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Let (P, q, B, G) be a principal fibre bundle with structure group G and with

projection q. In [21] we have considered the group of G-equivariant homotopy

classes of unbased (resp. based) G-equivariant self homotopy equivalences of

the total space P under the free G-action on P. The group structure is given

by the composition of maps. This group is denoted by «^"G(P) (resp. &G(P)).

In this note we shall continue to study this group and obtain a generalization

of Theorem 2.1 in [21] (Theorem 2.2 in §2), which will enable us to compute

the group ^G(P\ even if P is not simply-connected. It is shown that if any

finite group of order greater than 2 acts freely on the sphere S2n+1 (n^O), then

^G(S2n+1) = l. We also show that &G(P) and £G(P) are finitely presented

groups under suitable conditions. In §3 we shall study the Samelson products

of the classical groups U(ri) and SO(ri) to compute the group ^G(P). Examples

are worked out in §4.

Notations are used as in [21]. For example, we denote the homotopy set

[X, {x0}; 7, {y0}] by [X, Y] for spaces X, Y with base points x0, y0, and we

do not distinguish a map and its homotopy class. We take, if necessary, the

unit of a topological group as the base point.

§ 20 Statement of Theorem

We consider a numerable principal G-bundle (see [6, p. 248])
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(Pk, q, B, G)
with total space P = Pfc, base space B and projection q: Pk-+B, structure group G
and classifying map k: B-+BG. We always assume that G, P, B are compactly-

generated Hausdorff spaces. We also assume one of the following:
( i ) B is a CW-complex,
(ii) G is compact,

(iii) B is locally compact.

Any self bundle map / on P induces naturally a self map / on the base
space B such that qf=fq and this construction determines a continuous map
0: mapG(P, P)^mapk(B9 B), where mapk(B, B) is the space of maps g: B-*B

such that kg is freely homotopic to k. By the covering homotopy theorem

for bundle maps (cf. [6, (7.8)]), it follows that <P is a Serre fibration with fibre

the space IG(P) of unbased bundle equivalences over B. It is easy to see
<P~1(autk(BJ) = autG(P), where autk(B) = aut B n mapk(B, B). Hence we have
a Serre fibration :

!G(P)-L+autG(F)-*+autk(B).

d
By using the group isomorphism n0(IG(PJ)^n1(map(B, BG), k) (see [21,

p. 88]) and n1(autk(B), l)^nl(map(B, B), 1), we have the following theorem:

Theorem 2.1 ([21, Theorem 1.5]). Let (Pk, q, B, G) be a numerable

principal G-bundle. Then we have the exact sequence of groups:

n1(map(B^ B), 1) -<*!>*> nl(map(B9 BG)9 k)^<FG(Pk)^^k(B) - > 1 ,

where k*: map(B, B)-+map(B, BG) is given by k*(f) = kf, ^G(Pk) = nQ(aut G(P)),

= $* on TTO, and v = i#d~1.

Especially if B is a suspended complex of a connected complex, then we
have the following, which is a generalization of Theorem 2.1 in [21].

Theorem 2.2. Let (Pk, q, SZ, G) be a numerable principal G-bundle

over suspended complex SZ, where Z is a connected CW-complex (k e [SZ, BG] =
[Z, G]). Then we have the following commutative diagram with exact rows of

groups except at 9:

[S2Z, SZ]/[1, 7t2(SZ)] - > nl(map(SZ, BG\ k)^FG(Pk)

[SZ, G]/<fc, Bl(G)> - » nl(map(SZ, Ba), k)^n0(G)-^[Z, G],
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where l = lsze[SZ, SZ], [1, ]«/c, » is a generalized Whitehead (Samelson)

product (cf. [1]), and % is induced by the characteristic homomorphism %:

[S2Z, SZ]-»[SZ5 G].

Especially if G is l-connected, then we have the following exact sequence

of groups:

[S2Z, PJ -ii* [S2Z, SZ] JU [SZ, G] -JU ̂ G(Pk}^ ^k(SZ) > 1.

Proof. By considering the evaluation fibration

CD: map (SZ, D) > D with fibre mop* (SZ, D)

for D = SZ or ]3G, we have the following commutative diagram with exact rows

of groups except at B:

n2(SZ)^^n1(map* (SZ, SZ), 1) > n1(map(SZ9 SZ), 1)

(2.3) k [ < * # ) * | ( k » ) .4 4 ^
SZ, J3G), fc) > 7c1(mo|7(SZ, BG), k)

7C1(SZ)=1

G\ k)

Since map* (SZ, D) is an invertible If -space, it follows that for any element $

of map* (SZ, D) the multiplication by j8 induces a self equivalence j§ of

(SZ, D) so that

nt(map* (SZ, D), 0) ̂  n^map* (SZ, D), *) = [S^!Z, D] ,

where * denotes the constant map. The following diagram is also commutative,

since k* is an H-map.

7T2(5Z) - *i -

[1, ] I

[SZ, G]

•i "1
ni(mapt(SZ, SZ), *) -I*!>±» n^map^SZ, BG), *)

-I-
, SZ), 1) -li!l±-» n^map^SZ, BG), k)
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The composition of the vertical maps are A and A' by [12, Theorem 2.6].

Hence by (2.3) we have the commutative diagram with exact rows of groups

except at 9.

1 - > [S2Z, SZ]/[1, 7r2(SZ)] - > n1(map(SZ9 SZ), 1) - > 1

x (k*)*

1 - > [SZ, G]/<fe, ^(G)) - > n^map (SZ, £G), k) -^ 7r0(G) -«-* [Z, G] .

Therefore by Theorem 2.1 we obtain the first diagram in Theorem 2.2.

The last sequence in Theorem 2.2 follows by the first diagram and the

well-known exact sequence :

where (P, q, B, G) is a principal G-bundle and Y is a CFF-complex. q. e. d.

Corollary 2 A Let (Pk, g, SB, G) (n^2) fee a numerable principal G-

bundle with classifying map kenn(BG) = nn_1(G). Then we have the following

commutative diagram with exact rows of groups except at 9:

nn+1(S») - > n^map (S«, BG\ k) -^ <FG(Pk) -*

1 - > 7CB(G)/<fc, TT^G)) - , TTiCm^^CS", 5G), k) -^ 7T0(G) -!-> TT^^G),

where ^k(S
n) is Z2 or 1 according as 2k is zero or not.

In particular, if G is path-connected, then we have the exact sequence:

nn+1(S") _*-> nn(G)Kk, Wl(G)> -^ &G(Pk) -£-» ^(S«) — > 1 .

Theorem 2.5, Let G be a finite group of order greater than 2, and let G

act on the odd dimensional sphere S2n+1 (n^O) freely. Then

<&r fC2n+n_ 1^GW J— 1.

Proof. It is well-known that (S2n+1, q, S2n+1/G = M, G) is a principal

G-bundle. By the result of [15, Theorem 1.4],

where the injection is given by the induced homomorphism on the fundamental

group Ti^M). We have the following diagram:

nl(map(M, M), 1) -£*•>=-> n1(map(M9 BG\ k)

(2.6) ( (wo* |(o»2)*
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In this diagram one can see that the evaluation homomorphism (c02)*

is a monomorphism, since ni(map^(M, BG), k) = Q by the similar way of the

proof in [8, Lemma 3]. By the evaluation fibration:

aut*M - >autM-?±*M,

we have the following exact sequence:

n^map (M, M), 1) -^^-> n^M) -*-* £(M) - > &(M) - > 1 ,

where 3(a) (aerc^M)) is given by the inner automorphism of ;r1(M) by a by

definition. Hence

Jm (a^)* =3 Zfa^Af)) (center of rc^

On the contrary, by [8, p. 847]

/m (o^)* cZ

Therefore we have /m(co1)^ = Z(7i1(M)). Also by [9, Lemma 2]

Let n>0. Since 7T1(M) = 7U1(J5G) = G is a finite group, k* is an isomorphism

in (2.6). Therefore fc* maps /m(c»1)# onto /m(cu2)*. Hence (k*)^ is a

surjection. And by Theorem 2.1,

The last equality holds even if n = 0, since in this case M is homeomorphic

to S1 and G is a cyclic group.
By the evaluation fibrations :

autG (S2n+l) -J2-> S2n+l and aut M -*U M ,

we have the following commutative diagram :

where the homomorphism p' is defined naturally. Every element/ in <^G(S2n+1)

is represented by an element /' in #G(S2n+1). And we have the following

commutative diagram :
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G --U G

I I
M -?-* M.

Hence/' induces the identity automorphism on the fundamental group 7r1(M).

Therefore/' is based homotopic to the identity map so that p(f) = l. Therefore

^k(M) = 1. This completes the proof. q. e. d.

In the above proof we have shown the following:

Proposition 2.1, Let G be a finite group of order greater than 2, and let

G act on the odd dimensional sphere S2n+l (n^Q) freely. Then the evaluation

subgroup G1(S
2n+1IG) = Z(G) (see [8]).

By the similar way (see [8]) we have the following, which is also obtained

by [3, p. 123] and [21, (1.4)].

Example 2088 Let (Sn, q, Pn(R), Z2) be a principal Z2-bundle over the

projective space. Then

JFZ2(S«) = Z2.

Theorem 2,9. Let G be a Lie group with finitely many path-components

and let (Pk, q, Sn, G) (n^2) be a numerable G-bundle. Then ^G(Pfc) is an

infinite group (finitely presented group) if and only ifnn(G) is an infinite group.

Proof. Let G0 be the path-component of G containing the unit. By a

result of Cartan-Marcev-Iwasawa, G0 contains a maximal compact subgroup K,

which is a strong deformation retract of G0 so that n*(G0) = n*(K). Note that

nn+l(S
n) is infinite if and only if n — 29 and that n2(G) = 7C2(G0) = n2(K) = 0.

It follows that &G(Pk) is infinite if and only if 7cn(G)/<fc, ^(G)) is infinite by
Corollary 2.4. By a result of Serre, n*(K)®Q = n*(Sm^ x Sm<2> x ••• x Sm^)®Q

for some odd integers m(l), m(2),..., m(r). Since nt(K) is finitely generated

and 7E2l-(S
2m+1) is finite, it follows that n2i(K) and hence 7T2£(G0) are finite so

that the Samelson product <7re(G0), 7r/(G0)> ( = <n,-(G), ft/G))) is a finite subgroup

of ni+j(Go) ( = ni+j(GJ) for every i,j^l. In particular </c, Tr^G)) is finite.

Therefore 7cn(G)/<k, Tc^G)) is infinite if and only if nn(G) is infinite. This

completes the proof. q. e. d.

We have proved the following in the proof of Theorem 2.9.
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Propo§ItSon 2.1®. If G is a Lie group, then the subgroup <7Uj(G), 7cr(

ofnl + t.(G) is finite for all /, r^l.

Example 2.11. // G = SO(m) and n = m + r with m^l l , 0^r^4 and

m + r = 3(4), or with m = 2(8), m^lO and r= — 1, rften 7CII_1(G) is non-trivial

and nn(G) is infinite by [11]. In these cases we have non-trivial numerable

principal G-bundles (P, q, Sn
9 G) with ^G(P) infinite.

D. Sullivan [18] and C. Wilkerson [22] have shown independently ff(X)

is a finitely presented group, when X is a simply-connected finite CW-complex.

We shall show that &G(P) and ^G(P) are finitely presented groups under suitable

conditions. ff(B) acts on [B, 5G] by

(2. 12) *(B) x IB, BG1 - > IB, BG-j ; /- fc = fc/ .

Let #k(B) be the isotropy group of &(B) at k of this action.

Theorem 20130 Let (P, 4, 5, G) be a numerable principal G-bundle.

Assume that the base space B which is simply-connected and the structure

group G are path-connected finite CW-complexes and that &(B)-k is a finite

set in (2.12). Then ^G(P) and &G(P) are finitely presented groups.

Proof. We shall show that in Theorem 2.1 n1(map(B, BG\ k) and &k(B)

are finitely presented under the above conditions. We shall make use of the

Federer's spectral sequence ([7, p. 351]) converging to n*(map (B, J5G), k).

It is easy to see that El>q = Hq(B, nq+1(BG)) is finitely generated abelian so that

Eftq is finitely generated abelian. Since the extension of finitely presented groups

is a finitely presented group, n1(map(B9 BG), k) is finitely presented by the

filtration of subgroups in the spectral sequence. &(B) is finitely presented by

[18, Theorem 10.3] or [22, Theorem 9.9]. Since B is simply-connected, &(B)

= &(B) and gk(B) = 3?k(B). In (2.12) it is easy to see &(B)lffk(B) = &(B).k

(cf. [5, p. 40]). Since a subgroup of finite index in a finitely presented group

is finitely presented ([13, p. 93]), &k(B) is finitely presented by the assumption.

Hence &G(P) is finitely presented by Theorem 2.1.

Consider the evaluation fibration :

CD : autG(P) - > P with fibre a u rg (P) .

Then we have the exact sequence :

n,(P) - > *G(P) - > ^G(P) - > 0 .

Now 7t1(P) is finitely presented, since 7T1(G) is finitely generated abelian. There-
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fore &G(P) is finitely presented. q. e. d.

In the rest of this section, we assume that the base space B is a simply-

connected finite CW-eomplex and the structure group G is a path-connected

finite CW-complex.

Corollary 2.14 // B is a double suspension of a finite CW-complex B'

such that the dimension of B' is at most 2(1 -{-conn B'\ where conn B' denotes the

connectivity of B', and if k is of finite order in the group [B, BG], then £G(P)

and «^"G(P) are finitely presented.

Proof. We show that each element of &(B) • k has the finite order. Then

the conclusion follows from Theorem 2.13, since [B, BG~]=[SB', G] is finitely

generated abelian by [2, Lemma 1]. It follows from the Freudenthal suspension

theorem that the suspension homomorphism S*: [SB', SJ3']->[5, B~] is

sujective and hence for each/e<f(£) the,re exists /' e [SB', SB''] with S*(f')=f.

Let m be the order of k. Then m(f- k) = m(kf) = m(kS*(f')) = (mk)S*(f) = 0.

q.e.d.

We immediately have the following by Theorem 2.13.

Corollary 2.15. If f(B) or [B, £G] is finite, then <fG(P) and ^G(P) are

finitely presented.

Corollary 2.16. <fG(G x B) and ^G(G x B) are finitely presented.

§ 3o Samelson Products

By Corollary 2.4, we must compute the Samelson product </c, n1(G)y

to calculate the group ^G(Pk). In this section we shall calculate

Tr^l/O))) for l^2n and <7ct(SO(n)), ^(SOfa))) for /^n-1.

Let (G(n), d) be one of the pairs (SO(n), 1), (U(n), 2) and (Sp(n\ 4).

Proposition 3.1. // I + r g d(n +1) - 3, then <7t,(G(n)), 7tr(G(»))> = 0.

Proof. Let i = im: G(n)->G(n + m) be the inclusion defined by im(X) =

A@Im, where Im is the m-dimensional unit matrix and Igm^oo. We define

a homotopy &: G(n)->G(2n) by ^(>4) = Dfi
n(^)Df, where
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Then 4>t(In) = l2n> ^o(X) — $n®A and (l)i = in> Therefore $0 is homotopic to in

relative to /„ and (<£0)* = 0'n)*: n*(G(n))^n*(G(2n)\ Since ^0(X)^1(B) =

0i(B)0oG4) for 4, jBeG(n), it follows that if a, be7c*(G(n)), then <(00)*(<0>
(0 1 )*(&)> = 0 and hence

(3.2) (/•%«<,, 6» = <(i"),(a), (i"),(&)> = <(*o)*(«), (*i

Using the homotopy exact sequence of G(m)-

it can be seen that if / ̂  d(n 4- 1) — 3, then the inclusion f1 induces isomorphisms

7Ti(G(n)) = 7ij(G(n + !))=•••, in particular (i")# : 7cz(G(n)) = 7rz(G(2n)). The con-

clusion then follows from (3.2) and naturality properties of the Samelson

products. q. e. d.

Corollary 33. <7c,(l7(w)), 7c1(l/(n))>=0 for l^2n-2 and <7c/(SO(w)),

We shall use the well-known additive structure of nt(G(n)) for I ̂  d(n + 1) — 3

without any reference.

Proposlttom 3A ^^([/(n)), n±(U(n)y> = Zn^n2n(U(n)) = Znl and

^n2n(U(n)), n1(U(n))y=n2n+i(U(n)) which is Z2 or 0 according as n is even

or odd.

Proof. Let d: nl(S
2n+1)-^nl_i(U(nJ) be the boundary homomorphism

of the fibration l/(w)-i^C7(n + l)->S2ll+1, and c = clenl(S
l) be the identity

map. Put O'^F-^cJeniCUfa)). Then

Let jS e 7T2n _!(£/(«)) be a generator. Then

Recall that n2n(U(n)) = Znl (cf. [19, p. 115]), which is generated by dc2n+i-

Since the order of <jS, 0;> is n by [4, Corollary], the first assertion follows.

By [10, (15.13) and (16.2)] we have

<fc, j> = ± dS*Jj*(y) (y E ̂ 17(11)) ,

where j: l/(?i) c SO(2ri), J is the J-homomorphism and S* is the suspension

homomorphism. Recall that Jj*(0') = rj2n, where rj2en3(S
2) is the Hopf map

and i7z = (SJ'"2(iy2)e7c/+1(SO. Therefore

Since n2n+1(U(n)) is Z2 if n is even and 0 if n is odd by [19, Theorem 4.4], it
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follows from the homotopy exact sequence of U(ri)-+U(n + l)-+S2n+l that

drj2n+ 1 generates n2n+ i(U(n)). This completes the proof. q. e. d.

Put a = dc e n2n( U(nJ). Then

Let A: 7rl(S
n)-»7rf_1(S'O(n)) be the boundary homomorphism of

Sn. Put 0 = (in-2)*(cl)En1(SO(nJ). Then

nl(SO(n)) = Z2 = {9} if n^3 .

By [11], ^^(SOfa)) is Z + Z if « = 0(8)>0 and Z2+Z2 if /i = l(8)>l.

We can see easily that Acn is not zero and generates a direct summand of

7cB_1(SO(n)) if n = 0, l (8)>l . Let x = xn denote any other generator of

Tr^CSOiX)). Then

7cB.1(SO(n)) = {J^} + {x} if n^O, 1(8)>1.

Proposition 3.5. (i) <7in_2(SO(n))? 0> is Z2 if n = 5, 9 and 0 if n=£5, 9.

( i i ) When n = 0(8)>0, we haue 7rB_1(SO(w)) = Z + Z = {^^ll} + {x},

7cB(SO(n)) = Z2 + Z2 + Z2 = {Ji/II} + {jci/II_1} + {A(a)}, <J^0>=^B and <x, 0>

= 0 mod ATI n if n>8 and =j^(jx) mod Arjn if n = 8. PFe can choose x in the

image o/O3)*: nn,1(SO(n-3))-+nn-1(SO(n)) i /w>8, anJ rhen <x, 0>=0.

(iii) WTien nsl(8)>l, we have 7rB_1(SO(n)) =

7rB(SO(ii)) = Z2 + Z2 = {Ji/B} + {xi7B_1}, (Acn>0y = Arin and <x,

FFe can choose x with xelm (i3)* and then <x, ^>=0.

( iv) Whenn = 2(8)>2, we have 7cn_1(SO(n)) = Z + Z2 = {

^>= ^» = 2/*(a), and

( v ) When ns3(4), Tt^^SOCn)) is Z2 or 0 anrf jt,, (S0(n)) = Z. Thus

( v i ) Pf^n n = 4(8), we have n11_1

)) = Z2 + Z2 = { n̂} + {7*(a)}, <Acn, 9*> = A^, and

!)!;*(«).
(vii) W/ien n = 5(8), we

(viii) PF/ien ns6(8), we

, 7t6(SO(6)) = 0, and

Proof. We only give the proof of (ii). Others can be proved by the
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similar and easier methods. In the rest of this section we always assume nsO(8)

>0.
It follows from [11] that

TI, _1(SO(oo)) = Z = {
7in(S0(o>)) = Z2 = {(i
nn(SO(n + 2)) = Z2 =

We prove

(3.6) rcn(S0(n)) = Z2 + Z2 + Z2 = {di,,,} + {*»?„ _ ,} + {;*(«)} .

We can easily show that Ar\n and x^n_ t are linearly independent by the homotopy

exact sequence of S0(n)->SO(n + l)-»S". Consider the commutative diagram:

nn(SO(n + l)/l/(

0=7tn(C/(n/2+l))

where Fm = SO(2m)/f7(m). As is easily seen, i1 induces an embedding of
differentiable closed manifolds ?: SO(2m-l)/U(m-l)-*SO(2m)/U(m). Since

both manifolds have the same dimension, i is a homeomorphism and hence
(0* is an isomorphism. We will use ~i to identify both manifolds. The fibration

SO(2m)/U(m)^SO(2m + l)IU(m)^S2m can then be written as rm-»Fm+1-»S2m.

It follows that the natural maps induce isomorphisms nl(Fm) = nl(Fm+ ]) = ••• =

nt(rj if I^2m-2. Recall that 7rJ(rj = 7cI(O(cx))/l7(cx))) = 7EI(fiSO(cx))) =

7i/+1(SO(oo)). Thus 7rB(rn/2 + 1) = 7rB+1(SO(oo)) = Z2 and hence p# is an iso-
morphism and 7cll(SO(n + l)/C7(w/2)) = Z2. It follows that (f^j^oMO. If
j*(a) = aArjn + bxrin_l, then 0 = (i2)^j^(a) = 5(i2)^(x^n_1) so that b = ® and

O1)* j*(a) = 0. This is a contradiction. Thus j^(oe) is not a linear combination
of Ar\n and x^n_! and hence (3.6) follows.

By [10, (15.13) and (16.2)],

, yy=±AJ(y)
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It follows that

(3.7) <Acn,Oy = A*im,

since J(9) = rjn, which is of order 2.

We shall use the formula on S0(2m) (m^2) to study <x, 0>

D=F-UF^
of [10, 17.4], where F is the Bott suspension, ( is the outer automorphism of

SO(2m)andZ>GO = <j>, 0>.
We shall give the proof of the following at the end of this section.

Lemma 3.80 The following triangle is commutative:

Assume n>8 and consider the exact sequence of SO(n — 3)-»SO(n

3) = Vn+1A:

-!^^^

Recall that nn_1(SO(n-3)) = Z + Z2 and nn_2(SO(n-3)) = Z8 from [11] and

that nn-i(Vn+1A) = Z8 from [14]. Hence (i4)* is an epimorphism. Let x'

be any generator of a free part of nn, ^80^-3)). Then (i1)!j!(x)= ±(i4)*(x')

and hence

(3.9) x=±(i3)*(x')modAcn

and (i^(xf) generates nn_1(SO(n-2)) = Z (cf. [11]). Since (i2)^^.,)

= 0"5)*(*'^-i) by (3.9), and since nn(SO(n-2)) = Z12 + Z2 by [11], it follows

that (il)*(x'nn-i) generates a Z2-direct summand:

(3.10) ^(SO(n-2)) = Z12 + Z2 = Z12 + {(iO*(x'i/II-1)}.

Consider the commutative diagram:

7in_ ,(SO(n - 2)) -H> 7in(SO(« - 2))

n + 2)) -J_» nn(SO(n + 2)) .
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Since nn. ^50^ + 2)) is stable, F(y) = yrin-l on it by [10, 17.2]. Therefore

(*4)»F(i^(jO = F(i5)^

and hence

(3.11) F(i1Ux')-(i1)*(*'»J.-i)6«er(i*),.

On the other hand, by [11] and [14], we have the exact sequence of the fibration

SO(n-2)-»SO(n)-»SO(n)/SO(n-2)=KB,2: 7t,,+ 1(SO(«-2) = Z2^7tn+1(SO(n)) =

Z2 + Z2 + Z2^7in+1(Fn,2)= Z24 + Z2^7tB(SO(»-2)) = Z12 + Z2^>^7rn(SO(n)).

Hence We have Ker(i2)* = Zl2 and Im(i2)Sf = Z2=
:{x^n_l + bArin} for some

fc e Z2 by (3.9) and (3.10). Let (P),(F(iW) - (i1)*^,- 1)) = «(**, - 1 + bAr,n).

Then 0 = (i*UF(i')*(x')-(i1)*(x'»?B-1)) = a(i2)*(»J.-i) by (3.11) and hence
a = 0. Thus Fa^OO-O'Mx'f-OeKerO-2), and

By the naturality of (* and Lemma 3.8, it follows that C*0'3)*(x') = ('2)*C*(i1)*(^')

= (i3)»(x') and C*fC*(i3)*(x') = C,F(i3),(*') = C*('3)*(x'^-1) = (i2)*C*(i')*
(x'»/B _ 0 = ( J3)*(x'?/n _ t). Therefore

<(i3),(x'), 0> = D(i3),(x') = F(i3)*(x') - C*FC*(*3)*(x') = 0

and the last assertion of (ii) of Proposition 2.5 follows. It follows from (3.7)

and (3.9) that

<x, ey=QmodArin if n = 0(8)>8.

We prove

Lemma 30120 // n = 8, then <x, 0> = j*(a) mod ̂ iy8.

Note that

7r6(SO(6)) = 0, 7i7

by [16], [17] and [14]. From the exact sequence

7C8(SO(6)) ̂ K 7t8(SO(7)) ̂  7i8(S
6) - > 7T7(SO(6))

7T7(S
6)— 7C6(SO(6)),

it follows that p*(h) = rj6, p*(foh) = J?6*

7r8(SO(7)) = Z2 + Z2 =

Applying TC^( ) to the commutative diagram :
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SO(7) ===== SO(7)

i i
S0(8) > S0(9) > S*

S7 — F9>2

we have the commutative diagram:

7t7(SO(7)) —

7C7(50(9))

0

n6(SO(7))=Q.

By the exactness of horizontal and vertical sequences, we have

We can write (i1)*(/i) = lAc8 + mx. Then

mx) = m(i1)H.(x) so that m = ± 2 and (^^(^s/zl^g + lx mod 4x. Therefore

we have 0 = ^^(z1)^.(/z) = (2I-h2)^7mod4^7 and / is odd. Thus

and hence

(3.13) <0%(/0,0>

By using the multiplication of Cayley numbers, we can define a cross-section

s: S7-»SO(8)by

Then TC7(SO(8)) = {s} + {(i1)^(/z)}. Thus we can write x = a(il)*(h) + bs for

some integers a, b. Then ^*(x) = ^-(fl(^)*(/i) + 6s) = 5^7 and b is odd.

Therefore

(3.14) x

Consider the commutative diagram :
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7I8(C/(4)) > 7I8(S
7) >B 7 ( f (3 ) )=0

u
7r8(50(7)) -^±^ ng(SO(8)) —a^-> 7t8(5

7).
I

Then we have

and hence

(i2)*()0 = **b + j*(oc) mod

It follows from (3.14) that

x^EEs^modO1)*^

= sf]7 mod Arj8 .

and hence

(3.15) 02)*(y)

Now we prove Lemma 3.12. We have <x, 0> = <s? 0> mod ATJS by (3.13)

and (3.14), and <s, ^>=(J2)*(y) + s^7=j*(a) mod Arj8 by [20, Lemma 4.10] and

(3.15). Thus <x, 0> =7#(a) mod J^8 and the result follows.

Proof of Lemma 3.8. LetC': SO(2m + l)->SO(2m + l) be defined by £'(A) =

FAI", where r = (-I1)0J2m_10(-I1). Recall from [10, p. 110] that f:

SO(2m)^SO(2m) is defined by £(jB) = /W, where /' = (-/i)©/2m-i- Then

f1C = C'f1. Since C' is the inner automorphism of the path-connected group,

£' is homotopic to the identity map relative to I2m+i and hence (i!)-C* =(O*(i1)*

= (i1)*- q- e -d-

This completes the proof of (ii) of Proposition 3.5.

By using Corollary 2.4 and Samelson products in §3, we can compute

P) even if P is not simply-connected (Example 4.5 and Examples 4.7-4.13).
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For the trivial bundle we use Theorem 2.1 in [21].

Example 4.1 (c/. [21, Example 3.7]). Let (Pk, q, S4, S3) be the principal

S3-bundle with k e 7r3(S
3) = Z. Then

, Z2 if fc = 0(2) (fc^O),

I 1 if k=]
\ Z2 + Z2 if fc = 0.

Example 482 (c/. [21, Example 3.9]). Let (Pfc, q, S7, G2) fee *Ae principal

G2-bundle with k e n6(G2). Then

°2 k \ 1 if k^Q.

Example 4.3 (c/. [21, Example 3.10]). Let (Pk, q, S6, SU(3)) be the

principal SU(3)-bundle with k e n5(SU(3J). Then

Z ./« T ^ /^\

3 if k = l(2)9

&r fp} I 7 if t = nfTlt^SU(3)\jrk) — I ^6 v ^ —u v^-/

\ D(Z6) i/ fc = 0.

Example 4.4 (c/. [21, Example 3.11]). Let (Pfc, ̂ , S2w+1, SC7(n)) (n^:

?/ze principal SU(n)-bundle with k = mocEn2n(SU(nJ) = Znl{(x}. Then

/I i/ 2m^0(

or 2m = 0(nl), w = j

i/ n = 2, m = l(2)
or 2m^0(nl), n = 0(2), m = 0(2)

or 2m

we /laue the following exact sequence:

l—>Z2—*rsuw(PJ-^Z2—+l if n = 0(2), m = 0(2), 2m^0(nl).

Example 4.5 (c/. [21, Example 3.12]). Ler (Pk, ^5 S
2"+1, t/(n)) (w^l) fee

tfce principal U(ri)-bundle with k = maen2n(U(ri)) = Znl{a}. Then if m = 0(2)

or n = l(2), t/ien we have £fte same result in Example 4.4, anJ if m = l(2) and

n = 0(2),
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4.6 (cf. [21, Example 3.14]). Let (Pfc9 g, S4n+3
? Sp(n)) (n = l) be

the principal Sp(n)-bundle with k = maen4n+2(Sp(n)) = ZN{ot}, where N =

(2n+l)!if n=0(2)and AT = (2n + l)!2if n = l(2). Then

Sp(")( k)'

, m

Z2 i/ m = l(2), 2m = 0(AO

or mS

VZ2 + Z2 i/ m = 0(AO,

and we have the following exact sequence:

In the following examples 4.7-4.13, we consider the principal S"0(n)-bundles

over spheres: (Pk9 q, Sn, SO(ri)). We use Proposition 3.5 to compute &So(n)(Pk)

and we choose x in Im (z3)* if n = 0(8) ̂  16 or n = 1(8) ̂  9 below.

Example 4,7. // ^ = 0(8) and k=lAcn + mxEnn_l(SO(n)) = Z -f Z = {Acn]

+ {x}, then

/Z2 + Z2 + Z2 if 1 = 0 (2)9 m = 0 (2) ((/, m) / (0, 0)),

Z2 + Z2 if / = 1(2), m = 0(2)

or w^16, 1 = 0(2), m = l(2),

Z2 // n = 89 m = l(2)

or / = 1(2), w = l(2)

Example 4.88 // ?i = l(8)^9 an^ lc = y^ + mx67in_1(SO(n)) = Z2 + Z2

if 1=1(2), iw = l(2),

if / =
\ D(Z2 + Z2) i/ J =

we have the following exact sequence:

I - >Za - ,^SO(nj(Pk) - >Z2 - >! if 1 = 0(2), m=l(2).

Example 49. // n = 2(8) and k = lAcn + mi^(xnn-2) enn_1(SO(n)) =

/Z4 i/ n^lO, / = 0(2)

Z2 if H^IO, 1=1(2)

or n = 2, fc = 0,

\1 i n = 2,
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and we have the following exact sequence:

1 - »Z4 - >&so(n)(Pk) - >Z2 - ,1 if n£10, / = 0.

Example 4.10 (cf. [21, Example 3.3]). If n = l(4)andkenn_l(SO(n))

= {Acn} (n^ll), fc = 067t,,_1(SO(n)) = 0(n = 3, 7), then

*soi.)(PJ = D(Z) if /c = 0,

and we have the following exact sequence which splits:

1 - >Z - >*SOW(PJ - >Z2 - >1 if

Example 4.11. // n=4(8) and k = lAcn

if n = 4, 1 = 0(2) ((/,

or n>4, / = 0(2) ((/,m) ̂ (0,0)),

i/ /i = 4, / = 1(2) or m =

Example 412. // n = 5(8)

Example 4.13. //w = 6(8)

/Z4 i/ n^!4, / =
Z2 if n^!4, /=
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