Publ. RIMS, Kyoto Univ. 21 **(1986),** 925-947

BP-Hopf Module Spectrum and BP_* -Adams Spectral Sequence

Dedicated to Professor Masahiro Sugawara on his 60th birthday

By

Katsumi SHIMOMURA* and Zen-ichi YOSIMURA**

Let *BP* be the Brown-Peterson spectrum for a fixed prime *p.* It is an associative and commutative ring spectrum whose homotopy is $BP_* = Z_{(p)}[v_1, ..., v_n, ...].$ For any CW-spectrum Y, the Brown-Peterson homology BP_*Y is not only an associative BP_* -module but also an associative BP_*BP -comodule. In this note we deal with associative *BP*-module spectra *E* whose homotopies E_* are associative BP_*BP -comodules. An associative BP -module spectrum with such a structure is called a BP-Hopf module spectrum (see 1.1 for the definition). For every invariant regular sequence $J = \{q_0, \ldots, q_{n-1}\}\)$, the associative BP-module spectrum *BPJ* with homotopy BP_*/J is a *BP*-Hopf module spectrum if $n <$ $2(p-1)$ (Proposition 1.2).

As is well known [1], $BP \wedge Y$ has the Adams geometric resolution $W_{BP,Y}$ $=\{W_kY=B\overline{P^k} \wedge BP \wedge Y, d_k: W_kY \rightarrow W_{k+1}Y\}_{k \geq 0}$ where \overline{BP} denotes the cofiber of unit *i*: $S \rightarrow BP$ and $\overline{BP^k} = \overline{BP} \land \cdots \land \overline{BP}$ with *k*-factors. Applying BP_* -homology to $W_{BP, Y}$ we obtain a relative injective resolution of $BP_* Y$ by extended $BP_* BP$ comodules. We will show that each BP-Hopf module spectrum *E* admits a BP-geometric resolution $W_E = \{W_k = \overline{BP^k} \wedge E, d_k : W_k \rightarrow W_{k+1}\}_{k \ge 0}$ inducing a relative injective resolution of E_* (Theorem 3.3).

Let $K_m Y$ denote the fiber of the map $\widehat{BP}^{m+1} \wedge Y \rightarrow \sum^{m+1} Y$. Then there is a cofiber sequence $K_{m-1}Y_{m-1}^{b_{m-1}}W_mY_{m}^{c_m}K_mY_{m-1}^{a_m}\Sigma^1K_{m-1}Y$ and the differential map $d_m: W_m Y \to W_{m+1} Y$ is factorized as $d_m = b_m c_m: W_m Y \to K_m Y \to W_{m+1} Y$. We will give a sufficient condition under which a BP-geometric resolution *W=*

Communicated by N. Shimada, April 24, 1986.

^{*} Department of Mathematics, Hiroshima University, Hiroshima.

^{**} Department of Mathematics, Osaka City University, Osaka.

 $\{W_k, d_k\}_{k \geq 0}$ admits an ∞ -factorized system $X(\infty)$ like $KY = \{K_mY, a_m, b_{m-1},$ c_m _{$m \ge 1$} (Theorem 4.6). Moreover we will show that the BP-geometric resolution $W_{v_n^{-1}BPJ} = {\overline{BP^k \wedge v_n^{-1}BPJ, d_k}}_{k \geq 0}$ admits an ∞ -factorized system under some restriction on the fixed prime *p* and the length *n* of J (Theorem 4.9).

The BP_* -Adams spectral sequence $E_2^{s,t}(S, KY) = \text{Ext}_{BP*BP}^{s,t}(BP_*, BP_*Y)$ $\Rightarrow \pi_*(BP^*Y)$ is derived from the tower $\{\sum^{-m} K_m Y, a_m\}_{m\geq 1}$ with homotopy inverse limit $BP^{\frown}Y$. With an ∞ -factorized system $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \geq 1}$ of a BP-geometric resolution over a BP-Hopf module spectrum E, we associate the spectral sequence $E_2^{s,t}(S, X) = \text{Ext}_{B_{P*B}}^{s,t}(BP_*, E_*) \Rightarrow \pi_*(X_\infty)$ where X_∞ denotes homotopy inverse limit of the tower $\{\sum^{-m} X_m, a_m\}_{m \geq 1}$. Discussing the convergence of the spectral sequence we will prove our main result (Theorem 5.7) that there exists a unique *BP*-local *CW*-spectrum Y_j such that $BP \wedge Y_j$ is isomorphic to $v_n^{-1}BPJ$ as BP -Hopf module spectra under some restriction on *p* and *n.*

In this note we work in the *homotopy* category of CW-spectra, and we do not necessarily assume that a ring spectrum or a module spectrum is associative if not stated.

§ 1. *BP-Hopf* Module Spectrum

1.1. The Brown-Peterson spectrum *BP* is an associative and commutative ring spectrum with a multiplication $m: BP \wedge BP \rightarrow BP$ and a unit i: SBP. We call a CW-spectrum *E* a *BP-Hopf module spectrum* if *E* is an associative (left) BP-module spectrum together with a (left) BP-module map $\eta_E: E \rightarrow BP E E$ such that $\phi_E \eta_E = 1$ and $(1 \wedge \eta_E) \eta_E = (1 \wedge i \wedge 1) \eta_E$ where ϕ_E is the *BP*-module structure map of *E* and 1 denotes the identity map. If the coassociativity of η_E is not necessarily satisfied, we call such an E a *quasi* BP-Hopf module spectrum. As an obvious example we have

 (1.1) For any CW-spectrum X, $BP \wedge X$ is a BP-Hopf module spectrum *whose structure maps are given by* $\phi_{BP \wedge X} = m \wedge 1$ *and* $\eta_{BP \wedge X} = 1 \wedge i \wedge 1$

Given BP-Hopf module spectra E and F, a map $f: E \rightarrow F$ is said to be a BP-Hopf module map if f is a (left) BP-module map such that $\eta_F f = (1 \wedge f) \eta_E$. For any CW-spectra X and Y we have easily

(1.2) Let $f: BP \wedge X \rightarrow BP \wedge Y$ be a BP-Hopf module map and Y be a

BP-module spectrum. Then there exists a unique map $f': X \rightarrow Y$ *such that* $1 \wedge f' = f$.

In fact, f' is given by the composite map $\phi_Y f(i \wedge 1)$.

(1.3) i) Let E be a BP-Hopf module spectrum. Then $E_{\star}X$ is an associative *BP***BP-comodule whose coaction map is given by* ψ_X *:* $E_*X \rightarrow BP_*(E \wedge X) \cong$ $BP_*BP \otimes E_*X$ induced by η_E .

*BP** ii) *Let f: E-*F be a BP-Hopf module map. Then it induces a homomorphism* f_* : $E_*X \rightarrow F_*X$ of BP_*BP -comodules.

Let E be an associative BP -module spectrum. Given an (associative) BP module spectrum *Y*, E^*Y is an (associative) BP^*BP -comodule whose coaction map is given by ψ_Y : $E^*Y \to E^*(BP \wedge Y) \cong BP^*BP \underset{BP^*}{\hat{\otimes}} E^*Y$. A map $f: Y \to \sum^d E$ is a BP-module map if and only if it represents a primitive element in *E^d Y* (see [14, 15]). We denote by Pr E^*Y the BP*-module consisting of all primitive elements in E^*Y . If $f: Y \rightarrow Z$ is a BP-module map, then it induces a homomorphism $f^*: E^*Z \rightarrow E^*Y$ of BP^*BP -comodules, and hence $f^*: Pr E^*Z \rightarrow Pr E^*Y$.

1.2. Let $J = \{q_0, \ldots, q_{n-1}\}\$ be an invariant regular sequence in BP_* of length *n* (see [5]) and $J_m = \{q_0, ..., q_{m-1}\}\)$ the subsequences for each m, $0 \le m \le n$, in which $J_n = J$. By Baas [2] there exists an associative BP-module spectrum BPJ_m with pairing ϕ_m : $BP \wedge BPJ_m \rightarrow BPJ_m$, whose homotopy is $BPJ_{m*} \cong BP_*(q_0, \ldots, q_m)$ q_{m-1}). *BPJ_m* and *BPJ_{m+1}* are related by a cofiber sequence

(1.4)
$$
\sum_{m} d_m B P J_m \xrightarrow{q_m} B P J_m \xrightarrow{j_m} B P J_{m+1} \xrightarrow{k_m} \sum_{m} d_m + 1 B P J_m
$$

of BP-module spectra, where $d_m = \dim q_m$ is the dimension of q_m in BP_{*} and q_m acts as left multiplication by q_m , thus it is the composite map $\phi_m(q_m \wedge 1)$. Further we have a multiplication $\mu_m: BPJ_m \wedge BPJ_m \rightarrow BPJ_m$ which makes BPJ_m into a quasi-associative ring spectrum (see [4, Proposition 5.5]). Putting $j=j_{n-1}\cdots j_0$: $BP \rightarrow BPJ$ it is a map of ring spectra as well as BP -module spectra.

A BPJ-module spectrum F is said to be *quasi-associative* if the following two equalities hold (cf., [4, Remark 5.3]):

(i) $\mu_F(\phi \wedge 1) = \phi_F(1 \wedge \mu_F): BP \wedge BPJ \wedge F\rightarrow F,$

(ii) $\phi_F(1 \wedge \mu_F)(T \wedge 1) = \mu_F(1 \wedge \phi_F)$: $BPI \wedge BP \wedge F \rightarrow F$,

where μ_F and $\phi_F = \mu_F (j \wedge 1)$ denote the BPJ- and BP-module structure maps of F respectively, and T: $BPJ \wedge BP \rightarrow BP \wedge BPJ$ is the switching map.

Let *E* be an associative *BP*-module spectrum, *F* be a quasi-associative *BPJ*-

module spectrum and X be a CW-spectrum such that BPJ_*X is BPJ_* -free. For $0 \leq m < n$ we consider the homomorphism

$$
\kappa\colon [BPJ_m\wedge X, E\wedge F]\longrightarrow \mathrm{Hom}_{BPJ_*}(BPJ_*(BPJ_m\wedge X), E_*F)
$$

defined to be $\kappa(f) = (1 \wedge \mu_F)_*(T \wedge 1)_*(1 \wedge f)_*,$ which is an isomorphism in our case because of $[1,$ Proposition 13.5]. Then the cofiber sequence (1.4) gives rise to a split short exact sequence $0 \rightarrow (E \wedge F)^{*-d_m-1}(BPJ_m \wedge X) \rightarrow (E \wedge F)^*$ $(BPI_{m+1} \wedge X) \rightarrow (E \wedge F)^*(BPJ_m \wedge X) \rightarrow 0$ of BP*-modules. This sequence splits as BP^*BP -comodules, because $(E \wedge F)^*(BPJ_m \wedge X) \cong BP^*BP \overset{\otimes}{\otimes} A_{(E \wedge F)^*X}(x_0, \ldots,$ x_{m-1}) and hence it is an extended $BP*BP$ -comodule (use [4, Lemmas 5.1 and 5.2]). Here $A_R(x_0, \ldots, x_{m-1})$ is the exterior algebra over R in the variables x_i with dimension $d_i + 1$. Therefore we see

(1.5) i) Pr($E \wedge F$ ^{*}($BPJ_{m+1} \wedge X$) $\cong A_{(E \wedge F)^*X}(x_0, ..., x_m)$, and

ii) j_m : $BPJ_m \rightarrow BPJ_{m+1}$ induces an epimorphism j_m^* : Pr $(E \wedge F)^*(BPJ_{m+1} \wedge$ $(X) \rightarrow Pr(E \wedge F)^*(BPI_m \wedge X)$ for each m, $0 \leq m < n$. (Cf., [14, 15]).

Lemma 1.1. Let \dot{J} be an invariant regular sequence in BP_* of finite length. *Then BPJ is a quasi BP-Hopf module spectrum such that j: BP* \rightarrow *BPJ is a quasi BP-Hopf module map.*

Proof. Let $J = \{q_0, \ldots, q_{n-1}\}$. For $0 \leq m < n$ we inductively show that BPJ_{m+1} is a quasi BP-Hopf module spectrum so that the cofiber sequence (1.4) is of quasi BP -Hopf module spectra. Assume that there exists a BP -module map η_m : $BPJ_m \rightarrow BP \land BPJ_m$ with $\phi_m \eta_m=1$. We observe that $(\cdot q_m \land 1)_*$ $(1 \wedge q_m)_*: BPJ_{m*}BPJ_m \rightarrow BPJ_{m*}BPJ_m$ since $\eta_L(q_m) \equiv \eta_R(q_m) \mod J_m$. Using the isomorphism κ : $\left[BPJ_m$, $BP \wedge BPJ_m$] \rightarrow Hom_{*BPJ_m}*(BPJ_m , BPJ_m , $BP*BPJ_m$), it is</sub> shown that $\kappa(\eta_m \cdot q_m) = (1 \wedge \mu_m)_*(T \wedge 1)_*(\cdot q_m \wedge \eta_m)_* = \kappa((1 \wedge \cdot q_m)\eta_m)$, and hence $\eta_m \cdot q_m = (1 \wedge \cdot q_m)\eta_m$. So we can find such that $\eta'_{m+1}j_m = (1 \wedge j_m)\eta_m$ and $(1 \wedge k_m)\eta'_{m+1} = \eta_m k_m$.

We next replace this map η'_{m+1} with a BP-module one. By (1.5) we observe that j_m : $BPJ_m \rightarrow BPJ_{m+1}$ induces an epimorphism j_m^* : $Pr(BP \wedge BPJ_{m+1})^*BPJ_{m+1}$ \rightarrow Pr $(BP \wedge BPJ_{m+1})^*BPJ_m$. Pick a *BP*-module map η''_{m+1} : $BPJ_{m+1} \rightarrow BP \wedge$ *BPJ*_{*m*+1} such that $\eta''_{m+1}j_m = (1 \wedge j_m)\eta_m$. In order to show that $(1 \wedge k_m)\eta''_{m+1}$ $=\eta_m k_m$ we consider the commutative diagram

$$
\begin{aligned}\n[\sum_{m+1}^{d_m+1} BPJ_m, BP \wedge BPJ_{m+1}] &\longrightarrow [BPJ_{m+1}, BP \wedge BPJ_{m+1}] \\
&\downarrow &\downarrow \\
[BPJ_m, BP \wedge BPJ_m] &\longrightarrow [BPJ_{m+1}, \sum_{m+1}^{d_m+1} BP \wedge BPJ_m] \\
&\longrightarrow [BPJ_m, BP \wedge BPJ_{m+1}] \\
&\downarrow &\downarrow \\
[BPJ_m, \sum_{m+1}^{d_m+1} BP \wedge BPJ_m]\n\end{aligned}
$$

with exact rows. Since the left vertical arrow is trivial, the equality $\eta'_{m+1}j_m$ $=n''_{m+1}j_m$ implies that $(1 \wedge k_m)\eta'_{m+1} = (1 \wedge k_m)\eta''_{m+1}$ and hence $(1 \wedge k_m)\eta''_{m+1} = \eta_m k_m$ as desired.

Applying Five lemma we see that the BP-module map $\rho_{m+1} = \phi_{m+1} \eta''_{m+1}$ $BPJ_{m+1} \rightarrow BPJ_{m+1}$ is a homotopy equivalence with $\rho_{m+1}j_m = j_m$ and $k_m \rho_{m+1} = k_m$. Putting $\eta_{m+1} = \eta''_{m+1} \rho_{m+1}^{-1}$, it is a *BP*-module map such that $\phi_{m+1} \eta_{m+1} = 1$, $\eta_{m+1} j_m$ $= (1 \wedge j_m)\eta_m$ and $(1 \wedge k_m)\eta_{m+1} = \eta_m k_m$, as desired.

Proposition 1.2. Let *J* be an invariant regular sequence in BP_{*} of length n. *If n is less than* $2(p-1)$ *, then BPJ is a BP-Hopf module spectrum.*

Proof. By (1.5) we observe that the map $j: BP \rightarrow BPJ$ induces an epimorphism j^* : Pr $(BP \wedge BP \wedge BPJ)^*BPJ \rightarrow Pr(BP \wedge BP \wedge BPJ)^*BP$, and Pr $(BP \wedge BP \wedge BPJ)^*BP$ $\wedge BP \wedge BPJ)^*BPJ \cong \Lambda_{(BP \wedge BP) \wedge BPI)^*}(x_0,...,x_{n-1}).$ Since $(BP \wedge BP \wedge BPJ)^* = 0$ unless $* \equiv 0 \mod 2(p-1)$ and dim $x_0 \cdots x_{n-1} \equiv n \mod 2(p-1)$, j^{*} becomes an isomorphism at dimension 0 when $n < 2(p-1)$. Hence the coassociativity of η_n is immediately shown, because $j^*((1 \wedge \eta_n)\eta_n) = 1 \wedge i \wedge ji = j^*((1 \wedge i \wedge 1)\eta_n)$ by Lemma 1.1.

Hereafter we only treat of a fixed invariant regular sequence $J = \{q_0, \ldots, q_{n-1}\}\$ for which BPJ_{m+1} are BP -Hopf module spectra and the cofiber sequences (1.4) are of BP-Hopf module spectra for each $m, 0 \le m < n$. Thus BPJ is assumed to be a BP-Hopf module spectrum such that $j: BP \rightarrow BPJ$ is a BP-Hopf module map.

§ 2. Extended BP-Hopf Module Spectrum

2.1. A BP-Hopf module spectrum *E* is called an *extended* BP-Hopf module spectrum if there exists an associative BP-module spectrum *Y* and a homotopy equivalence $h: E \rightarrow BP \land Y$ of BP-Hopf module spectra. If E is an extended BP-Hopf module spectrum, then $E^* X$ is an extended $BP^* B$ -comodule for any CW-spectrum *X.*

Lemma **2.1.** *Let E be a BP-Hopf module spectrum with comodule structure map* η_E . Then there exists a homotopy equivalence τ_E : $E \wedge BP \rightarrow BP \wedge E$ of *BP-Hopf module spectra such that* $\tau_E(1 \wedge i) = \eta_E$ and $T\tau_E T\tau_E = 1$, where T: $BP \wedge E \rightarrow E \wedge BP$ denotes the switching map.

Proof. Set $\tau_E = (1 \wedge \phi_E)(1 \wedge T)(\eta_E \wedge 1)$, which is a BP-Hopf module map. It has an inverse τ_E^{-1} given by $\tau_E^{-1} = (\phi_E \wedge 1) (1 \wedge T)(1 \wedge \eta_E)$.

For the *BP-Hopf* module spectrum *BPJ* such that *j: BP-+BPJ* is a *BP-Hopf* module map, we have

Corollary 2.2. There exists a homotopy equivalence $\tau:BPJ \wedge BP \rightarrow$ $BP \wedge BPJ$ of $BP-Hopf$ module spectra such that $\tau(1 \wedge i) = \eta$, $\tau(j \wedge 1) = 1 \wedge j$ and $T\tau T\tau=1$, where η denotes the comodule structure map of BPJ.

The BPJ_* -module BP_*BPJ admits the following structure maps to be considered: (i) A product map \overline{V} : $BP_*BPJ \otimes BP_*BPJ \rightarrow BP_*BPJ$ defined as usual, (ii) two unit maps η_L , η_R : BPJ_{*} \rightarrow BP_{*}BPJ induced by η , i/l respectively, (iii) a counit map ε : $BP_*BPJ \rightarrow BPJ_*$ induced by BP -module structure map $\phi = \mu(j \wedge 1)$, (iv) a coproduct map $\Delta: BP_*BPJ \rightarrow BP_*(BP \wedge BPJ)$ $\cong BP_*BP \otimes_{BP*} BPJ \cong BP_*BPJ \otimes_{BP*} BPJ$ induced by $1 \wedge i \wedge 1$, and (v) a conjugation map $c: BP_*BPJ\rightarrow BP_*BPJ$ induced by τT .

Proposition 2.3. (BPJ_{*}, BP_{*}BPJ) is a Hopf algebroid, and $(j_*, (1 \wedge j)_*)$: $(BP_*, BP_*BP) \rightarrow (BPJ_*, BP_*BPJ)$ is a morphism of Hopf algebroids.

Proof. As is easily checked, Δ and ε are BPJ_* -bimodule maps and $(\varepsilon \otimes 1)\Delta$ $= 1 = (1 \otimes \varepsilon)A$, $(A \otimes 1)A = (1 \otimes A)A$, $c\eta_L = \eta_R$, $c\eta_R = \eta_L$, $\eta_L \varepsilon = \bar{V}(1 \otimes c)A$ and $\eta_R \varepsilon$ $= F(c \otimes 1) \Delta$. So the former part is obtained. The latter part is immediate.

For a quasi-associative *BPJ*-module spectrum *F*, $BP_*F \cong BP_*BP \underset{BP_*}{\otimes} F_*$ $\cong BP_*BPJ \underset{BPJ_*}{\otimes} F_*$ and it is an extended BP_*BPJ -comodule. Let *E* be a *BP*-Hopf **module spectrum which is a quasi-associative** BPJ-module **spectrum, and** *X* be a CW-spectrum. Then E_*X is an associative BP_*BPJ -comodule with coaction map ψ_X : $E_*X \to BP_*(E \wedge X) \cong BP_*BPJ \otimes_{BPJ_*} E_*X$ induced by η_E . As is easily seen, we have

(2.1)
$$
\text{Hom}_{BP * BP}(E * X, BP * F) = \text{Hom}_{BP * BP} (E * X, BP * F).
$$

Further we recall that there exists an isomorphism

 (2.2) $\theta: \text{Hom}_{BP * BP}(E * X, BP * F) \longrightarrow \text{Hom}_{BP J}(E * X, F*)$

given by $\theta(u) = \phi_{F*}u$ and $\theta^{-1}(v) = (1 \otimes v)\psi_x$, where $\phi_F = \mu_F(j \wedge 1)$.

Given BP-module spectra M, N we denote by $[M, N]_{BP}$ the subset of $[M, N]$ consisting of all the homotopy classes of BP-module maps. For a quasi-associative BPJ-module spectrum *F* we define a map

$$
\tilde{\kappa} \colon [X, F] \longrightarrow [BPJ \wedge X, F]_{BP}
$$

to be $\tilde{\kappa}(f) = \mu_F(1 \wedge f)$. Denote by *k* the composite map

$$
\kappa = \pi \tilde{\kappa} : [X, F] \longrightarrow [BPJ \wedge X, F]_{BP} \longrightarrow \text{Hom}_{BPJ*}(BPJ_*X, F_*)
$$

where π assigns to a map f the induced homomorphism f_* . Notice that κ is an isomorphism when BPI_*X is BPI_* -free.

For BP-Hopf module spectra M, N we also denote by $[M, N]_r$ the subset of $[M, N]_{BP}$ consisting of all the homotopy classes of BP-Hopf module maps. Let E be a BP-Hopf module spectrum and F be an associative BP-module spectrum. Then we have an isomorphism

$$
(2.3) \t\t \Theta: [E \wedge X, BP \wedge F]_r \longrightarrow [E \wedge X, F]_{BP}
$$

defined to be $\Theta(f) = \phi_F f$. The inverse Θ^{-1} is given by $\Theta^{-1}(g) = (1 \wedge g)(\eta_E \wedge 1)$ as in (2.2). For a quasi-associative BPJ-module spectrum F we denote by λ the composite map

$$
(2.4) \qquad \lambda = \Theta^{-1}\tilde{\kappa} \colon [X, F] \longrightarrow [BPJ \wedge X, F]_{BP} \cong [BPJ \wedge X, BP \wedge F]_{F}
$$

which is given as $\lambda(f) = (1 \wedge \mu_F)(\eta \wedge 1)(1 \wedge f)$.

Lemma 2A *Let F be a quasi-associative BPJ-module spectrum such that* F_* *is BPJ*_{*}-free and $F_* = 0$ *unless* $* \equiv 0 \mod 2(p-1)$. If the length of J is less than $p-1$, then the map $\lambda \colon [X, F] {\rightarrow} [B P J \wedge X, B P \wedge F]_T$ is natural *with respect to F.*

Proof. Let F and G be a quasi-associative BPJ -module spectra such that F_* is BPJ_* -free and $F_*=0 = G_*$ unless $* \equiv 0 \mod 2(p-1)$. For any map *h*: $F \rightarrow G$ it is sufficient to show that $(1 \wedge h)(1 \wedge \mu_F)(\eta \wedge 1) = (1 \wedge \mu_G)(\eta \wedge 1)(1 \wedge h)$: $BPJ \wedge F \rightarrow BP \wedge G$. The map j: $BP \rightarrow BPJ$ induces an epimorphism $(j \wedge 1)^*$: $Pr (BP \wedge G)^*(BPJ \wedge F) \rightarrow Pr (BP \wedge G)^*(BP \wedge F)$ by (1.5). Note that $Pr (BP \wedge G)^*$ $(BPI \wedge F) \cong A_{(BP \wedge G)^*F}(x_0,..., x_{n-1})$ and $(BP \wedge G)^*F \cong \text{Hom}_{BPJ_*}(BPJ_*F, BP_*G)$ $= 0$ unless $* \equiv 0, 1, \ldots, n$ mod $2(p-1)$, where *n* denotes the length of *J*. Therefore $(j \wedge 1)^*$ becomes an isomorphism at dimension 0 when $n < p - 1$. Then the desired equality follows immediately, since $(j \wedge 1)^*((1 \wedge h)(1 \wedge \mu_F)(\eta \wedge 1)) = 1 \wedge h$ $=(j \wedge 1)^*((1 \wedge \mu_G)(\eta \wedge 1)(1 \wedge h)).$

2.2. For an invariant regular sequence $J = \{q_0, \ldots, q_{n-1}\}\$ in BP_* we denote by A_j the set of the numbers $\sum_{0 \le i \le n-1} t_i(d_i+1)$ for all *n*-tuples $(t_0,..., t_{n-1})$ of zeros and ones, where $d_i = \dim q_i$. Let $\sum_{J} = \vee_{d \in A_J} \sum_{j}^d$, the wedge of the suspended sphere spectra, and $c: S \rightarrow \sum_{i} b$ be the canonical inclusion.

Lemma *2.5. For each BPJ-module spectrum F there exists a homotopy equivalence* e_F : $BPJ \wedge F \rightarrow BP \wedge F \wedge \sum_J$ of $BP\text{-}Hopf$ module spectra such that $e_F(j \wedge 1)=1 \wedge 1 \wedge c$.

Proof. For $0 \leq m < n$ we inductively construct a homotopy equivalence e_{m+1} : $BPJ_{m+1} \wedge F \rightarrow BP \wedge F \wedge \sum_{J_{m+1}}$ of *BP*-Hopf module spectra, where *n* denotes the length of J. By (1.5) we recall that j_m : $BPJ_m \rightarrow BPJ_{m+1}$ induces an epimorphism j_m^* : Pr $(BPI_m \wedge BPJ)^*BPJ_{m+1} \rightarrow Pr(BPI_m \wedge BPJ)^*BPJ_m$ for any m, $0 \le m < n$. Then we can choose a BP-module map $\eta_{m+1,m}: BPI_{m+1} \rightarrow BPI_m$ \land BPJ such that $\eta_{m+1,m}j_m=1 \land ji$. Setting $r_m=(1 \land \mu_F)(\eta_{m+1,m} \land 1)$: BPJ_{m+1} \land F $\rightarrow BPJ_m \wedge F$, it is a BP-module map with $r_m(j_m \wedge 1)=1$. We change r_m into a BP-Hopf module map \tilde{r}_m : $BPJ_{m+1} \wedge F \rightarrow BPJ_m \wedge F$ defined to be the composition $\tilde{r}_m = e_m^{-1}(1 \wedge \mu_F \wedge 1)(1 \wedge j \wedge 1 \wedge 1)(1 \wedge e_m)(1 \wedge r_m)(\eta_{m+1} \wedge 1)$. It is easily seen that $\tilde{r}_m(j_m \wedge 1) = 1$. Thus the sequence $BPI_m \wedge F \rightarrow BPI_{m+1} \wedge F \rightarrow \sum_{m+1}^{d_m+1} BPJ_m \wedge F$ is a split cofibering of BP-Hopf module spectra. So we have a homotopy equivalence e_{m+1} : $BPJ_{m+1} \wedge F \rightarrow (BPJ_m \wedge F) \vee (\sum_{m+1}^{d+1} BPJ_m \wedge F) \rightarrow BP \wedge F \wedge \sum_{J_{m+1}}$ of BP-Hopf module spectra.

Let F and G be BPJ-module spectra. For any map $f: F \rightarrow G$ there exists a unique map

$$
(2.5) \t\t f_J: F \wedge \sum_J \longrightarrow G \wedge \sum_J
$$

such that $(1 \wedge f_J)e_F = e_G(1 \wedge f)$. This is easily shown by use of (1.2). If $f: F \rightarrow G$ is a BPJ-module map, then $(1 \wedge f)r_m = r_m(1 \wedge f)$ and hence $(1 \wedge f \wedge 1)e_F = e_G(1 \wedge f)$. So we see

(2.6)
$$
f_J = f \wedge 1
$$
 if $f: F \longrightarrow G$ is a *BPJ-module map*.

Let F, G and H be BPJ-module spectra, and X and Y be CW -spectra. For any maps $f: F \rightarrow G$, $g: G \rightarrow H$ and $h: X \rightarrow Y$ the following results are immediately obtained.

$$
(2.7) \quad 1_J=1: F \wedge \sum_J \longrightarrow F \wedge \sum_J \quad and \quad (gf)_J = g_J f_J: F \wedge \sum_J \longrightarrow H \wedge \sum_J.
$$

$$
(2.8) \quad (h \wedge f)_J = h \wedge f_J: X \wedge F \wedge \sum_J \longrightarrow Y \wedge G \wedge \sum_J.
$$

(2.9) *The diagram below is commutative:*

$$
F \wedge \sum_{J_m} \xrightarrow{1 \wedge \overline{I}} F \wedge \sum_{J_{m+1}} \xrightarrow{1 \wedge k} \sum_{J_m+1} F \wedge \sum_{J_m}
$$

$$
f_{J_m} \qquad \qquad \downarrow f_{J_{m+1}} \qquad \qquad \downarrow f_{J_m}
$$

$$
G \wedge \sum_{J_m} \xrightarrow{1 \wedge \overline{J}} G \wedge \sum_{J_{m+1}} \xrightarrow{1 \wedge k} \sum_{J_m+1} G \wedge \sum_{J_m}
$$

where j and k are the canonical maps.

Lemma 2.6. i) Let F be a quasi-associative BPJ-module spectrum with *structure map* μ_F . Then $F \wedge \sum_J$ is an associative BP-module spectrum whose *structure map is* $\phi_{F,J} = (\mu_F \wedge 1)(j \wedge 1 \wedge 1)$: $BP \wedge F \wedge \sum_J \rightarrow F \wedge \sum_J$

ii) Let E be a BP-Hopf module spectrum with comodule structure map η_E . *If E is a quasi-associative BPJ-module spectrum, then* $E \wedge \sum_{J}$ *is a BP-Hopf module spectrum whose comodule structure map is* $\eta_{E,J}: E \wedge \sum_{J} \rightarrow BP \wedge E \wedge \sum_{J}$.

Proof. From the quasi-associativity of μ_F it follows that the map ϕ_F $=\mu_F(j\wedge 1)$ is a BPJ-module map. Then (2.6) implies that $\phi_{F,J} = \phi_F \wedge 1$. Hence i) is obtained. ii) is immediate by means of (2.7) and (2.8) .

It is easy to show

Lemma 2.7. Let F and G be quasi-associative BPJ-module spectra, and $f: F \rightarrow G$ be a BP-module map. Then,

i) $f_J: F \wedge \sum_J \rightarrow G \wedge \sum_J$ is a BP-module map. Moreover,

ii) *ifF and G are BP-Hopf module spectra and f is a BP-Hopf module map, thenf j is a BP-Hopf module map, too.*

§ 3. Geometric Resolution

3.1. Let *E* and *M* be *BP*-Hopf module spectra. A complex $W = \{W_k, d_k\}$. $W_k \rightarrow W_{k+1}$ _{$k \ge 0$} consisting of CW-spectra and maps is called an *E-geometric resolution* over M if the following three conditions are satisfied:

(i) There exists a *BP*-Hopf module map δ : $M \rightarrow E \land W_0$ with $(1 \land d_0)\delta = 0$.

(ii) The long sequence

 $* \longrightarrow M \stackrel{\delta}{\longrightarrow} E \wedge W_0 \stackrel{1 \wedge d_0}{\longrightarrow} E \wedge W_1 \longrightarrow \cdots \longrightarrow E \wedge W_k \stackrel{1 \wedge d_k}{\longrightarrow} E \wedge W_{k+1} \longrightarrow \cdots$ splits as a sequence of BP -module spectra. That is, there exist BP -module maps $\varepsilon: E \wedge W_0 \to M$ and $s_k: E \wedge W_{k+1} \to E \wedge W_k$, $k \ge 0$, such that $\varepsilon s_0 = 0 = s_k s_{k+1}$, $\varepsilon \delta = 1$, $\delta \varepsilon + s_0(1 \wedge d_0) = 1$ and $(1 \wedge d_k)s_k + s_{k+1}(1 \wedge d_{k+1}) = 1$ for each $k \ge 0$.

(iii) $E \wedge W_k$ is an extended *BP*-Hopf module spectrum for each $k \ge 0$.

From (1.3) we verify that if $W = \{W_k, d_k : W_k \to W_{k+1}\}_{k \geq 0}$ is an E-geometric resolution over *M,* then

(3.1) $E_*W = \{E_*W_k, (1 \wedge d_k)_*: E_*W_k \to E_*W_{k+1}\}_{k \geq 0}$ is a relative injective reso*lution of* M_* *by extended BP_{*}BP-comodules.*

Let us denote by \overline{BP} the cofiber of unit *i*: $S \rightarrow BP$, although the fiber of unit *i* was denoted as \overline{BP} in [1] or [3]. Let E be a BP-module spectrum with structure map ϕ_E : $BP \wedge E \rightarrow E$. The cofibering $E^{i\wedge 1}$, $BP \wedge E^{i\wedge 1}$, $\overline{BP} \wedge E$ splits, and hence there exists a unique map

$$
\psi_E \colon \overline{BP} \wedge E \longrightarrow BP \wedge E
$$

such that $(\pi \wedge 1)\psi_E = 1$ and $(i \wedge 1)\phi_E + \psi_E(\pi \wedge 1) = 1$. When *E* is a *BP*-Hopf module spectrum whose comodule structure map is $\eta_E: E \rightarrow BP \land E$, the cofibering $\overline{BP} \wedge E^{\psi_E} \wedge BP \wedge E^{\phi_E} \wedge E$ admits another splitting. Thus there exists a unique map

(3.3)
$$
\rho_E \colon BP \wedge E \longrightarrow \overline{BP} \wedge E
$$

such that $\rho_E \psi_E = 1$ and $\eta_E \phi_E + \psi_E \rho_E = 1$. We define two maps $\overline{\phi}_E$: $BP \wedge \overline{BP} \wedge E$ \rightarrow $\overline{BP} \wedge E$ and $\overline{\eta}_E$: $\overline{BP} \wedge E \rightarrow BP \wedge \overline{BP} \wedge E$ to be

$$
\begin{aligned}\n\bar{\phi}_E &= \rho_E(m \wedge 1)(1 \wedge \psi_E) : BP \wedge \overline{BP} \wedge E \longrightarrow BP \wedge BP \wedge E \\
&\longrightarrow BP \wedge E \longrightarrow \overline{BP} \wedge E, \\
\bar{\eta}_E &= (1 \wedge \rho_E)(1 \wedge i \wedge 1)\psi_E: \overline{BP} \wedge E \longrightarrow \overline{BP} \wedge E \\
&\longrightarrow BP \wedge BP \wedge E \longrightarrow \overline{BP} \wedge \overline{BP} \wedge E.\n\end{aligned}
$$

Lemma 3.1. Let E be a BP-Hopf module spectrum. Then $\overline{BP} \wedge E$ is a *BP-Hopf module spectrum such that* ρ_E : *BP* \wedge *E* \rightarrow *BP* \wedge *E is a BP-Hopf module map.*

Proof. By routine computations we can show the equalities $\overline{\phi}(i \wedge 1 \wedge 1) = 1$, $\overline{\phi}(1 \wedge \overline{\phi}) = \overline{\phi}(m \wedge 1 \wedge 1), \overline{\phi}\overline{\eta} = 1, \overline{\eta}\overline{\phi} = (m \wedge 1 \wedge 1)(1 \wedge \overline{\eta})$ and $\overline{\phi}(1 \wedge \rho) = \rho(m \wedge 1)$ without use of the coassociativity of η_E . Here the subscript *E* is omitted in $\bar{\phi}_E$, $\bar{\eta}_E$ and ρ_E . Moreover we obtain the equalities $(1 \wedge \bar{\eta})\bar{\eta} = (1 \wedge i \wedge 1 \wedge 1)\bar{\eta}$ and $\bar{\eta}\rho$ $=(1 \wedge \rho)(1 \wedge i \wedge 1)$ under the assumption that η_E is coassociative.

Remark. Such BP-Hopf module structure maps $\phi_{\overline{BP} \wedge E}$ and $\eta_{\overline{BP} \wedge E}$ on $\overline{BP} \wedge E$ that ρ_E : $BP \wedge E \rightarrow \overline{BP} \wedge E$ becomes a BP -Hopf module map are uniquely determined.

3.2. Given any BP-Hopf module spectrum E two maps d_E : $E \rightarrow \overline{BP} \wedge E$ and s_E : $BP \wedge \overline{BP} \wedge E \rightarrow BP \wedge E$ are defined to be

$$
(3.5) \quad d_E = (\pi \wedge 1)\eta_E \colon E \longrightarrow BP \wedge E \longrightarrow \overline{BP} \wedge E
$$

$$
s_E = -(m \wedge 1)(1 \wedge \psi_E) \colon BP \wedge \overline{BP} \wedge E \longrightarrow BP \wedge BP \wedge E \longrightarrow BP \wedge E.
$$

Note that $d_E = -\rho_E(i \wedge 1)$, $s_E = -\psi_E \overline{\phi}_E$ and s_E is a *BP*-module map. Similarly $d_{\overline{BP}\wedge E}: \overline{BP}\wedge E \to \overline{BP}^2 \wedge E$ and $s_{\overline{BP}\wedge E}: BP \wedge \overline{BP}^2 \wedge E \to BP \wedge \overline{BP} \wedge E$ are defined to be $d_{\overline{BP} \wedge E} = (\pi \wedge 1 \wedge 1) \overline{\eta}_E$ and $s_{\overline{BP} \wedge E} = -(m \wedge 1 \wedge 1)(1 \wedge \overline{\psi}_E)$, where $\overline{BP^2} = \overline{BP} \wedge \overline{BP}$. Obviously $d_{\overline{BP} \wedge E} = -1 \wedge d_E$. By easy calculations we have

Lemma 3.2. Let E be a BP-Hopf module spectrum. Then $\phi_{E^S E} = 0$ = $s_E s_{\overline{BP} \wedge E}$, $s_E(1 \wedge d_E) = \psi_E \rho_E$, $(1 \wedge d_E) s_E + s_{\overline{BP} \wedge E} (1 \wedge d_{\overline{BP} \wedge E}) = 1$ and *moreover* $(1 \wedge d_E)\eta_E = 0 = d_{\overline{BP} \wedge E}d_E.$

Let E be a BP-Hopf module spectrum with structure maps ϕ_E and η_E . For each $k \geq 1$, $\overline{BP}^k \wedge E$ becomes a *BP*-Hopf module spectrum whose structure maps $\phi_k : BP \wedge \overline{BP^k} \wedge E \rightarrow \overline{BP^k} \wedge E$ and $\eta_k : \overline{BP^k} \wedge E \rightarrow BP \wedge \overline{BP^k} \wedge E$ are inductively constructed by $\phi_k = \overline{\phi}_{k-1}$ and $\eta_k = \overline{\eta}_{k-1}$, where $\phi_0 = \phi_E$, $\eta_0 =$ $\overline{BP} \wedge \cdots \wedge \overline{BP}$ with k-factors.

Theorem 3.3. Let E be a BP-Hopf module spectrum. Then there exists *a* BP-geometric resolution $W_E = \{W_k = \overline{BP^k} \wedge E, d_k: W_k \rightarrow W_{k+1}\}_{k \geq 0}$ over E.

Proof. Consider the map d_k : $\overline{BP}^k \wedge E \rightarrow \overline{BP}^{k+1} \wedge E$ defined to be $d_k =$ $(\pi \wedge 1 \wedge 1)\eta_k$. Then Lemma 3.2 implies that the long sequence $* \rightarrow E^{n_E}$, BP $\wedge E$ $\frac{1\wedge d_0}{B}BP\wedge\overline{BP}\wedge E\frac{1\wedge d_1}{B}BP\wedge\overline{BP^2}\wedge E\rightarrow\cdots$ splits as a sequence of BP -module spectra. Hence the complex $W_E = \{W_k = \overline{BP^k} \wedge E, d_k\}_{k \geq 0}$ is a BP-geometric resolution over E.

Proposition 3.4. Let $W = \{W_k, d_k\}_{k \geq 0}$ be a BP-geometric resolution over *M.* Assume that *M* and W_k , $k \geq 0$, are quasi-associative BPJ-module spectra. *Then* $W = \{W_k, d_k\}_{k \geq 0}$ is a BPJ-geometric resolution over $M \wedge \sum_{j}$.

Proof. $W = \{W_k, d_k\}_{k \geq 0}$ possesses a split sequence

$$
* \longrightarrow M \xrightarrow{\delta} BP \wedge W_0 \xrightarrow{\frac{1 \wedge d_0}{s_0}} BP \wedge W_1 \xrightarrow{\frac{1 \wedge d_1}{s_1}} BP \wedge W_2 \xrightarrow{\longrightarrow} \cdots
$$

in which δ is a BP-Hopf module map and ε and s_k , $k \ge 0$, are BP-module maps. This gives rise to another split sequence

$$
* \longrightarrow M \wedge \sum_{J} \underbrace{\xrightarrow{\delta_{J}}}_{\epsilon_{J}} BP \wedge W_0 \wedge \sum_{J} \underbrace{\xrightarrow{\text{1} \wedge d_0, J}}_{s_0, J} BP \wedge W_1 \wedge \sum_{J} \underbrace{\xrightarrow{\text{1} \wedge d_1, J}}_{s_1, J}
$$

$$
BP \wedge W_2 \wedge \sum_{J} \underbrace{\xrightarrow{\text{1} \wedge d_1, J}}_{\sim} \cdots
$$

by means of (2.5), (2.7), (2.8) and Lemmas 2.6 and 2.7. Set $\tilde{\delta} = e^{-1}_{W_0} \delta_J$:

 $M \wedge \sum_J \rightarrow BPJ \wedge W_0$, which is a *BP-Hopf* module map by Lemmas 2.5 and 2.7 ii). Then the long sequene

$$
* \longrightarrow M \wedge \sum_{J} \underbrace{\xrightarrow{\delta}}_{\overline{\epsilon}} BPJ \wedge W_0 \underbrace{\xrightarrow{\lambda \wedge d_0}_{\overline{s_0}} BPJ \wedge W_1 \xrightarrow{\lambda \wedge d_1}_{\overline{s_1}} BPJ \wedge W_2 \longrightarrow \cdots
$$

becomes a split sequence of BF-module spectra, too. Here the BP-module maps $\tilde{\varepsilon}$ and \tilde{s}_k , $k \ge 0$, are defined to be $\tilde{\varepsilon} = \varepsilon_j e_{W_0}$ and $\tilde{s}_k = e_{W_k}^{-1} s_{kJ} e_{W_{k+1}}$. Since $BPJ \wedge W_k$ is an extended BP-Hopf module spectrum by Lemma 2.5, the desired result is obtained.

Combining Proposition 3.4 with Theorem 3.3 we have

Corollary *3.5. Let E be a BP-Hopf module spectrum which is a quasi*associative BPJ-module spectrum. Then the complex $W_E = \{W_k = \overline{BP^k} \wedge E,$ d_k _{$k \ge 0$} is a BPJ-geometric resolution over $E \wedge \sum_J$

§ 4. Factorized System

4.1. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an *E*-geometric resolution over *M*. We say *W* admits an *m*-factorized system $X(m) = \{X_j, a_j, b_{j-1}, c_j\}_{1 \leq j \leq m}$ if the following properties are satisfied :

(i) $X_{j-1} \xrightarrow{b_{j-1}} W_j \xrightarrow{c_j} X_j \xrightarrow{a_j} \sum^1 X_{j-1}$ is a cofiber sequence, and

(ii) $d_{i-1} = b_{i-1}c_{i-1}$ and $d_m b_{m-1} = 0$ for each j, $1 \le j \le m$,

where $X_0 = W_0$, $b_0 = d_0$, $c_0 = 1$ and $1 \le m \le \infty$.

Let $X(m) = \{X_i, a_i, b_{i-1}, c_i\}_{1 \le i \le m}$ be an *m*-factorized system of $W =$ ${W_k, d_k}_{k\geq0}$. Pick up a map $b_m: X_m \to W_{m+1}$ with $b_m c_m = d_m$ and a split sequence

$$
* \longrightarrow M \xrightarrow{\delta} E \wedge W_0 \xrightarrow{\frac{1 \wedge d_0}{s_0}} E \wedge W_1 \xrightarrow{\frac{1 \wedge d_1}{s_1}} E \wedge W_2 \xrightarrow{\longrightarrow} \cdots
$$

of *BP*-module spectra in which δ is a *BP*-Hopf module map and fix them. Choose a map $u_m: E \wedge X_{m-1} \to \sum^{-1} E \wedge X_m$ such that $(1 \wedge a_m)u_m = 1 - (1 \wedge c_{m-1})$ $s_{m-1}(1 \wedge b_{m-1})$, and then replace it with the map

$$
(4.1) \t t_m: E \wedge X_{m-1} \longrightarrow \sum^{-1} E \wedge X_m
$$

given by $t_m = u_m - (1 \wedge c_m)s_m(1 \wedge b_m)u_m$. Since $(1 \wedge a_m)u_m(1 \wedge a_m) = 1 \wedge a_m$ and $(1 \wedge a_m)u_m(1 \wedge c_{m-1})s_{m-1} = 0$, we can easily check

(4.2) (i)
$$
s_m(1 \wedge b_m)t_m = 0 = t_m(1 \wedge c_{m-1})s_{m-1}
$$
,
\n(ii) $t_m(1 \wedge a_m) + (1 \wedge c_m)s_m(1 \wedge b_m) = 1$ and

 $(1 \wedge a_m)t_m + (1 \wedge c_{m-1})s_{m-1}(1 \wedge b_{m-1}) = 1$.

Notice that the map t_m is a *BP*-module map, because $(1 \wedge a_m)t_m(\phi_E \wedge 1)$ $=(1 \wedge a_m)(\phi_E \wedge 1)(1 \wedge t_m)$ by use of (4.1). Hence the long sequence

 (4.3) $\cdots \longrightarrow E \wedge X_{m-1} \xrightarrow{1 \wedge b_{m-1}} E \wedge W_m \xrightarrow{1 \wedge c_m} E \wedge X_m \xrightarrow{1 \wedge a_m} \sum_{k} E \wedge X_{m-1} \longrightarrow \cdots$

splits as a sequence of BP -module spectra. Immediately (4.2) implies

$$
(4.4) \quad (1 \wedge a_m)t_m = t_{m-1}(1 \wedge a_{m-1}), \quad (1 \wedge a_m)t_m(1 \wedge a_m) = 1 \wedge a_m \quad and \quad t_m(1 \wedge a_m)t_m = t_m.
$$

Lemma 4.1. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an E-geometric resolution over M *and* $X(m) = \{X_j, a_j, b_{j-1}, c_j\}_{1 \leq j \leq m}$ be its m-factorized system. Then there *exists a BP-Hopf module map* $\varepsilon_m : E \wedge X_m \to \sum^m M$ such that $\varepsilon_m = \varepsilon_{m-1}(1 \wedge a_m)$ *and the long sequence*

$$
\cdots \xrightarrow{1 \wedge c_m} \sum^{-1} E \wedge X_m \xrightarrow{1 \wedge a_m} E \wedge X_{m-1} \xrightarrow{1 \wedge b_{m-1}} E \wedge W_m \xrightarrow{1 \wedge c_m} E \wedge X_m \xrightarrow{c_m} \sum^{m} M \longrightarrow *
$$

splits as a sequence of BP-module spectra.

Proof. Consider the composite map $\varepsilon_m = \varepsilon (1 \wedge a_1) \cdots (1 \wedge a_m)$: $E \wedge X_m \rightarrow$ $\sum^{m} M$. Obviously $\delta \varepsilon_m = (1 \wedge a_1) \cdots (1 \wedge a_m)$ and it is a *BP*-Hopf module map. Therefore ε_m is also a BP-Hopf module map since $(1 \wedge \delta)\eta_M \varepsilon_m = (1 \wedge \delta)(1 \wedge \varepsilon_m)$ $(\eta_E \wedge 1)$. Set $\delta_m = t_m \cdots t_1 \delta$: $M \to \sum^{-m} E \wedge X_m$, then (4.2) and (4.4) imply that $\varepsilon_m \delta_m = 1$ and $\delta_m \varepsilon_m + (1 \wedge c_m) s_m (1 \wedge b_m) = 1$. The result is now immediate from $(4.3).$

Let $W = \{W_k, d_k : W_k \to W_{k+1}\}_{k \geq 0}$ be a complex of CW-spectra, and $X \xrightarrow{b} W_m$ $\frac{c}{\sqrt{M}}$ $\frac{N}{2}$ $\frac{N}{2}$ i $\frac{N}{2}$ be a cofiber sequence. Suppose that two sequences $[\sum_{i=1}^{N} W_{m}$, W_{m+2}] \rightarrow [\sum ¹ W_m , W_{m+3}] \rightarrow 0 and [\sum ¹ X, W_{m+1}] \rightarrow [\sum ¹ X, W_{m+2}] \rightarrow [\sum ¹ X, W_{m+3}] induced by d's are both exact. Then an easy diagram chasing shows that there exists a map $\bar{b}: Y \rightarrow W_{m+1}$ satisfying $\bar{b}c = d_m$ and $d_{m+1}\bar{b} = 0$ if $d_m b = 0$. Hence we obtain immediately.

Proposition 4.2. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an E-geometric resolution over M such that $[\sum^1 W_m, W_{m+3}] = 0$. Assume that W admits an m-factorized system $X(m) = \{X_j\}_{1 \leq j \leq m}$. Then *W* admits an $(m+1)$ -factorized system $X(m + 1)$ $=\{X_j\}_{1\leq j\leq m+1}$ if the sequence $[\sum^1 X_{m-1}, W_{m+1}] \rightarrow [\sum^1 X_{m-1}, W_{m+2}] \rightarrow$ $\left[\sum^1 X_{m-1}, W_{m+3}\right]$ is exact.

Let $W = \{W_k, d_k\}_{k \geq 0}$ and $W' = \{W'_k, d'_k\}_{k \geq 0}$ be two complexes of CW-

spectra, and $g = {g_k}_{k \geq 0}$: $W \rightarrow W'$ be a map of complexes. Let $X \xrightarrow{b} W_m \xrightarrow{c} Y$ $\longrightarrow \Sigma^1 X$ and $X'_{\sim} \rightarrow W'_{m} \rightarrow Y'_{\sim} \rightarrow \Sigma^1 X'$ be two cofiber sequences, and $\bar{b}: Y \rightarrow Y'_{\sim}$ W_{m+1} and \bar{b}' : $Y' \rightarrow W'_{m+1}$ be maps satisfying $\bar{b}c = d_m$, $\bar{b}'c' = d'_m$ and $d_{m+1}\bar{b} = 0$ d'_{m+1} *b'* respectively. Suppose that $[\sum^1 W_m, W'_{m+1}] \rightarrow [\sum^1 W_m, W'_{m+2}] \rightarrow 0$ and $[\sum^1 X, W_m'] \rightarrow [\sum^1 X, W_{m+1}'] \rightarrow [\sum^1 X, W_{m+2}]$ are both exact. Given a map $f: X \rightarrow X'$ with $b'f = g_m b$, we can easily choose a map h: $Y \rightarrow Y'$ such that $\bar{b}'h$ $=g_{m+1}\bar{b}$, $hc = c'g_m$ and $a'h = (\sum f)a$. Hence we have

Proposition 4.3. Let $W = \{W_k, d_k\}_{k \geq 0}$ and $W' = \{W'_k, d'_k\}_{k \geq 0}$ be E-geometric *resolutions over M and N respectively, and* $X(m) = \{X_j\}_{1 \leq j \leq m}$ *and* $X'(m)$ $=\{X'_j\}_{1\leq j\leq m}$ be their m-factorized systems. Given a map $g: W \rightarrow W'$ of *complexes, there exists a map* $f(m)$: $X(m) \rightarrow X'(m)$ of m-factorized systems if $[\sum_{k} M_{k}^{k}, W'_{k+2}] = 0$ and the sequences $[\sum_{k} M_{k-1}, W'_{k}] \rightarrow [\sum_{k} M_{k-1}, W'_{k+1}] \rightarrow$ $\left[\sum_{k=1}^{\infty} X_{k-1}, W'_{k+2}\right]$ are exact for all $k, 1 \leq k \leq m-1$.

4.2. Let $W = \{W_k, d_k\}_{k \geq 0}$ be a BPJ-geometric resolution over N and F be a quasi-associative BPJ-module spectrum. Suppose that F satisfies the condition :

 $(4.5)_W$ $\kappa: \left[\sum^t W_k, F\right] \to \text{Hom}_{BPJ*}(BPJ_*W_k, F_*)$ is an isomorphism for each $k \geq 0$.

For example, all F satisfy the condition $(4.5)_W$ whenever BPI_*W_k is BPI_{*} free (see 2.1).

Let $X(m) = \{X_j, a_j, b_{j-1}, c_j\}_{1 \leq j \leq m}$ be an m-factorized system of *W*. By making use of (4.3) and Five lemma we see that κ : $[\sum^{t} X_m, F] \rightarrow \text{Hom}_{BPL}^{-t}$ (BPI_*X_m, F_*) is an isomorphism, too. From Lemma 4.1 we obtain that the sequence $BPJ_*W_m \rightarrow BPJ_*X_m \rightarrow N_{*-m} \rightarrow 0$ is split exact of BPJ_* -modules. This gives rise to a split exact sequence $0 \to \text{Hom}_{B}^{m} \mathcal{F}_{J*}^{t}(N_*, F_*) \xrightarrow{\varepsilon_m^*} [\sum^{t} X_m, F] \to$ $[\sum W_m, F]$. Recall that there exists an isomorphism θ : Hom_{*BP*^{*}}*BP*^{(N}*, *BP*^{*}*F*) \rightarrow Hom_{*BPJ*^{*}}(N_{*}, F_{*}) by (2.2). Replacing ε_m^* with the composite map $\varepsilon_m^* \theta$, denoted by ξ_m , we have a split exact sequence

$$
(4.6) \qquad 0 \longrightarrow \text{Hom}_{BP*BP}^{-m-t}(N_*, BP_*F) \xrightarrow{\xi_m} [\sum^t X_m, F] \xrightarrow{c_m^*} [\sum^t W_m, F]
$$

Lemma 4.4. Let $W = {W_k}_{k\geq0}$ be a BPJ-geometric resolution over N and $X(m) = \{X_j\}_{1 \leq j \leq m}$ be its m-factorized system. Let F be a quasi-associative *BPJ-module spectrum satisfying the condition* $(4.5)_w$ such that $F_*=0$ unless $* \equiv 0 \mod 2(p-1)$. Suppose that the length of J is less than $p-1$. Then the

 $map \ \xi_m$: $Hom_{BP*B}^{-m-t}P(N_*, BP_*F) \to [\sum^t X_m, F]$ is natural with respect to F. *Moreover it is an isomorphism if* $[\sum^t W_m, F] = 0$.

Proof. The composite map $\xi_m(\delta_*)^*\theta^{-1}\kappa$: $[\sum^{m+i}W_0, F] \to [\sum^i X_m, F]$ is induced by the composition $a_1 \cdots a_m$, because $\delta \varepsilon_m = (1 \wedge a_1) \cdots (1 \wedge a_m)$. Obviously $\theta^{-1}\kappa = \pi\theta^{-1}\kappa = \pi\lambda$, so it follows from Lemma 2.4 that $(\delta_*)^*\theta^{-1}\kappa$: $[\sum_{m}^{m}W_m, F]$ \rightarrow Hom_{BP*BP}(N_{*}, BP_{*}F) is natural with respect to F. Since $(\delta_{*})^*\theta^{-1}\kappa$ is an epimorphism it is obvious that ξ_m is also natural with respect to F. The latter part is immediate from (4.6).

As a sufficient condition under which $[\sum^t G, F] = 0$ holds we have

Lemma 4.5. Let F and G be quasi-associative BPJ-module spectra such *that* $F_* = 0 = G_*$ *unless* $* \equiv 0 \mod 2(p-1)$ *and* G_* *is BPJ*_{*}-free. If the length *n of J* is less than $2p - 3$, then $[\sum^r G, F] = 0$ for each t, $1 \le t < 2(p - 1) - n$.

Proof. Note that $BPJ_*G = 0$ unless $* = 0, 1, \ldots, n \mod 2(p-1)$. This implies that $[\sum^r G, F] \cong \text{Hom}_{BPI*}^{-t}(BPJ_*G, F_*) = 0$ when $1 \le t < 2(p-1)-n$.

Theorem 4.6. Suppose that the length of J is less than $p-1$. Let $W = \{W_k,$ d_k _{$k \geq 0$} be a BP-geometric resolution over M such that M and W_k , $k \geq 0$, are *quasi-associative BPJ-module spectra with* W_{k*} *BPJ*_{*}-free and $W_{k*}=0$ unless $* \equiv 0 \mod 2(p-1)$. If $\operatorname{Ext}^{m+2,-m-1}_{BP * BP}(M_*, M_*) = 0$ for all $m \ge 1$ and $t \in A_j$, then *W* admits an ∞ -factorized system $X(\infty)$. Moreover, its ∞ -factorized system *is uniquely given if* $Ext^{m+1,-m-t}_{BP} (M_*, M_*) = 0$ for all $m \ge 1$ and $t \in A_J$. (Cf., [13, Lemma 3.1]).

Proof. $W = \{W_k, d_k\}_{k \geq 0}$ is a *BPJ*-geometric resolution over $M \wedge \sum_j$ by Proposition 3.4. Note that $[\sum^1 W_i, W_k] = 0$ for all *i*, $k \ge 0$, because of Lemma 4.5. Inductively we assume that *W* admits an m-factorized system *X(m) =* ${X_j}_{1 \leq j \leq m}$ to show the existence of its ∞ -factorized system $X(\infty)$. By Lemma 4.4 we have an isomorphism ξ_m : $\text{Hom}_{BP*BP}(M_*\sum_J, BP_*W_k) \to [\sum^1 X_{m-1}, W_k]$ which is natural with respect to W_k . The sequence $0 \rightarrow M_*\sum_{J_i} \rightarrow M_*\sum_{J_{i+1}}$ $\rightarrow M_{*-1}\sum_{J_i}\rightarrow 0$ is exact of BP_*BP -comodules and split exact of (free) BPJ_* modules. Hence our first hypothesis implies that $\text{Ext}^{m+2}_{BP^*B}P^m(M_*\sum_j, M_*) = 0$ for all $m \ge 1$. Using the natural isomorphism ζ_m this means that the sequence $[\sum_1 X_{m-1}, W_{m+1}] \rightarrow [\sum_1 X_{m-1}, W_{m+2}] \rightarrow [\sum_1 X_{m-1}, W_{m+3}]$ is exact. Apply Proposition 4.2 to botain an $(m+1)$ -factorized system $X(m+1) = \{X_i\}_{1 \le i \le m+1}$.

The uniqueness of $X(\infty)$ is easily shown by use of Proposition 4.3, because our latter hypothesis implies that the sequences $[\sum_{m=1}^{n} X_{m-1}, W_m] \rightarrow [\sum_{m=1}^{n} X_{m-1}]$ $W_{m+1}\rightarrow \left[\sum_{m-1}^{n}X_{m-1}, W_{m+2}\right]$ are exact for all $m\geq 1$.

4.3. Let $W = \{W_k, d_k\}_{k \geq 0}$ be a BP-geometric resolution over M such that W_k is a quasi-associative *BPJ*-module spectrum for each $k \ge 0$. Let *L* and N be BP-Hopf module spectra and $f: L \rightarrow N$ be a BP-Hopf module map inducing an isomorphism $f_*: BPI_* \underset{BP*}{\otimes} L_* \cong N_*$. Then the map f induces an isomorphism $(f_*)^*$: Hom_{*BP***BP*} $(N_*, BP_*W_k) \rightarrow$ Hom_{*BP***BP*} (L_*, BP_*W_k) . Hence we have an isomorphism

(4.7)
$$
\operatorname{Ext}_{B_{P*B}^{s,t}}^{s,t} p(N_*, M_*) \cong \operatorname{Ext}_{B_{P*B}^{s,t}}^{s,t} p(L_*, M_*).
$$

Specially $j: BP \rightarrow BPJ$ induces an isomorphism

(4.8) Ext ${}_{B}^{s,t}$ E_{B}^{t} , B_{B}^{t} (B_{B}^{t} , M_{*}) \cong Ext ${}_{B}^{s,t}$, B_{B}^{t} (B_{B}^{t} , M_{*}).

Lemma 4.7. Let C be an associative BP_*BP -comodule which is a direct *limit of finitely presented* v_{n-1} -torsion comodules. If n is not divided by $p-1$, *then* $Ext^s_{BP * BP}(BP_*, v_n^{-1}C) = 0$ *for all s* > n^2 *.*

Proof. We may assume that *C* itself is finitely presented and v_{n-1} -torsion. Choose a Landweber prime filtration $C = C_0 \supset C_1 \supset \cdots \supset C_r = \{0\}$ so that each subquotient C_k/C_{k+1} is a suspension of $BP_*/I_{n(k)}$ for some $n(k) \geq n$. Then $v_n^{-1}C$ has a filtration $v_n^{-1}C = B_0 \supset B_1 \supset \cdots \supset B_q = \{0\}$ so that all subquotients are suspensions of $v_n^{-1}BP_*/I_n$. By Morava's Theorem [8, Theorem 3.16] Ext_{$BP*BP$} $(BP_*, v_n^{-1}BP_*/I_n) = 0$ for all $s > n^2$ whenever $p-1/n$. The desired result is easily shown.

Let us denote by L_n , $n \ge 0$, the localization functor with respect to $v_n^{-1}BP_*$ homology (see [3] or [11]). Consider the functor N_n , $n \ge 0$, derived from the cofibering $X \to L_{n-1} X \to \sum^{-n+1} N_n X$, where $N_0 = 1$. We put $M_n = L_n N_n$, $n \ge 0$. By [17, Theorem 2.3] we notice that $N_n X$ is v_k -torsion for each $k, 0 \le k < n$, and $M_n X = v_n^{-1} N_n X$ if X is an associative BP-module spectrum.

Corollary 4.8. Let n be a positive integer not less than the length of J. *Suppose that p is odd and* $n^2 + n < 2p$ *. Then* Ext_{BP*BP}^{m+k} $\bar{p}^{m-t}(BP_*, M_nBPJ_*) = 0$ *for all* $m \ge 1$ *,* $k \ge 1$ *and* $t \in A_j$.

Proof. In the $m + k > n^2$ case the result is immediate from Lemma 4.7. In the $m + k \leq n^2$ case it is obvious that $Ext_{B^2k}^{*}P_{*}^{m-1}(BP_*, M_nBPJ_*) = 0$ for all $t \in A_J$, since $1 \le m \le m + n \le n^2 + n - 1 < 2(p - 1)$.

Given an *E*-geometric resolution $W = \{W_k, d_k\}_{k \geq 0}$ over M, $L_nW =$ ${L_nW_k, L_nd_k}_{k\geq 0}$ is also an *E*-geometric resolution over L_nM , because $E \wedge L_nX$

 $=L_n(E \wedge X) = L_nE \wedge X$ by Ravenel's result [12, Theorem 1]. Recall that the radical of J is just $I_n = (p, v_1, \ldots, v_{n-1})$ where *n* denotes the length of J. So it follows from [17, Proposition 2.2] that $L_nF = v_n^{-1}F$ whenever *F* is a quasiassociative BPJ-module spectrum.

Let $W_{BPJ} = \{W_k = \overline{BP^k} \wedge BPJ, d_k\}_{k \geq 0}$ be the BP-geometric resolution over *BPJ* constructed in Theorem 3.3. The *BP*-geometric resolution L_nW_{BPI} , obtained by applying the localization functor L_n to the BP-geometric resolution *W*_{BPJ}, coincides with the BP-geometric resolution $W_{v_n^{-1}BPI} = {\overline{BP^k} \wedge v_n^{-1}BPJ}$, d_k _{$k \ge 0$} over $v_n^{-1}BPI$.

Theorem 4.9, *Let J be an invariant regular sequence of length n.* Suppose that p is odd and $n^2 + n < 2p$. Then the BP-geometric resolution $W_{v_n^{-1}BPJ} = \{L_nW_k = \overline{BP^k} \wedge v_n^{-1}BPJ, d_k\}_{k \geq 0}$ over $v_n^{-1}BPJ$ admits a unique ∞ *factorized system* $Y(\infty)$ *.*

Proof. For any quasi-associative BPJ-module spectrum F the map κ : $[\sum_{n}^{\infty} L_n W_k, L_n F] \rightarrow \text{Hom}_{B^t P J *} (B P J_* L_n W_k, L_n F_*)$ is an isomorphism because $[\sum^t L_n W_k, L_n F] \cong [\sum^t W_k, L_n F] \cong \text{Hom}_{BPJ_*}(BPJ_*W_k, v_n^{-1}F_*)$. Thus all L_nF satisfy the condition $(4.5)^_W$ where the *BPJ*-geometric resolution W_{ν}^{-1} _{*BPJ*} over $v_n^{-1}BPJ \wedge \sum_J$ is abbreviated as *W*. Moreover it follows from Lemma 4.5 that $[\sum_{i}^{1} L_n W_i, L_n W_k] \cong [\sum_{i}^{1} W_i, L_n W_k] = 0$ for all i, $k \ge 0$. Inductively we assume that $W_{v_n^{-1}BPJ}$ admits an *m*-factorized system $Y(m) = \{Y_j\}_{1 \leq j \leq m}$. By Lemma 4.4 there exists an isomorphism ξ_m : $\text{Hom}_{BP*BP}(BPJ_*\sum_j, BP_*L_nW_k) \to [\sum_j^1 Y_{m-1},$ L_nW_k , which is natural with respect to W_k . Combining Corollary 4.8 with (4.7) it is shown that $Ext^{m+k}_{BP*B}F^{-t}(BPJ_*, v_n^{-1}BPJ_*)=0$ for all $m \ge 1$, $k \ge 1$ and $t \in A_J$, when $n \ge 1$. As in the proof of Theorem 4.6 this implies that the sequence $[\sum_{m=1}^{n} L_m W_{m+k-1}] \rightarrow [\sum_{m=1}^{n} L_m W_{m+k}] \rightarrow [\sum_{m=1}^{n} L_m W_{m+k+1}]$ is exact. In the $n = 0$ case the exactness is easily shown since [Y, $L_0W \simeq \text{Hom}(\pi_*Y, \pi_*W)$ \otimes Q). Applying Propositions 4.2 and 4.3 we obtain the desired result.

§ 5. Homotopy Inverse Limit

5.1. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an E-geometric resolution over M. Assume that W admits an ∞ -factorized system $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \ge 1}$. For a CW-spectrum Y the tower $\{\sum^{-m} Y \wedge X_m, 1 \wedge a_m\}_{m \geq 1}$ has a homotopy inverse limit $\lim_{m \to \infty} \sum_{m=1}^{m} Y \wedge X_m$ denoted by $(Y \wedge X)_{\infty}$. It possesses the canonical projections q_m : $(Y \wedge X)_{\infty} \to \sum^{-m} Y \wedge X_m$ such that $(1 \wedge a_m) q_m = q_{m-1}$. The BP-Hopf module

maps ε_m : $\sum_{m} f^{-m}E \wedge X_m \rightarrow M$ given in Lemma 4.1 induce a *BP*-Hopf module map (5.1) $\varepsilon_{\infty}: E \wedge X_{\infty} \longrightarrow M$

defined to be $\varepsilon_{\infty} = \varepsilon_m(1 \wedge q_m) = \varepsilon(1 \wedge q_0).$

Proposition 5.1. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an E-geometric resolution over *M* which admits an ∞ -factorized system $X = \{X_m\}_{m \geq 1}$. If the canonical map $q: E \wedge X_\infty \rightarrow (E \wedge X)_\infty$ *is a homotopy equivalence, then the BP-Hopf module map* ε_{∞} : $E \wedge X_{\infty} \rightarrow M$ is a homotopy equivalence, too.

Proof. Consider the commutative diagram

$$
E_{*+m+1}W_{m+1} \xrightarrow{\text{(1 }\wedge\text{ }c_{m+1}\wedge\text{ }s)} E_{*+m+1}X_{m+1} \xrightarrow{\text{ }c_{m+1}*} M_* \longrightarrow 0
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
E_{*+m}W_m \xrightarrow{\text{(1 }\wedge\text{ }c_{m}\wedge\text{ }s)} E_{*+m}X_m \xrightarrow{\text{ }c_{m*}} M_* \longrightarrow 0
$$

in which the left vertical arrow is trivial. The two rows are exact by Lemma 4.1. Hence we observe that $\lim_{k \to \infty} E_{*+m} X_m \cong M_*$ and $\lim_{k \to \infty} E_{*+m} X_m = 0$. This implies that the map ε_{∞} induces an isomorphism ε_{∞} : E_*X_{∞} \rightarrow M_* under our hypothesis.

Corollary 5.2. *Assume that E is connective and of finite type and that all* W_k , $k \geq 0$, are $(N+k)$ -connected for some N independent on k. Then the *BP-Hopf module map* ε_{∞} : $E \wedge X_{\infty} \rightarrow M$ *is a homotopy equivalence.*

Proof. From [1, Theorem 15.2] it follows that the canonical map $q: E \wedge$ $X_{\infty} \rightarrow (E \land X)_{\infty}$ is a homotopy equivalence.

Given a ring spectrum *E* we form a cofibering $S \rightarrow E^* - E^-$ and put $\overline{E}^k =$ $\overline{E} \wedge \cdots \wedge \overline{E}$ with *k*-factors. Consider the Adams geometric resolution $W_{E,Y}$ = $\{W_kY=\overline{E}^k \wedge E \wedge Y, d_k: W_kY \rightarrow W_{k+1}Y\}_{k \geq 0}$ for a CW-spectrum *Y*, where d_k is defined to be $d_k = (-1)^k (1 \wedge \pi \wedge 1 \wedge 1)(1 \wedge 1 \wedge i \wedge 1)$. Note that the Adams geometric resolution $W_{E,Y}$ gives an E-geometric resolution over $E \wedge Y$ when E is a ring and BP-Hopf module spectrum. Let $K_m Y$ denote the fiber of the obvious map $\overline{E}^{m+1} \wedge Y \to \sum^{m+1} Y$, thus $\sum^{m} Y \xrightarrow{\alpha_m} K_m Y \to \overline{E}^{m+1} \wedge Y \to \sum^{m+1} Y$ be a cofiber sequence, $m \ge 0$, where $K_0Y = E \wedge Y$ and $\alpha_0 = i \wedge 1$. Then we have a cofiber sequence $K_{m-1}Y^{-b_{m-1}}W_mY^{-c_m}K_mY^{-a_m} \Sigma^1 K_{m-1}Y$ such that $b_m c_m = d_m$ and $a_m \alpha_m = \alpha_{m-1}$ (see [3]). Hence we see

(5.2) $KY = \{K_m, Y a_m, b_{m-1}, c_m\}_{m \geq 1}$ is an ∞ -factorized system of the E-geometric *resolution* $W_{E,Y}$ *.*

The tower ${\sum^{-m} K_m Y, a_m}_{m \geq 1}$ has a homotopy inverse limit E^Y with a

map $\alpha: Y \rightarrow E^*Y$ inducing the maps $\alpha_m: Y \rightarrow \sum^{-m} K_m Y$. A CW-spectrum *Y* is said to be *E-nilpotent complete* if the map α : $Y \rightarrow E^*Y$ is a homotopy equivalence. Any E-module spectrum is obviously E-nilpotent complete. Note that $1 \wedge \alpha$: $E \wedge Y \rightarrow E \wedge (E \wedge Y)$ has a left inverse constructed using the map $q_0: E \wedge Y \rightarrow E \wedge Y$. The left inverse $(m \wedge 1)(1 \wedge q_0)$ coincides with ε_∞ given in (5.1), where *m* denotes the multiplication of *E*. Since $E \wedge Y$ is *E*-nilpotent complete, it follows that $1 \wedge \alpha$: $E \wedge Y \rightarrow E \wedge (E \wedge Y)$ is a homotopy equivalence if and only if the canonical map $q: E \wedge (E \wedge Y) \rightarrow E \wedge (E \wedge Y)$ is so. Therefore we have

(5.3) *An E-local CW-spectrum Y is E-nilpotent complete if the canonical map q:* $E \wedge (E^{\wedge} Y) \rightarrow E^{\wedge} (E \wedge Y)$ *is a homotopy equivalence.*

5.2. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an E-geometric resolution over M, which admits an ∞ -factorized system $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \ge 1}$. Consider the tower $\{\sum^{-m} E \wedge X_m, 1 \wedge a_m\}_{m \geq 1}$ with homotopy inverse limit $(E \wedge X)_{\infty}$. Since $(1 \wedge a_m) \cdots (1 \wedge a_k)t_k \cdots t_m$ $(1 \wedge a_m) = 1 \wedge a_m$ by means of (4.4), it is easily seen that

(5.4)
$$
\operatorname{Im} \left\{ (1 \wedge a_m)_* : \left[Y, \sum^{-1} E \wedge X_m \right] \longrightarrow \left[Y, E \wedge X_{m-1} \right] \right\} \\ = \operatorname{Im} \left\{ (1 \wedge a_m \cdots a_k)_* : \left[Y, \sum^{-k+m-1} E \wedge X_k \right] \longrightarrow \left[Y, E \wedge X_{m-1} \right] \right\}
$$

for any $k \ge m$. Thus the inverse system $\{[Y, \sum^{-m} E \wedge X_m], (1 \wedge a_m)_* \}_{m \ge 1}$ satisfies the Mittag-Leffler condition. This result implies that

$$
(5.5) \t q_{*}: [Y, (E \wedge X)_{\infty}] \longrightarrow \varprojlim_{m} [Y, \sum^{-m} E \wedge X_{m}]
$$

is an isomorphism because $\lim_{m} \left[\sum_{i=1}^{m} Y_{i} \sum_{j=1}^{m} E_{j} X_{m} \right] = 0.$

Lemma 5.3. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an E-geometric resolution over M *with an* ∞ -factorized system $X = \{X_m\}_{m \geq 1}$. Then $q^* : \underline{\lim} \ [\sum^{-m} E \wedge X_m, Y]$ \rightarrow [(E \land X)_∞, Y] is an isomorphism for any CW-spectrum Y.

Proof. Since $(1 \wedge a_{m+1})t_{m+1} \cdots t_1 = t_m \cdots t_1$ for any $m \ge 1$, the maps $t_m \cdots t_1$: $E \wedge X_0 \rightarrow \sum^{-m} E \wedge X_m$ give rise to a unique map $t: E \wedge X_0 \rightarrow (E \wedge X)_{\infty}$ such that $q_0 t = (1 \wedge a_1)t_1$ and $q_m t = t_m \cdots t_1$ for each $m \ge 1$. By use of (4.4) it is obvious that $q_m t q_0 = q_m$, since $(1 \wedge a_{j+1})q_{j+1} = q_j$. Applying (5.5) in the $Y=(E \wedge X)_{\infty}$ case we obtain that $q_*(tq_0) = q_*(1)$ *,* and hence $tq_0 = 1$. Therefore it is easy to show that q^* is an epimorphism. Next, choose a map f_m : $\sum^{-m} E \wedge X_m \rightarrow Y$ with $f_m q_m = 0$. Then $f_m(1 \wedge a_{m+1}) = f_m t_m \cdots t_1 (1 \wedge a_1) \cdots (1 \wedge a_{m+1}) = 0$, so q^* is a monomorphism.

For a ring spectrum F, a tower $\{Z_m, f_m\}_{m \geq 1}$ of CW-spectra is said to be an

F-nilpotent resolution of a CW-spectrum Z if (i) Z_m is F-nilpotent for each $m \ge 1$, and (ii) there exists a map $g:Z\rightarrow \lim Z_m$ inducing an isomorphism g^* : lim $[Z_m, N]$ \rightarrow $[Z, N]$ for any *F*-nilpotent spectrum *N* (see [3, Definition m **5.6]).**

Theorem 5.4. Let $W = \{W_k, d_k\}_{k \geq 0}$ be an E-geometric resolution over M *such that each W_k is E-nilpotent, and* $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \geq 1}$ *be its* ∞ *factorized system.* Assume that the canonical map $q: E \wedge X_{\infty} \rightarrow (E \wedge X)_{\infty}$ is a *homotopy equivalence.* Then the tower $\{\sum^{-m} X_m, a_m\}_{m\geq 1}$ is an E-nilpotent *resolution of homotopy inverse limit* X_∞ when E is a ring and BP-Hopf module *spectrum.*

Proof. Each X_m is obviously E-nilpotent. So it is sufficient to show that q^* : $\lim_{m} [\sum_{m}^{-m} X_m, E \wedge Y] \rightarrow [X_\infty, E \wedge Y]$ is an isomorphism, when taking $E \wedge Y$ specially as an *E*-nilpotent spectrum *N*. Consider the commutative diagram

$$
\lim_{m} \left[\sum^{-m} E \wedge X_{m}, E \wedge Y \right] \longrightarrow \left[(E \wedge X)_{\infty}, E \wedge Y \right] \longrightarrow \left[E \wedge X_{\infty}, E \wedge Y \right]
$$
\n
$$
\lim_{m} \left[\sum^{-m} X_{m}, E \wedge Y \right] \longrightarrow \left[(E \wedge X)_{\infty}, E \wedge Y \right] \longrightarrow \left[X_{\infty}, E \wedge Y \right]
$$

in which $i: S \rightarrow E$ denotes the unit map of *E*. The upper arrows are both isomorphisms by Lemma 5.3 and the assumption on the map *q.* Note that the vertical arrows $(i \wedge 1)^*$ are split epimorphisms because *E* is a ring spectrum. Hence we see easily that the bottom arrow is an isomorphism as desired.

5.3. Let $W = \{W_k, d_k\}_{k \geq 0}$ be a *BP*-geometric resolution over *M* and $X =$ ${X_m, a_m, b_{m-1}, c_m}_{m \ge 1}$ be its ∞ -factorized system. Consider the BP_* -Adams spectral sequence ${E_r^{s,t}(Y, X)}_{r \geq 1}$ constructed using the tower ${\sum_{m} w_{m,n} a_m}_{m \geq 1}$ with homotopy inverse limit X_{∞} . Denote by $X_{m,j}$ and $X_{\infty,m}$, $-1 \leq j < m < \infty$, the fibers of the composite maps $a_{j+1} \cdots a_m$: $\sum^{m} X_m \rightarrow \sum^{j} X_j$ and q_m : X_∞ \rightarrow \sum ^{-*m*} X_m respectively. Obviously $X_{m,m-1} = \sum$ ^{-*m*} W_m , $X_{m,-1} = \sum$ ^{-*m*} X_m and the sequence $X_{k,m}$ \rightarrow $X_{k,j}$ \rightarrow $X_{m,j}$ is a cofibering, $-1 \leq j < m < k \leq \infty$.

Given a CW -spectrum Y we set

$$
Z_{r}^{s,t}(Y, X) = \text{Ker}\{[Y, \sum_{s+t}^{s+t} X_{s,s-1}] \longrightarrow [Y, \sum_{s+t+1}^{s+t+1} X_{s+r-1,s}] \}
$$

$$
B_{r}^{s,t}(Y, X) = \text{Im}\{[Y, \sum_{s+t-1}^{s+t-1} X_{s-1,s-r}] \longrightarrow [Y, \sum_{s+t}^{s+t} X_{s,s-1}] \}
$$

$$
E_{r}^{s,t}(Y, X) = Z_{r}^{s,t}(Y, X) / B_{r}^{s,t}(Y, X)
$$

for each r, $1 \le r \le \infty$. Further we define a decreasing filtration of $[Y, \sum d X_{\infty}]$ by

$$
F^{s,d-s}(Y, X) = F^s[Y, \sum d X_{\infty}] = \text{Ker} \left\{ \left[\begin{matrix} Y, \sum d X_{\infty} \end{matrix} \right] \longrightarrow \left[\begin{matrix} Y, \sum d-s+1 \ X_{s-1} \end{matrix} \right] \right\}.
$$

The composite map $f^{-1}(Y, X) \cong E^{s,t}_{\infty}(Y, X) \to \lim_{k \to \infty} E^{s,t}_{r}$ (Y, X) is always a monomorphism, and the map $[Y, \sum d X_{\infty}] \rightarrow \lim_{\epsilon \to 0} [Y, \sum d X_{\infty}]$ $F^{s, d-s}(Y, X)$ is always an epimorphism. We say the spectral sequence ${E_r^{s,t}(Y, X)}_{r\geq 1}$ converges *completely* to $[Y, X_\infty]$ if the above two maps are both isomorphisms. Use the cofiberings $X_{\infty,m}\to X_{\infty}\to \sum^{-m}X_m$ to show that $\lim_{m \to \infty} X_{\infty,m} = pt$ by means of Verdier's lemma. This implies that $\lim_{m \to \infty} [Y, X_{\infty,m}]$ $\lim_{m \to \infty}$ $\lim_{m \to \infty}$ [Y, $X_{\infty,m}$]. Then [1, Theorem 8.2] says

(5.6) the spectral sequence ${E_r^{s,t}(Y, X)}_{r \geq 1}$ converges completely to $[Y, X_{\infty}]$ if and only if $\lim_{h \to \infty} E_r^{s,t}(Y, X) = 0$ for each s, t.

We say the spectral sequence ${E_r^{s,t}(Y, X)}_{r \geq 1}$ converges *finitely* to [*Y*, if for each s, t there exists $r_0 = r_0(s, t) < \infty$ such that $E_{r_0}^{s,t}(Y, X) = E_r^{s,t}(Y, X)$ whenever $r_0 \le r < \infty$. From (5.4) it follows that

(5.7) the spectral sequence ${E_r^{s,t}(Y, X)}_{r \geq 1}$ converges completely if it *converges finitely.*

Under the assumption that BP_*Y is BP_* -free, $E_1^{s,t}(Y, X) \cong \text{Hom}_{BP*BP}^t$ (BP_*Y, BP_*W_s) and $E_2^{s,t}(Y, X) \cong \text{Ext}_{BP*BP}^{s,t}(BP_*Y, M_*)$ in the BP_* -Adams spectral sequence $\{E_r^{s,t}(Y,X)\}_{r\geq 1}$.

Proposition 5.5. Let n be a positive integer not less than the length of J *and Y be a CW-spectrum.* Let $W = \{W_k, d_k\}_{k \geq 0}$ be a BP-geometric resolution *over* $M_n(BPI \wedge Y)$ which admits an ∞ -factorized system $X = \{X_m\}_{m \geq 1}$. If n *is not divided by p*-1, then the canonical map $q: Z \wedge X_{\infty} \rightarrow (Z \wedge X)_{\infty}$ is a *homotopy equivalence for any CW-spectrum Z.*

Proof. Consider the BP_* -Adams spectral sequence ${E}^{s,t}_r(Z) = E^{s,t}_r(S,$ $Z \wedge X$ }^{*r*}₂² associated with the tower $\{Z \wedge \sum_{m} w_{m}, 1 \wedge a_{m}\}$ _{*m*}² for each spectrum Z. By Lemma 4.7 we observe that $E_2^{s,*}(Z) \cong \text{Ext}_{B_{P*B}}^{s,*}(BP_*)$ $M_nBPJ_*(Y \wedge Z) = 0$ for all $s > n^2$. Therefore $E_{n^2+1}^{s,t}(Z) = E_{n^2+m}^{s,t}(Z)$ for all $m \ge 1$. Thus the spectral sequence ${E_r^s}'(Z)_{r \geq 1}$ converges completely to $\pi_*(Z \wedge X)_{\infty}$ by (5.7). Hence $\pi_*(Z \wedge X)_{\infty}$ has a decreasing filtration $\pi_*(Z \wedge X)_{\infty} = F^0(Z) \supset F^1(Z)$ \Rightarrow \cdots \Rightarrow $F^{n^2+1}(Z) = \{0\}$ such that $F^s(Z)/F^{s+1}(Z) \cong E^{s,*}_{n^2+1}(Z)$. Let $\{Z_{\lambda}\}\$ be a set of finite subspectra of Z whose union is just Z. Since $\lim_{m \to \infty} \pi_*(Z_\lambda \wedge X_{m,j}) \cong$ $\pi_*(Z \wedge X_{m,j})$, the canonical map $\varinjlim E_r^{s,t}(Z) \to E_r^{s,t}(Z)$ is an isomorphism for every r, $1 \le r < \infty$. By a downward induction on s we verify that the canonical map

 $\lim_{M \to \infty} F^{s}(Z_{\lambda}) \to F^{s}(Z)$ is an isomorphism, and hence the map $\lim_{M \to \infty} \pi_{*}(Z_{\lambda} \wedge X)_{\infty}$ $\rightarrow \pi_*(Z \wedge X)_{\infty}$ becomes an isomorphism when taking s = 0 especially. Therefore it is shown that the map $q: Z \wedge X_{\infty} \rightarrow (Z \wedge X)_{\infty}$ induces an isomorphism in homotopy, since the canonical map $q: Z_\lambda \wedge X_\infty \rightarrow (Z_\lambda \wedge X)_{\infty}$ is a homotopy equivalence for every finite CW-spectrum Z_{λ} .

Theorem 5.6. Let n be a positive integer not divided by $p-1$, and Y be *a* BP-local CW-spectrum such that BP_*Y is v_k -torsion for every k , $0 \le k < n$, *and it is uniquely vn-divisible. Then Y is BP-nilpotent complete, and the* BP_* -Adams spectral sequence ${E^s_r}^t(S, KY)_{r\geq 1}$ converges completely to $\pi_*(Y)$. (Cf., [12, Theorem 9]).

Proof. The hypothesis on BP_*Y implies that $BP \wedge Y = \sum^{-n} M_n (BP \wedge Y)$ by [17, Proposition 2.2]. Apply Proposition 5.5 to the Adams BP-geometric resolution $W_{BP,Y}$ with the ∞ -factorized system $KY = \{K_m Y\}_{m \geq 1}$. *.* Then we observe that the canonical map $q: BP \land (BP^*Y) \rightarrow BP^*(BP \land Y)$ is a homotopy equivalence. From (5.3) the result follows immediately, since the BP_* -Adams spectral sequence derived from *KY* converges completely to $\pi_*(BP^*Y)$ as shown in the proof of Proposition 5.5.

Let $f: BP \land Y \rightarrow BP \land Y'$ be a BP-Hopf module map. By Proposition 4.3 the map f induces a map f_{∞} : $BP^{\sim}Y \rightarrow BP^{\sim}Y'$, whenever $[\sum_{}^{1} W_m Y, W_{m+2} Y'] = 0$ and the sequences $[\sum_{m=1}^1 K_{m-1} Y, W_m Y']\to[\sum_{m=1}^1 K_{m-1} Y, W_{m+1} Y']\to[\sum_{m=1}^1 K_{m-1} Y, W_m Y']$ W_{m+2} *Y'*] are exact for all $m \ge 1$. Note that

(5.8) f_{∞} : $BP^{\sim}Y \rightarrow BP^{\sim}Y'$ is a homotopy equivalence if a BP-Hopf module *map f:* $BP \wedge Y \rightarrow BP \wedge Y'$ *is so.*

Theorem 5.7. Let J be an invariant regular sequence of length n. Suppose that p is odd and $n^2 + n < 2p$. Then there exists a unique BP-local CW -spectrum Y_J such that $BP \wedge Y_J$ is isomorphic to $v_n^{-1}BPJ$ as BP -Hopf module *spectra.*

Proof. Putting Theorem 4.9 and Propositions 5.1 and 5.5 together we can show the existence of a $v_n^{-1}BP$ -local CW-spectrum Y_j with the desired property. The uniqueness of Y_j is immediate by use of (5.8) and Theorem 5.6 because the assumption on (5.8) is satisfied as shown in the proof of Theorem 4.9.

References

- [1] Adams, J. F., *Stable homotopy and generalized homology*, University of Chicago Press, Chicago (1974).
- [2] Baas, N. A., On bordism theory of manifolds with singularities, *Math. Scand.,* 33 (1973), 279-302.
- [3] Bousfield, A. K., The localization of spectra with respect to homology, *Topology,* 18 (1979), 257-281.
- [4] Johnson, D. C. and Yosimura, Z., Torsion in Brown-Peterson homology and Hurewicz homomorphisms, *Osaka J. Math.,* 17 (1980), 117-136.
- [5] Landweber, P. S., Invariant ideals in Brown-Peterson homology, *Duke Math.* /., 42 (1975), 499-505.
- $\lceil 6 \rceil$ \longrightarrow , New applications of commutative algebra to Brown-Peterson homology, Proc. Algebraic Topology Waterloo 1978, *Lecture Notes in Math.* 741, Springer-Verlag, 1979.
- [7] Miller, H. R. and Ravenel, D. C., Morava stabilizer algebras and the localization of Novikov's £2-term, *Duke Math.* J., 44 (1977), 433-447.
- [8] Miller, H. R., Ravenel, D. C. and Wilson, W. S., Periodic phenomena in the Adams-Novikov spectral sequence, *Ann. of Math.,* 106 (1977), 469-516.
- [9] Morava, J., On the Novikov algebra $Ext_c^{*,*}(U, U)$, to appear.
- [10] , The cohomology of the Morava stabilizer algebras, *Math. Z.,* 152 (1977), 287-297.
- [11] ———, Localization with respect to certain periodic homology theories, *Amer. J. Math.,* 106 (1984), 351-414.
- [12] Ravenel, D. C., The geometric realization of the chromatic spectral sequence, Proc. J. C. Moore Conference, Princeton, 1983.
- [13] Toda, H., On spectra realizing exterior part of the Steenrod algebra. *Topology,* 10 (1971), 53-65.
- [14] Wiirgler, U., Cobordism theories of unitary manifolds with singularities and formal group laws, *Math. Z.,* 150 (1976), 239-260.
- [15] [—], On products in a family of cohomology theories associated to the invariant prime ideals of $\pi_*(BP)$, *Comment. Math. Helv.*, 52 (1977), 457-481.
- [16] Yosimura, Z., BP operations and homological properties of BP_*BP -comodules, *Osaka J. Math.,* 20 (1983), 123-136.
- [17] \longrightarrow , Localization of BP-module spectra with respect to BP-related homologies, *Osaka J. Math.,* 21 (1984), 419-436.