrations.
- (iii) Let $\sum = \sum_B : \mathbf{Top_*}/B \to \mathbf{Top_*}/B$ be the suspension functor on $\mathbf{Top_*}/B$, then there is a natural map $\Delta : (h'', u'') \to \sum (h', u')$ for each cofiber sequence $(h', u') \xrightarrow{i} (h, u) \xrightarrow{j} (h'', u'')$ in $\mathbf{Top_*}/B$ such that $(h, u) \xrightarrow{j} (h'', u'') \xrightarrow{\Delta} \sum (h', u')$ and $(h'', u'') \xrightarrow{\Delta} \sum (h', u') \xrightarrow{\Sigma_i} \sum (h, u)$ are cofiber sequences.
- (iv) \sum_{B} preserves cofibrations and commutes with Φ : that is, $\Phi \circ \sum_{B} = \sum_{B} \circ \Phi$, where \sum_{B} in the right hand is the usual suspension functor on \mathbf{Top}_{*} .

Definition 1.6. Consider the natural transformation $\varphi = \alpha^{-1}(1_{\Phi})$: $1_{\mathbf{Top*}/B} \to \Gamma \circ \Phi$. For a pointed space (f, s) over B, let $C_{\varphi}(f, s)$ be the mapping cone of $\varphi_{(f,s)} \colon (f, s) \to \Gamma \circ \Phi(f, s)$, and let $\iota_{(f,s)} \colon \Gamma \circ \Phi(f, s) \to C_{\varphi}(f, s)$ be the natural inclusion. Thus we define a functor $C_{\varphi} \colon \mathbf{Top_*}/B \to \mathbf{Top_*}/B$ and a natural cofiber sequence $(f, s) \xrightarrow{\varphi(f, s)} \Gamma \circ \Phi(f, s) \xrightarrow{\iota(f, s)} C_{\varphi}(f, s)$.

Let \tilde{h}_* be a reduced homology theory on \mathbf{Top}_* . Putting ${}_Bh_*=\tilde{h}_*\circ\Phi$, we have a homology theory ${}_Bh_*$ on \mathbf{Top}_*/B ([8], Corollary 2.2).

Construction 1.7. Let \tilde{h}_* and ${}_Bh_*$ as above, and let (f, s) and (g, t) be pointed spaces over B. We form a sequence of natural cofibrations.

We apply the functor $(g, t) \land (-)$ to the above cofibrations to have the following sequence of cofibrations by (1.5).

$$\begin{split} &(g,\,t) \mathop{\wedge}_{B}(f,\,s) \xrightarrow{1 \wedge \varphi} (g,\,t) \mathop{\wedge}_{B} \Gamma \circ \varPhi(f,\,s) \xrightarrow{1 \wedge \iota} (g,\,t) \wedge C_{\varphi}(g,\,t) \\ &(g,\,t) \mathop{\wedge}_{B} C_{\varphi}(f,\,s) \xrightarrow{1 \wedge \varphi} (g,\,t) \mathop{\wedge}_{B} \Gamma \circ \varPhi C_{\varphi}(f,\,s) \xrightarrow{1 \wedge \iota} (g,\,t) \mathop{\wedge}_{B} C_{\varphi}^{2}(g,\,t) \\ &(g,\,t) \mathop{\wedge}_{B} C_{\varphi}^{i}(f,\,s) \xrightarrow{1 \wedge \varphi} (g,\,t) \mathop{\wedge}_{B} \Gamma \circ \varPhi C_{\varphi}^{i}(f,\,s) \xrightarrow{1 \wedge \iota} (g,\,t) \mathop{\wedge}_{B} C_{\varphi}^{i+1}(g,\,t) \end{split}$$

Thus we obtain the following long exact sequence for each i=0, 1, 2,...

$$\longrightarrow_{B} h_{q+1}((g, t) \underset{B}{\wedge} C_{\varphi}^{i+1}(f, s)) \xrightarrow{\Delta_{r}} {}_{B} h_{q}((g, t) \underset{B}{\wedge} C_{\varphi}^{i}(f, s)) \xrightarrow{(1 \wedge \varphi)_{r}} Bh_{q}((g, t) \underset{B}{\wedge} \Gamma \circ \Phi C_{\varphi}^{i}(f, s)) \xrightarrow{(1 \wedge \iota)_{r}} {}_{B} h_{q}((g, t) \underset{B}{\wedge} C_{\varphi}^{i+1}(f, s)) \xrightarrow{\Delta_{r}} \cdots$$

We set $D_{p,q}^1 = {}_B h_q((g,t) \wedge C_{\varphi}^{-p}(f,s)), \ E_{p,q}^1 = {}_B h_q((g,t) \wedge \Gamma \circ \Phi C_{\varphi}^{-p}(f,s)) \ (p=0,-1,-2,...,q \in \mathbb{Z}).$ The Künneth spectral sequence in the category Top_*/B is defined to be the spectral sequence associated with the exact couple $\langle D_{p,q}^1, E_{p,q}^1, (1 \wedge \varphi)_*, (1 \wedge \varepsilon)_*, \Delta_* \rangle$.

To discuss the convergence problem, we have to define a filtration on ${}_Bh_*((g,t) \wedge (f,s))$. Considering the suspension category associated with the category Top_*/B ([3]), we "desuspend" the map $(g,t) \wedge C_{\varphi}^{i+1}(f,s) \stackrel{1 \wedge \Delta}{\longrightarrow} (g,t) \wedge \sum_B C_{\varphi}^i(f,s) \cong \sum_B (g,t) \wedge C_{\varphi}^i(f,s)$ and obtain a map $\sum_B^{-1}(g,t) \wedge C_{\varphi}^i(f,s) \rightarrow (g,t) \wedge C_{\varphi}^i(f,s)$. Thus we have the following sequence of maps of the suspension category.

$$(g, t) \underset{B}{\wedge} (f, s) \longleftarrow \sum^{-1} (g, t) \underset{B}{\wedge} C_{\varphi}(f, s) \longleftarrow \sum^{-2} (g, t) \underset{B}{\wedge} C_{\varphi}^{2}(f, s) \longleftarrow \cdots$$

$$\longleftarrow \sum^{-i} (g, t) \underset{R}{\wedge} C_{\varphi}^{i}(f, s) \longleftarrow \sum^{-i-1} (g, t) \underset{R}{\wedge} C_{\varphi}^{i+1}(f, s) \longleftarrow \cdots$$

We put $F_{p,q} = \operatorname{Im} \{ {}_B h_q((g, t) \underset{B}{\wedge} C_{\varphi}^{-p}(f, s)) \cong {}_B h_{p+q}(\sum^p (g, t) \underset{B}{\wedge} C_{\varphi}^{-p}(f, s)) \longrightarrow {}_B h_{p+q}((g, t) \underset{B}{\wedge} (f, s)) \} \ (p \leq 0, \ q \in \mathbb{Z})$

$$\begin{split} &A_{p,q} = \operatorname{Im} \left\{ {}_{B}h_{q}((g, t) \underset{B}{\wedge} \Gamma \circ \Phi C_{\varphi}^{-p}(f, s)) \to {}_{B}h_{q}((g, t) \underset{B}{\wedge} C_{\varphi}^{-p+1}(f, s)) \right\} \\ &\cap \left[\bigcap_{r \geq 1} \operatorname{Im} \left\{ {}_{B}h_{q}(\sum^{-r}(g, t) \underset{B}{\wedge} C_{\varphi}^{-p+r+1}(f, s)) \to {}_{B}h_{q}((g, t) \underset{B}{\wedge} C_{\varphi}^{-p+1}(f, s)) \right\} \right]. \end{split}$$

By the construction of the spectral sequence, we have $E_{p,q}^{1-p}\supset E_{p,q}^{2-p}\supset \cdots\supset E_{p,q}^r\supset E_{q,p}^{r+1}\supset \cdots$. We set $E_{p,q}^{\infty}=\bigcap_{r\geq 1-p}E_{p,q}^r$, and note that ${}_Bh_n((g,t) \underset{B}{\wedge} (f,s))=F_{0,n}\supset F_{-1,n+1}\supset \cdots\supset F_{m,n-m}\supset F_{m-1,n-m+1}\supset \cdots$.

Proposition 1.8. There is a short exact sequence

$$0 \longrightarrow F_{p,q}/F_{p-1,q+1} \longrightarrow E_{p,q}^{\infty} \longrightarrow A_{p,q} \longrightarrow 0 \quad (p \leq 0, q \in \mathbb{Z}).$$

See [9] p. $464 \sim p$. 470 for a proof.

Remark 1.9. There is an edge homomorphism $_Bh_n((g, t) \wedge (f, s)) = F_{0,n} \rightarrow F_{0,n}/F_{-1,n+1} \rightarrow E_{0,n}^{\infty} \subset E_{0,n}^2$.

Propositions 1.10. Let (f, s), (g, t) be pointed spaces over B, then the following facts hold.

- (i) $\Phi \circ \Gamma \circ \Phi(f, s) = (B_+) \wedge T(f)/sB$, where $B_+ = B \perp \{*\}$ (disjoint union). Hence ${}_Bh_*(\Gamma \circ \Phi(f, s)) = \tilde{h}_*((B_+) \wedge T(f)/sB)$.
- (ii) Let $T(g) \times T(f) = \{(y, x) \in T(g) \times T(f) | g(y) = f(x)\},$ then $\Phi((g, t) \wedge (f, s)) = T(g) \times T(f) / \bar{t} T(g) \cup \bar{s} T(f)$ where $\bar{t} : T(g) \rightarrow T(g) \times T(f), \bar{s} : T(f) \rightarrow T(g) \times (g, s) \times (g, s)$ B $T(f) \text{ are maps defined by } \bar{t}(y) = (y, s \circ g(y)), \bar{s}(x) = (t \circ f(x), x).$
- (iii) $\Phi((g, t) \wedge \Gamma \circ \Phi(f, s))$ is naturally homeomorphic to $T(g)/tB \wedge T(f)/sB = T(g) \times T(f)/T(g) \times sB \cup tB \times T(f)$.
- (iv) The map $(1 \wedge \varphi)_* : {}_Bh_q((g, t) \wedge (f, s)) \rightarrow {}_Bh_q((g, t) \wedge \Gamma \circ \Phi(f, s))$ coincides with the map $\tilde{h}_q(T(g) \times T(f)/\bar{t}T(g) \cup \bar{s}T(f)) \rightarrow \tilde{h}_q(T(g) \times T(f)/T(g) \times sB \cup tB \times T(f))$ induced by the inclusion $T(g) \underset{R}{\times} T(f) \subset T(f) \times T(g)$.

Proofs are immediate from the definitions.

Lemma 1.11. Let B be a simply connected space and let (f, s) be a pointed space over B such that ${}_BH_i(f, s) = \tilde{H}_i(T(f)/sB) = 0$ for i < k. Then ${}_BH_i(C_{\varphi}(f, s)) = 0$ for i < k+2, where \tilde{H}_i is the ordinary homology theory.

Proof. By the Künneth theorem of the ordinary homology, we have ${}_BH_i(\Gamma\circ\Phi(f,s))=\widetilde{H}_i((B_+)\wedge T(f)/sB)=0$ for i< k and the smash product $\widetilde{H}_0(B_+)\otimes\widetilde{H}_i(T(f)/sB)\to\widetilde{H}_i((B_+)\wedge T(f)/sB)$ is an isomorphism for $i=k,\ k+1$. It follows that $(\epsilon\wedge 1)_*\colon {}_BH_i(\Gamma\circ\Phi(f,s))=\widetilde{H}_i((B_+)\wedge T(f)/sB)\to\widetilde{H}_i(S^0\wedge T(f)/sB)={}_BH_i(f,s)$ is an isomorphism for i< k+2, where $\epsilon\colon B_+\to S^0$ is the collapsing map. Since the composition ${}_BH_i(f,s)\xrightarrow{\phi_*}{}_BH_i(\Gamma\circ\Phi(f,s))\xrightarrow{(\epsilon\wedge 1)_*}{}_BH_i(f,s)$ is the identity map, ϕ_* is an isomorphism for i< k+2. Consider the long exact sequence associated with the cofibration $(f,s)\xrightarrow{\phi}\Gamma\circ\Phi(f,s)\xrightarrow{\iota} C_\phi(f,s)$, then the result follows.

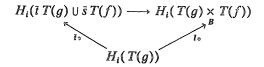
Corollary 1.12. Let \tilde{h}_* be a connective homology theory and let B be a simply connected space. For any pointed space (f, s) over B, $_B\tilde{h}_i(C^p_{\varphi}(f, s)) = 0$ for i < 2p.

Proof. Applying 1.11, we see that $_{B}H_{i}(C_{\alpha}^{p}(f, s)) = 0$ for i < 2p by induction

on p. Then we have $\tilde{H}_i(\Phi C^p_{\varphi}(f,s); \tilde{h}_*(S^0)) = 0$ for i < 2p by the universal coefficient theorem of the ordinary homology. Consider the Atiyah-Hirzebruch spectral sequence $\tilde{H}_i(\Phi C^p_{\varphi}(f,s); \tilde{h}_j(S^0)) \Rightarrow \tilde{h}_{i+j}(\Phi C^p_{\varphi}(f,s))$, then we have the result.

Lemma 1.13. Let (f, s), (g, t) be pointed spaces over B. If $f: T(f) \rightarrow B$ is a Serre fibering whose fiber F is path connected, and if $_BH_i(f, s) = 0$ for i < k, then $_BH_i((g, t) \land _B(f, s)) = 0$ for i < k.

Proof. Since sB is a retract of T(f), the long exact sequence associated with the cofibering $sB \rightarrow T(f) \rightarrow T(f)/sB$ splits into short exact sequences $0 \rightarrow H_i(sB) \rightarrow H_i(T(f)) \rightarrow \tilde{H}_i(T(f)/sB) \rightarrow 0$ (i=0,1,2,...). The assumption implies that $H_i(sB) \rightarrow H_i(T(f))$ is an isomorphism for i < k. Hence $f_* \colon H_i(T(f)) \rightarrow H_i(B)$ is an isomorphism for i < k. Since the composition $H_i(F) \rightarrow H_i(T(f)) \rightarrow H_i(B)$ is zero unless i=0, we have $H_i(F)=0$ for 0 < i < k. Consider the Serre spectral sequence associated with the induced fibering $F \rightarrow T(g) \times T(f) \rightarrow T(g)$ by the map g. Then $E_{p,q}^2 = H_p(T(g); H_q(F)) = 0$ for 0 < q < k implies $E_{p,q}^{\infty} = 0$ for 0 < q < k. Hence we have $F_{i-1,1} = 0$ for i < k which yields that the edge homomorphism $H_i(T(g) \times T(f)) = F_{i,0} \rightarrow E_{i,0}^{\infty} \subset E_{i,0}^2 = H_i(T(g))$ is injective for i < k. Since T(g) is a retract of $T(g) \times T(f)$, it follows that $i_* \colon H_i(T(g)) \rightarrow H_i(T(g) \times T(f))$ is an isomorphism for i < k. Noting that $i T(g) \cap \bar{s} T(f) = \{*\} \times sB$, consider the long exact sequence associated with the cofibering $T(g) \stackrel{i}{\longrightarrow} i T(g) \cup \bar{s} T(f) \rightarrow T(f)/sB$. Since T(g) is a retract of $i T(g) \cup \bar{s} T(f)$ and $i \in k$. By the commutativity of the diagram



 $H_i(\bar{t}T(g) \cup \bar{s}T(f)) \rightarrow H_i(T(g) \underset{B}{\times} T(f))$ is an isomorphism for i < k. Since $\Phi((g, t) \underset{B}{\wedge} (f, s))$ is the cofiber of the inclusion $\bar{t}T(g) \cup \bar{s}T(f) \subset T(g) \underset{B}{\times} T(f)$ by (1.10), we have $_BH_i((g, t) \underset{B}{\wedge} (f, s)) = 0$ for i < k.

Lemma 1.14. Let (f, s) be a pointed space over B.

- (i) If $f: T(f) \rightarrow B$ is a Serre fibration, so is $C_{\varphi}(f): T(C_{\varphi}(f, s)) \rightarrow B$.
- (ii) If the total space T(f) is path connected, each fiber of $C_{\varphi}(f)$:

 $T(C_{\omega}(f, s)) \rightarrow B$ is also path connected.

(iii) If B is path connected, so is the total space $T(C_{\omega}(f, s))$.

Proofs are straightforward from the construction of C_{φ} .

Corollary 1.15. Let h_* be a connective homology theory and let B be a simply connected space. Then, for pointed spaces (g, t), (f, s) over B such that $f: T(f) \rightarrow B$ is a Serre fibration, we have ${}_Bh_q((g, t) \wedge C^p_{\varphi}(f, s)) = 0$ for q < 2p and $p \ge 2$.

Proof. By the above lemmas, $C_{\varphi}^{p}(f)$: $T(C_{\varphi}^{p}(f, s)) \rightarrow B$ is a Serre fibration whose fiber is path connected if $p \ge 2$ and $_{B}H_{q}(C_{\varphi}^{p}(f, s)) = 0$ for q < 2p. Hence (1.12) implies $_{B}H_{q}((g, t) \wedge C_{\varphi}^{p}(f, s)) = 0$ for q < 2p and $p \ge 2$. Applying the Atiyah-Hirzebruch spectral sequence, the result follows.

It follows from (1.15) that $A_{p,q}=0$ for $p \le 0$, $q \in \mathbb{Z}$, and $\bigcap_{p \le 0} F_{p,n-p}=0$ (in fact, $F_{p,n-p}=0$ for $p < \min\{-n, -1\}$). Now we have a sufficient condition for the convergence.

Theorem 1.16. Assume that \tilde{h}_* is a connective homology theory and (f, s) is a pointed space over a simply connected space B such that $f: T(f) \to B$ is a Serre fibration. Then, for any pointed space (g, t) over B, the Künneth spectral sequence constructed in (1.7) converges to ${}_Bh_*((g, t) \land (f, s))$.

In order to make an identification of the E^2 -term in terms of homological algebra, we have to assume some conditions. Let (f, s), (g, t) be pointed spaces over B.

Assumptions 1.17. (i) \tilde{h}_* is a multiplicative homology theory on $\mathbb{T}op_*$ (not necessarily connective).

- (ii) $\tilde{h}_*(B_+)$ is a flat $\tilde{h}_*(S^0)$ -module.
- (iii) Either $\tilde{h}_*(T(f)/sB)$ or $\tilde{h}_*(T(g)/tB)$ is flat over $\tilde{h}_*(S^0)$.

Under the above assumptions, the smash products $\tilde{h}_*(B_+) \otimes \tilde{h}_*(X) \to \tilde{h}_*((B_+) \wedge X)$, $\tilde{h}_*(X) \otimes \tilde{h}_*(B_+) \to \tilde{h}_*(X \wedge (B_+))$ are isomorphisms for any pointed space (X, x_0) , where the tensor products are taken over $\tilde{h}_*(S^0)$. Define $\psi^L \colon T(f)/sB \to (B_+) \wedge T(f)/sB$ and $\psi^R \colon T(g)/tB \to T(g)/tB \wedge (B_+)$ by $\psi^L \circ \pi(x) = f(x) \wedge \pi(x)$ and $\psi^R \circ \rho(y) = \rho(y) \wedge g(x)$ respectively, where $\pi \colon T(f) \to T(f)/sB$ and $\rho \colon T(g) \to T(g)/tB$ are collapsing maps. Note that $\psi^L = \psi^R = (\text{the diagonal map of } B)$ if $(f, s) = (g, t) = \Gamma(S^0, *)$. We put $C = \tilde{h}_*(B_+) = (g, t) = \tilde{h}_*(T(S^0, *))$ and define a

coproduct $C \to C \otimes C$ to be the composite of the map induced by the diagonal map and the inverse of the smash product. The counit $C \to \tilde{h}_*(S^0)$ is the map induced by the collapsing map $\varepsilon \colon B_+ \to S^0$. Let us define a left coaction of C on ${}_Bh_*(f,s)$ and a right coaction on ${}_Bh_*(g,t)$ as follows.

$${}_{B}h_{*}(f, s) = \tilde{h}_{*}(T(f)/sB) \xrightarrow{\psi_{*}^{L}} \tilde{h}_{*}((B_{+}) \wedge T(f)/sB) \xrightarrow{\wedge^{-1}}$$

$$\tilde{h}_{*}(B_{+}) \otimes \tilde{h}_{*}(T(f)/sB) = C \otimes_{B}h_{*}(f, s)$$

$${}_{B}h_{*}(g, t) = \tilde{h}_{*}(T(g)/tB) \xrightarrow{\psi_{*}^{R}} \tilde{h}_{*}(T(g)/tB \wedge (B_{+})) \xrightarrow{\wedge^{-1}}$$

$$\tilde{h}_{*}(T(g)/tB) \otimes \tilde{h}_{*}(B_{+}) = {}_{B}h_{*}(g, t) \otimes C$$

Note that the following diagrams are commutative, where T is the swiching map.

We construct a natural map $\theta: {}_Bh_*((g,t) \wedge (f,s)) \to {}_Bh_*(g,t) \square_Bh_*(f,s)$ under the assumption 1.17, where the cotensor products are taken over the coalgebra C. Let \bar{s} , \bar{t} be maps defined in (1.10), then the composition of maps $T(g) \times T(f)/\bar{t}T(g) \cup \bar{s}T(f) \xrightarrow{\mu} T(g) \times T(f)/T(g) \times sB \cup tB \times T(f) = T(g)/tB \wedge T(f)/sB \xrightarrow{B} T(f)/\bar{t}T(g) \cup \bar{s}T(f)/B \wedge T(f)/sB$ coincides with the composition $T(g) \times T(f)/\bar{t}T(g) \cup \bar{s}T(f) \xrightarrow{\mu} T(g) \times T(f)/T(g) \times sB \cup tB \times T(f) = T(g)/tB \wedge T(f)/sB \xrightarrow{B} T(g)/tB \wedge T(f)/sB$, where μ is induced by the inclusion $T(g) \times T(f) \subset T(g) \times T(f)$. Noting that the smash products $\tilde{h}_*(T(g)/tB) \otimes \tilde{h}_*(T(f)/sB) \xrightarrow{\Lambda} \tilde{h}_*(T(g)/tB \wedge T(f)/sB)$ and $\tilde{h}_*(T(g)/tB) \otimes \tilde{h}_*(T(f)/sB) \xrightarrow{\Lambda} \tilde{h}_*(T(g)/tB) \otimes \tilde{h}_*(T(g)$

Lemma 1.18. $_B\tilde{h}_*(\Gamma\circ\Phi(f,s))$ is an injective C-comodule. In fact the smash product gives an isomorphism as comodules

$$C \otimes_B h_*(f, s) = \tilde{h}_*(B_+) \otimes \tilde{h}(T(f)/sB) \xrightarrow{\wedge} \tilde{h}_*((B_+) \wedge T(f)/sB) = {}_B h_*(\Gamma \circ \Phi(f, s)).$$
 Proof is straightforward.

Lemma 1.19. The natural map $\theta: {}_Bh_*((g, t) \wedge \Gamma \circ \Phi(f, s)) \to {}_Bh_*(g, t)$ $\square_Bh_*(\Gamma \circ \Phi(f, s))$ is an isomorphism.

Proof. Just note that the geometric fact $T(g) \underset{B}{\times} (B \times T(f)/sB) \cong T(g) \times T(f)/sB$ corresponds to the algebraic fact

$$_Bh_*(g, t)\square(C\otimes_Bh_*(f, s))\cong _Bh_*(g, t)\otimes_Bh_*(f, s)$$
.

Lemma 1.20. $0 \to_B h_*(f, s) \xrightarrow{\varphi_*}_B h_*(\Gamma \circ \Phi(f, s)) \xrightarrow{\varphi_* \circ \iota_*}_B h_*(\Gamma \circ \Phi \circ C_{\varphi}(f, s)) \to \cdots \to B^{h_*}(\Gamma \circ \Phi \circ C_{\varphi}^i(f, s)) \xrightarrow{\varphi_* \circ \iota_*}_B h_*(\Gamma \circ \Phi \circ C_{\varphi}^{i+1}(f, s)) \to \cdots$ is an injective resolution of $B^{h_*}(f, s)$.

Proof. The composition ${}_Bh_*(C^i_\varphi(f,s)) \xrightarrow{\varphi_*} {}_Bh_*(\Gamma \circ \Phi \circ C^i_\varphi(f,s)) \cong C \otimes_Bh_*(C^i_\varphi(f,s)) = C \otimes_Bh_*($

Remark 1.21. Under (i), (ii) of (1.17), the category of C-comodules becomes a relative abelian category ([1], [5]) and $_Bh_*$ is a homology theory $\mathsf{Top}_*/B \to (\mathsf{the category of C-comodules})$. By the proof of (1.20), the C-comodule homomorphism $\phi_*: {}_Bh_*(f, s) \to {}_Bh_*(\Gamma \circ \Phi(f, s))$ is a split monomorphism as a $h_*(S^0)$ -module homomorphism.

Theorem 1.22. Under Assumptions 1.17, the E^2 -term of the Künneth spectral sequence is naturally isomorphic to $\operatorname{Cotor}_{*,*}^C({}_Bh_*(g, t), {}_Bh_*(f, s))$ $(E^2_{p,q} \cong \operatorname{Cotor}_{p,q}^C({}_Bh_*(g, t), {}_Bh_*(f, s))).$

Proof. This follows from (1.19) and (1.20).

Remarks 1.23. (i) The edge homomorphism ${}_Bh_*((g, t) \wedge (f, s)) \to E_{0, n}^2 \cong \operatorname{Cotor}_{0, n}^C(g, t) + gh_*(g, t) = {}_Bh_*(g, t) = {}_Bh_*(f, s)$ coincides with the natural map θ .

- (ii) (1.17) is always satisfied if \tilde{h}_* is ordinary homology theory over a field or Morava K-theory.
- (iii) We consider the category of spaces over B, denoted by $\mathbb{T}op/B$. An object of $\mathbb{T}op/B$ is a continuous map $f \colon T(f) \to B$, and a morphism $\varphi \colon f \to g$ in $\mathbb{T}op/B$ is a continuous map $T(\varphi) \colon T(f) \to T(g)$ such that $g \circ T(\varphi) = f$. Define a functor $G \colon \mathbb{T}op/B \to \mathbb{T}op_*/B$ as follows. Put $G(f) = (f_+, s_f)$ and $T(G(f)) = T(f_+)$

 $=T(f) \perp \!\!\! \perp B$ (disjoint union), f_+ and s_f are given by $f_+(x)=f(x)$ for $x \in T(f)$ $f_+(b)=b$ for $b \in B$ and $s_f(b)=b$. Then it is easy to verify that $\Phi(G(f))=T(f)_+$ and $\Phi(G(g) \wedge G(f))=(T(g) \times T(f))_+$ where f and g are spaces over g. Therefore, if a fiber product of f and g is given, the Künneth spectral sequence associated with G(f) and G(g) is the Eilenberg-Moore spectral sequence ([7], [8]).

§ 2. A Relation between the Algebraic Bockstein Homomorphism and the Geometric Bockstein Homomorphism

Throughout this section, we assume that B is a simply connected space such that $H_*(B: \mathbb{Z}_{(l)})$ is flat and that (f, s), (g, t) are pointed spaces over B such that both $H_*(T(f)/sB: \mathbb{Z}_{(l)})$ and $H_*(T(g)/tB: \mathbb{Z}_{(l)})$ are flat and $f: T(f) \rightarrow B$ is a Serre fibration, where l is a fixed prime number. Note that a $\mathbb{Z}_{(l)}$ -module is flat if and only if it is torsion free.

Lemma 2.1. Under the above assumptions, $_BH_*(C^i_{\varphi}(f,s):\mathbb{Z}_{(l)})$ (i=0,1,2,...) is flat.

Proof. Inductively, assume that ${}_BH_*(C^i_{\varphi}(f,s)\colon \mathbb{Z}_{(l)})$ is flat. The cofibration $C^i_{\varphi}(f,s) \xrightarrow{\varphi} \Gamma \circ \Phi \circ C^i_{\varphi}(f,s) \xrightarrow{\iota} C^{i+1}_{\varphi}(f,s)$ gives a short exact sequence $0 \to_B H_*$ $(C^i_{\varphi}(f,s)\colon \mathbb{Z}_{(l)}) \to_B H_*(\Gamma \circ \Phi \circ C^i_{\varphi}(f,s)\colon \mathbb{Z}_{(l)}) \to_B H_*(C^{i+1}_{\varphi}(f,s)\colon \mathbb{Z}_{(l)}) \to 0$ which splits as $\mathbb{Z}_{(l)}$ -modules. By (1.18), ${}_BH_*(\Gamma \circ \Phi \circ C^i_{\varphi}(f,s)\colon \mathbb{Z}_{(l)})$ is isomorphic to $H_*(B\colon \mathbb{Z}_{(l)}) \otimes_B H_*(C^i_{\varphi}(f,s)\colon \mathbb{Z}_{(l)})$ which is also flat. Hence ${}_BH_*(C^{i+1}_{\varphi}(f,s)\colon \mathbb{Z}_{(l)})$ is flat.

Consider two Künneth spectral sequences converging to ${}_BH_*((g, t) \underset{B}{\wedge} (f, s))$: $\mathbb{Z}_{(i)}$. We put

$$\begin{split} &D_{p,q}^{1} = {}_{B}H_{q}((g,\,t) \underset{B}{\wedge} C_{\varphi}^{-p}(f,\,s) \colon \, \mathbb{F}_{l}), \quad E_{p,q}^{1} = {}_{B}H_{q}((g,\,t) \underset{B}{\wedge} \Gamma \circ \Phi \circ C_{\varphi}^{-p}(f,\,s) \colon \, \mathbb{F}_{l}) \\ &\overline{D}_{p,q}^{1} = {}_{B}H_{q}((g,\,t) \underset{R}{\wedge} C_{\varphi}^{-p}(f,\,s) \colon \, \mathbb{Z}_{(l)}), \quad \overline{E}_{p,q}^{1} = {}_{B}H_{q}((g,\,t) \underset{R}{\wedge} \Gamma \circ \Phi \circ C_{\varphi}^{-p}(f,\,s) \colon \, \mathbb{Z}_{(l)}). \end{split}$$

By (1.19) and (2.1), $\bar{E}^1_{p,q}$ is torsion free. Hence the Bockstein exact sequence associated splits into short exact sequences $0 \to \bar{E}^1_{p,q} \xrightarrow{l \times} \bar{E}^1_{p,q} \xrightarrow{\rho} E^1_{p,q} \to 0$. Note that the multiplication by l and the mod l reduction ρ induce maps of exact couples. Taking the homologies of complexes $\{\bar{E}^1_{*,*}, \bar{d}^1\}$ and $\{E^1_{*,*}, d^1\}$, we have the algebraic Bockstein homomorphism $\tilde{\delta} \colon E^2_{p,q} \to \bar{E}^2_{p-1,q}$ as the boundary homomorphism.

Theorem 2.2. If $x \in E_{p,q}^2$ is a permanent cycle, $\tilde{\delta}x \in \overline{E}_{p-1,q}^2$ is also a

permanent cycle. Let $\bar{x} \in F_{p,q}$ be the element of ${}_BH_*((g,t) \ {}_{\!\!B} (f,s); F_l)$ corresponding to x, then $\delta \bar{x} \in \bar{F}_{p-1,q} = \operatorname{Im} \{ \bar{D}^1_{p-1,q} \rightarrow \bar{D}^1_{0,p+q-1} \}$ and $\delta \bar{x}$ corresponds to the permanent cycle $-\tilde{\delta} x$, where $\delta \colon {}_BH_n((g,t) \ {}_{\!\!B} (f,s); F_l) \rightarrow {}_BH_{n-1}((g,t) \ {}_{$

Remark 2.3. In the case x=0 in the E^{∞} -term, the above statement means that $\delta x=0$ in the E^{∞} -term. If $x\neq 0$ and $\delta x=0$ in each E^{∞} -terms, we assert that $\delta \bar{x}\in \overline{F}_{p-2,q+1}$.

The following lemma implies the above theorem.

Lemma 2.4. Let $X \stackrel{i}{\longrightarrow} Y \stackrel{j}{\longrightarrow} Z$ be a cofibration such that $\tilde{H}_*(Y; Z_{(l)})$ is torsion free. Suppose that a space W and a map $k; Z \rightarrow W$ such that $\tilde{H}_*(W; Z_{(l)})$ is torsion free are given. Let ∂ , ∂' ; $\tilde{H}_q(X; F_l) \rightarrow \tilde{H}_q(W; Z_{(l)})/\text{Im } k_* \circ j_*$ be the maps defined as follows, for each $x \in \tilde{H}_q(X; F_l)$, take $y \in \tilde{H}_q(Y; Z_{(l)})$ such that $\rho y = i_* x$. We can take $z \in \tilde{H}_q(Z; Z_{(l)})$ such that $|z| = j_* y$. Then $|\partial x|$ is defined to be the image of |k| = 2 by the projection π : $\tilde{H}_q(W; Z_{(l)}) \rightarrow \tilde{H}_q(W; Z_{(l)})/\text{Im } k_* \circ j_*$. On the other hand, there exists $|z| \in \tilde{H}_q(Z; Z_{(l)})$ such that $|\Delta z| = \delta x$, where $|\delta| : \tilde{H}_q(X; F_l) \rightarrow \tilde{H}_{q-1}(X; Z_{(l)})$ is the Bockstein homomorphism and $|\Delta| : \tilde{H}_q(Z; Z_{(l)}) \rightarrow \tilde{H}_{q-1}(X; Z_{(l)})$ is the boundary homomorphism. $|\partial' x|$ is defined to be $|\pi| \circ k_* z'$. Then $|\partial x| = 0$ holds.

Proof. It is easy to check that ∂ and ∂' are well-defined. We may assume $X \subset Y$ and replace $\widetilde{H}_q(Z; \mathbb{Z}_{(l)})$ by $H_q(Y, X; \mathbb{Z}_{(l)})$. Let $S_*(X)$ and $S_*(Y)$ be the singular chain complexes of X and Y with $\mathbb{Z}_{(l)}$ -coefficients. For $x \in \widetilde{H}_q(X; \mathbb{F}_l)$, we take a chain $\sigma \in S_q(X)$ such that x is represented by the cycle $\rho_*\sigma$ (ρ_* is the mod l reduction map). We put $d\sigma = l\alpha$ ($\alpha \in S_{q-1}(X)$), where d is the differential of $S_*(X)$. Since $\widetilde{H}_q(Y; \mathbb{Z}_{(l)})$ is torsion free, we can take a cycle $\overline{\sigma} \in S_q(Y)$ such that $\rho_*\overline{\sigma}$ is homologous to $i_*\circ \rho_*\sigma$. Therefore $\sigma - \overline{\sigma} \in lS_q(Y) + d(S_{q+1}(Y))$, and we put $\sigma - \overline{\sigma} = l\beta + d\tau$ ($\beta \in S_q(Y)$, $\tau \in S_{q+1}(Y)$). Since $\overline{\sigma}$ is a cycle, $\overline{\sigma} + d\tau$ is also a cycle homologous to $\overline{\sigma}$. So we may replace $\overline{\sigma} + d\tau$ by $\overline{\sigma}$ and we have $\sigma = \overline{\sigma} + l\beta$. It follows from $d\sigma = l\alpha$ that $d\beta = \alpha$. Since $j_*\overline{\sigma} = -l\beta$, $-d\beta = -\alpha$ represents $\Delta z' \in \widetilde{H}_{q-1}(X; \mathbb{Z}_{(l)})$. On the other hand, $\delta x \in \widetilde{H}_{q-1}(X; \mathbb{Z}_{(l)})$ is represented by α . This completes the proof.

Proof of (2.2). We put $X = \Phi((g, t) \wedge C_{\varphi}^{-p}(f, s))$, $Y = \Phi((g, t) \wedge \Gamma \circ \Phi \circ C_{\varphi}^{-p}(f, s))$, $Z = \Phi((g, t) \wedge C_{\varphi}^{-p+1}(f, s))$, $W = \Phi((g, t) \wedge \Gamma \circ \Phi \circ C_{\varphi}^{-p+1}(f, s))$. Suppose $x \in E_{p,q}^2$ is a permanent cycle. Let $x' \in E_{p,q}^1 = \widetilde{H}_q(Y; F_l)$ be a cycle which represents x. Since x' is also a permanent cycle, there exist $y \in D_{p,q}^1 = \widetilde{H}_q(X; F_l)$ such that

 $(1 \wedge \varphi)_* y = x'$. Then, it is easy to see that $\partial y = \tilde{\delta} x$ in $E_{p-1,q}^2$. ∂y is an element coming from $\overline{D}_{p-1,q}^1 = H_q(Z; \mathbb{Z}_{(l)})$ by the definition of ∂ . Thus $\tilde{\delta} x$ is a permanent cycle. By the preceding lemma, $\delta \bar{x}$ belongs to $\overline{F}_{p-1,q}$ and corresponds to $-\tilde{\delta} x$.

§ 3. On the Homology Suspensions

Let B be a path connected topological space with a base point * and let PB be the space of paths in B starting from *. And let us denote by $p: PB \rightarrow B$ the evaluation map at 1, and also denote by $i: *\rightarrow B$ the inclusion. We fix these notations throughout this section. The following lemma is easily verified.

- Lemma 3.1. (i) The total space of $\Gamma \circ \Phi \circ G(p)$ is given by $(B \times PB) \perp \!\!\! \perp B$ and the projection $(B \times PB) \perp \!\!\! \perp B \to B$ maps both $(b, l) \in B \times PB$ and $b \in B$ to b. The section $B \to (B \times PB) \perp \!\!\! \perp B$ maps b to b. Moreover, $\varphi \colon G(p) \to \Gamma \circ \Phi \circ G(p)$ is given by $T(\varphi)(l) = (l(1), l)$ for $l \in PB$, $T(\varphi)(b) = b$ for $b \in B$.
- (ii) The total space of $C_{\varphi} \circ G(p)$ is the quotient space of $(PB \times I) \perp (B \times PB)$ by the equivalence relation generated by $(l, 1) \sim (l(1), l)$ and $(l', 0) \sim (l'', 0)$ if l'(1) = l''(1). The projection is given by $[l, r] \rightarrow l(1)$, $[b, l] \rightarrow b$ for $l \in PB$, $r \in I$, $b \in B$, and the section is given by $b \rightarrow [l_b, 0]$, where l_b is any element of PB such that $l_b(1) = b$. And the inclusion $\iota : \Gamma \circ \Phi \circ G(p) \rightarrow C_{\varphi} \circ G(p)$ is given by $T(\iota) \circ (b, l) = [b, l]$, $T(\iota)(b) = [l_b, 0]$, where $b \in B$, $l \in PB$ and l_b is as above.

We denote the total space of $C_{\varphi} \circ G(p)$ by T_B and denote the projection and the section by $\tilde{p}: T_B \to B$ and $\tilde{s}: B \to T_B$.

- Lemma 3.2. (i) Let (f,s) be a pointed space over B, then we have $\Phi(G(i) \wedge (f,s)) = f^{-1}(*)$. In particular, we have $\Phi(G(i) \wedge G(p)) = \Omega B_+$, $\Phi(G(i) \wedge \Gamma \circ \Phi \circ G(p)) = PB_+$, $\Phi(G(i) \wedge C_{\varphi} \circ G(p)) = PB \cup C\Omega B$, where $C\Omega B$ is the unreduced cone $\Omega B \times I/\Omega B \times \{0\}$ with a base point $\Omega B \times \{0\}/\Omega B \times \{0\}$ and we identify $\omega \in \Omega B \subset PB$ with $[\omega, 1] \in C\Omega B$. Moreover, $\Phi(1 \wedge \varphi)$ and $\Phi(1 \wedge \epsilon)$ are natural inclusions $\Omega B_+ \to PB_+$, $PB_+ \to PB \cup C\Omega B$.
- (ii) $\Phi(G(i) \wedge \Gamma \circ \Phi \circ C_{\varphi} \circ G(p)) = \Phi \circ C_{\varphi} \circ G(p) = T_B/\tilde{s}B = ((PB \times I) \perp L)$ $(B \times PB) / (l', 1) \sim (l(1), l)$, and $\Phi(1 \wedge \varphi) : PB \cup C\Omega B \rightarrow T_B/\tilde{s}B$ is given by $\Phi(1 \wedge \varphi) \cdot ([l]) = [*, l]$, $\Phi(1 \wedge \varphi) \cdot ([\omega, t]) = [\omega, t]$

Proof. (i) is straightforward. (ii) is verified by applying (1.10), (iii).

Lemma 3.3. Define $\pi: T_B/\tilde{s}B \to B$ by $\pi[b, l] = b, \pi[l, t] = l(t)$, then π is a

natural (stable) homotopy equivalence and the diagram

$$\Phi \circ \Gamma \circ \Phi \circ G(p) = (B \times PB)_{+} \xrightarrow{\Phi(\iota)} \Phi \circ C_{\varphi} \circ G(p) = T_{B}/\tilde{s}B$$

$$\downarrow^{p_{F,+}} \qquad \qquad \downarrow^{\pi}$$

$$B_{+} \xrightarrow{1_{B} \coprod_{*}} B$$

is commutative, where $pr: B \times PB \rightarrow B$ is the projection pr(b, l) = b.

Proof. Commutativity of the above diagram is obvious. Consider the following homotopy commutative diagram.

$$\begin{split} \varPhi \circ G(p) &= PB_{+} \xrightarrow{\Phi(\varphi)} \varPhi \circ \Gamma \circ \varPhi \circ G(p) \xrightarrow{\Phi(\iota)} \varPhi \circ C_{\varphi} \circ G(p) \\ \downarrow^{\varepsilon_{+}} & \downarrow^{pr_{+}} & \downarrow^{\pi} \\ S^{0} &= \{*, +\} \xrightarrow{i_{+}} B_{+} \xrightarrow{-1_{B} U_{*}} B \end{split}$$

where ε : $PB \rightarrow *$. The both horizontal rows are cofiber sequences and ε_+ and pr_+ are homotopy equivalences. Hence we have the result.

Lemma 3.4. Let $c: PB \cup C\Omega B \to \sum \Omega B$ be the map which collapses $PB \cup \{[\omega_0, r] | \omega_0 \text{ is the constant loop at } *\}$ to the base point and let $\sigma: \sum \Omega B \to B$ be the adjoint of the identity map of ΩB ; that is, σ is defined by $\sigma([\omega, t]) = \omega(t)$. Then, c is a homotopy equivalence and the following diagram is commutative.

$$\Phi(G(i) \wedge C_{\varphi} \circ G(p)) = PB \cup C\Omega B \xrightarrow{c} \sum \Omega B$$

$$\downarrow^{\Phi(1 \wedge \varphi)} \qquad \qquad \downarrow^{\sigma}$$

$$\Phi(G(i) \wedge \Gamma \circ \Phi \circ C_{\varphi} \circ G(p)) = T_{B}/\tilde{s}B \xrightarrow{\pi} B$$

Proof. It is obvious that c is a homotopy equivalence, and we can verify that the diagram commutes, applying (3.2) and (3.3).

Let \tilde{h}_* be a multiplicative homology theory on \mathbf{Top}_* , and let us consider the Künneth spectral sequence associated with \tilde{h}_* and the pointed spaces G(i), G(p). In other words we consider the Eilenberg-Moore spectral sequence associated with the path fibering $\Omega B \to PB \to B$. The preceding lemma implies the following.

Theorem 3.5. Assume that $h_*(B)$ is a flat $h_*(pt)$ -module. Then $F_{-1,n+1} = \tilde{h}_n(\Omega B) = \ker \{h_n(\Omega B) \to h_n(pt)\}$ and the composition $\tilde{h}_n(\Omega B) = F_{-1,n+1} \to F_{-1,n+1}$ $|F_{-2,n+2} \subset E^{\infty}_{-1,n+1} \subset E^{2}_{-1,n+1} \cong Ph_{n+1}(B) \subset h_{n+1}(B)$ coincides with the homology suspension $\tilde{h}_n(\Omega B) \cong \tilde{h}_{n+1}(\sum \Omega B) \xrightarrow{\sigma_*} h_{n+1}(B)$, where $Ph_*(B)$ is the submodule of $h_*(B)$ consists of primitive elements which is naturally identified with $\operatorname{Cotor}_{-1,*}^{h_*(B)}$.

 $(h_*(pt), h_*(pt))$ and we identify $E^2_{-1,n+1}$ with $\mathbb{C}otor^{h_*(B)}_{-1,n+1}(h_*(pt), h_*(pt))$ as in Section 1.

Corollary 3.6. Under the same assumption as above, if the homology suspension σ_* : $\tilde{h}_n(\Omega B) \rightarrow h_{n+1}(B)$ maps surjectively onto $Ph_{n+1}(B)$, every element of $E^2_{-1,n+1}$ is a permanent cycle. Assume further that the Künneth spectral sequence converges. If every element of $E^1_{-1,n+1}$ is a permanent cycle, σ_* maps $\tilde{h}_n(\Omega B)$ surjectively onto $Ph_{n+1}(B)$.

References

- [1] Eilenberg, S. and Moore, J. C., Foundations of relative homological algebra, *Memoirs A.M.S.*, 55 (1965).
- [2] ——, Homology and fibrations I, Comment. Math. Helv., 40 (1966), 199-236.
- [3] Heller, A., Abstract homotopy in categories of fibrations and the spectral sequence of Eilenberg and Moore, *Illinois J. Math.*, 16 (1972), 454–474.
- [4] Hodgkin, L. H., The equivariant Künneth theorem in K-theory, Lecture Notes in Math., No. 496, Springer-Verlag, Berlin-Heiderberg-New York, 1975.
- [5] MacLane, S. S., Homology, Band 114, Springer-Verlag, Berlin-Heiderberg-New York, 1963.
- [6] Rector, D. L., Steenrod operations in the Eilenberg-Moore spectral sequence, Comment, Math. Helv., 45 (1970), 540-552.
- [7] Smith, L., Lectures on the Eilenberg-Moore spectral sequence, Lecture Notes in Math., No. 134, Springer-Verlag, Berlin-Heiderberg-New York, 1970.
- [8] Smith, L., On the Künneth theorem I, Math. Zeit., 116 (1970), 94-140.
- [9] Switzer, R. M., Algebraic Topology-Homotopy and Homology, Band 212, Springer-Verlag, Berlin, 1975.
- [10] Yamaguchi, A., The homology of double loop spaces of complex Stiefel manifolds, to appear.
- [11] Johnson, D. C., Miller, H. R., Wilson, W. S. and Zahler, R. S., Boundary homomorphism in the generalized Adams spectral sequence and the nontriviality of infinitely many γ, in the stable homotopy, Notas de matematicas y Simposia, Numero 1; Reunion Sobre Teoria de Homotopia, ed. D. Davis, 29-46. Sociedad Matematica Mexicana, Mexico, D.F., 1975.