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§1. Imtroductiom

Let (P, g, B, G) be a principal fibre bundle with structure group G and with
projection q. In [21] we have considered the group of G-equivariant homotopy
classes of unbased (resp. based) G-equivariant self homotopy equivalences of
the total space P under the free G-action on P. The group structure is given
by the composition of maps. This group is denoted by F;(P) (resp. &x(P)).
In this note we shall continue to study this group and obtain a generalization
of Theorem 2.1 in [21] (Theorem 2.2 in §2), which will enable us to compute
the group Z4(P), even if P is not simply-connected. It is shown that if any
finite group of order greater than 2 acts freely on the sphere S2"*! (n=0), then
F(S?"t1)=1. We also show that ZF;(P) and &4(P) are finitely presented
groups under suitable conditions. In §3 we shall study the Samelson products
of the classical groups U(n) and SO(n) to compute the group Z4(P). Examples
are worked out in §4.

Notations are used as in [21]. For example, we denote the homotopy set
[X, {x0}; Y, {yo}] by [X, Y] for spaces X, Y with base points x,, y,, and we
do not distinguish a map and its homotopy class. We take, if necessary, the
unit of a topological group as the base point.

§2. Statement of Theorem

We consider a numerable principal G-bundle (see [6, p. 248])
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(Pk’ q, Bs G)

with total space P= P,, base space B and projection q: P,— B, structure group G
and classifying map k: B—»B;. We always assume that G, P, B are compactly-
generated Hausdorff spaces. We also assume one of the following:

(i) Bis a CW-complex,

(ii) G is compact,

(iii) B is locally compact.

Any self bundle map f on P induces naturally a self map f on the base
space B such that qf=fq and this construction determines a continuous map
@: mapg (P, P)»map, (B, B), where map, (B, B) is the space of maps g: B—B
such that kg is freely homotopic to k. By the covering homotopy theorem
for bundle maps (cf. [6, (7.8)]), it follows that & is a Serre fibration with fibre
the space I;(P) of unbased bundle equivalences over B. It is easy to see
&~ (aut,(B))=autg (P), where aut, (B)=aut BN map, (B, B). Hence we have
a Serre fibration:

[4(P)-%s autg (P) -2 aut, (B).

d
By using the group isomorphism ny(I4(P))=n,(map (B, Bg), k) (see [21,
p. 88]) and n,(aut, (B), 1)~ n,(map (B, B), 1), we have the following theorem:

Theorem 2.1 ([21, Theorem 1.5]). Let (P, q, B, G) be a numerable
principal G-bundle. Then we have the exact sequence of groups:

n(map (B, B), )42 m,(map (B, Bg), k)-¥> Fo(Py) 2> F(B) — 1,
where k*: map (B, B)»map (B, Bg) is given by k*(f)=kf, Z4(P,)=mny(aut z(P)),
F(B)=mny(aut, (B)), p=P, on ny, and v=i,d .

Especially if B is a suspended complex of a connected complex, then we

have the following, which is a generalization of Theorem 2.1 in [21].

Theorem 2.2. Let (P, q, SZ, G) be a numerable principal G-bundle
over suspended complex SZ, where Z is a connected CW-complex (ke [SZ, Bgl=
[Z, G]). Then we have the following commutative diagram with exact rows of

groups except at 0:

[52Z, SZ]/[1, n(SZ)] — m,(map (SZ, Bg), k)~ F(Py) 2> FSZ) — 1

I |

1 — [SZ, G]/Kk, n,(G)) — m,(map (SZ, Bg), k)25 mo(G)-% [Z, G],
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where 1=15,€[SZ, SZ], [1, 1Kk, >) is a generalized Whitehead (Samelson)
product (cf. [1]), and } is induced by the characteristic homomorphism y:
[S?Z, SZ]1-[SZ, G].
Especially if G is 1-connected, then we have the following exact sequence
of groups:
[S2Z, P14 [8%Z, SZ] -5 [SZ, G] 2 F(Py) L F(SZ) — 1.
Proof. By considering the evaluation fibration

w: map(SZ, Dy— D with fibre map, (SZ, D)

for D=SZ or B, we have the following commutative diagram with exact rows
of groups except at 6:

n,(SZ) 4, n(map, (SZ, SZ), 1) — n,(map(SZ, SZ), 1)

(2.3) J.k' J'(k#)e ¥y
my(Bg) 45 ny(mapy (SZ, Bg), k) — m,(map (SZ, Bg), k)

[«

— 11(Bg) =71o(G)-L no(mapy (SZ, Bg), k)

Since map, (SZ, D) is an invertible H-space, it follows that for any element f
of mapy (SZ, D) the multiplication by B induces a self equivalence f of
mapy (SZ, D) so that

n(mapy (SZ, D), B) < n(map, (SZ, D), »)=[S*"1Z, D],

where * denotes the constant map. The following diagram is also commutative,
since k* is an H-map.

1,(SZ) ke > 75(Bg)
Z
7,(G)
[1, 1 l(k, N [k, 1
sz, G]
A\
[82Z,8SZ] — k=, [S82Z, B;]

n(map(SZ, SZ), x) 4D, 1, (map,(SZ, Bg), *)

gln ;lzt

ny(mapy(SZ, SZ), 1) 4D, 1 (map,(SZ, Bg), k)
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The composition of the vertical maps are 4 and A4’ by [12, Theorem 2.6].
Hence by (2.3) we have the commutative diagram with exact rows of groups
except at 6.

1— [S?2Z, SZ]/[1, n,(SZ)] — =n,(map (SZ, SZ), 1) — 1
12 l(k“)*
1 — [SZ, G]/Kk, n,(G)) — m,(map (SZ, Bg), k) -2 74(G) -4 [Z, G].

Therefore by Theorem 2.1 we obtain the first diagram in Theorem 2.2.
The last sequence in Theorem 2.2 follows by the first diagram and the

well-known exact sequence:
[SY, P] 4= [SY, B] %> [Y, G,
where (P, q, B, G)is a principal G-bundle and Y is a CW-complex. g.e.d.

Corollary 2.4. Let (P, q, S*, G) (n=2) be a numerable principal G-
bundle with classifying map ke n,(Bg)=m,_,(G). Then we have the following
commutative diagram with exact rows of groups except at 0:

Tyt 1(S") — my(map (S", ﬁ(;), k) 2 F4(P) L F(SM) — 1
1 — 7(G)/<k, 7,(G)y — my(map (S", By), k) 24> my(G) —2> m,_(G),

where Z#(S") is Z, or 1 according as 2k is zero or not.
In particular, if G is path-connected, then we have the exact sequence:

Mp+1(S") o 1 (G)/<k, m4(G)) = F(Py) - F(S™) — 1.

Theorem 2.5. Let G be a finite group of order greater than 2, and let G
act on the odd dimensional sphere S?"*! (n=0) freely. Then

F(Srt)=1.

Proof. Tt is well-known that (S2"*1, q, S?"*1/G=M, G) is a principal
G-bundle. By the result of [15, Theorem 1.4],

E(M)< Aut n (M),
where the injection is given by the induced homomorphism on the fundamental
group 7,(M). We have the following diagram:
ny(map (M, M), 1) -5+, . (map (M, Bg), k)
(2.6) l(wm l(wz)*

(M) — ke, 71(Bg) —& mo(S2"*1)=0.
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In this diagram one can see that the evaluation homomorphism (w,),
is a monomorphism, since 7,(map, (M, Bg), k)=0 by the similar way of the
proof in [8, Lemma 3]. By the evaluation fibration:

aute M — aut M 24 M,

we have the following exact sequence:
n,(map (M, M), 1) {204 7 (M) -2 &(M) —> F(M) — 1,

where d(a) (xem,(M)) is given by the inner automorphism of =,(M) by « by
definition. Hence

Im (@) > Z(n(M)) (center of n,(M)).
On the contrary, by [8, p. 847]
Im (wy)y < Z(n,(M)).
Therefore we have Im (w,), =Z(n,(M)). Also by [9, Lemma 2]
Im (@5)s = Z(ks(m1(M)) .

Let n>0. Since n,(M)=mn,(B;)=G is a finite group, k, is an isomorphism
in (2.6). Therefore k, maps Im(w;), onto Im(w,),. Hence (k¥), is a
surjection. And by Theorem 2.1,

F (S ) =FM).

The last equality holds even if n=0, since in this case M is homeomorphic
to St and G is a cyclic group.
By the evaluation fibrations:

autg (S?rt1) 2, §2%+1 and autM 2> M,
we have the following commutative diagram:

Eg(S2MH1) — F,(S271)

lp’ J{ﬂ

where the homomorphism p’ is defined naturally. Every element f in F4(S?"*1)
is represented by an element f' in &4(S?"*'). And we have the following
commutative diagram:
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G L. G

l l

S2n+1 S’ S2n+1

J J

M I, M.
Hence f' induces the identity automorphism on the fundamental group =;(M).

Therefore f' is based homotopic to the identity map so that p(f)=1. Therefore
Z(M)=1. This completes the proof. g.e.d.

In the above proof we have shown the following:

Proposition 2.7. Let G be a finite group of order greater than 2, and let
G act on the odd dimensional sphere S?2"*1 (n=0) freely. Then the evaluation
subgroup G(8?"*1/G)=Z(G) (see [8]).

By the similar way (see [8]) we have the following, which is also obtained
by [3, p. 123] and [21, (1.4)].

Example 2.8. Let (S, q, PY(R), Z,) be a principal Z,-bundle over the

projective space. Then
F,(SN=2Z,.

Theorem 2.9. Let G be a Lie group with finitely many path-components
and let (Py, q, S", G) (n=2) be a numerable G-bundle. =~ Then F4(P,) is an
infinite group (finitely presented group) if and only if n,(G) is an infinite group.

Proof. Let G, be the path-component of G containing the unit. By a
result of Cartan-Marcev-Iwasawa, G, contains a maximal compact subgroup K,
which is a strong deformation retract of G, so that n,(G,)=n.(K). Note that
7,4+ 1(S™) is infinite if and only if n=2, and that 7,(G)=n,(G,)=n,(K)=0.
It follows that #(P,) is infinite if and only if #,(G)/(k, 7,(G)) is infinite by
Corollary 2.4. By a result of Serre, 7,(K)®Q =7, (S x §"@) x ... x S"M)R Q
for some odd integers m(1), m(2),..., m(r). Since n{K) is finitely generated
and 7,,(S?™*1) is finite, it follows that =,,(K) and hence 7,(G,) are finite so
that the Samelson product {n,(G,), 7;(Go)> (=<{n(G), n(G))) is a finite subgroup
of m;, (Go) (=m;,+{(G)) for every i, j=1. In particular <k, n,;(G)) is finite.
Therefore 7,(G)/<{k, n,(G)) is infinite if and only if =,(G) is infinite. This
completes the proof. g.e.d.

We have proved the following in the proof of Theorem 2.9.
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Proposition 2.10. If G is a Lie group, then the subgroup {m(G), n(G))
of m,4 (G) is finite for all I, r=1.

Example 2.11. If G=SO0(m) and n=m+r with m=11, 0=sr=<4 and
m+r=3(4), or with m=2(8), m=10 and r=—1, then n,_,(G) is non-trivial
and n,(Q) is infinite by [11]. In these cases we have non-trivial numerable
principal G-bundles (P, q, S", G) with Z4(P) infinite.

D. Sullivan [18] and C. Wilkerson [22] have shown independently &(X)
is a finitely presented group, when X is a simply-connected finite CW-complex.
We shall show that #;(P) and &;(P) are finitely presented groups under suitable
conditions. &(B) acts on [B, B;] by

(2.12) &(B)x [B, Bg]l — [B, Bgl; f-k=kf.
Let &,(B) be the isotropy group of &(B) at k of this action.

Theorem 2.13. Let (P, q, B, G) be a numerable principal G-bundle.
Assume that the base space B which is simply-connected and the structure
group G are path-connected finite CW-complexes and that &(B)-k is a finite
set in (2.12). Then F4(P) and &z(P) are finitely presented groups.

Proof. We shall show that in Theorem 2.1 n,(map (B, Bg), k) and ZF(B)
are finitely presented under the above conditions. We shall make use of the
Federer’s spectral sequence ([7, p. 351]) converging to mn.(map (B, Bg), k).
It is easy to see that Ef ;= H4(B, 7, ,(Bg)) is finitely generated abelian so that
EY , is finitely generated abelian. ~ Since the extension of finitely presented groups
is a finitely presented group, m,(map(B, Bg), k) is finitely presented by the
filtration of subgroups in the spectral sequence. &(B) is finitely presented by
[18, Theorem 10.3] or [22, Theorem 9.9]. Since B is simply-connected, &(B)
=%(B) and &(B)=F(B). In (2.12) it is easy to see &(B)/&(B)=8&(B) -k
(cf. [5, p. 40]). Since a subgroup of finite index in a finitely presented group
is finitely presented ([13, p. 93]), &(B) is finitely presented by the assumption.
Hence Z4(P) is finitely presented by Theorem 2.1.

Consider the evaluation fibration:

w: autg(P)— P with fibre autd (P).
Then we have the exact sequence:
ny(P) — 66(P) —> F&(P) — 0.

Now 7,(P) is finitely presented, since 7,(G) is finitely generated abelian. There-
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fore &,(P) is finitely presented. g.e.d.

In the rest of this section, we assume that the base space B is a simply-
connected finite CW-complex and the structure group G is a path-connected
finite CW-complex.

Corollary 2.14. If B is a double suspension of a finite CW-complex B’
such that the dimension of B’ is at most 2(1+ conn B'), where conn B’ denotes the
connectivity of B', and if k is of finite order in the group [B, Bg], then &g(P)
and F¢(P) are finitely presented.

Proof. We show that each element of £(B)- k has the finite order. Then
the conclusion follows from Theorem 2.13, since [B, B;] =[SB’, G] is finitely
generated abelian by [2, Lemma 1]. It follows from the Freudenthal suspension
theorem that the suspension homomorphism S,:[SB’, SB"]-[B, B] is
sujective and hence for each fe &(B) there exists f' € [SB’, SB’] with S,(f")=f.
Let m be the order of k. Then m(f- k)=m(kf)=m(kS.(f"))=(mk)S.(f")=0.

g.e.d.

We immediately have the following by Theorem 2.13.

Corollary 2.15. If &(B) or [B, B;] is finite, then &g(P) and FP) are
finitely presented.

Corollary 2.16. &4(G x B) and Z¢(G x B) are finitely presented.

§3. Samelson Products

By Corollary 2.4, we must compute the Samelson product (k, 7,(G))
(ke m4(G)) to calculate the group ZyP,). In this section we shall calculate
{m(U(n)), n,(U(n))) for I<2n and {(n,(SO(n)), n,(SO(n))) for I<n—1.

Let (G(n), d) be one of the pairs (SO(n), 1), (U(n), 2) and (Sp(n), 4).

Proposition 3.1. If I+r=d(n+1)—3, then {(n(G(n)), n,(G(n))>=0.

Proof. Let i=im: G(n)»G(n+m) be the inclusion defined by i™(4)=
A®I,, where I, is the m-dimensional unit matrix and 1<m=o. We define
a homotopy ¢,: G(n)—G(2n) by ¢,(A)=D,i"(A)D,, where

nt nt
_ <sm 5 >I,, (cos7>1,,
(=
cos —) (——sm—)
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Then ¢(1,)=1,,, po(A)=1,8A4 and ¢,=i". Therefore ¢, is homotopic to i"
relative to I, and (¢g)s=(i"x: mx(G(n))—n.(G(2n)). Since ¢o(A)d(B)=
¢1(B)po(A) for A, Be G(n), it follows that if a, b e n,(G(n)), then {(¢o)+(a),
(¢1)«(b)> =0 and hence

(3.2)  (Mx(Ka, b)) =<(M)«(a), (i"):(b))> =(¢0)x(a), ($1)«(b)>=0.

Using the homotopy exact sequence of G(m)LG(m+1)— Sdm+1)—1
it can be seen that if I<d(n+ 1)—3, then the inclusion i! induces isomorphisms
n(G(n)=n(G(n+1))=---, in particular (i"),: n(G(n))=n,(G(2n)). The con-
clusion then follows from (3.2) and naturality properties of the Samelson
products. g.e.d.

Coroliary 3.3. {(n(U(n)), n,(Un)))=0 for 1<2n—2 and <{m(SO(n)),
,(SO(n))> =0 for I<n-—3.
We shall use the well-known additive structure of n,(G(n)) for ISd(n+1)—3

without any reference.

Proposition 3.4. {ny 1 (UM), m,(U)) =Z,cx,,(Un) =2, and
{7y, (U(n)), n(U(n))) =m,,,(U(n)) which is Z, or 0 according as n is even
or odd.

Proof. Let 0: m(S?"*\)—»mn,_,(U(n)) be the boundary homomorphism
of the fibration U(n)—U(n+1)—S2"*1, and ¢=¢,en(S!) be the identity
map. Put 6'=(i""1),(¢;)en,(U(n)). Then

n(U(n)=2={0'}.
Let fen,,_(U(n)) be a generator. Then
Ton-1(UM)=Z={B}.
Recall that =, (Um)=2Z,, (cf. [19, p. 115]), which is generated by d¢,,. .
Since the order of {f, 8") is n by [4, Corollary], the first assertion follows.
By [10, (15.13) and (16.2)] we have
0¢, yp=108:Jj(y) (yem(U(n),
where j: U(n)=SO(2n), J is the J-homomorphism and S, is the suspension
homomorphism. Recall that Jj.(6")=#,,, where 7, e n5(S?) is the Hopf map
and 7,=(S,)""2(n,) € ;4 1(SY). Therefore
0¢, 0> =0M2p+1=(0¢2n+ 1 )M2n-
Since 7,,+1(U(n)) is Z, if n is even and 0 if n is odd by [19, Theorem 4.4], it



914 Hipeak1 OsaiMA AND Kouzou TSUKIYAMA

follows from the homotopy exact sequence of U(n)—U(n+1)—S?"+! that
0Ny, +1 generates m,,, (U(n)). This completes the proof. q.e.d.

Put a=0¢ en,,(U(n)). Then
Tn(U(M)=Z,, ={a}.

Let 4: n(S")—mn,_,(SO(n)) be the boundary homomorphism of SO(n)-‘L,
SO(n+1)—8". Put 0=(i""2),(¢,) e,(SO(n)). Then

1(SO(n))=Z,={0} if n=3.
By [11], 7,_,(SO(n)) is Z+Z if n=0(8)>0 and Z,+Z, if n=1(8)>1.

We can see easily that 4¢, is not zero and generates a direct summand of
n,—1(SO(m)) if n=0, 1(8)>1. Let x=x, denote any other generator of
7,—1(SO(n)). Then

,_(SO(m))={4¢,}+{x} if n=0, 1(®)>1.

Proposition 3.5. (i) {(m,_,(SO(n)), 0) is Z, if n=5,9 and 0 if n#5,9.

(ii) When n=0(8)>0, we have =, (SO(n)=Z+Z={4¢,}+{x},
m(SOM)=Z,+Z,+Zy={dn,} + {xn,- 1} +{jx(0)}, {4¢,, 0> =4n, and (x, 6>
=0 mod 4n, if n>8 and =j.(a) mod 4y, if n=8. We can choose x in the
image of (i%)y: n,_ (SO(n—3))—n,_,(SO(n)) if n>38, and then {x, 8> =0.

(iii) When n=1(8)>1, we have m,_(SO(n)=Z,+Z,={4¢,}+{x},
n(SOM))=Z,+Z, = {4n,} +{xn,- 1}, {4¢, 0>=4n, and <{x, 0>=0 mod 4y,
We can choose x with x € Im (i3), and then {x, 8> =0.

(iv) When n=2(8)>2, we have m,_(SO(n)=Z+Z,={4¢,} + {(iV)(x, -,
M-2)} T(SOM)=Z,={jx(0)}, {dty, ) =4n,=2j(0), and {(i")s(x,-17,-2);
0> =0.

(v) When n=34), n,_,(SO(n)) is Z, or 0 and =n,(SO(n))=Z. Thus
{7,-1(SO(n)), 6> =0.

(vi) When n=4(8), we have =, (SOn)=Z+Z={4¢,}+{js(B)},
T(SOM)=Z,+Z,={4n,} +{jx(0)}, <4¢,, O>=4n,, and {jx(B), 0>=(n/2—
DY(@).

(vil) When n=5(8), we have m,_,(SO(n))=Z,={4c¢,}, n(SO(n))=2,
={4n,}, and {4¢,, 0> =41,

(viii) When n=6(8), we have m=,_(SO(n)=Z={4¢,}, n(SO(n)=2,
={jx(@)} if n>6, ns(S0(6))=0, and {4¢,, 0> =An,=2j(a).

Proof. We only give the proof of (ii). Others can be proved by the
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similar and easier methods. In the rest of this section we always assume n=0(8)
>0.

It follows from [11] that

Ty 1(SOM)=Z+Z={dc,} +{x},
- 1(SO(n+1)) =Z={(i")«(x)} .
T,—1(S0(00)) =Z ={(i*)x(x)} ,

T (SO(0)) =Z, = {(i*)x(x1,- 1)} »

1 (SO(n+2))=Z,={(i*)x(x1,-1)} ,
T (SO(M)=Z,+Z,+Z,,

2 (SO(n+1))=Z,+Z,.

We prove
(3.6) t(SOM)=Zy+Z,+ Zy={dn,} + {x1,— 1} + {jx(®)} .

We can easily show that 45, and x#,_, are linearly independent by the homotopy
exact sequence of SO(n)—SO(n+1)—S". Consider the commutative diagram:

7,(S0(n))
Je l(i‘)a
{a} =22y, =7,(U(n/2)) — n,(SO(n +1)) — m,(SO(n+1)/U(n/2))

l(il)m l(i‘)a l(f)4

0= (U(n/2+ 1)) 2> 7,(SO(n+2) =Z, 22> 1Tz 1),

where I',,=SO0(2m)/U(m). As is easily seen, i! induces an embedding of
differentiable closed manifolds i: SOQ2m —1)/U(m—1)—S0O2m)/U(m). Since
both manifolds have the same dimension, i is a homeomorphism and hence
(i) is an isomorphism. We will use i to identify both manifolds. The fibration
SO(2m)|U(m)—SO(2m + 1)]U(m)—S?™ can then be written as I',,— 1,4, —S?™.
It follows that the natural maps induce isomorphisms 7,(I',) =7 [ ps{)=""-=
n(l,) if 1=2m—2. Recall that =n(I,)=m(0(0)/U(0))=n(RSO(0))=
T4 1(SO(0)). Thus n(l,4+1)="7,4,(SO(0))=Z, and hence p, is an iso-
morphism and =n,(SO(n+1)/U(n/2))=Z,. It follows that (i'),j.(«)#0. If
Jjx(@)=adn,+bxn,_,, then 0=(i2), j.(0)=b(i?)4(xn,_,) so that b=0 and
(i) jsx(x)=0. This is a contradiction. Thus j,(x) is not a linear combination
of An, and xn,_,; and hence (3.6) follows.
By [10, (15.13) and (16.2)],

Ay, yy=14J(y) (yemn(SO(m)).
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It follows that
(3'7) <A Cm 0) =Arln 2
since J(0)=n,, which is of order 2.

We shall use the formula on SO(2m) (m=2) to study {(x, 8)
D=F —C*F C*
of [10, 17.4], where F is the Bott suspension, { is the outer automorphism of

SO(2m) and D(y)=y, 6.
We shall give the proof of the following at the end of this section.

Lemma 3.8. The following triangle is commutative:
14 (SO(2m)) -5 7, (SO(2m))
(l")*\ (i)«
1.(SO(2m+1))

Assume n>8 and consider the exact sequence of SO(n—3)—SO(n+1)

->S0(n+1)[SO(n—3)=V,,1.4:
- 1(SO(n—3)) {25 1, (SO(n+1)) — T s (V41,0) — Ty 2(SO(n —3))
—> m,_,(SO(n+1))=0.

Recall that 7,_,(SO(n—3))=Z+Z, and =n,_,(SO(n—3))=Zg from [11] and

that 7,_;(V,+1,4)=Zg from [14]. Hence (i*), is an epimorphism. Let x’
be any generator of a free part of n,_;(SO(n—3)). Then (i!)4(x)= £ (i*)«(x")
and hence
(3.9 x= +(i%)4(x") mod 4c,
and (il)4(x") generates =,_,(SO(n—2))=Z (cf. [11]). Since (i2),.(xn,-1)
=(i%)x(x'n,— 1) by (3.9), and since n,(SO(n—2))=Z,,+Z, by [11], it follows
that (i'),(x'n,-,) generates a Z,-direct summand:
(3.10) (SO —2)=Zy3+Z;=Z1, +{(i)x(x"1,-1)} -
Consider the commutative diagram:

7, 1(SO(n—2)) £ 7, (SO(n—2))

l(iz)* J((iZ)*

7,-1(80 (n)) —F— 7,(SO(n))

J(iz)* l(ﬂ)*

7,-1(S0(n+2)) £ n,(SO(n+2)).
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Since =, _(SO(n+2)) is stable, F(y)=yn,_, on it by [10, 17.2]. Therefore
(i9)5F (1) (") = F(%)s(x") = ()5 N - 1 = (1) 5(i)sc(x 11— 1)

and hence

@3.11) FM)w(x) = (i)s(x'71, - 1) € Ker (i) -

On the other hand, by [11] and [14], we have the exact sequence of the fibration
S0(n—2)—S0(n)—SOn)/|SO(n—2)=V, ,: m,.(SO(n—2)=Z,—-mn,, (SO(n))=
2o+ Zy+Zy»my \(Va2)=Zos + Z, > 1,(SO(n =-2)=2Z, +Z2ﬂ> 7, (SO (n)).
Hence We have Ker(i?),=Z,, and Im (i?),=Z,={xn,_,+bdn,} for some
beZ,by(3.9)and (3.10). Let (i%).(F(i)x(x") — (iV)x(x'n,— 1)) =a(xn,_  + b4n,).
Then 0=(i*)x(F(i")x(x") = (i)s(xn,- 1)) =0a(i?)s(xn1,-,) by (3.11) and hence
a=0. Thus F(i').(x")—(")«(x'n,_,) € Ker (i?), and
F(i)y(x") = (2) F (i) (x") = (*)s(x"y - 1) -

By the naturality of {4 and Lemma 3.8, it follows that {,(i®).(x")=(i2)x{4(iV)(x")
=(3)4(x) and (4 Fl (i34 (x) = (e F ()5 (X") = (e ()5 (XN — 1) = (1)L ()5
(x'Mp—1)=(*)4(x',—). Therefore

{(@®)a(x"), 0> =D(i)(x) = F(i*)1(x) = (e F (i (%) 4(x") =0

and the last assertion of (ii) of Proposition 2.5 follows. It follows from (3.7)
and (3.9) that

{x, 0>=0mod 4y, if n=0(8)>8.
We prove
Lemma 3.12, If n=38, then {x, 0> =j(x) mod Ang.

Note that

n6(S0(6))=0, mn,(SO(6))=2Z, ng(SO(6))=Z,,={y}, 7s(SO(7))=0,
n(SO(N)=Z={h}, mx(SO(N)=Z,+Z,, 7t7(V9,2) =Z,

by [16], [17] and [14]. From the exact sequence

g(SO(6)) {25 mg(SO(T)) 2> mg(S®) — 17(SO(6)) — m7(SO(7)) 2=
,(§%) — 74(S0(6)).

it follows that p.(h)=ns, p.«(hn;)=nen, and
n3(SO(N)=Z2+ Zy = {hn7} +{(I)+()} -

Applying 7.( ) to the commutative diagram:
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S0(7) — SO(7)

l |

SO(8) — SO(9) —— S8

(R

S 7T — V9,2 — S 8,
we have the commutative diagram:

77(SO(7)) — 75(S0(7))

‘[(il)n l(iz)*

ng(S?) —4o 17(SO(8)) —2 7,(SO(9)) — 77(S*)

| | |

mg(S8) 45 74(S7) s mo( Vo,2) —— 0

J

n6(SO(7)) =0.
By the exactness of horizontal and vertical sequences, we have
gu(deg)=A'tg=+2¢7, qu(X)=¢;mod 2¢7, (%)s(h)= £2(i")x(x).

We can write (il)u(h)=I14¢g+mx. Then =+2(i1),(x)=(i2)(h)=(Y)(ldcs+
mx)=m(i')4(x) so that m=+2 and (i')4(h)=14¢g+2x mod 4x. Therefore
we have 0=q,(i')(h)=(21+2)¢; mod 4¢, and [ is odd. Thus

(iV)e(h)=4dcg+2x mod {24¢g} + {4x},
and hence
(3.13) (V) (h), 0) ={Acg, 0) = Ans.
By using the multiplication of Cayley numbers, we can define a cross-section
s: S7-S0(8) by
s(y)z=yz(y, ze §7).

Then 7,(SO(8))={s}+{(iV)«(h)}. Thus we can write x=a(il),(h)+bs for
some integers a, b. Then g,(x)=q.(a(i')«(h) + bs)=bc¢, and b is odd.
Therefore

(3.14) x=smod {(i')(h)} + {25} .

Consider the commutative diagram:
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ng(U4)) ——— mg(S") — n,(U(3))=0
| I
’ I
ng(SO(7)) Uy wg(SO(8)) —2=— mg(S7).
I | [
I l\ Jl
(i} +{()(@)}  {Ang} + (xn2} + @} {7}

Then we have

ax(x17) = (g (X7 =17,
axJx(@) =17,
(i)x(hn7)= ()5, =(Aeg)n, = 4ng .,
and hence
(i2)4(y) = x117+j4(2) mod Ang .
It follows from (3.14) that

X1, =sn, mod (i')(hn7)
=sn, mod Ang .

and hence

(3.15) (2)x(y) =517 +j(2) mod Ang .
Now we prove Lemma 3.12. We have (x, 8)={s, 8) mod 4ng by (3.13)

and (3.14), and s, 6> =(i?)4(y) + sn;=j.(a) mod 4ng by [20, Lemma 4.10] and
(3.15). Thus {x, 0> =j.() mod 4ng and the resuit follows.

Proof of Lemma 3.8. Let{': SO2m+1)—SO(2m+ 1) be defined by {'(4)=
I"AI", where 1I"=(—1,)®I1,,-,®(—1;). Recall from [10, p. 110] that (:
SO(2m)—SO0(2m) is defined by {(B)=I'BI', where I'=(—1,)®I,,,_,- Then
i'{={'i'. Since (' is the inner automorphism of the path-connected group,
{’ is homotopic to the identity map relative to I,,,,, and hence (i!);{sx=((")x(i')x

=(i1),. q.e.d.

This completes the proof of (ii) of Proposition 3.5.

§4. Computations

By using Corollary 2.4 and Samelson products in §3, we can compute
F4(P) even if P is not simply-connected (Example 4.5 and Examples 4.7-4.13).
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For the trivial bundle we use Theorem 2.1 in [21].

Example 4.1 (¢f. [21, Example 3.7]).

S3-bundle with ke ny(S3)=Z. Then

Z, if
fSS(Pk)=< 1 if
Z,+Z, if

Example 4.2 (c¢f. [21, Example 3.9]).

G,-bundle with ke ng(G,). Then

Z,

Let (P,, q, S*, S3) be the principal

k=0(2) (k#0),
k=1(2),
k=0.

Let (Py, q, S7, G,) be the principal

if k=0,

g’-Gz(Pk)=< 1 if k#0

Let the

Then

Example 4.3 (cf. [21, Example 3.10]).
principal SU(3)-bundle with k e n5(SU(3)).

i k=1(2),

if k=02 (k#0),
if k=0.

(P, q, S¢, SUQR)) be

Z,
Zg

g’-sv(a) (Pk) =<
D(Ze)

Example 4.4 (cf. [21, Example 3.11]).
the principal SU(n)-bundle with k=ma € ,,(SU(n))=2Z,,{a}.

1 if 2m#0(n!), n=0(2), m=1(2)
or 2m=0(n!), n=1(2),
n=2, m=1(2)
or 2m#0(n!),
or 2m=0(n!),
m=0(n!),

Let (Py, g, §?"*1, SU(n)) (n=2) be
Then

z,
s (o= n=0Q)

n=1(2),

m=0(2)

Z,+Z, if
and we have the following exact sequence:
1—2Z,— Fsymy(P)— Z,— 1 if n=0(2), m=0(2), 2m=0(n!).
Example 4.5 (¢f. [21, Example 3.12]). Let (P,, q, S?**1, U(n)) (n=1) be
the principal U(n)-bundle with k=mo € n,,(Un))=Z, {a}. Then if m=0(2)
or n=1(2), then we have the same result in Example 4.4, and if m=1(2) and
n=0(2), then

ZZ lf n=2’

f“"‘)(P")=(1 if n=3.



EQUIVARIANT SELF EQUIVALENCES 9221

Example 4.6 (¢f. [21, Example 3.14]). Let (P,, q, S***3, Sp(n)) (n=1) be
the principal Sp(n)-bundle with k=moe€n,,, ,(Sp(n))=Zy{x}, where N=
Cn+D0'ifn=0(2)and N=2n+1)12if n=1(2). Then

1 if m=1(Q2), 2m#0(N),
z, if m=12), 2m=0(N)

or m=0(2), 2m#0(N),
Z,+Z, if m=0(N),

j’_s;z(n) (Pk) =

and we have the following exact sequence:
l—Z), — Fymy(P) — Z, — 1 if m=0(2), 2m=0(N).

In the following examples 4.7-4.13, we consider the principal SO(n)-bundles
over spheres: (Py, g, S", SO(n)). We use Proposition 3.5 to compute Fgp,\(P;)
and we choose x in Im (i3), if n=0(8)=16 or n=1(8)=9 below.

Example 4.7. If n=08) and k=I4¢,+mxemn,_(SO(n)=Z + Z={4Ac,}
+{x}, then
Z,+7Z,+2, if 1=0(2), m=0(2) (I, m)#(0,0)),

Z,+7Z, if 1=1(2), m=0Q)
or n=l16, 1=0(2), m=1(2),
fSO(n)(Pk)= p _ —
zZ, if n=8, m=1(Q2)

or 1=1(2), m=1(2)
D(Z,+Z,+Z,) if l=m=0.
Example 4.8. If n=1(8)=9 and k=ld¢,+mxemn,_ (SOn)=Z,+2,
={4¢,}+{x}, then
Z, if I1=1(2), m=1(),
'grSO(n)(Pk)=< Z,+Z, if 1=1(2), m=0(),
D(Z,+2Z,) if 1=0(2), m=0(2),

and we have the following exact sequence:
l—Z,— ySO(n;(Pk)———) Z,— 1 if 1=0(2), m=1(Q2).
Example 4.9. If n=2(8) and k=I14¢,+mi(xn,_,) en,_(SOm)=Z+2Z,
={de,} +{ix(xn,-2)} (n210), k=14¢,en,(SOQ2))=Z={4¢,} (n=2), then
Z, if n=10, 1=0(2) (10),
Z, if nz210, I=1(2)
or n=2, k=0,
1 if n=2, k#0,

-g’_sow) (Pk) =
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and we have the following exact sequence:
1 —Z,— ZFsoy(P)— Z,— 1 if n=10, [=0.

Example 4.10 (c¢f. [21, Example 3.3]). If n=34)andken,_,(SO(n))=2,
={4¢,} (n211), k=0emn,_,(SO(n))=0 (n=3, 7), then

g(‘_SO(n)(Pk)=D(Z) if k=0,
and we have the following exact sequence which splits:
1__)Z—'—)Fso(n)(Pk)“_)Zz‘—)1 i_f k;ﬁO.

Example 4.11. If n=4(8) and k=Il4¢,+mj.(B)en,_(SOn)=Z+Z=
{4¢,} +{j«(B)}, then

Z,+Z, if n=4, 1=0Q2) (I, m)#(0, 0))
or n>4, 1=0(2) (I, m)#(0,0),
FsomP)=| Z, if n=4, I=12) or m=1(2)
or n>4, 1=1(2),
D(Z,+2Z,) if l=m=0.

Example 4.12. If n=5(8) and k=I14¢,en,_(SO(n)=Z,={4¢,}, then

Z,+Z, if 1=0(2),
fso(n)(Pk)=<Zz ’ if 1=1(2).

Example 4.13. If n=6(8) and k=14¢,en,_(SO(n))=Z={A4¢,}, then

Z, if n=14, 1=0(2) (1#£0),
zZ, if n=z14, 1=1(2)
Fsom (Pr)= or n=6, [=0,
1 if n=6, [#0,
Dz, if n=z14, 1=0.
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