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Let BP be the Brown-Peterson spectrum for a fixed prime p. It is an associ-

ative and commutative ring spectrum whose homotopy is BP^ = Z^[vl9...9 vn,...~\.

For any CW-spectrum Y, the Brown-Peterson homology BP*Y is not only an

associative BP^-module but also an associative BP^BP-comodule. In this note

we deal with associative BP-module spectra E whose homotopies E* are associ-

ative BP^BP-comodules. An associative BP-module spectrum with such a

structure is called a BP-Hopf module spectrum (see 1.1 for the definition).

For every invariant regular sequence J = {g0,..., qn-i}, the associative BP-module

spectrum BPJ with homotopy BP*// is a BP-Hopf module spectrum if n<

2(jp-l) (Proposition 1.2).

As is well known [1], BP A Y has the Adams geometric resolution WBPtY

= {WkY=BP*ABPA Y, dk: WkY-+Wk+1Y}kz0 where BP denotes the cofiber of

unit i: S-»BP and BP^ = BP A • • - A BP with fe-factors. Applying BP* -homology

to WBP> Y we obtain a relative injective resolution of BP* Y by extended BP*BP-

comodules. We will show that each BP-Hopf module spectrum E admits a

BP-geometric resolution WE={Wk = BPk A£, dk\ Wk-»Wk+1}k^0 inducing a

relative injective resolution of E* (Theorem 3.3).

Let KmY denote the fiber of the map BPm+1 A Y-»2m+1Y. Then there

is a cofiber sequence Km _ 1 Y-^^ Wm Y-^> Km Y^^ £ 1 Km _ 1 Y and the differential

map dm. WmY->Wm+1Y is factorized as dm=bmcm: WmY-*KnY->Wm + 1Y. We

will give a sufficient condition under which a BP-geometric resolution W=
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{Wk, dk}k^0 admits an oo-factorized system X(oo) like KY={KmY, am, & m _ i ,

cm}m^l (Theorem 4.6). Moreover we will show that the BP-geometric resolution

Wv-iBPJ = {BPk A v~1BPJ, dk}k^0 admits an oo-factorized system under some

restriction on the fixed prime p and the length n of J (Theorem 4.9).

The BP^-Adams spectral sequence Es
2>

f(S, KY) = E\ts
B^BP (BP*9 BP*Y)

=>n*(BP*Y) is derived from the tower {^,~m KmY, am}m^l with homotopy

inverse limit BP~Y. With an oo-factorized system X = {Xm, am, b m _ l 5 cm}m^l

of a BP-geometric resolution over a BP-Hopf module spectrum E9 we associate

the spectral sequence Ej»r(S, X) = ExifaBP(BP+, EJ^n^X^) where X^

denotes homotopy inverse limit of the tower {^~~mXm, am}m^l. Discussing

the convergence of the spectral sequence we will prove our main result (Theorem

5.1) that there exists a unique BP-local CFF-spectrum Yj such that BP A Yj

is isomorphic to v~1BPJ as £P-Hopf module spectra under some restriction on

p and n.

In this note we work in the homotopy category of CW-spectra, and we do

not necessarily assume that a ring spectrum or a module spectrum is associative

if not stated.

§ 1. BP-Hopf Module Spectrum

1.1. The Brown-Peterson spectrum BP is an associative and commutative

ring spectrum with a multiplication m:BP/\BP^BP and a unit i: SBP.

We call a CW-spectrum E a BP-Hopf module spectrum if E is an associative

(left) BP-module spectrum together with a (left) BP-module map rjE: E^BP^E

such that (f)EriE=l and (1 Af/£)f/£ = (l A i A l)r\E where (f)E is the 5P-module

structure map of E and 1 denotes the identity map. If the coassociativity of

Y\E is not necessarily satisfied, we call such an E a quasi J3P-Hopf module

spectrum. As an obvious example we have

(1.1) For any CW-spectrum X, BP/\X is a BP-Hopf module spectrum

"whose structure maps are given by $BPi\x = m A 1 and ^BP^X=^ A * A 1-

Given BP-Hopf module spectra E and F, a map /: E-»F is said to be a

BP-Hopf module map if / is a (left) BP-module map such that rjFf=(l A/)^£.

For any CPF-spectra X and Fwe have easily

(1.2) Let / :BPAZ-»BPAY be a BP-Hopf module map and Y be a
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BP-module spectrum. Then there exists a unique map f: X-»Y such that

lA/'=/

In fact, /' Is given by the composite map 0y/(z A 1).

(1.3) i) Let E be a BP-Hopf module spectrum. Then E*X is an associative

BP*BP-comodule whose coaction map is given by \j/x: E*X-»BP*(E A X) =

BP*BP ® E*X induced by %.
BP*

ii) Let f: E-*F be a BP-Hopf module map. Then it induces a homo-

morphismf*: E*X->F*X of BP^BP-comodules.

Let E be an associative BP-module spectrum. Given an (associative) .BP-

module spectrum Y9 E* Y is an (associative) BP*BP-comodule whose coaction

map is given by \j/Y: £*7-^£*(BP A Y)^BP*BP ® E*Y. A map /: Y-+Z* E
BP*

is a BP-module map if and only if it represents a primitive element in EdY (see

[14, 15]). We denote by Pr£*7the BP*-module consisting of all primitive

elements in E*F. If/: Y-»Z is a BP-module map, then it induces a homomor-

phism/*: E*Z^E*7of BP*BP-comodules, and hence/*: Pr E*Z-»Pr E*Ye

Io2o Let J = {q0, . . . , qn _ 1 } be an invariant regular sequence in BP% of length

n (see [5]) and Jm = {g 0 5 - - - ? ^m-i) the subsequences for each m, O^m^n , in
which Jn = J. By Baas [2] there exists an associative BP-module spectrum BPJm

with pairing 0m: BP A BPJm-»J3PJm, whose homotopy is BPJm*^BP*l(qQ,...,

qm-i). BPJm and BPJm+1 are related by a cofiber sequence

(1.4) I> 5PJm ^> BPJm > BPJm+1 -^ Ed-

of BP-module spectra, where dm = dim qm is the dimension of qm in BP^ and-gm

acts as left multiplication by qm, thus it is the composite map (f>m(qm A 1). Further

we have a multiplication /^m: BPJm A BPJm-»BPJm which makes BPJm into a

quasi-associative ring spectrum (see [4, Proposition 5.5]). Putting j=jn-i'"JQ:

BP-»BPJ it is a map of ring spectra as well as BP-module spectra.

A BPJ-module spectrum F is said to be quasi-associative if the following

two equalities hold (cf., [4, Remark 5.3]):

(i) /^Al) = 0F(lA^F): BPABPJAF-^F,

(ii) 0F(1 A nF)(T A l) = fiF(l A 0F): BPJ A BP A F->F,

where //F and ^F = ̂ F( jAl) denote the BPJ- and BP-module structure maps

of F respectively, and T: BPJ A BP-»BP A BPJ is the switching map.

Let E be an associative BP-module spectrum, F be a quasi-associative BPJ-
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module spectrum and X be a CW-spectrum such that BPJ*X is BPJ^-free.

For 0^m<n we consider the homomorphism

K : [BPJm A X, E A F] - > HomBP j, (BPJ*(BPJm A X), F^F)

defined to be ?c(/) = (l A^F):S!(TA 1)^(1 A/)^, which is an isomorphism in our

case because of [1, Proposition 13.5]. Then the cofiber sequence (1.4) gives

rise to a split short exact sequence Q-*(E ^F}*-d™-l(BPJm A X)-+(E AF)*

(BPJm+1 AX)-^(E*F)*(BPJm^X)-+Q of BP*-modules. This sequence splits

as BP*5P-comodules, because (E A F)*(BPJW A X) ^ BP*BP ® A(EAF)*x(x0,. . .,

XT O_I) and hence it is an extended BP*5P-comodule (use [4, Lemmas 5.1 and

5.2]). Here AR(x0,..., xm^1) is the exterior algebra over R in the variables xt

with dimension dt + l. Therefore we see

(1.5) i) Pr(EAF)*(BPJm+lAX)*A(E*FrX(x09...9xJ,and

ii);m: BPJm-» BPJm+1 induces an epimorphism j*: Pr (E AF)*(£PJm+1 A

X)^Pr(EAF)*(BPJm^X)for each m, 0^m<n. (C/., [14, 15]).

Lemma 1.1. Let j be an invariant regular sequence in BP* of finite length.

Then BPJ is a quasi BP-Hopf module spectrum such that j: BP^BPJ is a

quasi BP-Hopf module map.

Proof. Let J = {q0,..., qn-i}- For Q^m<n we inductively show that
BPJm+l is a quasi BP-Hopf module spectrum so that the cofiber sequence (1.4)

is of quasi .BP-Hopf module spectra. Assume that there exists a BP-module

map nm:BPJm-*BPABPJm with ^m=l. We observe that ( - « m A l ) » =
(1 A • qJt : BPJm*BPJm^BPJm*BPJm since iyL(O = ̂ (O mod Jm. Using the

isomorphism K: [BPJm, BP A BPJm~]-»HomBPJrni,(BPJm#BPJm) BP+BPJJ, it is

shown that IC(I/M - qj = (1 A ̂  J*(TA !)„,( • ̂ fm A ffj, = K((! A - ̂ m)?7m)5 and hence

??m-^m = (lA 'Ofm- S° WC Can find

such that i?i + 17OT = (l Ajm)^m and (1 A
We next replace this map ^ + i with a BP-module one. By (1.5) we observe

that;m: BPJm-»BPJm+1 induces an epimorphism j* : Pr(BP A BP/m+1)*BP/w+1

-* Pr (BP A BP Jw + J*BP Jm- pick a ^P-module map ^+ 1 : BPJm +l-+BP*

BPJm+1 such that ^+1jm = (l AjJ^. In order to show that

= ^m^m we consider the commutative diagram
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BPJm, BP*BPJm+1-} > LBPJm+l, BP

I
, BPABPJm-] — + [5PJm+1, Z

d-+1 *P A BPJ J

with exact rows. Since the left vertical arrow is trivial, the equality ri'm + ijm

= n"n+ljm implies that (1 A kjri'm+1=(l A lcm)^+1 and hence (1 A kjrjn
m+1=rimkm

as desired.

Applying Five lemma we see that the 5P-module map pm+i = 4)m+irlm+i''

BPJn+l^BPJm+l is a homotopy equivalence with pm+ljm=jm and kmpm+1 = km.

Putting rim+i=rim+iPm+i, it is a 5P-module map such that 0M + i»/m + 1 = l, ^m + i jm

= (1 AJm>?m and (1 A km)rim+l = nmkm, as desired.

Proposition 1.2. Let J be an invariant regular sequence in BP* of length n.

Ifn is less than 2(p — l), then BPJ is a BP-Hopf module spectrum.

Proof. By (1.5) we observe that the map j: BP-*BPJ induces an epi-

morphism j* : Pr (BP A BP A 5PJ)*BPJ-»Pr (BP A BP A 5PJ)*5P5 and Pr (BP

A5PA5PJ)*BPJ^/l(SFAJBpASPJ)^o?.--5^-i). Since (BP A 5P A 5PJ)* = 0
unless *==0mod2(p — 1) and dim x 0 - - -x n _ 1 = n mod 2(p— 1), j* becomes an iso-

morphism at dimension 0 when n<2(p— 1). Hence the coassociativity of r\n

is immediately shown, because j*((l A j/jjyj = 1 A i Aji =j*((l A i A !)*/„) by

Lemma 1.1.

Hereafter we only treat of a fixed invariant regular sequence J = {q0,..., qn-i}

for which BPJm+l are BP-Hopf module spectra and the cofiber sequences (1.4)

are of 5P-Hopf module spectra for each m, 0^ m < n. Thus BPJ is assumed to

be a BP-Hopf module spectrum such that j: BP-+BPJ is a J3P-Hopf module map.

§ 2B .gP-Hopf Module

2olc A BP-Hopf module spectrum E is called an extended jBP-Hopf module

spectrum if there exists an associative BP-module spectrum Y and a homotopy

equivalence h: E-»BPA Y of BP-Hopf module spectra. If E is an extended

BP-Hopf module spectrum, then E* X is an extended jBP*5P-comodule for any

CW-spectrum X.
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Lemma 2.1. Let E be a BP-Hopf module spectrum with comodule structure

map TJE. Then there exists a homotopy equivalence IE\ E A BP-+BP A E of

BP-Hopf module spectra such that xE(l A i) = r\E and TrETTE=l, where T:

BP A E-+E A BP denotes the switching map.

Proof. Set T£ = (! A0£)(l A T)0/EA 1), which is a BP-Hopf module map.

It has an inverse i^1 given by T^1 = ((f>E A 1) (1 A T)(l A rjE).

For the BP-Hopf module spectrum BPJ such that j: BP-+BPJ is a BP-Hopf

module map, we have

Corollary 2o20 There exists a homotopy equivalence i:BPjABP->

BP A BPJ of BP-Hopf module spectra such that r(l A 0 = */» T0" A 1)= 1 AJ and

7r7T=l, where rj denotes the comodule structure map of BPJ.

The BPJ^-module BP^BPJ admits the following structure maps to be

considered: (i) A product map V\ BP^BPJ ® BP*BPJ^>BP*BPJ defined as
BFJ*

usual, (ii) two unit maps v\L, fjR: BPJ*-*BP*BPJ induced by v\, i/\l

respectively, (iii) a counit map E: BP^BPJ-^BPJ* induced by J£P-module

structure map (f) = n(j A 1), (iv) a coproduct map A\ BP*BPJ^>BP*(BP * BPJ)

^BP*BP ® BP^BPJ £ BP*BPJ ® BP*BPJ induced by I A Z A ! , and
BF* BFJ*

(v) a conjugation map c: BP*BPJ^BP*BPJ induced by rT.

Proposition 2030 (BPJ#, BP*BPJ) is a Hopf algebroid, and (j^, (1 A j%):

(BP*, BP*BP)^(BPJ*, BP^BPJ) is a morphism ofHopfalgebroids.

Proof. As is easily checked, A and e are 5PJ^-bimodule maps and (e®l)2l

= l = (l®e)J, (A®l)A=(l®A)A, crjL = riR, crjR = rjL, rjL8 = F(l®c)A and ^8

= F(c®l)J. So the former part is obtained. The latter part is immediate.

For a quasi-associative BPJ-module spectrum F, BP*F = BP*BP ® F^
BF*

^BP^BPJ ® F^ and it is an extended ^P^PJ-comodule. Let £ be a BP-
BFJ*

Hopf module spectrum which is a quasi-associative BPJ-module spectrum, and
X be a CFF-spectrum. Then E*X is an associative BP^PJ-comodule with

coaction map \l/x: E*X-*BP*(E*X)^BP*BPJ ® E*X induced by v\E. As is
BFJ*

easily seen, we have

(2. 1) HomBP,BP(E* X ,

Further we recall that there exists an isomorphism

(2.2) 9:
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given by 8(u) = (l>F*u and 9~l(v) = (i®v)i//x, where <l>F = ̂ F(j A !)•

Given BP-module spectra M, N we denote by [M, A/lsp the subset of
[M, N] consisting of all the homotopy classes of BP-module maps. For a

quasi-associative BPJ-module spectrum F we define a map

ic: [X, F] >tBPJ*X,FJBP

to be K(f) = {AF(i A/). Denote by K the composite map

K = UK: [X, F] > [BFJAX, F]BP > HomBPJJ(BPJ^X9 F*)

where TT assigns to a map/the induced homomorphism/*. Notice that K is an

isomorphism when BPJ*X is BPJ^-free.

For BP-Hopf module spectra M", N we also denote by [M, IV]r the subset

of [M, AT)BP consisting of all the homotopy classes of BP-Hopf module maps.

Let £ be a BF-Hopf module spectrum and F be an associative BF-module

spectrum. Then we have an isomorphism

(2.3) ©: [£ A X, BP A FJF > [£ A X, FJBF

defined to be O(f) = (f)Ff. The inverse 0"1 is given by 0~1(g) = (l A^)(^£A 1)

as in (2.2). For a quasi-associative 5FJ-module spectrum F we denote by A

the composite map

(2.4) A= 0-^: [X F] > [5FJ A JT? F]BP ̂  [5FJ A X3 BP A F]r

which is given as A(/) = (l A jL£F)(?j A 1)(1 A/).

Lemma 2A Let F be a quasi-associative BPJ-module spectrum such

that F# is BPJ^-free and F^=0 unless *=0mod2(p—1). If the length of J

is less than p-1, then the map A: [X, F]->[5FJ A X, BF AF]r is natural

with respect to F.

Proof. Let F and G be a quasi-associative JSFJ-module spectra such

that F* is HFJ^-free and F*=® = G* unless * = 0mod2(]?— 1). For any map

h: F-^G it is sufficient to show that (1 A h)(l A /*F)0? A !) = (! A jUG)(?y A 1)(1 A fe):

SF/AF->BFAG. The map ;: BP-+BPJ induces an epimorphism (JA!)*:

Pr (BP A G)*(5FJ A F)^Pr (BP A G)*(BP A F) by (1.5). Note that Pr (BP A G)*

(BPJAF)^(BPAG),F(x0?...? *„_!) and (BPAG)*FsHomSPJ.(BPJ,F, BF^G)

= 0 unless * = 0,1,..., n mod 2(p -1), where w denotes the length of J. Therefore

O'A!)* becomes an isomorphism at dimension 0 when n<p — l. Then the

desired equality follows immediately, since (j A !)*((! A h)(l A fJLF)(ri A 1)) = 1 A h
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2.2. For an invariant regular sequence J={q0,..., qn-i} in BP* we denote

by Aj the set of the numbers Zo^i^n-i M^i+1) f°r a^ w-tuples O o > - - - > *n-i) of
zeros and ones, where d—dimqi. Let Xj = V deAj Zd? the wedge of the

suspended sphere spectra, and c\ S-»Zj be the canonical inclusion.

Lemma 2.5. For each BPJ-module spectrum F there exists a homotopy

equivalence eF: BPJAF-»BPAFA ]Tj of BP-Hopf module spectra such that
ep(J A 1)=1 A 1 A *.

Proof. For 0^m<n we inductively construct a homotopy equivalence

em+!: BPJm+! A F-»BP A F A £ J m + x of BP-Hopf module spectra, where n

denotes the length of J. By (1.5) we recall that jm: BPJm-»BPJm+1 induces an

epimorphism j*: Pr (BPJm A BP J)*BP Jm +1 -»Pr (BP Jm A BP J)*BP Jm for any

m, 0^m<n. Then we can choose a BP-module map ?7m+1>m: BPJm+1-»BPJm

A BPJ such that rjm+1>mjm = 1 A ji. Setting rw = (1 A /*F)0?m+ 1§m A 1): BPJm+1 A F

-*BPJmAF, it is a BP-module map with rm(jm A 1)=1. We change rm into a

jBP-Hopf module map rm: BPJm+ x A F-+BPJm A F defined to be the composition

rm = e~l(l A JIF A 1)(1 A j A 1 A 1)(1 A gm)(l A rm)(^m+! A 1). It is easily seen that

rm(Jm A 1) = 1. Thus the sequence BPJm A F-+BPJm+1 A F^> Xdm+i BPJm A F
is a split cofibering of BP-Hopf module spectra. So we have a homotopy equi-

valence em+l: BPJm+i A F^(BPJmAF)v(Z rf-+1 BPJm A F)^BP A F A SJm+i of

BP-Hopf module spectra.

Let F and G be BPJ-module spectra. For any map/: F-+G there exists

a unique map

(2.5) fj'F^^j » G A £ J

such that (1 A/j)eF = eG(l A/). This is easily shown by use of (1.2). If/: F-»G

is a BPJ-module map, then (1 A/)rm = rm(l A/) and hence (1 A/A l)eF = £G(l A/).

So we see

(2.6) /J=/A 1 i//: F > G is a BPJ-module map.

Let F, G and H be BPJ-module spectra, and Z and 7 be CPF-spectra. For

any maps/: F-*G3 gf: G->H and ft: X-»Yihe following results are immediately

obtained.

(2.7) lj = l:FAZj—^FA^j and

(2.8) (hAf)j = hAfj:XAFAZj >YA

(2.9) The diagram below is commutative:
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FA Xj ^ Z^1 FA Z,

where j and k are the canonical maps.

Lemma 206e i) Let F be a quasi-associative BPJ-module spectrum with

structure map UF. Then FA ^j is an associative BP-module spectrum whose

structure map is ^F,J = (MF A 1)0' A 1 A 1): B P A F A J]j-»FA ^j-

ii) Let E be a BP-Hopf module spectrum with comodule structure map r\E.

If E is a quasi-associative BPJ-module spectrum, then EA^J is a BP-Hopf

module spectrum whose comodule structure map is rjE>J: EA ^j->BP A£A ^Jm

Proof. From the quasi-associativity of JJLF it follows that the map </>F

= ^F(JA!) is a I$PJ-module map. Then (2.6) implies that 0F>J = ^ F A l .

Hence i) is obtained, ii) is immediate by means of (2.7) and (2.8).

It is easy to show

Lemma 20?8 Let F and G be quasi-associative BPJ-module spectra, and

/: F-+G be a BP-module map. Then,

0 fj°- F A Zj-^ A Xj is a BP-module map. Moreover,

ii) ifF and G are BP-Hopf module spectra and f is a BP-Hopf module

map, t h e n f j is a BP-Hopf module map, too.

§ 3. Geometric Resolution

3elo Let E and M be 5P-Hopf module spectra. A complex W={Wk, dk:

Wk-*Wk+1}k^0 consisting of CFP-spectra and maps is called an E-geometric

resolution over M if the following three conditions are satisfied:

( i ) There exists a 5P-Hopf module map S : M->£ A W0 with (1 A d0)S = 0.

(ii) The long sequence

* - »M — ̂  EA WQ^^EA W1 - > ••• - > EA Wk±^±» E A Wk+1 - >>-

splits as a sequence of BP-module spectra. That is, there exist HP-module maps

e: E A WQ-+M and sk: EA Wk+1-+E A Wk, /c^0? such that es0 = 0 = sksfc+1, £^ = 1,

«5e + s0(l A d0) = l and (1 A dk)sk + sk+i(l A dk+1)=l for each /c^O.
(iii) E A Wk is an extended 5P-Hopf module spectrum for each k ̂  0.

From (1.3) we verify that if W={Wk, dk\ Wk-^Wk^1}k^0 is an E-geometric

resolution over M, then
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(3.1) E#W={EitWk, ( lA<4)*: E*Wk-»E*Wk+1}kz:0 is a relative injective reso-

lution of M* by extended BP^BP-comodules.

Let us denote by BP the cofiber of unit i: S-+BP, although the fiber of unit

/ was denoted as BP in [1] or [3]. Let E be a BP-module spectrum with

structure map cj)E: BP/\E-»E. The cofibering Ei^BP A E^i+BP/\E splits,

and hence there exists a unique map

(3.2) \IJE\BP/\E — » B P A £

such that (TT A 1)^=1 and (i A l)<l>E + ̂ E(n A 1) = 1. When £ is a BP-Hopf

module spectrum whose comodule structure map is r\E: E-»BP A E, the cofibering

BP A E^>BP A E-^E admits another splitting. Thus there exists a unique

map

(3.3) pE:BPAE - » B P A E

such that PE\ISE=\ and rjE(l)E + {l/EpE=l. We define two maps $E: BPABPAjE

-+BP/\E andfjE: BP /\ E-+BP A~BP /\E to be

A \IJE): BP A BP "A E - > BP A BP A £

l A i A 1)£ : 5PA£ - >

- >BP/\BPAE

Lemma 3ela Lg^ E be a BP-Hopf module spectrum. Then BP/\E is a

BP-Hopf module spectrum such that pE: BP /\E^BPAE is a BP-Hopf module

map.

Proof. By routine computations we can show the equalities 4>(i A 1 A i) = 1,

^(1 A <£) = 0(m A 1 A 1), $rj = l, fj(j) = (m/\l /\l)(l /\fj) and $(1 Ap) = p(m A 1)

without use of the coassociativity of ?/£. Here the subscript E is omitted in $£,

?/£ and p£. Moreover we obtain the equalities (1 A rj)rj = (1 A i A 1 A l)fj and rjp

= (1 Ap)(l A i A 1) under the assumption that r\E is coassociative.

Remark. Such 5P-Hopf module structure maps <j)^p/\E and rjjp^E on

BP A £ that pE: BP A E-+BP A £ becomes a 5P-Hopf module map are uniquely

determined.

3.2, Given any BP-Hopf module spectrum E two maps dE: E-+BP A E and

s£: BP A BP A E-+BP A £ are defined to be
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,35v dE = (nAl)rjE: E - > BP A E - >BP/\E

SE= -(m A 1) (1 A \I/E) : BP A BP A E - > BPABPAE - > BPAE.

Note that dE= — pE(i A 1), s£= —^E^E an^ % is a BP-module map. Similarly

d^p^: BP/\E-^KP2AE and sipA£: BP ABP2 AE-*5P A!P A E are defined to

be d-BpAE = (nAlA i)fjE and s^p A£ = - (m A 1 A 1)(1 A \pE), where 5P2 = BPA BP.

Obviously ^FPA£= — 1 A d£. By easy calculations we have

Lemma 5020 Let E be a BP-Hopf module spectrum. Then $£s£ = 0 =

moreover

Let £ be a BP-Hopf module spectrum with structure maps ^^ and j/£.

For each k^l, BPfc A£ becomes a BP-Hopf module spectrum whose structure

maps ^ : 5F A BPk A E-*~BPk A E and ijk : BPfc A E^BP A 5Pfe A £ are in-

ductively constructed by (t>k = ̂ k-1 and nk=nk-i, where <t>0
 = 4>E^ f1o = f

• A SP with Jc-factors.

Theorem 3030 Le^ E be a BP-Hopf module spectrum. Then there exists

a BP-geometric resolution WE = {Wk = BFk A E, dfc: W^-^W^+J^o ot;er E.

Proo/. Consider the map dk: BPk AE-»BPk+1 A£ defined to be dfc =

(TC A 1 A l~)rjk. Then Lemma 3.2 implies that the long sequence #-»E-^-»RP A E

J^BPAl^AE-l^SPA5P2AE-»... splits as a sequence of 5P-module

spectra. Hence the complex WE={Wk = BPk AE9 ^fc}fe^0 is a 5P-geometric
resolution over E.

PropcusStSom 3<A Let W={Wk, dk}k^0 be a BP-geometric resolution over

M. Assume that M and Wk9 fc^O, are quasi-associative BPJ-module spectra.

Then W={Wk, dk}h^0 is a BPJ-geometric resolution over MA J^j-

Proof. W={Wk, dk}k^0 possesses a split sequence

0 ^=± BPA Wl ̂ =! ̂ PA W2 ^=± -
£ So Si

in which d is a jBP-Hopf module map and e and sk, /c^O, are HP-module maps.

This gives rise to another split sequence

by means of (2.5), (2.7), (2.8) and Lemmas 2.6 and 2.7. Set 5 = e^1
0<5/:
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M A J^j-^BPJ A W0, which is a BP-Hopf module map by Lemmas 2.5 and 2.7
ii). Then the long sequene

d l A d o l A d l
* - > MA^J^ BPJ/\ W0^ BPJ/\ Wl ;=! BPJA W2^=l-~

B SO Si

becomes a split sequence of BF-module spectra, too. Here the BP-module

maps e and sk9 fc^O, are defined to be e = Sj€Wo and sk = e^kskfJeWk + l. Since
BPJ A Wk is an extended 5P-Hopf module spectrum by Lemma 2.5, the desired

result is obtained.

Combining Proposition 3.4 with Theorem 3.3 we have

Corollary 3.5. Let E be a BP-Hopf module spectrum which is a quasi-

associative BPJ-module spectrum. Then the complex WE = { Wk = BPk A E9

<4)fc^o is a BPJ-geometric resolution over £ A Xj-

§ 4. Factorized System

4.1. Let W={Wk, dk}k^0 be an £-geometric resolution over M. We say

W admits an m-factorized system X(m) = {XJ9 aj9 bj-l9 cj}1^J^m if the following
properties are satisfied :

(i) Xj-t bj~l > Wj-^Xj^L+Y, lXJ-lisa cofiber sequence, and
(ii) dj-1 = bj-1cj-1 and dm6m_1=0 for each j, l^j^m,

where X0=W0, b0 = d0, c0 = l and l^m^oo.
Let X(m) = {Xj, aj9 b j _ l 9 cj}l^j^m be an m-factorized system of W=

{Wk, dk}k^0. Pick up a map bm: Xm-^Wm+i with bmcm = dm and a split sequence

d l A d 0 l A d i

* - > M^EA W0 < > E A W, , > KA W2^=l •••
E SQ Si

of ^P-module spectra in which d is a SP-Hopf module map and fix them.
Choose a map um: E/\Xm_l-^^~l E/\Xm such that (1 A am)um=l-(l A c m _ i )

sm_ i(l A bm- i), and then replace it with the map

(4.1) tm:E^Xm.1—^^

given by tm = um-(l Acm)sm(l A bin)um. Since (1 A am)um(l AaJ = l Aaw and

(1 A ajiim(l A cm_ !)«„_! =0, we can easily check

(42) (i) s»( lAb")f«« = 0=r»( lAC»-i)s»-i'
(ii) ai
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(1 A O'm + O- A Cm-i)sw- ,(l A bm_l)= 1 .

Notice that the map tm is a BF-module map, because (1 A # m)£m(0£
 A 1)

= (1 A O($E A 1)(1 A rm) by use of (4.1). Hence the long sequence

(4.3) ...—

splits as a sequence of jBP-module spectra. Immediately (4.2) implies

(4.4) ( lAa m ) r m =r m _ 1 ( lAa m _ 1 ) , (1 A am)tm(l A am)=l A am and

tm(\Aam)tm = tm.

Lemma 4.1. Let W={Wk, dk}k^0 be an E-geometric resolution over M

and X(m) = {Xp a^ bj_1, cj}1^j^m be its m-factorized system. Then there

exists a BP-Hopf module map em: £ A ̂ m-»]>]m M such that sm = em_1(l A am)

and the long sequence

as a sequence of BP-module spectra.

Proof. Consider the composite map em = e(l A a^-^l A jm): E AXm-^

XmM. Obviously (5em = (l AaJ--^! A am) and it is a BP-Hopf module map.

Therefore em is also a 5P-Hopf module map since (1 A<5)f/Mem = (l A(5)(l ASTO)

(^A!). Set 5m = tOT-»t15: M-*X~m£ A.Jm? then (4.2) and (4.4) imply that

smdm=i and c5msm + (l A cm)sm(l A 5m) = l. The result is now immediate from

(4.3).

Let W={Wk, dk: Wh-»Wk+1}k^0 be a complex of CW-spectra? and X-*-*Wn

^£^Y^L^1 X be a cofiber sequence. Suppose that two sequences [E1^,

^»+2]->[Z1^m, ^n+3]-0 and [E1^, ^^J-CZ1^ ^n + 21-EZ1^

f^m+3] induced by d's are both exact. Then an easy diagram chasing shows

that there exists a map b: Y-» Wm+1 satisfying bc = dm and dm+1b = 0 if dmb = ®.

Hence we obtain immediately.

Proposition 4.2e Let W={Wk, dk}k^0 be an E-geometric resolution over M

such that [Z1^ ̂ m+3l = 0. Assume that W admits an m-factorized system

X(m) = {Xj}1^j^m. Then W admits an (m+i)-factorized system X(m + l)

= (xj}i&j*~+i tf the ^quence [E1 Xm^, Wm+1l^[£l Xm_,, Wm + 2~]-+
\.^Xm^,Wm^-\ is exact.

Let W={Wk,dk}k^0 and W' = {W'k, d'k}k&0 be two complexes of CW-
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spectra, and g = {gk}k^o'. W^W be a map of complexes. Let X-^Wm~^>Y

-^Z1^ and X'-Z^Wn-^Y'-*-^1 X' be two cofiber sequences, and B: Y->
Wm+1 and b' : Y'-^W^+1 be maps satisfying bc = dm, B'c' = d'm and dm+15 = 0

= d'm+lb' respectively. Suppose that [Z1^,, ^J^CZ1^, ^ + 2]->0 and

CZ1^, ^HCZ1^, Wm+iHZ1^ ^m + 2] are both exact. Given a map
/: X-*X' with b'f=gmb, we can easily choose a map /i: Y-+Y' such that 5'/i

= gm+ib, hc = c'gm and a'h = (^1 f ) a . Hence we have

Proposition 4.3. Let W={Wk9 dk}k^0 and W' = {Wk, d'k}k^Q be E-geometric

resolutions over M and N respectively, and X(m)= { X j } l ^ j ^ m and X'(m)
= {Xj}izjzm be their m-factorized systems. Given a map g: W-+W of

complexes, there exists a map f ( m ) : X(m)-+X'(m) of m-factorized systems if

[L1^, ^i+2] = 0 and the sequences [£lXk.l9 W^IZ1 Xk.l9 W'k+l]^

EZ1 Xk_l9 W'k+2l are exact for all fc, lgfc^m-1.

482o Let W={Wk, dk}k^0 be a BPJ-geometric resolution over N and F

be a quasi-associative BFJ-module spectrum. Suppose that F satisfies the

condition :

(4.5V K: [Z r^fc? F]-*HomBpj*(BPJ*Wk9 F+) is an isomorphism for each

For example, all F satisfy the condition (4.5V whenever BPJ*Wk is BPJ*-

free (see 2.1).

Let X(m) = {Xj, aj9 bj-l9 c^izj^n be an m-factorized system of W.

By making use of (4.3) and Five lemma we see that K: [Zf Xm> ^-^Hom^^j^

(BPJ*Xm, F^) is an isomorphism, too. From Lemma 4.1 we obtain that the

sequence BPJ%Wm-*BPJ*Xm-*N*_m-»Q is split exact of BPJ* -modules. This

gives rise to a split exact sequence 0->Honig^(]V^, F^) -^[J]1 JTm, F]-»

[Z'Wmj F]. Recall that there exists an isomorphism 9: HomBP^BP(N^, BP*F)

-^HomBPJ^(N*, F*) by (2.2). Replacing e*, with the composite map s^O,

denoted by ^m? we have a split exact sequence

(4.6) 0 — HomBKiWAU, BP+F) -«=u [Zr ^m, F] -^> [Zf ^M> F]

Lemma 4c4B L^r W={Wk}k^0 be a BPJ-geometric resolution over N and

X(m) = {XJ}1^j^m be its m-factorized system. Let F be a quasi-associative

BPJ-module spectrum satisfying the condition (4.5V such that FsH=0 unless

*=0mod2(j>— 1). Suppose that the length of J is less than p—l. Then the
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map £m: Homi^P(N», BP^F)^[^fXm9 F] is natural with respect to F.

Moreover it is an isomorphism if[^fWm9 F] = 0.

Proof. The composite map £m(S*)*0-lK: [Zm+'FK0, F]-»[2;r^m? F] is

induced by the composition a1---am.> because dsm = (i A a^-^l A am). Obviously

0-1K = n0~1K = nA., so it follows from Lemma 2.4 that (S*)*0-1K: l^m+tW09 F]

->Homip7j{p(N#, BP*F) is natural with respect to F. Since (6%)*9~1K is an

epimorphism it is obvious that £m is also natural with respect to F. The latter

part is immediate from (4.6).

As a sufficient condition under which []Tr G, F] = 0 holds we have

Lemma 40§Q Let F and G be quasi-associative BPJ-module spectra such

that F* = Q = G* unless *=0mod 2(p— 1) and G* is BPJ^-free. If the length n

of J is less than 2p - 3, then [£r G, F] = 0 for each t, I ̂  t < 2(p -1) - n.

Proof. Note that BPJ*G = 0 unless *=0, 1,..., n mod 2(p-l). This

implies that [£' G, F]^HomiP/XBW*G> F.) = 0 when l^f<2(p-l)-w.

Theorem 4860 Suppose that the length of J is less than p—i. Let W={Wk,

dk}k>0 be a BP-geometric resolution over M such that M and Wk9 Ic^O, are

quasi-associative BPJ-module spectra with Wk% BPJ^-free and Wk*=® unless

*=Omod2(Jp-l). IfExt^fP
m-t(M^M^) = Ofor all m^l and teAj, then

W admits an oo-factorized system X(oo). Moreover, its co-factorized system

is uniquely given if ExtSp^pm~r(MJN? M*) = ® for all m^l and teAj. (Cf.9
[13, Lemma 3.1]).

Proof. W={Wk, dk}k^0 is a BPJ-geometric resolution over M A ^ J by

Proposition 3.4. Note that [£lWi9 FFfe] = 0 for all i, Ic^O, because of Lemma

4.5. Inductively we assume that W admits an m-factorized system X(m) =

(Xj}izjzm*to show the existence of its oo-factorized system X(oo). By Lemma

4.4 we have an isomorphism (Jm: VLom^BP(M^j9 BP^W^\_^Xm,l9 Wk~\

which is natural with respect to Wk. The sequence O-^M^Xj^^^Sj^,

->M#_di_12Jf->0 is exact of fiP^fiP-comodules and split exact of (free) BPJ%-

modules. Hence our first hypothesis implies that E\t^^m(M^j9 M*) = 0

for all m^l . Using the natural isomorphism £m this means that the sequence

[Z^m-i, ^m+il^CZ1^-!, ^m+2]^[Z1^n-i>^m+3] is exact. Apply
Proposition 4.2 to botain an (m4- l)-factorized system X(m-\-l) = {Xj}l^j^m+l.

The uniqueness of X(ao) is easily shown by use of Proposition 4.3, because

our latter hypothesis implies that the sequences
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W^il-CZ'^-i, Wm+2] are exact for all mgl.

43o Let W={Wk, dk}k^0 be a BP-geometric resolution over M such that

Wh is a quasi-associative BP J-module spectrum for each k ̂  0. Let L and AT be

BP-Hopf module spectra and/: L-+N be a BP-Hopf module map inducing an

isomorphism f%: BPJ* ® L* = N*. Then the map / induces an isomorphism
BP*

(JJ*:HomBP.BP(N*9BP*WJ^HomBPtBP(L*9BP*WJ. Hence we have an
isomorphism

(4.7) ExtSJ.ap(N,, M»)s Ext|'^P(^*, M*) .

Specially j: BP-+BPJ induces an isomorphism

(4.8) Extf^P(BPJ,5 M*)^Ext|^BP(BP*, M,).

Lemma 4.7. Lef C 6e an associative BP^BP-comodule which is a direct

limit of finitely presented vn_rtorsion comodules. If n is not divided by p— 1,

then Exts
BP^BP(BP#, v~lC) = Qfor all s>n2.

Proof. We may assume that C itself is finitely presented and vn^1 -torsion.

Choose a Landweber prime filtration C = C0^Cl =3- •-=> Cr = {Q} so that each

subquotient Ck/Ck+l is a suspension of BP*/In(k) for some n(k)^n. Then v~lC

has a filtration v~1C = B0^B1^> -• ID ^={0} so that all subquotients are

suspensions of v~lBP*j!n. By Morava's Theorem [8, Theorem 3.16] Exts
BP^BP

(BP*, v~1BP*/In) = Q for all s> n2 whenever p—\)(n. The desired result is easily

shown.

Let us denote by Ln) n^O, the localization functor with respect to v~lBP*~

homology (see [3] or [11]). Consider the functor Nn, n^Q, derived from the

cofibering X-»Ln_1X-»;£->'+1 NnX, where JV0 = 1. We put Mn = lnNn, n^Q.

By [17, Theorem 2.3] we notice that NnX is %-torsion for each /c, Q^k<n, and

MnX = v~lNnX if X is an associative BP-module spectrum.

Corollary 4.8e Let n be a positive integer not less than the length of J.

Suppose that p is odd and n2 + n<2p. Then ExtgJ^pm~f(JSP:iJ5 MnBPJ*) = Q

for all m^l, k^l and teAj.

Proof. In the m + k>n2 case the result is immediate from Lemma 4.7.

In the m + k^n2 case it is obvious that Extg^Jp^BP*, MnBPJ*) = Q for all

t e Aj, since I^m^m + n^n2 + n — 1< 2(p — 1).

Given an ^-geometric resolution W={Wk, dk}k^0 over M, LnW=

{LnWk, Lndk}k^0 is also an £-geometric resolution over LnM, because E/\LnX
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= Ln(E/\X) = LnE/\X by Ravenel's result [12, Theorem 1]. Recall that the

radical of J is just In = (p9 vl9..., vn-.^ where n denotes the length of J. So it

follows from [17, Proposition 2.2] that LnF = v~lF whenever F is a quasi-

associative J3PJ-module spectrum.

Let WBPJ = {Wk = BPk AJBPJ, dk}k^0 be the BP-geometric resolution over

BPJ constructed in Theorem 3.3. The BP-geometric resolution LnWBPJ,

obtained by applying the localization functor Ln to the jBP-geometric resolution

WBPJ, coincides with the BP-geometric resolution Wv-iBPJ = {BPk A v~iBPJ,

4k}fc*o over v~lBPJ.

Theorem 4.9, Let J be an invariant regular sequence of length n.

Suppose that p is odd and n2 + n<2p. Then the BP-geometric resolution

Wv-^BPj = {LnWk = BPk /\v~lBPJ, dk}k^0 over v~1BPJ admits a unique oo-

factorized system 7(oo).

Proof. For any quasi-associative BPJ-module spectrum F the map K:

[Zr LnWk9 LnF~]-+Hom'B
tpjJ(BPJ*LnWk, LnF*) is an isomorphism because

[Z fLMPF fc?LnF]^[Z<^,^ Thus all LnF

satisfy the condition (4.5)^ where the BPJ-geometric resolution Wv-iBPJ over

v~1BPJ A Sj is abbreviated as W. Moreover it follows from Lemma 4.5 that

[E1^n^5^Wfc] = CZ1^^^] = 0 for all i, fc^O. Inductively we assume
that WV-IBPJ admits an m-factorized system Y(m) = {Yj}1^j^m. By Lemma 4.4

there exists an isomorphism £m: VLom^s^BPJ^j, BP^LnPffc)-»[X1 ^In-iJ

LnWk~], which is natural with respect to Wk. Combining Corollary 4.8 with

(4.7) it is shown that EiVjf£B-p*-t(BPJ+9 v~lBPJ*) = Q for all m^l , fe^l and

t E Aj, when n ̂  1. As in the proof of Theorem 4.6 this implies that the sequence

[Z1^-!,!^^-!]^^ is exact
In the n = Q case the exactness is easily shown since [Y, L0W~]^:Hom(n*Y, n*W

®Q). Applying Propositions 4.2 and 4.3 we obtain the desired result.

§ So Homotopy Inverse Limit

Solo Let W={Wk, dk}k^0 be an E-geometric resolution over M. Assume

that IF admits an oo-factorized system X = {Xm9 am, bm-.l9 cm}m^. For a

CW-spectrum 7 the tower {^~mY/\Xm, i^am}m^l has a homotopy inverse

limit lim X~m^A Xm denoted by (Y/\ X)x. It possesses the canonical projections

qm: (FA XJ^^YA Xm such that (1 A O«m = «m-i- TheBP-Hopf module
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maps em: Y<~mE/\Xm-*M given in Lemma 4.1 induce a BP-Hopf module map

(5.1) £oo: E^X* »M

defined to be s^ = sm(l A gm) = e(l A g0).

Proposition 5.1. Le£ W^i^^jJ^o be an E-geometric resolution over
M which admits an co-factorized system X = {Xm}m^l. If the canonical map

q: E A Xao-^(E A X)m is a homotopy equivalence, then the BP-Hopf module

map e^: E A X^ -»M is a homotopy equivalence, too.

Proof. Consider the commutative diagram

A
> U

£ w > p y > if » n
*+mvym ( lAc m )* -c*+mAm E^ JVJ * u

in which the left vertical arrow is trivial. The two rows are exact by Lemma 4.1.

Hence we observe that ]imE*+mXm^M* and lim1 E*+mXm = Q. This implies
m m

that the map e^ induces an isomorphism e^*: E^X^-^M* under our hypothesis.

Corollary 5.2. Assume that E is connective and of finite type and that all

Wk, k^O, are (N + k)-connected for some N independent on k. Then the

BP-Hopf module map e^: EAX^-^M is a homotopy equivalence.

Proof. From [1, Theorem 15.2] it follows that the canonical map q: EA

X00-^(EAX)ao is a homotopy equivalence.

Given a ring spectrum E we form a cofibering S—i-+E-^->E and put Ek =

EA-"/\E with fc-factors. Consider the Adams geometric resolution WEtY =

{WkY=EkAEA 7, dk: WkY-+Wk+lY}k±0 for a CFP-spectrum Y9 where dk is

defined to be dk = ( — l)k(l ATI; A 1 A 1)(1 A 1 A i A 1). Note that the Adams

geometric resolution WEtY gives an E-geometric resolution over E/\ Y when

£ is a ring and 5P-Hopf module spectrum. Let KmY denote the fiber of the

obvious map Em+1 A 7->Zm+1 Y, thus Sm Y-*z* KmY-+Em+1 A 7->£»+1y be a
cofiber sequence, m^O, where K0Y=EA Y and a0 = i A l . Then we have a

cofiber sequence K^.Y^^W^J^K^^ Z1 Km.^ such that bmcm = dm

and flmocm = am_1 (see [3]). Hence we see

(5.2) KY={KmY, am, fcm_1? cm}m^1 is an oo-factorized system oftheE-geometric

resolution WEiY.

The tower {^"~mKmY9 am}m^1 has a homotopy inverse limit £"7 with a



5P-HOPF MODULE SPECTRUM 943

map a: Y-+E~Y inducing the maps am: Y-*Y,~mKmY. A CW-spectrum Y is

said to be E-nilpotent complete if the map a: Y^E'Yis a homotopy equivalence.

Any E-module spectrum is obviously E-nilpotent complete. Note that 1 A a:

EA Y--»jE A (E~y) has a left inverse constructed using the map qQ: E~Y-*E/\ Y,

The left inverse (m A 1)(1 A q0) coincides with e^ given in (5.1), where m denotes

the multiplication of E. Since E A Y is E-nilpotent complete, it follows that 1 A a:

EA Y-*E/\(E~Y) is a homotopy equivalence if and only if the canonical map

q: E A (E~ F)-»E'V(E A Y) is so. Therefore we have

(5.3) An E-local CW-spectrum Y is E-nilpotent complete if the canonical

map q: E A (E"Y)->E"(E A 7) is a homotopy equivalence.

502S Let W={Wk, dk}k^0 be an E-geometric resolution over M, which

admits an oo-factorized system X = {Xm, am, 6 m _i , cm}m^l. Consider the

tower {Z~m^A^m5 l A < 3 m}m£i w*tn homotopy inverse limit (E^X)^. Since
(1 A am)"-(l A ak)tk--'tm (1 A am) = 1 A am by means of (4.4), it is easily seen that

(5.4) ImKlAO,: [Y, Z^AXJ —»[Y, EA^.J}

= Im{( lAf l m . » f l j k ) < l : [Y, E-^-^AZJ > [ F 9 E A X m _ J }

for any /cgrm. Thus the inverse system {[7, X~m^ A^m]5 (1
A O*}m^i

satisfies the Mittag-Leffler condition. This result implies that

(5.5) 3,: [7, (£ A X)J > Urn [y, Z-m £ A ZJ
m

is an isomorphism because lim1 [X1^ S~m^ A Xm] = 0.
m

Lemma 5o30 Le£ FF={Wfe, ^fc}fc^0 be an E-geometric resolution over M

with an co-factorized system X = {Xm}m^l. Then q*: Imj [X~m ^A ^m? ^1
~ m

->•[(£ A X)oo, Y] is an isomorphism for any CW-spectrum Y.

Proof. Since (1 A a m + 1 ) f m + 1 - - - r 1 = f m - - - f 1 for any m^l, the maps f m - - - f 1 :

EAZ 0 -^2]~mEA J^m give rise to a unique map t: EAX0-^(E/\X)ao such that

q0t = (l/\a1)tl and qmt = tm--t1 for each m^l. By use of (4.4) it is obvious

that qmtq0 = qm, since (1 A aj+l)qj + l = qj. Applying (5.5) in the Y=(E*X)QO

case we obtain that q$(tqQ) = q$(l)9 and hence tq0 = l. Therefore it is easy to

show that q* is an epimorphism. Next, choose a map/m: S~m ^ A Xm-»Y with

fmqm = Q. Then /m(l A am+l)=fmtm--t1(i A a^.-^l A am+1) = Q, so ^* is a

monomorphism.

For a ring spectrum F, a tower {Zm,/m}m^1 of CW-spectra is said to be an
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F-nilpotent resolution of a CPF-spectrum Z if (i) Zm is F-nilpotent for each

m^l, and (ii) there exists a map 0:Z->limZm inducing an isomorphism
m

g*: lirq [ZmJ iV]-»[Z, AT] for any F-nilpotent spectrum N (see [3, Definition
m

5.6]).

Theorem 5A Let W={Wfe, dk}k^0 be an E-geometric resolution over M

such that each Wk is E-nilpotent, and X = {Xm, am, frm_l5 cm}m^1 be its oo-
factorized system. Assume that the canonical map q: EA X00-^>(EA X)^ is a

homotopy equivalence. Then the tower {lL~m Xm, am}m^1 is an E-nilpotent

resolution of homotopy inverse limit X^ when E is a ring and BP-Hopf module

spectrum.

Proof. Each Xm is obviously E-nilpotent. So it is sufficient to show that

q*' lisa CZ~m^m» EA ^I-^C^QOJ ^A YJ is an isomorphism, when taking E/\ Y
m

specially as an £-nilpotent spectrum N. Consider the commutative diagram

£A Xm, £A F] - > [(£A X)n, £A 7] - > [^A X

( iA l )*

^, ̂ A rj - > \_X^ EA F]
m

in which i: S-^E denotes the unit map of E. The upper arrows are both iso-

morphisms by Lemma 5.3 and the assumption on the map q. Note that the
vertical arrows (i A 1)* are split epimorphisms because E is a ring spectrum.

Hence we see easily that the bottom arrow is an isomorphism as desired.

503, Let W={Wk, dk}k^0 be a BP-geometric resolution over M and X =

{Xm9 am, b w _ i5 cm}m^i be its oo-factorized system. Consider the 5P*-Adams
spectral sequence {JBj'f(7, X)}r^1 constructed using the tower {Z~m Xm, am}m^l

with homotopy inverse limit X^. Denote by XmJ and X^^, — l^ j<m<oo ?

the fibers of the composite maps a j-+ 1---am : ^~mXm^^~JXj and qm: X^

^E~mXm respectively. Obviously X^-^ E~m Wm, Xm>. l = E~m Xm and the
sequence Xkim-*XkJ-*Xmj is a cofibering., — 1 ^7 < m < k^ oo.

Given a CPF-spectrum Fwe set

for each r, 1 g r ̂  oo. Further we define a decreasing filtration of [F, ]£d Z^] by
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The composite map Fs><(7? Z)/Fs+1'f-1(T, X) ^ ES^(Y, X) -» lim £*>*
r>s

(7, X) is always a monomorphism, and the map [7, ^d -X^]-* lim [7, ^d X^/
s

Fs>d~s(Y, X) is always an epimorphism. We say the spectral sequence

{Ej'f(7, X)}^! converges completely to [7, X^J if the above two maps are

both isomorphisms. Use the cofiberings Z00jm-»Jf00-»X~m^m to show that
lim Xao>m = pt by means of Verdier's lemma. This implies that lim [7, X^^
m ' m
= 0 = Jim1 [7, X^im\. Then [1, Theorem 8.2] says

(5.6) the spectral sequence {E*'r(73 Jf)}^ converges completely to [7, X^ if

and only if lim1 £}•*(¥, X) = Qfor each s, t.

We say the spectral sequence {£*'f(7s X)}r^i converges finitely to [7,

if for each s, f there exists r0 = r0(s, 0<°° such that £%/(7? ^) = E^f(

whenever r0 ^ r< oo. From (5.4) it follows that

(5.7) the spectral sequence {E*'f(Y, X)}r^l converges completely if it

converges finitely.

Under the assumption that BP+Y is BP^-free, Ef'r(7? X)^Homt
BP^BP

(BP*Y,BP*WS) and £|'f(73 X)^E\iB'PtBP(BP+Y9 M*) in the 5P^ -Adams

spectral sequence {E*'*(73 Z)}^!-

Proposltloe 5o5o Let n be a positive integer not less than the length of J

and Y be a CW-spectrum. Let W={Wk, dk}k>0 be a BP-geometric resolution

over Mn(BPJ/\Y) which admits an co-factorized system X = {Xm}m^1. If n

is not divided by p — 1, then the canonical map q: Z A Xao-^(Z ^X)^ is a

homotopy equivalence for any CW-spectrum Z.

Proof. Consider the BP^-Adams spectral sequence {E8
r>*(Z) = El'*(S,

Z/\X)}r^l associated with the tower {Z A ̂ ~m Xm, lAa m } m ^ x for each

spectrum Z. By Lemma 4.7 we observe that E|'*(Z)^ExtJ'jf;SF

Mn5PJ5!!(7AZ)) = 0 for all s>n2. Therefore Es
n2

t
+l(Z) = Es

n2
t
+m(Z) for all m^l.

Thus the spectral sequence {Es
r'

t(Z)}r^1 converges completely to n*(Z A X)^ by

(5.7). Hence n*(Z A X)x has a decreasing filtration n*(Z A X)^ = F°(Z) => Fl(Z)

=D-..=)F"2+1(Z) = {0} such that FS(Z)/FS+1(Z) ̂  Es
n>2*+ X(Z). Let {ZA} be a

set of finite subspectra of Z whose union is just Z. Since HIQ ?rt(ZA A Xmsj) =

n*(Z A XmJ), the canonical map lirq £j'f(ZA)-^£^r(Z) is an isomorphism for every

r, l^r<oo. By a downward induction on s we verify that the canonical map
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liiq FS(ZA)-»FS(Z) is an isomorphism, and hence the map Hnj 7r#(ZAAA r)00
A A

-*n*(Z A Jf)^ becomes an isomorphism when taking s = 0 especially. Therefore

it is shown that the map q: Z /\ Xao-^(Z/\X)00 induces an isomorphism in

homotopy, since the canonical map q: Z^/\Xao-^(Z^/\X)00 is a homotopy

equivalence for every finite CPF-spectrum ZA.

Theorem 5.6. Let n be a positive integer not divided by p—l, and Y be

a BP-local CW-spectrum such that BP*Y is vk-torsion for every k, Q^k<n,

and it is uniquely vn-divisible. Then Y is BP-nilpotent complete, and the

BP*-Adams spectral sequence {E^f(S, KY)}r^l converges completely to n*(Y).

(Cf., [12, Theorem 9]).

Proof. The hypothesis on BP*Y implies that BP/\ Y=Y*~n Mn(BP/\ Y)

by [17, Proposition 2.2]. Apply Proposition 5.5 to the Adams J&P-geometric

resolution WBPtY with the oo-factorized system KY={KmY}m^l. Then we

observe that the canonical map q: BPA(BP~Y)-»BP"(BP/\ Y) is a homotopy

equivalence. From (5.3) the result follows immediately, since the BP%-Adams

spectral sequence derived from K Y converges completely to n*(BP~Y) as shown

in the proof of Proposition 5.5.

Let /: BP/\ Y-+BP A Y' be a 5P-Hopf module map. By Proposition 4.3

the map/induces a map/,,: BP"Y-+BP~Y'9 whenever [E1 WmY, Wm+2Y'] = Q

and the sequences [E1 Km^Y, WmY^\_^Km.^9 ^+in^[E%n-i^

Wm+2 Y'] are exact for all m^ 1. Note that

(5.8) /„: BP~Y-*BP"Y' is a homotopy equivalence if a BP-Hopf module

mapf: BPA Y-»BP/\ Y' is so.

Theorem 5.870 Let J be an invariant regular sequence of length n.

Suppose that p is odd and n2 + n<2p. Then there exists a unique BP-local

CW-spectrum Yj such that BP A Yj is isomorphic to v~lBPJ as BP-Hopf module

spectra.

Proof. Putting Theorem 4.9 and Propositions 5.1 and 5.5 together we can

show the existence of a f'^P-local CW-spectrum Yj with the desired property.

The uniqueness of Yj is immediate by use of (5.8) and Theorem 5.6 because the

assumption on (5.8) is satisfied as shown in the proof of Theorem 4.9.
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