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Note on the EIlenberg-Moore Spectral Sequence

By

Atsushi YAMAGUCHI*

Abstract

In this paper, we prove two theorems on the Eilenberg-Moore spectral sequence. We
give a relation between the Bockstein homomorphism in the £"2-term and the Bockstein
homomorphism of the space to which the spectral sequence converges and also relate the
homology suspension to the Eilenberg-Moore spectral sequence.

Introduction

The purpose of this note is to prove two theorems on the Eilenberg-Moore

spectral sequence; one relates the algebraic Bockstein homomorphism between

the E2-terms to the geometric Bockstein homomorphism between the homologies

of the spaces to which the spectral sequences converge (Theorem 2.2), and

the other relates the homology suspension to the Eilenberg-Moore spectral

sequence associated with a path fibration (Theorem 3.5).

In order to prove these theorems, we recall the definition of the Eilenberg-

Moore spectral sequence. After the original work of Eilenberg and Moore

([2]), various constructions have been done by Hodgkin ([4]), Smith ([7], [8]),

Rector ([6]) and Heller ([3]). In this note, we adopt a point of view of Hodgkin

and Smith who construct the Eilenberg-Moore spectral sequence as the Kiinneth

spectral sequence on the category of pointed spaces over some fixed base space.

In Section 1, we construct the Kiinneth spectral sequence for a generalized

homology theory, dualizing the argument of Smith ([8]). We give a sufficient

condition for convergence of the spectral sequence ((1.11), (1.23) (ii)) and one for

identification of the £2-term ((1.17), (1.22)). These results are also obtained in

[3] under a categorical framework. Our concrete construction enables us to

prove the main theorems in the following sections.
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In Section 2, we prove that the algebraic Bockstein homomorphism between

the £2-terms of the Kiinneth spectral sequence "converges" to the geometric

Bockstein homomorphism. Our assertion (2.2) is quite similar to the main

theorem on the boundary homomorphism of [11], although the proof is much

easier.

In Section 3, we consider the Eilenberg-Moore spectral sequence for a

generalized homology /z*, associated with the path fibration over a space B.

Then, under suitable assumptions, there is a homomorphism hn(QB)-»E?Llfn+l

and a natural equivalence E*ltn+1-+Phn+l(B). We show that the composition

of these coincides with the homology suspension.

The results of Sections 2, 3 are applied to determine the structure of the

homology of double loop spaces of complex Stiefel manifolds ([10]).

I would like to thank J. P. Mayer, J. M. Boardman, J. Morava and

W. S. Wilson for useful conversations and encouragement. And I am also

grateful to A. Kono for helpful suggestions and his interest on the materials of

Sections 2 and 3.

§ lo Recollections on the Eilenberg-Moore Spectra! Sequence

First, we define a category Top^/B to formulate the Eilenberg-Moore spectral

sequence as the Kiinneth spectral sequence in this category. We will use the

notations and some results of Section 1 of [8]. (See also [4], [7].)

Definition 1.1 ([8]). Let B be a fixed topological space. We define a

category of pointed spaces over B, denoted by Top*/]? as follows. An object of

Top*/,B is a pair of maps (/, s) (f:T(f)-*B, s: B-+T(f)) between topological

spaces T(f) and B such that f°s = lB and sB is a neighborhood deformation

retract of T(f). A morphism (p: (/, s)-»(0, t) o/Top^/B consists of a continuous

map T(<p): T(f)-+T(g) such that g°T(<p)=f, T(<p)°s = t.

We denote by Top* the category of pointed topological spaces with non-

degrerate basepoints. We define functors F: Top*-* Top*/!? and 0: Top*/B

-»Top* which play a central role in the construction of the Eilenberg-Moore

spectral sequence.

Definition 1.2 ([8]). For each pointed topological space (X9 x0), let

p: BxX-*B be the projection onto B and let s: B-^BxX be the canonical

inclusion s(b) = (b, x0). We define a functor F by F(X, x0) = (p, s). And we
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define a functor $ by #(/, s) = (T(/)/sB, sB/sB).

Lemma 1.3. The functor F is a right adjoint of #; that is, there is a

natural equivalence

MorTop,/B((/, 5), F(X, x0)) = MorTop,(cf>(/, s), (X, x0)).

Proof. We construct a natural map a: MorTopll/B((/, s), F(X, x0))

-*MorTop!1! (#(/» s), (X, x0)) as follows. Let <p : (/, s)-*F(X9 x0) be a morphism

of Top^/B, and let g: 5x^-»^T be the projection onto X. Then the compo-

sition T(f) -^^B xX-^X maps sB to the base point x0. We define a(<p) to be

the map T(f)/sB-+X induced by q°T((p). The inverse a"1 of a is described as

follows. For a morphism \l/: $(f9 s)-+(X9 x0)9 we put T(a~1(^))(x) = (/(x),

\jjon(x)) where TT : T(/)-» T(f)/sB is the canonical projection.

In the category Top^/B, we can construct mapping cones, suspensions,

products, smash products and other constructions which we usually do in the

category Top*. And we can define a cofiber sequence in Top^/B as in Top*.

Here we give the constructions of mapping cones, products, smash products,

and suspensions. (See Section 1 of [8] for details.)

Constructions 1.4. (i) Let <p: (/, s)-+(g, i) be a morphism of Top^/fi.

We define the mapping cone of <p, denoted by (CB(cp)9 SCB(<P)) as follows:

l ( x , l ) ~ T < p ( x ) : x e T ( f )

TCB(<p) = (T(f) xI)M T(g) I (s(b), r) ~ t(b) :beB,reI

I (x', 0)~(x", 0) if /(x') =/(*")
for x', x" e T(f)

CB((p): TCB((p)-*B and SCg(v): B^TC^cp) are defined by CB(<p)([_x, r])=/(x)

for xe T(f), re I, CB(<p)(\j>l) = g(y) for ye T(g) and Sc,(,)(6) = [t(6)] for beB

where [x, r] and [y] are the elements of TCB(cp) represented by (x, r) e T(f) x /

and y e T(g) respectively. Note that there is a natural inclusion c : (g, f)-»

(CB((p), SCB(V)) defined by T(c)(y) = [yl
(ii) Let (/, s) and (g, t) be pointed space over B, their product (/, s)^L.

(/, s)x(g, t)Jl^,(g, t) is defined by the following; We put (/, s ) x ( g , t) = ( f x g ,

sxt)B and T(/x g)=T(f) x T(g)={(x, y) e T(f) x T(g)\f(x) =g(y)}. fx g :

T(fx g)^B, s x t:BB^T(fx g], T(nf): T(fx g)^T(f) and n(ng): T(fx g)-*T(g)
B B B B B

are given by fxg(x, y)=f(x) = g(y), sx t(b) = (s(b), t(b))9 T(nf)(x, y) = x and

T(ng)(x, y) = y.B
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(iii) Let (/, s) and (g, t) as above. We define their smash product (/, s) A
B

, y)for(x9 y)e T ( f x g ) ,
B B B B B

and sAt:B->T(/Ag) are given by f*g(xAy)=f(x) = g(y) and sAt(b)
B B B B B

B
(iv) Let (/, s) be a pointed space over B. Let us define a suspension

functor TopJB^TopJB by £B(/, 5) = F(S1
? *)A(/? 5), where (S1, *) is a

B
circle with a base point *.

We give some propositions we need without proofs.

Propositions 1.5 ([8]). (i) The functor 0: Top^/JB-^Top* preserves

cofibrations.

(ii) Let A : Top#/5xTop*/5->Top4s/J5 be the smash product over B.
B

For any pointed space (/, s) over B, the functors (/, S)A( — ), ( — )A(/, s):

J3 preserve cofibrations.

(iii) Let X = ]LB: Top^/jB-^Top^/l? fee Zfte suspension functor on

is a natural map A: (h"9 w")-»X (h', u') for each cofiber sequence

(hr, M')-U(/z? u)-i~*(h\ u") in Top^/B such that (ft, w)-U(ft", u")-^Z (^'? "')

(ft", u")-^^ (h', w')-^Z (^» ") ^^ cofiber sequences.

(iy) ZJB preserves cofibrations and commutes with <£: rftar zs, ^°Sg

°^? where X *'w ̂ e rz'^fcf ftand zs tfte wswa/ suspension functor on Top*.

Deinition Io6e Consider the natural transformation (p = a~1(l^): ITOP»N/B

-*Fo(l). For a pointed space (/, s) over B? let C^f, s) be the mapping cone of

<P</,s): (/> s)-»Fo(P(/, s), and let c(ftS): r°$(f9 s^C^f, s) be the natural

inclusion. Thus we define a functor Cv : Top^/5-^Top^./.S and a natural cofiber

sequence (/, s) -^^ Foef>(/, s)-^-l> C9(f, s).

Let ft^. be a reduced homology theory on Top*. Putting sft*=ft*°^, we

have a homology theory ^ft* on Top*/B ([8], Corollary 2.2).

Construction 1.7. Let ft^ and ^ft^ as above, and let (/, s) and (g9 t) be

pointed spaces over B. We form a sequence of natural cofibrations.

i factors

C,(/,s)-**ro*C,(/,s)-s-»CJ(/,s), where C*, = C~^Cf

0 = 0,1,2,...)



THE ElLENBERG-MOORE SPECTRAL SEQUENCE 893

We apply the functor to, i) A (—) to the above cofibrations to have the following

sequence of cofibrations by (1.5).

to, 0 A (/, s) -î > to, o A ro<f>(/3 s) -LA., to, t) A c9(g, t)
B B

B 9 B 9 ' B ^ '

to, o A c$,(/, s) -iA^ to, o A ro<f>q,(/3 s) -iA!> to, o A cj,+1to, o
B V B ^ B

Thus we obtain the following long exact sequence for each i = 0, 1, 2,

B B

q 5 B 9 q ? B 9

— 2,...9qeZ). The Kunneth spectral sequence in the category Top^/B is

defined to be the spectral sequence associated with the exact couple <Dpjq,

To discuss the convergence problem, we have to define a filtration

on B/i*(to, 0A(/3 s)). Considering the suspension category associated with
B

the category Top^/B ([3]), we "desuspend" the map to, t)/\ C^+1(/3 s)-^4>

to, 0 A Z CJ,(/, s)s S to> 0 A C{,(/, s) and obtain a map Z"1 to, 0 A C j,+1(/? s)
B B B

-»to, 0ACi,(/, s). Thus we have the following sequence of maps of the sus-
B

pension category.

to, 0 A (/, 5) <— Z'1 to, 0 A c,(/, s) <— z-2to, 0 A cj(/, *)<
B B B

B ^ B ^

We put FM = Im { ,̂((3, 0 A C~»(f, s))s BV,(XP to, 0 A C/(/5 s)) >

B^P+.(to, OA(/, s))} (p£0, qeZ)

-'(f, s))-*Bhq((g, OAC;*+I(/, s))}
B

, s))}].
B B

By the construction of the spectral sequence, we have Ei~l^E%~£^ ••••=> Er
p,q^

&+}=>-. We set ^.^Argi-pBJ.,, and note that Bhn((g, OA(/, s))=F0,n
B

ition Io8o There is a short exact sequence
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0— > FM/Fp_liS+1 — ££,— > AM—^ 0 (p£0, «eZ).

See [9] p. 464 ~ p. 470 for a proof.

Remark 1.9. There is an edge homomorphism Bhn((g, 0A(/> s))=F0in

Propositions 1.10. Lef (/, s), (g, f) be pointed spaces over B, then the

following facts hold.

(i) #or°$(/, s) = (B+)AT(/)/sB, w/zere B+=BJi{*} (disjoint union).

Hence Bh*(r**(f, s)) =fi,((B+) A T(/)/sB).
(ii) Let

(/, s))= Tfo) x T(f)llT(g) U sT(/) wfcere Z: T(g)^T(g) x T(f), s: T(J)-*T(g) x
B 5 S

T(/) are maps de/med fey t(y) = (y, s°g(y))9 s(x) = (t°f(x), x).

(iii) $((g, i)/\r°$(f9 s)) is naturally homeomorphic to T(g)/tBA T(f)/sB

= 7X0) x T(/)/r(/) xsButBx T(f).
(iv) The map (1 A qi)*: Bhjt(g, t) A (/, s))-+BhJt(g, f) A Fo^(/5 5)) coincides

with the map hq(T(g) x T(f)/tT(g) (JBsT(D)-»hq(T(g) x T(/)/T(0) x sB U r5 x

T(/)) induced by the inclusion T(g)xT(f)<=T(f)xT(g).
B

Proofs are immediate from the definitions.

Lemma 1.11. Let B be a simply connected space and let (/, s) be a

pointed space over B such that BHt(f, s) = Hi(T(f)/sB) = Q for i<k. Then

gH^C^/, s)) = 0/or i<lc-f2, where Ht is the ordinary homology theory.

Proof. By the Kiinneth theorem of the ordinary homology, we have

) = Hi((B+)/\T(f)/sB) = Q for i<k and the smash product H0(B+)

)->ffi((B+)AT(/)/s5) is an isomorphism for i = k, fe+1. It
follows that (e A 1).: BHt(r^(^ s)) = Ht((B+) A T(/)/sB) -> H,(S° A T (/)/sB)

= BHf(/, s) is an isomorphism for i < k + 2, where e: B+ -^S0 is the collapsing map.

Since the composition BHt(f, s)-^//f(F°$(/? s)) (e^}*>BHJJ, s) is the identity

map, cp* is an isomorphism for i<k + 2. Consider the long exact sequence

associated with the cofibration (/, s)-?-»r°$(f, s)-UC<p(/, s), then the result

follows.

Corollary 1.12. Let h* be a connective homology theory and let B be a

simply connected space. For any pointed space (/, s) over B, B
ni(£q>(f? sj) = 0

for i<2p.

Proof. Applying 1.11, we see that i^.(C£(/, s)) = 0 for i<2p by induction
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on p. Then we have Ht(^Cp
9(f, s); K+(S°)) = Q for i<2p by the universal

coefficient theorem of the ordinary homology. Consider the Atiyah-Hirzebruch

spectral sequence H £$€*,(/, s); hj(S°))^hi+j(^Cp
v(f, s)), then we have the

result.

Lemma 1.13. Let (/, s), (g, t) be pointed spaces over B. If f: T(f)-*R

is a Serre fibering whose fiber F is path connected, and if BHt(f, s) = 0/0r i<k,

then BHt((g3 t)/\(f, s)) = 0/or i<k.
B

Proof. Since sB is a retract of T(/), the long exact sequence associated

with the cofibering sB-+T(f)-*T(f)/sB splits into short exact sequences 0-»

H£sB)-*H£r(fy)-+ft£r(f)lsB)-+Q (z = 0,l,2,.. .). The assumption implies
that HfeB^H^f)) is an isomorphism for i < k. Hence /* : H£r(f))^H£B)

is an isomorphism for i<k. Since the composition Hi(F)-*Hi(T(f))-*Hi(B) Is

zero unless i = 0, we have Ht(F) = Q for 0<i</c. Consider the Serre spectral

sequence associated with the induced fibering F-»T(g)xT(f)-^>T(g) by the

map g. Then E2
piq = Hp(T(g); Hq(F)) = Q for 0<^<Jc Implies E£fl = 0 for

0<q<k. Hence we have F i_1 > 1=0 for i<lc which yields that the edge

homomorphism Hi(T(g)xT(fJ) = Fio-^EfQciE:j'()=Hi(T(g)) is injective for
B . . .

i<fc. Since T(^) is a retract of T ( g ) x T ( f ) , it follows that f^: H£T(g))->
B

Hi(T(g)xT(f)) is an isomorphism for i<k. Noting that rT(gf) n sT(/) = {*}
B

x sB5 consider the long exact sequence associated with the cofibering T(g) f >

lT(g) U sT(/)-> T(f)lsB. Since T(g) is a retract of lT(g) U sT(/) and St{T(f)l

sB) = Q for i</c, i: H£T(g))-+HtfT(g)\jsT(f)) is an isomorphism for i<fc.

By the commutativity of the diagram

T(g) U 5 T(f)) - > ^( r(^) x T(f))

H$T(g)\)sT(f))-*H£T(g)xT(f)) Is an isomorphism for i<k. Since
B

&((9> 0A(/3
 5)) is the cofiber of the inclusion lT(g) U sT(/) cT(g)x T(f) by

S B
(1.10), we have BH£(g, t) A(/» s)) = ° for l'<k-

s

Lemma 1.14. Ler (/, s) be a pointed space over B.

( I) Iff: T(/)->B is a Serrefibration, so is C9(J): T(C9(f, s))^B.

(ii.) // ffce rota/ space T(f) is path connected, each fiber of C9(f):
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T(C9(f, s))-+B is also path connected.

(in) If B is path connected, so is the total space T(Cv(f, s)).

Proofs are straightforward from the construction of C9.

Corollary 1.15. Let h* be a connective homology theory and let B be a

simply connected space. Then, for pointed spaces (g, t), (/, s) over B such

thatf: T(f)-+B is a Serre fibration, we have Bhq((g, f)AC£(/> s)) = 0/or q<2p
B

and p^2.

Proof. By the above lemmas, C*(f): T(C*(f, s))-*B is a Serre

fibration whose fiber is path connected if p^2 and BHq(C^(f, s)) = 0 for q<2p.

Hence (1.12) implies BHq((g, 0A^>(/> s)) = 0 for q<2p and p^2. Applying
B

the Atiyah-Hirzebruch spectral sequence, the result follows.

It follows from (1.15) that Ap>q = Q for j?^0, q e Z, and n^0 Fptn.p = 0 (in

fact, Fpjrt_p = 0 for p<min{ — n, —1}). Now we have a sufficient condition

for the convergence.

Theorem 1.16. Assume that h% is a connective homology theory and

(/, s) is a pointed space over a simply connected space B such that f: T(/)-»B

is a Serre fibration. Then, for any pointed space (g, t) over B, the Kunneth

spectral sequence constructed in (1.7) converges to Bh^((g, t) A (/, s)).
B

In order to make an identification of the E2-term in terms of homological

algebra, we have to assume some conditions. Let (/, s), (g, t) be pointed spaces

over B.

Assumptions 1.17. (i) h* is a multiplicative homology theory on Top*

(not necessarily connective).

(ii) K*(B+) is a flat /z*(S°>-module.

(iii) Either h*(T(f)/sB) or h*(T(g)/tB) is flat over

Under the above assumptions, the smash products n^(B+)

AZ), h*(X)®h*(B+)-+h*(X A(B+)) are isomorphisms for any pointed space

(X, x0), where the tensor products are taken over h*(SQ). Define ^L : T(f)jsB

-»(B+)AT(/)/sB and \//R: T(g)/tB^T(g)ltBA(B+) by \l/Lon(x)=f(x)*n(x)

and ^R°p(y) = p(y)^g(x) respectively, where n: T(f)-+T(f)lsB and p: T(g)

-*T(g)/tB are collapsing maps. Note that ^L = ^R = (the diagonal map of B) if

(/, s) = (0, t) = r(S°,*). We put C=K+(B+) ( = Bh*(r(S°, *))) and define a
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coproduct C-»C®C to be the composite of the map Induced by the diagonal

map and the inverse of the smash product. The counit C-»h*(S°) is the map

induced by the collapsing map s: B+-*SQ. Let us define a left coaction of C

on Bh#(f, s) and a right coaction on Bh^(g9 f) as follows.

T(/)/sB) -^

i,(/, s)

Note that the following diagrams are commutative, where Tis the swiching map.

r)

We construct a natural map 0: Bh^,((g, i)/\(f, s))-^- Bh^(g , ODfl^*(/, 5)
5

under the assumption 1.17, where the cotensor products are taken over

the coalgebra C. Let s, t be maps defined in (1.10), then the composition

of maps T(g) x T(f)llT(g) U sT(f)-i+T(g) x T(/)/r(») x sB u tB x T(J)=T(g)l

tBA T(f)lsB±^T(s)ltB/\(B+)/\T(f}lsB coincides with the composition

x T(f)llT(jg)0 sT(f)J^ T(g)x T(f)IT(g) x sB U (Bx T(/)= r(0)/r5

-^4 T(^)/fB A (B+) A T(/)/sB, where ,u is induced by the inclusion T(gr) x T(f)
B

c T(gf) x T(f). Noting that the smash products h*(T(g)ltB)®h*(T(f)/sB)

^h*(T(g)ItBA T(f)lsB) and fi»(Tto)/«)®^(B+)®fi,(r(/)/sB)-A.fi1|l(rto)/^

A(B+ )A T(f)fsB) are isomorphisms, we see that the map Bh*((g, t)/\(f, s)) =

x T(f)ftT(g) U sT(/)) -^ h*(T(g)/tBA T(f)/sB) ^>

) = Bh*(g, 0®*fe*(/» s) is lifted to the maP ̂ «

Lemma 1.18. BK#(r°$(f9 s)) is aw injective C-comodule. In fact the

smash product gives an isomorphism as comodules

C®Bh+(f9 s) = Kt(B+)®K(T(J)lsB)^+((B+)AT(f)W^ s)).

Proof is straightforward.
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Lemma 1.19. The natural map 9: Bh*((g, t) AFo$(/, s))-*Bh*(g, t)
B

OBh*(F°<P(f, SJ) is ®n isomorphism.

Proof. Just note that the geometric fact T(g)x(BxT(f)/sB)^T(g)x
B

T(f)jsB corresponds to the algebraic fact

Lemma 1.20. 0->afc,(/, s^^M^lf, sy)-2^Bht(r°*°C9(f, «))->• ••->

ro^oCj,(/, s))-2^Bfc*(ro4>oCJ,+1(/, s))-»--- is an injective resolution of

Proof. The composition BA*( W, s))^BM^0<^0 W> *)) = £® B**( W,

s)) £*®l>Bh*(Ci
(p(f, s)) is the identity. Thus p* is a monomorphism, and the

long exact sequence associated with the cofibration C{,(/, s)-^Fo^oCJ,(/, s)

^Cj,+1(/5 s) splits into a short exact sequence 0-^s/z^(Cj,(/, s))-*^Bh*(ro$o

£}p(f> sJ)-^Bh^(Ci
(^

1(f9 s))-»0 of C-comodules. Splice these exact sequences

for i = 0, 1, 2,..., and use (1.18), we have the result.

Remark 1.21. Under (i), (ii) of (1.17), the category of C-comodules

becomes a relative abelian category ([1], [5]) and Bh* is a homology theory

Top#/B-»(the category of C-comodules). By the proof of (1 .20), the C-comodule

homomorphism (p%: Bft*(/, s)-*Bh#(r<>$(f, s)) is a split monomorphism as a

^*(S'0)-module homomorphism.

Theorem 1,22. Under Assumptions 1.17, £/ie E2-term of the Kunneth

spectral sequence is naturally isomorphic to Cotorji# (Bh%(g, t), Bh#(f, s))

Gifc,to, 0, Bfc*a ^))).

Proo/. This follows from (1.19) and (1.20).

.23. (i) The edge homomorph

, i), Bh*(f, s)) = Bh#(g9 f)^]Bh*(f, s) coincides with the natural

Remarks 1.23. (i) The edge homomorphism Bh*((g, f)A(/> 5))~^^o n =
B

map 0.

(ii) (1.17) is always satisfied if h% is ordinary homology theory over a

field or Morava K-theory.

(iii) We consider the category of spaces over B, denoted by Top/B. An

object of Top/B is a continuous map/: T(/)-»B, and a morphism (p:f-*g in

Top/5 is a continuous map T(q>): T(f)-+T(g) such that g°T(<p)=f. Define a

functor G : Top/B-»Top*/B as follows. Put G(/) = (/+ , sf) and T(G(/)) = T(/+)
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= T(/)JJL£ (disjoint union), /+ and sf are given by f+(x)=f(x) for x e T ( f )

f+(b) = b for b E B and sf(b) = b. Then it is easy to verify that #(G(/)) = T(f)+

and $(G(g) A G(/)) = (T(g) x T(/))+ where/and g are spaces over B. Therefore,
B B

if a fiber product of/ and g is given, the Kiinneth spectral sequence associated

with G(/) and G(g) is the Eilenberg-Moore spectral sequence ([7], [8]).

§ 20 A between the Algebraic Bocksteim HomomorpMsm and the

Geometric Homomorphlsm

Throughout this section, we assume that B is a simply connected space

such that H*(B: Z(Z)) is flat and that (/, s), (g, f) are pointed spaces over B such

that both H*(T(f)lsB: Z(l)) and H*(T(g)ltB: Z(0) are flat and/: T(f)-+B is

a Serre fibration, where / is a fixed prime number. Note that a Z(/)-module is
flat if and only if it is torsion free.

Lemma 2ol0 Under the above assumptions, Bff+(C{,(/, s): Z(/)) (z = 0, 1,

2,...) is

Proof. Inductively, assume that SH^(C^(/, s) : Z(/)) is flat. The cofibration

CJ,(/, 5) -5U FocpoCj//, s)-^Cj,+ 1(/? s) gives a short exact sequence 0-»BH*

(C;(/? s): Z(0)^s^(Fo^oCj,(/3 s): Z(0HBH*(C^(/5 s): Z(I))-*0 which splits

as Z(0-modules. By (1.18), gH^rofaC^f, s): Z(I)) is isomorphic to H*(B: Z(/))

®BH*(Ci
(p(f, s): Z(0) which is also flat. Hence BH^(C^l(f, s): Z(0) is flat.

Consider two Kiinneth spectral sequences converging to BH*((g9 0A(/» s):

Ff) and aH*^, 0 A (/, s) : Z(0). We put
5

Di., = BHg((g, 0 A C^(/, s) : F,), £;., = BH,((g, 0 A F^oC-p(f, S) : F,)
B B

Dl
P,q = BHq((g, 0 A C?(f, s) : Z(1)), £i,, = BH,((0, t) A ro^oC/C/, s) : Z(I)).

S £

By (1.19) and (2.1), E^j9 is torsion free. Hence the Bockstein exact sequence

associated splits into short exact sequences 0->E£(g-^E£>€-^->E£>9->0. Note

that the multiplication by / and the mod I reduction p induce maps of exact

couples. Taking the homologies of complexes {£*,*, 31} and {Ei,*, d1}, we

have the algebraic Bockstein homomorphism S: E*}q-*Ep_1)q as the boundary

homomorphism.

2o2o If xeE*jq is a permanent cycle, §xeE*_1}q is also a
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permanent cycle. Let XEFpfq be the element of BH*((g, f )A( /> s); Ft) corre-
B

spending to x, then dxe Fp_liq = lm{D^_ltq-^D^p+q_l} and dx corresponds

to the permanent cycle -dx, where d: BHn((g, f)A( /> s)\ F,)-> B/f „_!((#, 0A(/?
B B

s); Z(/)) is the geometric Bockstein homomorphism.

Remark 2.3. In the case x = 0 in the E°°-term, the above statement means

that dx = 0 in the E°°-term. If x ^ 0 and Sx = 0 in each E°°-terms? we assert that

The following lemma implies the above theorem.

Lemma 2A Let X-i->Y-L+Z be a cofibration such that H*(Y; Z(?)) is

torsion free. Suppose that a space W and a map k; Z-^W such that B*(W;

Z(z)) is torsion free are given. Let d, d'; Hq(X; Fi)->Hq(W
m, Z^)/lmk^°j^ be

the maps defined as follows, for each xeHq(X; Fj), take yeHq(Y; Z([)) such

that py = i*x. We can take zeHq(Zi Z(i)) such that lz=j*y. Then dx is

defined to be the image of k*z by the projections: Hq(W: Z(l))-+Hq(W: Z(Z))/

ImfcfcO/j . On the other hand, there exists z'eHq(Zi Z(Z)) such that Az' = dx,

where d: Hq(X; F^-^H^^X: Z(l)) is the Bockstein homomorphism and

A: Hq(Z; Z^-^H^^X; Z(0) is the boundary homomorphism. d'x is defined

to be n°k*zf. Then d=-df holds.

Proof. It is easy to check that d and d' are well-defined. We may assume

Jfc: 7 and replace Hq(Z; Z(0) by Hq(Y, X\ Z(l)). Let S+(X) and S*(Y) be the

singular chain complexes of X and 7 with Z(0-coefficients. For xeHq(Xi Ft),

we take a chain aeSq(X) such that x is represented by the cycle p$a (pff is the

mod I reduction map). We put da=la (a 6 S^_ iPO), where d is the differential

of S#(X). Since Hq(Y; Z(Z)) is torsion free, we can take a cycle a e Sq(Y) such

that p$a is homologous to i$°p$a. Therefore a — ae lSq(Y) + d(Sq+l(YJ), and

we put cr — 5 = I ft + di (ft e Sq(Y), teSq+ ^YJ). Since a is a cycle, a + di is also

a cycle homologous to a. So we may replace a + dtby a and we have 0 = 0 +1 ft.

It follows from dff = loc that d/3 = a. Since j$d=—lf$, —d($=—a represents

Az' eHq-^X', Z(Z)). On the other hand, <5xe jS^.^Z: Z(Z)) is represented by

a. This completes the proof.

Proof of (2.2). We put X = <f%9 0 A C~*(f9 s)), 7- $((g, t) A F o^o C^(/,

£^j3 is a permanent cycle. Let x' e E^>q = Hq(Y; Ft) be a cycle which represents

x. Since x' is also a permanent cycle, there exist yeD^q = Hq(X; Ft) such that
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(1 A (p)#y = x'. Then, it is easy to see that dy = dx in Ep_liq. dy is an element

coming from D£ _ i>q = Hq(Z: Z(/)) by the definition of d. Thus Sx is a permanent

cycle. By the preceding lemma, dx belongs to Fp_liq and corresponds to —Sx.

§ 3o On the Homology

Let B be a path connected topological space with a base point * and let

PB be the space of paths in B starting from *. And let us denote by p: PB-^B

the evaluation map at 1, and also denote by i: *-*B the inclusion. We fix

these notations throughout this section. The following lemma is easily verified.

.1. (i) The total space of Fo^oG(p) is given by (BxPB)lLB

and the projection (B x PB)MB-+B maps both (b, l)eBxPB and beB to b.

The section B-»(BxPB)llB maps b to b. Moreover, (p: G(p)-*F°$°G(p) is

given by T((p)(l) = (/(!), I) for lePB, T((p)(b) = b for b e B.

(ii) The total space of C^G(p) is the quotient space of (PB x I)M(B x PB)

by the equivalence relation generated by (I, 1)~(/(1), I) and (/', 0)~(/", 0) if

/'(!) = /"(I). The projection is given by [/, r]-»/(l), [6, l]-*b for lePB, rel,

beB, and the section is given by b->[/b, 0], where lb is any element of PB

such that lb(l) = b. And the inclusion c: r°$<>G(p)->C<poG(p) is given by T(c)-

(b, /) = [&, 1], r(0(&) = [/5, 0], where beB, lePB and lb is as above.

We denote the total space of C9°G(p) by TB and denote the projection and

the section by p: TB-»B and s: B-*TB.

Lemma 3020 (i) Let (/, s) be a pointed space over B, then we

have cp(G(i)A(/, s))=f -*(*). In particular, we have @(G(i)AG(p)) = QB+9

®(G(i)*r°®oG(p)) = PB+, ®(G(i)/\CoG(p)) = PBuCQB, where CQB is the
B B

unreduced cone QB x I/OB x {0} with a base point QB x {0}/QB x {0} and we

identify (DeQB(ciPB) with [co, 1] E CQB. Moreover, 0(1 A (p) and <P(1 A t)

are natural inclusions QB+-+PB+, PB+-^PB(j CQB.

(ii) ^(G(0 A ro$oC9oG(p)) = ®oC9oG(p) = TB/sB = ((PB x 1) Ji
B

(B x PB)/9j] ll^ /x , and 4>(1 A <p): PB U CQB-*TBlsB is given by ^(1 A <p)-I \i , uj ~ \i , uj

3 t]) = [G), f]

Proof, (i) is straightforward, (ii) is verified by applying (1.10), (iii).

Lemma 3.3. Define n: TBlsB-*B by n[b, /] = b, n[_l, f\ = l(t), then n is a
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natural (stable) homotopy equivalence and the diagram

=

pr + U

B+ . ISM* » B

is commutative, where pr: B x PB^>B is the projection pr(b, l) = b.

Proof. Commutativity of the above diagram is obvious. Consider the

following homotopy commutative diagram.

S° ={*,+}-±^ B+
 lgl>* > B

where e: PB-»*. The both horizontal rows are cofiber sequences and e+ and

pr+ are homotopy equivalences. Hence we have the result.

Lemma 3.4 Let c: PB u CQB-*^ QB be the map which collapses PB u

{[o?0, r]|o>0 is the constant loop at *} to the base point and let a: £ QB-*B

be the adjoint of the identity map ofQB; that is, a is defined by o~([co, tj) = a>(f).

Then, c is a homotopy equivalence and the following diagram is commutative.

A C-oG(p)) = PBU CQB -
B

Ar°$oC9°G(p))=TBrsB _£-> B

Proof. It is obvious that c is a homotopy equivalence, and we can verify

that the diagram commutes, applying (3.2) and (3.3).

Let h* be a multiplicative homology theory on Top*, and let us consider

the Kiinneth spectral sequence associated with h* and the pointed spaces G(z),

G(p). In other words we consider the Eilenberg-Moore spectral sequence as-

sociated with the path fibering QB-»PB-*B. The preceding lemma implies

the following.

Theorem 3.5* Assume that h*(B) is a f l a t h*(pi)-module. Then F.1>n+1

= hn(QB) = ktT {hn(QB)-*hn(pi)} and the composition Uw(OB) = F_1 > n + 1-»F_ l j n + 1

IF-2,n+2CL^-i,n+i^E-i,n+1 =-P^ii+i^)01 nn+i(®) coincides with the homology
suspension hn(QB)^hn+1(^ QB)-?^hn+l(B), where Ph%(B) is the submodule of

h%(B) consists of primitive elements which is naturally identified with Cotor**/^-
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and we identify E-I./I+I with Color h-^+l(h^(pt), h+(pt)) as

in Section 1.

Corollary 3060 Under the same assumption as above, if the homology

suspension a*: hn(QB)-»hn + l(B) maps surjectively onto Phn+1(B), every element

of E^l>n^.l is a permanent cycle. Assume further that the Kunneth spectral

sequence converges. If every element of ELl}H+l is a permanent cycle, a*

maps hn(QB) surjectively onto Phn+1(B).
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