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Let BP be the Brown-Peterson spectrum for a fixed prime p. It is an associ-
ative and commutative ring spectrum whose homotopy is BP, =Z ,[v;,..., Uy,...].
For any CW-spectrum Y, the Brown-Peterson homology BP,Y is not only an
associative BP,-module but also an associative BP,BP-comodule. In this note
we deal with associative BP-module spectra E whose homotopies E,. are associ-
ative BP,BP-comodules. An associative BP-module spectrum with such a
structure is called a BP-Hopf module spectrum (see 1.1 for the definition).
For every invariant regular sequence J ={qq,..., 4,_4}, the associative BP-module
spectrum BPJ with homotopy BP./J is a BP-Hopf module spectrum if n<
2(p—1) (Proposition 1.2).

As is well known [1], BP A Y has the Adams geometric resolution Wpp y
={W,Y=BP*ABPAY, d,: W Y=W, 1Y} where BP denotes the cofiber of
unit i: S—BP and BP*=BP A --- A BP with k-factors. Applying BP,-homology
to Wgp,y We obtain a relative injective resolution of BP,Y by extended BP,BP-
comodules. We will show that each BP-Hopf module spectrum E admits a
BP-geometric resolution Wy={W,=BP*AE, d,: W,»>W,, }yso inducing a
relative injective resolution of E, (Theorem 3.3).

Let K,,Y denote the fiber of the map BP™*1A Y—3m*1Y. Then there
is a cofiber sequence K, _; Y-2=4, W, Y_¢m, K Y2, 3" 1K, _, Y and the differential
map d,,: W, Y-W, .Y is factorized as d,=b,¢c,: W, Y-K, Y-W, Y. We
will give a sufficient condition under which a BP-geometric resolution W=
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{We, di}kzo admits an oo-factorized system X(oo) like KY={K,Y, an, by-1,
Cmimz1 (Theorem 4.6). Moreover we will show that the BP-geometric resolution
W,-1pp ;y={BP* Av;1BPJ, di}izo admits an oo-factorized system under some
restriction on the fixed prime p and the length n of J (Theorem 4.9).

The BP.-Adams spectral sequence E$(S, KY)=Ext$},zp (BPy, BP,Y)
=714(BP~Y) is derived from the tower {3 ™K.,Y, a,},>; with homotopy
inverse limit BP~Y. With an oco-factorized system X ={X,, a,, bu—1, Cutmz1
of a BP-geometric resolution over a BP-Hopf module spectrum E, we associate
the spectral sequence E$(S, X)=Ext§f, gp (BPy, Ex)=7(X,) where X,
denotes homotopy inverse limit of the tower {3 ™™ X,, a,}n>,. Discussing
the convergence of the spectral sequence we will prove our main result (Theorem
5.7) that there exists a unique BP-local CW-spectrum Y; such that BPA Y,
is isomorphic to v;!BPJ as BP-Hopf module spectra under some restriction on
p and n.

In this note we work in the homotopy category of CW-spectra, and we do
not necessarily assume that a ring spectrum or a module spectrum is associative
if not stated.

§1. BP-Hopf Module Spectrum

1.1. The Brown-Peterson spectrum BP is an associative and commutative
ring spectrum with a multiplication m: BP A BP—BP and a unit i: SBP.
We call a CW-spectrum E a BP-Hopf module spectrum if E is an associative
(left) BP-module spectrum together with a (left) BP-module map #z: E—»BP,E
such that ¢png=1 and (1 Angng=(1AiAl)y; where ¢y is the BP-module
structure map of E and 1 denotes the identity map. If the coassociativity of
ng is not necessarily satisfied, we call such an E a quasi BP-Hopf module

spectrum. As an obvious example we have

(1.1) For any CW-spectrum X, BPAX is a BP-Hopf module spectrum

whose structure maps are given by ¢pp,x=mA 1 and ngpaxy=1Ain1l.

Given BP-Hopf module spectra E and F, a map f: E~F is said to be a
BP-Hopf module map if f is a (left) BP-module map such that nzf=(1 Af)ng.
For any CW-spectra X and Y we have easily

(1.2) Let f: BPAX—BPAY be a BP-Hopf module map and Y be a
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BP-module spectrum. Then there exists a unique map f': X—Y such that
LAaf'=f.
In fact, f’ is given by the composite map ¢y f(i A 1).

(1.3) i) Let E be a BP-Hopf module spectrum. Then E,X is an associative
BP,BP-comodule whose coaction map is given by Yy: E,X—BP (EAX)x
BP,BP ®*E*X induced by npg.

i) J”Let f: E-F be a BP-Hopf module map. Then it induces a homo-
morphism f,: E,X—F.X of BP,BP-comodules.

Let E be an associative BP-module spectrum. Given an (associative) BP-
module spectrum Y, E*Y is an (associative) BP¥BP-comodule whose coaction
map is given by yy: E¥Y-E*(BP A Y)~ BP*BP ®*E*Y. A map f: Y- 4E
is a BP-module map if and only if it represents aB;rimitive element in E4Y (see
[14, 15]). We denote by Pr E*Y the BP*-module consisting of all primitive
elements in E*Y. If f: Y->Z is a BP-module map, then it induces a homomor-

phism f*: E¥*Z— E*Y of BP*BP-comodules, and hence f*: Pr E*Z—Pr E*Y.

1.2. LetJ={qy,---, 9.1} be an invariant regular sequence in BP, of length
n (see [5]) and J,={q¢;---, 4m—1} the subsequences for each m, 0=<m=<n, in
which J,=J. By Baas [2] there exists an associative BP-module spectrum BPJ,,
with pairing ¢,,: BP A BPJ,—BPJ,, whose homotopy is BPJ,.=BP./(q,..-,
qm-1)- BPJ, and BPJ,,, are related by a cofiber sequence

(1.4) Y dm BPJ, “4m, BPJ, ‘m, BPJ,, km, S dm*t1 BPJ

of BP-module spectra, where d,,=dim gq,, is the dimension of g,, in BP, and-q,,
acts as left multiplication by q,,, thus it is the composite map ¢,,(g,, A 1). Further
we have a multiplication u,: BPJ,, A BPJ,—BPJ,, which makes BPJ,, into a
quasi-associative ring spectrum (see [4, Proposition 5.5]). Putting j=j,_ (- *jo:
BP—BPJ it is a map of ring spectra as well as BP-module spectra.

A BPJ-module spectrum F is said to be quasi-associative if the following
two equalities hold (cf., [4, Remark 5.3]):

(i) pr(dpAD)=¢p(1 Aup): BPABPJAF—-F,

() ¢r(LApup T AD)=pp(1 A ¢p): BPJABPAF-F,
where yrp and ¢p=up(jA 1) denote the BPJ- and BP-module structure maps
of F respectively, and T: BPJ A BP— BP A BPJ is the switching map.

Let E be an associative BP-module spectrum, F be a quasi-associative BPJ-
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module spectrum and X be a CW-spectrum such that BPJ,X is BPJ.-free.
For 0=m<n we consider the homomorphism

k: [BPJ,, A X, EAF]— Hompp,, (BPJ4(BPJ, A X), E,F)

defined to be x(f)=(1 A up)x(TA 1)5(1 Af)y, which is an isomorphism in our
case because of [1, Proposition 13.5]. Then the cofiber sequence (1.4) gives
rise to a split short exact sequence 0—(E A F)*~4m=1(BPJ, A X)—(E A F)*
(BPJ,, .1 A X)—(EAF)*(BPJ,,A X)>0 of BP*-modules. This sequence splits
as BP*BP-comodules, because (E A F)*(BPJ,, A X)~ BP*BP ®*A( ErFyx(Xos---»
X,,—1) and hence it is an extended BP*BP-comodule (use [4,B Iiemmas 5.1 and
5.2]). Here Ag(xq,.-., X,,—1) is the exterior algebra over R in the variables x;

with dimension d;+1. Therefore we see

(15) l) Pr (E/\ F)*(BPJ"H_l A X);A(E/\F)ax(xO,..., Xm), and
ii) j,.: BPJ,,— BPJ, ., induces an epimorphism jk: Pr (EA F)*(BPJ,,4+{ A
X)—Pr (E A F)¥(BPJ,, A X) for each m, 0Sm<n. (Cf., [14, 15]).

Lemma 1.1. Let J be an invariant regular sequence in BP,, of finite length.
Then BPJ is a quasi BP-Hopf module spectrum such that j: BP—BPJ is a
quasi BP-Hopf module map.

Proof. Let J={qq,-.-» qu—1}- For 0=<m<n we inductively show that
BPJ,,, is a quasi BP-Hopf module spectrum so that the cofiber sequence (1.4)
is of quasi BP-Hopf module spectra. Assume that there exists a BP-module
map #,: BPJ,—»BPABPJ, with ¢,n,=1. We observe that (-g,Al),=
(1A -q9,)s: BPJ,BPJ,,—~BPJ,,.BPJ,, since 1.(q,,)=1r(q,,) mod J,. Using the
isomorphism «: [BPJ,,, BP A BPJ,]—-Homgp, (BPJ,.BPJ,, BP,BPJ,), it is
shown that &, 4m) =1 A t)£(TA Dy(- g A 1) =x((1 A - q,)1,), and hence
U Im=1A A - )Mm So we can find a map #,,,,: BPJ,,,,—-BPABPJ, .,
such that 7., ;1 ju={Aj ), and (1 A K )0+ 1 =Nk

We next replace this map #,,, ; with a BP-module one. By (1.5) we observe
that j,,: BPJ,,—BPJ,, . , induces an epimorphism j¥: Pr (BP A BPJ,,, )*BPJ,, .,
—Pr(BPABPJ,,)*BPJ,. Pick a BP-module map #,.,: BPJ, —BPA
BPJ,, ., such that #nn.ijm=0Aj )M, In order to show that (1Ak,)m+:
=1k, We consider the commutative diagram
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[Sém*1 BPJ  BP ABPJ,,,]—> [BPJ, ., BPABPJ, ]

l l

[BPJ,, BP A BPJ,] — [BPJ,+,, Y41 BP A BPJ,]

— [BPJ,, BPABPJ, ]

l
!

— [BPJ,,, Y 4*1 BP A BPJ,]

with exact rows. Since the left vertical arrow is trivial, the equality #,,. {Jjn
=1+ ), implies that (1 A k)1, 1 =0 A k)1, and hence (1 A k, )1y 1 =Nkom
as desired.

Applying Five lemma we see that the BP-module map p,,41 =@+ 1Mm+1:
BPJ,,—BPJ,, . is a homotopy equivalence with p,,+ 1 jm=Jjm and k,,0p+ 1 =Kp-
Putting #, 4 1 =%m+1Pmt 1> it is @ BP-module map such that @, 11w+ 1=1, Nt 1Jm
=1 Aj )N, and (1 A k)14 1 =Nmkm, as desired.

Proposition 1.2. Let J be an invariant regular sequence in BP,, of length n.
If n is less than 2(p—1), then BPJ is a BP-Hopf module spectrum.

Proof. By (1.5) we observe that the map j: BP—»BPJ induces an epi-
morphism j*: Pr (BP A BP A BPJ)*BPJ—Pr(BP A BP A BPJ)*BP, and Pr(BP
ABP ABPJ)*BPJ = Agpappappsy(Xos--» Xu—1). Since (BPABPABPJ)*=0
unless *=0mod 2(p—1) and dim x,---x,_; =n mod 2(p—1), j* becomes an iso-
morphism at dimension 0 when n<2(p—1). Hence the coassociativity of #,
is immediately shown, because j*(1AgIn)=1Ainji=j*(1Ainl)y,) by
Lemma 1.1.

Hereafter we only treat of a fixed invariant regular sequence J ={qq,..., ¢,— 1}
for which BPJ,, ., are BP-Hopf module spectra and the cofiber sequences (1.4)
are of BP-Hopf module spectra for each m, 0<m<n. Thus BPJ is assumed to
be a BP-Hopf module spectrum such that j: BP—BPJ is a BP-Hopf module map.

§2. Extended BP-Hopf Module Spectrum

2.1. A BP-Hopf module spectrum E is called an extended BP-Hopf module
spectrum if there exists an associative BP-module spectrum Y and a homotopy
equivalence h: E->BP AY of BP-Hopf module spectra. If E is an extended
BP-Hopf module spectrum, then E.X is an extended BP,BP-comodule for any
CW-spectrum X.
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Lemma 2.1. Let E be a BP-Hopf module spectrum with comodule structure
map ng. Then there exists a homotopy equivalence tz;: EABP—BPAE of
BP-Hopf module spectra such that t(1 Ai)=ng and TrgTtg=1, where T:
BP A E—E A BP denotes the switching map.

Proof. Set ‘cE=(1 A @)1 A T)ng A1), which is a BP-Hopf module map.
It has an inverse 13! given by 15! =(¢z A 1) (1 A T)(1 A ).

For the BP-Hopf module spectrum BPJ such that j: BP—BPJ is a BP-Hopf

module map, we have

Corollary 2.2. There exists a homotopy equivalence t: BPJ A BP—
BP A BPJ of BP-Hopf module spectra such that t(1 Ai)=n, 1(jAal)=1Aj and
TrTr=1, where n denotes the comodule structure map of BPJ.

The BPJ.-module BP,BPJ admits the following structure maps to be
considered: (i) A product map V: BP,BPJ ® BP,BPJ—BP,BPJ defined as
usual, (i) two unit maps 7., #g: BPJ:iJéP*BPJ induced by #, ial
respectively, (iii)) a counit map &: BP,BPJ—BPJ, induced by BP-module
structure map ¢=u(jA 1), (iv) a coproduct map 4: BP,BPJ—BP,(BP A BPJ)
~ BP,BP ® BP,BPJ =~ BP*BPJ ® BP,BPJ induced by 1Aial, and

(v)a conjugatlon map c: BP,BPJ —>BP*BPJ induced by tT.

Proposition 2.3. (BPJ,, BP.BPJ) is a Hopf algebroid, and (js, (1 Aj)s):
(BP,, BP,BP)—(BPJ,, BP,BPJ) is a morphism of Hopf algebroids.

Proof. As is easily checked, 4 and ¢ are BPJ,-bimodule maps and (¢®1)4
=1=(1®ed, (ARNA4=(1R®A)4, cn.=ng, Nr=Nr, M=V (1®c)4 and nge
=F(c®1)4. So the former part is obtained. The latter part is immediate.

For a quasi-associative BPJ-module spectrum F, BP,F~BP,BP ® F,
~BP,BPJ ® F, and it is an extended BP,BPJ-comodule. Let E be B; *BP-
Hopf modulg ;pectrum which is a quasi-associative BPJ-module spectrum, and
X be a CW-spectrum. Then E,X is an associative BP,BPJ-comodule with
coaction map Y y: E,X—-BP.(EA X)~BP,BPJ 31@ E.X induced by 75 Asis

easily seen, we have
(2.1) Hompp,pp(Ex X, BPoF)=Homgp,pp,(Ex X, BP4F).
Further we recall that there exists an isomorphism

2.2) 6: Hompp,pp(Esx X, BP4F) — Hompp, (E X, F)
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given by 6(u)= ¢ p,u and 0~ (v)=(1@v)x, where ¢r=pup(j A 1).

Given BP-module spectra M, N we denote by [M, N]gzp the subset of
[M, N] consisting of all the homotopy classes of BP-module maps. For a
quasi-associative BPJ-module spectrum F we define a map

K:[X, F1—> [BPJAX, Flgp
to be R(f)=up(1 Af). Denote by k the composite map
k=7nk:[X, F1— [BPJA X, Flgp — Homgp,;(BPJ X, F,)

where 7 assigns to a map f the induced homomorphism f,. Notice that k is an
isomorphism when BPJ, X is BPJ,-free.

For BP-Hopf module spectra M, N we also denote by [M, N], the subset
of [M, N]zp consisting of all the homotopy classes of BP-Hopf module maps.
Let E be a BP-Hopf module spectrum and F be an associative BP-module
spectrum. Then we have an isomorphism

(2.3) @:[EAX, BPAF], — [EAX, Flgp

defined to be @(f)=¢rf. The inverse @~! is given by @~ 1(g)=1 A g)ngA 1)
as in (2.2). For a quasi-associative BPJ-module spectrum F we denote by 4
the composite map

2.4 A=071%: [X, F1— [BPJAX, Flgp=[BPJA X, BPAF],
which is given as A(f)=(1 A up)(n A (1L AS).

Lemma 2.4. Let F be a quasi-associative BPJ-module spectrum such
that Fy is BPJy-free and F,=0 unless *+=0mod 2(p—1). If the length of J
is less than p—1, then the map A:[X, F]-[BPJAX, BPAF]; is natural
with respect to F.

Proof. Let F and G be a quasi-associative BPJ-module spectra such
that F, is BPJ,-free and F,=0=G, unless *=0mod 2(p—1). For any map
h: F—>G it is sufficient to show that (1 A h)(1 A up) A D=1 A pg)m A DA AR):
BPJAF-BPAG. The map j: BP—»BPJ induces an epimorphism (jA 1)*:
Pr(BP A G)*(BPJ A F)—Pr (BP A G)*(BP A F) by (1.5). Note that Pr(BP A G)*
(BPJ AF)= Agprcy#(Xo»---» Xp—1) and (BP A G)*F=Hom%p,,(BPJ.F, BP,G)
=0 unless *=0, 1,..., n mod 2(p— 1), where n denotes the length of J. Therefore
(j A1)* becomes an isomorphism at dimension 0 when n<p—1. Then the
desired equality follows immediately, since (j A D*(1 AR A up)nAl))=1Ah
= AD*(A A pe)n A DA A B)).
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2.2. For an invariant regular sequence J={q,,..., 4,—;} in BP4 we denote
by A; the set of the numbers X ¢<;<,-; t(d;+1) for all n-tuples (zo,..., t,_;) of
zeros and ones, where d;=dimg;. Let X, =V ,,, 2.9 the wedge of the
suspended sphere spectra, and ¢: S— ", be the canonical inclusion.

Lemma 2.5. For each BPJ-module spectrum F there exists a homotopy
equivalence ep: BPJAF—-BPAFAY ; of BP-Hopf module spectra such that
ex(jAl)=1A1Ac.

Proof. For 0=m<n we inductively construct a homotopy equivalence
emi1: BPJ, AF-BPAFAY,;
denotes the length of J. By (1.5) we recall that j,: BPJ,,—~BPJ,. ,induces an
epimorphism j¥%: Pr(BPJ,, A BPJ)*BPJ,,,,—Pr(BPJ,, A BPJ)*BPJ,, for any
m,0<m<n. Then we can choose a BP-module map #,,, ,: BPJ,.,—>BPJ,
A BPJ suchthat 9,4 ; mjm=1Aji. Setting r,=(1 A )+ 1,mA1): BPJ,, oy AF
—BPJ,, AF, it is a BP-module map with r,(j,A1)=1. We change r, into a
BP-Hopf module map #,,: BPJ,,.; A F->BPJ, A F defined to be the composition
Fo=e A Aup ADAAJALTAD(A Ae A A7) Mms 1 A1).  Ttis easily seen that
Pu(jmA1)=1. Thus the sequence BPJ,AF—BPJ, A F—Y 4*t BPJ AF
is a split cofibering of BP-Hopf module spectra. So we have a homotopy equi-
valence e, 1: BPJ, .1 AF—>(BPJ,AF)v (X1 BPJ,AF)»BPAFAY, . of
BP-Hopf module spectra.

of BP-Hopf module spectra, where n

Let F and G be BPJ-module spectra. For any map f: F—G there exists
a unique map
2.5) f1iFAY;— GA Y,
such that (1 Af,)ep=eg(1 Af). This is easily shown by use of (1.2). Iff: F—»G
is a BPJ-module map, then (1 Af)r,=r,(1 Af) and hence (1 A fA D)ep=esz(1 AS).
So we see

(2.6) f;=falif f1 F— G is a BPJ-module map.

Let F, G and H be BPJ-module spectra, and X and Y be CW-spectra. For
any maps f: F—»G, g: G-»H and h: X—Y the following results are immediately

obtained.
@7 L=L:FAZ,;— FAY; and (gf);=9;f5: FAZ,— HAX,.
28) (MAf)y=hAf;: XAFAY;—> YAGAY ;.

(2.9) The diagram below is commutative:
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FAY, ML FAY, . 1ok ydmtlFAY

f.tml lf.rmﬂ lf.lm

GAY . Ta7 GAZ gy T 2IGAY,

where j and k are the canonical maps.

Lemma 2.6. i) Let F be a quasi-associative BPJ-module spectrum with
structure map ugp. Then FAY ; is an associative BP-module spectrum whose
structure map is ¢p ;=(up A1)(jA1A1): BPAFAY ;»FAY ;.

ii) Let E be a BP-Hopf module spectrum with comodule structure map ng.
If E is a quasi-associative BPJ-module spectrum, then EAY. ; is a BP-Hopf

module spectrum whose comodule structure map is ng ;: EA Y, ;=BPAEA Y ;.

Proof. From the quasi-associativity of up it follows that the map ¢
=pp(jA1l) is a BPJ-module map. Then (2.6) implies that ¢p ;=¢pA L.
Hence i) is obtained. ii) is immediate by means of (2.7) and (2.8).

It is easy to show

Lemma 2.7. Let F and G be quasi-associative BPJ-module spectra, and
f: F->G be a BP-module map. Then,

1) f;: FAY;»GAY, is a BP-module map. Moreover,

il) if F and G are BP-Hopf module spectra and f is a BP-Hopf module
map, then f; is a BP-Hopf module map, too.

§3. Geometric Resolution

3.1. Let E and M be BP-Hopf module spectra. A complex W={W,, d,:
W= W, 1 1}k=0 consisting of CW-spectra and maps is called an E-geometric
resolution over M if the following three conditions are satisfied:

(i) There exists a BP-Hopf module map 6: M—E A W, with (1 A d)d=0.

(ii) The long sequence
*— M-, EA Wy 229 EAW, — oo — S EAW, 22 EAWypg— -
splits as a sequence of BP-module spectra. That is, there exist BP-module maps
e: EAWy—>M and s,: EAW, = EAW, k=0, such that esq=0=s,5,,, 80=1,
oe+5so(1ndy)=1 and (1 Ady)s+s,+:(1Ardy)=1 for each k=0.

(iii) E A W, is an extended BP-Hopf module spectrum for each k=0.

From (1.3) we verify that if W={W,, d,: W,—»W, . ,};5, is an E-geometric
resolution over M, then
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(3.1) E W={E.W,, 1Ad)s: EiW,=EsW,1}i>0 is a relative injective reso-
lution of M, by extended BP,BP-comodules.

Let us denote by BP the cofiber of unit i: S— BP, although the fiber of unit
i was denoted as BP in [1] or [3]. Let E be a BP-module spectrum with
structure map ¢z: BPAE—E. The cofibering EAL BP A E %A1, BP A E splits,

and hence there exists a unique map

3.2) Yg: BPAE— BPAE

such that (A 1)Yz=1 and (in1)¢g+yYe(nal)=1. When E is a BP-Hopf
module spectrum whose comodule structure map is 75: E—BP A E, the cofibering
BP A EY=,BP A E®5,E admits another splitting. Thus there exists a unique

map

(3.3) pg: BPAE— BPAE

such that ppp=1 and nzdp+Yepr=1. We define two maps ¢z: BPABPAE
—BPAE and ij;: BPAE-»BPABPAEto be

Gr=pe(m A1) (1 AYg): BPABPANE — BPABPAE
(3.4) —— BPAE— BPAE,
fie=(AApp)(AAinl)g: BPAE— BPAE '
—— BPABPAE—— BPABPAE.

Lemma 3.1. Let E be a BP-Hopf module spectrum. Then BPAE is a
BP-Hopf module spectrum such that py: BP A E—BP A E is a BP-Hopf module

map.

Proof. By routine computations we can show the equalities ¢(iA 1A 1)=1,
FAAB=FmAaLL), $i=1, 78=(mALA(LAF) and G(1Ap)=p(mA1)
without use of the coassociativity of ;. Here the subscript E is omitted in ¢,
fig and pg. Moreover we obtain the equalities (1 Af)F=(1AiA1A1)jand 71p
=(1Ap)1Ainl) under the assumption that #; is coassociative.

Remark. Such BP-Hopf module structure maps ¢gprp and #zpag on
BP A E that pg: BP A E-BP A E becomes a BP-Hopf module map are uniquely
determined.

3.2. Given any BP-Hopf module spectrum E two maps dg: E—BP A E and
sg: BP A BP A E-BP A E are defined to be
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(3.5) de=(@A E— BPAE— BPAE
sg=—(mA1) (1 AYg): BPABPAE— BPABPAE— BPAE.

Note that dg= —pg(iA 1), sg= — ¢y and sg is a BP-module map. Similarly
dgpag: BPAE—BP2AE and sgpag: BP A BP2 A E—BP A BP A E are defined to
be dgpp=(m A 1A 1)ijg and sgpap=—(m A 1 A 1)(1 A ¥), where BP2=BP A BP.
Obviously dgpag= —1Adg. By easy calculations we have

Lemma 3.2. Let E be a BP-Hopf module spectrum. Then ¢gsp=0=
SgSePaps SElAdR)=Vgpr, (LAdg)sg+sgpas(lAdgpag)=1 and moreover
(A Adpne=0=dgpaede.

Let E be a BP-Hopf module spectrum with structure maps ¢ and 7.
For each k=1, BP* A E becomes a BP-Hopf module spectrum whose structure
maps ¢,: BPABPFAE—-BP*AE and 7,: BPFAE-BPABP*AE are in-
ductively constructed by ¢, =@, _, and ,=7j,_, where ¢o= g, 7o=n5 and BP*
=BP A --- A BP with k-factors.

Theorem 3.3. Let E be a BP-Hopf module spectrum. Then there exists
a BP-geometric resolution Wy={W,=BP* A E, d;,: W,— W 1}4, over E.

Proof. Consider the map d,: BP* A E»BP**1 A E defined to be d,=
(mA1A1ln, Then Lemma 3.2 implies that the long sequence =—E!=, BPAE
1ndo, Bp A BP A E- 124, BPABP2 A E—--- splits as a sequence of BP-module

spectra. Hence the complex W;={W,=BP*AE, di}iso is a BP-geometric
resolution over E.

Proposition 3.4. Let W={W,, d,},>o be a BP-geometric resolution over
M. Assume that M and W,, k=0, are quasi-associative BPJ-module spectra.
Then W={W,, di};»0 is a BPJ-geometric resolution over M A 3 ;.

Proof. W={W,, d\};»o possesses a split sequence

1Ado 1Ad;
a—»M‘—’BP/\WO(___BPAWIe__BP/\Wﬂ__---

in which 6 is a BP-Hopf module map and ¢ and s,, k=0, are BP-module maps.
This gives rise to another split sequence

1Ado 1Ad
s MAY, == BPA WOAz,zBPA WoAY, 2
[ g S1,J

BPAWLAY -
by means of (2.5), (2.7), (2.8) and Lemmas 2.6 and 2.7. Set 5=e;V105,:
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M A Y ;—BPJ A W,, which is a BP-Hopf module map by Lemmas 2.5 and 2.7
ii). Then the long sequene

F] 1Ado 1Ady
5 — MAY,; == BPJA Wy = BPJAW, —— BPJA W, ==
& So S1

becomes a split sequence of BP-module spectra, too. Here the BP-module
maps & and §,, k=0, are defined to be é=¢;ey, and §,=epls, sen,,,. Since
BPJ A W, is an extended BP-Hopf module spectrum by Lemma 2.5, the desired

result is obtained.

Combining Proposition 3.4 with Theorem 3.3 we have

Corollary 3.5. Let E be a BP-Hopf module spectrum which is a quasi-
associative BPJ-module spectrum. Then the complex Wy={W,=BP*AE,

di}izo is a BPJ-geometric resolution over EA Y ;.

§4. Factorized System

4.1. Let W={W,, d\};>o be an E-geometric resolution over M. We say
Wadmits an m-factorized system X(m)={X;, a;, b;_;, ¢;}1<;<m if the following
properties are satisfied:

(i) X, SLIEIEN W, 1, X; 2,%1X;_,is a cofiber sequence, and

(i) d;_y=b;_;c;_;and d,b,_,;=0foreachj, ISjsm,
where Xo=W,, by=dy, co=1and 1=Sm=Z 0.

Let X(m)={X;, a;, b;_4, ¢;};<;=m be an m-factorized system of W=
{W,, di}rz0- Pick up a map b,: X,,—» W, with b,c,=d,, and a split sequence

o 1Ado 1Ady
*——>M4_EAW04_._.E/\W1<_._E/\W2(—_."'
3 So S1

of BP-module spectra in which § is a BP-Hopf module map and fix them.
Choose a map u,,: EAX,,_;—~>. "' EAX,, such that (1Ag,)u,=1—(1Ac,_y)
Sm-1(1Ab,_,), and then replace it with the map

4.1) tw: EAXpoy— XYEAKX,
given by t,=u,—{Ac,)s(1Abu,. Since (1Aau,(lra,)=1Aa, and
(IAau,(IAcp_1)s,—1=0, we can easily check

(1) sm(]- A bm)tm=0= tm(l A cm—l)sm—l H

42 .
() t,(lra)+(Ac)s.(1Ab,)=1 and
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(1 A am)tm+(1 /\cm—-l)sm—l(1 A bm—1)= L.

Notice that the map ¢, is a BP-module map, because (1A a,)t (A1)
=1 Ara,)(¢pgA 1)1 At,) by use of (4.1). Hence the long sequence

4.3) - —S EAX,_ | Wy, AW, Ao EA X, e S IEA X,
splits as a sequence of BP-module spectra. Immediately (4.2) implies

44) (drag)t,=t,_(Lrna,_,), (Anrat(lra,)=1Aa, and
t (I Aa)t,=t,.

Lemma 4.1. Let W={W,, d;},>o be an E-geometric resolution over M
and X(m)={X;, a;, b;_y, ¢;}1<j<m be its m-factorized system. Then there
exists a BP-Hopf module map ¢,: EA X,,—» > ™M such that ¢,=¢,_,(1Aa,)
and the long sequence

lACm Z 1E/\X 1Aam E/\X lAbm L, EA W 1ACm
EAX, 2 YmM— s

splits as a sequence of BP-module spectra.

Proof. Consider the composite map e¢,=e(lAa,)-(1ra,): EAX,—
>mM. Obviously d¢,=(1Ara;)-(1Aa,) and it is a BP-Hopf module map.
Therefore ¢, is also a BP-Hopf module map since (1A d)pye,=(1A0)(1A¢g,)
(mg~l). Set d8,=t,t;0: MY ™EAX,, then (4.2) and (4.4) imply that
&.0,=1 and 6,e,+(1Ac,)s(1Ab,)=1. The result is now immediate from
4.3).

Let W={W,, d,: W= W4 }x>0 be a complex of CW-spectra, and X-t.W,,
—<,Y-2,%>1X be a cofiber sequence. Suppose that two sequences [} 'W,,
Ws2l o[22 Woy Wii31-0  and  [X1 X, W, 1= 21 X, W01 (20 X,
W,.+3] induced by d’s are both exact. Then an easy diagram chasing shows
that there exists a map b: Y- W,,, , satisfying bc=d,, and d,,, ;b=0if d,,b=0.
Hence we obtain immediately.

Propesition 4.2. Let W={W,, d;},>0 be an E-geometric resolution over M
such that [Y'W,,, W,,.3]1=0. Assume that W admits an m-factorized system
X(m)={X;}1<j<m Then W admits an (m+1)-factorized system X(m+1)
={X;}1sjzm+1 If the sequence [X'X, 1, Wi 1=[2" Xpo1, Waial—
[ X,—1, W3] is exact.

Let W={W,, di}x>o and W'={W,, d;};>, be two complexes of CW-
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spectra, and g={g,}x>0: W— W’ be a map of complexes. Let X2 .W, -<.Y
4,3 1X and X' PLW, <Y’ 2,31 X' be two cofiber sequences, and b: Y—
W, and b': Y'—»W,,, be maps satisfying bc=d,, b'c'=d,, and d, . b=0
=d. ., b’ respectively. Suppose that [ 'W,, W, 1-[>'W,, W, ,]-0 and
22X, W,]-[2'X, W, 1-[2'X, W, .,] are both exact. Given a map
f: X—> X' with b'f=g,b, we can easily choose a map h: Y- Y’ such that b'h
=gn+1b, hc=c'g,, and a’h=(3'f)a. Hence we have

Proposition 4.3. Let W={W,, d\};»0 and W' ={W, d,},»o be E-geometric
resolutions over M and N respectively, and X(m)={X;};<;<m and X'(m)
={X}1<j<m be their m-factorized systems. Given a map g: W—>W' of
complexes, there exists a map f(m): X(m)— X'(m) of m-factorized systems if
[X'Wi, Wit2]1=0 and the sequences [X'X,_y, Wil->[2X! X4y, Wiiq]-
[ Xy_1, Wiyo] are exact for all k, 1<k<m—1.

4.2. Let W={W,, d;},>, be a BPJ-geometric resolution over N and F
be a quasi-associative BPJ-module spectrum. Suppose that F satisfies the
condition:

(4.5)y k:[2*W,, Fl->Homgh, (BPJ . W,, F,) is an isomorphism for each
k=0.

For example, all F satisfy the condition (4.5)y, whenever BPJ W, is BPJ -
free (see 2.1).

Let X(m)={X;, a;, b;_y, ¢;};<j<m be an m-factorized system of W.
By making use of (4.3) and Five lemma we see that «: [Y.! X,,, F]->Homgt;,
(BPJ.X,,, F,) is an isomorphism, too. From Lemma 4.1 we obtain that the
sequence BPJ, W,—BPJ,X,,—N,_,—0 is split exact of BPJ,-modules. This
gives rise to a split exact sequence 0—Hompg%;!(Ny, Fy) i>[Z‘ X,, F]-
[>*W,, F]. Recall that there exists an isomorphism 6: Homgp,zp(Ny, BPF)
—Homgp; (N, Fi) by (2.2). Replacing & with the composite map &6,
denoted by £,,, we have a split exact sequence

*
(4.6) 0 —> Homz}p(Ny, BPyF) 5= [T X,,, F1 = [Z! W, F]

Lemma 4.4. Let W={W,},>, be a BPJ-geometric resolution over N and
X(m)={X;}1<;<m be its m-factorized system. Let F be a quasi-associative
BPJ-module spectrum satisfying the condition (4.5)y such that F,=0 unless
*=0mod 2(p—1). Suppose that the length of J is less than p—1. Then the
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map &,: Homz2 4 p(Ny, BPLF)—[Y.'X,,, F] is natural with respect to F.
Moreover it is an isomorphism if [>'W,,, F]=0.

Proof. The composite map &,(0,)*0 'k: [ W,, F1-[2'X,,, F] 1is
induced by the composition a,---a,,, because d¢,=(1 Aa;)---(1 Aa,). Obviously
0 lk=n@ lk=nl, so it follows from Lemma 2.4 that (8,)*6 k: [2.""'W,, F]
—Homg% #p(Ny, BP.F) is natural with respect to F. Since (d4)*0 'k is an
epimorphism it is obvious that £, is also natural with respect to F. The latter
part is immediate from (4.6).

As a sufficient condition under which [}, G, F]=0 holds we have

Lemma 4.5. Let F and G be quasi-associative BPJ-module spectra such
that F,=0=G, unless *=0mod 2(p— 1) and G is BPJ.-free. If the length n
of J is less than 2p—3, then [2.' G, F1=0 for each t, 1Zt<2(p—1)—n.

Proof. Note that BPJ,G=0 unless #=0,1,...,n mod 2(p—1). This
implies that [ ' G, F]=Homgb, (BPJ .G, F,)=0 when 1Zt<2(p—1)—n.

Theerem 4.6. Suppose that the length of J is less than p—1. Let W={W,,
di}r=0 be a BP-geometric resolution over M such that M and W,, k=0, are
quasi-associative BPJ-module spectra with Wy, BPJ.-free and W, =0 unless
x=0mod 2(p—1). If Extii33" (M, My)=0 for all m=1 and te Ay, then
W admits an oo-factorized system X(o0). Moreover, its co-factorized system
is uniquely given if Extgplip™ (Mg, My)=0 for all m=1 and te A;. (Cf.,
[13, Lemma 3.17).

Proof. W={W,, d;};>0 is a BPJ-geometric resolution over M A Y ; by
Proposition 3.4. Note that [>.'W,, W,]=0 for all i, k=0, because of Lemma
4.5. Inductively we assume that W admits an m-factorized system X(m)=
{X}1<j<m- to show the existence of its co-factorized system X(co). By Lemma
4.4 we have an isomorphism ¢&,: Homg%,zp(Ms > ;, BP.W)—~[>1X,._ 1, W]
which is natural with respect to W,. The sequence 0—My3 ; >M.>; .,
—> M, _4,—12.5,—0 is exact of BP,BP-comodules and split exact of (free) BPJ -
modules. Hence our first hypothesis implies that Extgs%3™(M.Y.;, My)=0
for all m=1. Using the natural isomorphism &, this means that the sequence
(X X 1o Wt 12 [Z Xinm 1y Wi 2122 Xt Wiai3] is exact.  Apply
Proposition 4.2 to botain an (m + 1)-factorized system X(m+1)={X;} <j<m+1-

The uniqueness of X(o0) is easily shown by use of Proposition 4.3, because
our latter hypothesis implies that the sequences [>'X,,_;, W, =X X - 1>
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Woi1l- 21 X,— 1, Wyo] are exact for all m>1.

4.3. Let W={W,, di};»o be a BP-geometric resolution over M such that
W, is a quasi-associative BPJ-module spectrum for each k>=0. Let L and N be
BP-Hopf module spectra and f: L—»N be a BP-Hopf module map inducing an
isomorphism f,: BPJ, ® L*—N* Then the map f induces an isomorphism
(f+)*: Hompgp,gp(Ny, BP* W,)—»Homgp,zp (L, BP,W,). Hence we have an

isomorphism

4.7 Extsb.pp(Nu, M) = Extyh pp(Ly, My)-
Specially j: BP—BPJ induces an isomorphism
(4.8) Extgp.pp(BPJ .y, My) = Extyp, gp(BPy, My).

Lemma 4.7. Let C be an associative BP,,BP-comodule which is a direct
limit of finitely presented v,_,-torsion comodules. If n is not divided by p—1,
then Ext§p, gp(BPy, v;1C)=0 for all s>n2.

Proof. We may assume that C itself is finitely presented and v,_,-torsion.
Choose a Landweber prime filtration C=Cy>C;>---> C,={0} so that each
subquotient C;/Cy ¢ is a suspension of BP,/I,, for some n(k)=n. Then v;!C
has a filtration v;'C=B,>B;>---> B,={0} so that all subquotients are
suspensions of v,BP,/I,. By Morava’s Theorem [8, Theorem 3.16] Ext}p,zp
(BP,,, v;'BP,/I,)=0 for all s>n? whenever p— 1tn. The desired result is easily

shown.

Let us denote by L,, n=0, the localization functor with respect to v;!BP,-
homology (see [3] or [11]). Consider the functor N,, n=0, derived from the
cofibering X—L,_,X—> "*1 N X, where No=1. We put M,=L,N,, n=0.
By [17, Theorem 2.3] we notice that N, X is v,-torsion for each k, 0<k<n, and
M,X =v,'N,X if X is an associative BP-module spectrum.

Corollary 4.8. Let n be a positive integer not less than the length of J.
Suppose that p is odd and n*+n<2p. Then Ext%i*3" *(BPy, M,BPJ,)=0
forallm=1, k=1 and te A,.

Proof. In the m+k>n? case the result is immediate from Lemma 4.7.

In the m+k=<n? case it is obvious that Ext§y. 45! (BPy, M,BPJ,)=0 for all
tedy, since ISm<m+n<n?+n—-1<2(p—1).

Given an E-geometric resolution W={W,, di};>, over M, L,W=
{L,W,, L,d;}50 is also an E-geometric resolution over L,M, because EAL,X
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=L(EAX)=L,EAX by Ravenel’s result [12, Theorem 1]. Recall that the
radical of J is just I,=(p, vy,..., v,—1) Where n denotes the length of J. So it
follows from [17, Proposition 2.2] that L,F=v;!'F whenever F is a quasi-
associative BPJ-module spectrum.

Let Wyp;={W,=BP* A BPJ, di}rz0 be the BP-geometric resolution over
BPJ constructed in Theorem 3.3. The BP-geometric resolution L,Wgp;,
obtained by applying the localization functor L, to the BP-geometric resolution
Wspy, coincides with the BP-geometric resolution W,-1zp;={BP* A v;!BPJ,
di}iz0 Over v, 1BPJ.

Theorem 4.9. Let J be an invariant regular sequence of length n.
Suppose that p is odd and n>+n<2p. Then the BP-geometric resolution
W,-1pps ={L,Wy=BP* Av;'BPJ, d\},so over v;'BPJ admits a unique oo-

factorized system Y(o0).

Proof. For any quasi-associative BPJ-module spectrum F the map «x:
[>t LW, L,Fl->Homgb,; (BPJ,L,W,, L,Fy) is an isomorphism because
[>:LW, LF1=[>'W, L,Fl=Homgb,(BPJ W, v;'F,). Thus all L,F
satisfy the condition (4.5),, where the BPJ-geometric resolution W, -1zp; over
v;'BPJ A Y, is abbreviated as W. Moreover it follows from Lemma 4.5 that
[>rLw, LW]=[X'W, L,W,]=0 for all i, k=0. Inductively we assume
that W,-15p, admits an m-factorized system Y(m)={Y;};<;<,n- By Lemma 4.4
there exists an isomorphism ¢&,: Homg%,zp(BPJ,Y ,, BP,LW)—-[2'Y,_,
L,W,], which is natural with respect to W,. Combining Corollary 4.8 with
(4.7) it is shown that Extg% ;7 '(BPJ,, v;'BPJ,)=0 for all m=1, k=1 and
te Ay, when n=1. Asin the proof of Theorem 4.6 this implies that the sequence
[Z1 Yoot LiWoii- 122" Yoo 1o LWt il d2 LX! Yoty LaWoir 1] s exact.
In the n=0 case the exactness is easily shown since [ Y, LyW]~Hom(n, Y, n, W
®0Q). Applying Propositions 4.2 and 4.3 we obtain the desired result.

§5. Homotopy Inverse Limit

51. Let W={W,, d,};»0 be an E-geometric resolution over M. Assume
that W admits an oco-factorized system X={X,, a,, b,,_1, Cp}mz1- FOr a
CW-spectrum Y the tower {} ™ YA X,, 1Aa,},>; has a homotopy inverse
limit lim >."™YA X, denoted by (YA X),,. It possesses the canonical projections
dn: (YA X) > X "YAX,, such that (1 Aa,)g,=d,_,. The BP-Hopf module
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maps &,: >, "EA X,,—M given in Lemma 4.1 induce a BP-Hopf module map
(5.1 ¢ EAX, — M
defined to be ¢,=¢,(1 A q,,)=¢(1 A g).

Proposition 5.1. Let W={W,, di};>, be an E-geometric resolution over
M which admits an co-factorized system X ={X,}>1. If the canonical map
q: EAX —(EAX), is a homotopy equivalence, then the BP-Hopf module

map e.,: EA X, —M is a homotopy equivalence, too.

Proof. Consider the commutative diagram

(YACm+1)* Em+ 1%
Evimi1tWani1 —2 25 By 1 X ey == My — 0

l | |

—_— —_ —_—
E*+me (LACm)=* E*+me Em* M* 0

in which the left vertical arrow is trivial. The two rows are exact by Lemma 4.1.
Hence we observe that hm E, ., Xu=M, and hm Ey ., X,=0. This implies

that the map ¢, induces an isomorphism g : E*X — M, under our hypothesis.

Corollary 5.2. Assume that E is connective and of finite type and that all
W,, k=0, are (N +k)-connected for some N independent on k. Then the
BP-Hopf module map ¢,: EA X ,—M is a homotopy equivalence.

Proof. From [1, Theorem 15.2] it follows that the canonical map q: E A
X ,—(EA X), is a homotopy equivalence.

Given a ring spectrum E we form a cofibering S—»E-",E and put Et=
EA---AE with k-factors. Consider the Adams geometric resolution Wy =
{WY=EFANEAY, d;: W,Y>W, Y}»o for a CW-spectrum Y, where d, is
defined to be dy=(—1)(1Aanalal)(IAalAainl). Note that the Adams
geometric resolution Wy y gives an E-geometric resolution over EA ¥ when
E is a ring and BP-Hopf module spectrum. Let K, Y denote the fiber of the
obvious map E™*1 A Y>3 ™Y, thus 37 Y, K, Y-E™1A Y>> m1Y be a
cofiber sequence, m=0, where KoY=EA Y and ay=iAl. Then we have a
cofiber sequence K,,_, Y- 2m=t, W, Y. K, Y2 31 K, _,Y such that b,c,=d,,
and a,u,=a,_, (see [3]). Hence we see

(5.2) KY={K,Y, ap, bp_1, Cii}m>1 is an o-factorized system of the E-geometric
resolution Wy, y.

Ths tower {3 ™K,Y, a,}.>1 has a homotopy inverse limit E~Y with a
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map a: Y- E"Y inducing the maps «,: Y- "K,Y. A CW-spectrum Y is
said to be E-nilpotent complete if the map «: Y—E~Yis a homotopy equivalence.
Any E-module spectrum is obviously E-nilpotent complete. Note that 1 Aa:
EAY-EA(E~Y) has a left inverse constructed using the map g,: E*Y—EA Y.
The left inverse (m A 1)(1 A g,) coincides with ¢, given in (5.1), where m denotes
the multiplication of E. Since E A Yis E-nilpotent complete, it follows that 1 A a:
EANY-EA(E"Y) is a homotopy equivalence if and only if the canonical map
q: EA(E"Y)>E~(EAY)isso. Therefore we have

(5.3) An E-local CW-spectrum Y is E-nilpotent complete if the canonical
map q: EA(E"Y)—E~(EAY) is a homotopy equivalence.

5.2. Let W={W,, di};>o be an E-geometric resolution over M, which
admits an oo-factorized system X={X,, a,, b,_1, Cp}m>1. Consider the
tower {3 "™EAX,, 1 Aa,}ns; With homotopy inverse limit (E A X),. Since
(A ray)--(Ara)t-t,(1Aa,)=1Aa, by means of (4.4), it is easily seen that

(54 Im{(1Aay)y: [V, 27VEAX,] —[Y, EAX, ]}
=Im{(1Aa,--a)e: [Y, 2" EAX ] — [V, EA X, ]}

for any k=zm. Thus the inverse system {[Y, X""EAX,], (1A an)s}mz1
satisfies the Mittag-Leffler condition. This result implies that

(5.5) qs: [V, (EAX),] — lm [Y, X" EA X, ]
is an isomorphism because lim! [>.'Y, >""EA X, ]=0.

Lemma 5.3. Let W={W,, di};>0 be an E-geometric resolution over M
with an oco-factorized system X={X,},>,. Then q*:lim[> ™EAX,, Y]
—[(EA X),, Y] is an isomorphism for any CW-spectrum Y.

Proof. Since (1A a4 Mpsq- -ty =t,t; for any m=1, the maps i, --f;:
EAnXy—>3> ™EAX, give rise to a unique map t: EA Xq—(E A X),, such that
got=(1Aa))t; and g,t=t,--t; for each m=1. By use of (4.4) it is obvious
that g,!qo=4qp, since (1Aa;,;)q;+;=q;. Applying (5.5) in the Y=(EA X),
case we obtain that g,(tq.)=44(1), and hence tqo=1. Therefore it is easy to
show that g* is an epimorphism. Next, choose a map f,,: >. ™ EA X,,— Y with
fudm=0. Then f,(1Aa,:)=fulm ti(lAra)-(1ra,.)=0, so g* is a
monomorphism.

For a ring spectrum F, a tower {Z,,, f,,},,>; of CW-spectra is said to be an
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F-nilpotent resolution of a CW-spectrum Z if (i) Z,, is F-nilpotent for each
mz1, and (ii) there exists a map g¢:Z-lim Z, inducing an isomorphism
g%:lim [Z,, N]-[Z, N] for any F-nilpotent spectrum N (see [3, Definition
5.6]).

Theorem 5.4. Let W={W,, d,};>o be an E-geometric resolution over M
such that each W, is E-nilpotent, and X ={X,, @p, bp_1, Cp}mz1 be its oo-
factorized system. Assume that the canonical map q: EAX ,—~(EAX), is a
homotopy equivalence. Then the tower {3 ™™ X,, Gp}tns>1 is an E-nilpotent
resolution of homotopy inverse limit X ,, when E is a ring and BP-Hopf module

spectrum.

Proof. Each X, is obviously E-nilpotent. So it is sufficient to show that
g :lim[>X""X,, EAY]-[X_,, EAY] is an isomorphism, when taking EAY

m
specially as an E-nilpotent spectrum N. Consider the commutative diagram

M3 "EA Xy EAY] — [(EA X)) EAY] — [EA X, EAY]
m

l(i/\l)* l(il\l)‘

lig[3> "X, EAY] [Xo, EAY]

in which i: S—E denotes the unit map of E. The upper arrows are both iso-
morphisms by Lemma 5.3 and the assumption on the map q. Note that the
vertical arrows (i A 1)* are split epimorphisms because E is a ring spectrum.
Hence we see easily that the bottom arrow is an isomorphism as desired.

5.3. Let W={W,, d\};>o be a BP-geometric resolution over M and X=
{Xm> Ams Bm—15 Cm}mz1 bE its co-factorized system. Consider the BP,-Adams
spectral sequence {E$*'(Y, X)},», constructed using the tower {3 ™™ X,,, dp}mz1
with homotopy inverse limit X . Denote by X,,; and X, ,, —15j<m<oo,
the fibers of the composite maps a;.;-*a,: 2™ X,—»2 77 X; and q,: X,
-3 7™ X, respectively. Obviously X, ,_,=>""W,, X, -;=2 "™ X, and the
sequence X, ,— X, j—X,,; is a cofibering, —1<j<m<k=oo.

Given a CW-spectrum Y we set

Z.S-"(Y, X)=KCI'{[Y, Zs+th,s—1] I [Y’ Zs+t+1Xs+r—1,s]}
Bpi(Y, X)=Im{[Y, "' X,y -, ] — [¥, 27" X 11}
Ey!(Y, X)=Zp"(Y, X)/|By'(Y, X)

foreach r,1<r< 0. Further we define a decreasing filtration of [ ¥, 3¢ X ] by
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Fod=5(Y, X)=F[Y, 24 X ]=Ker {[Y, ¢ X, ] — [Y, 2" X, _,]}.

The composite map F!(Y, X)/FstLi=1(Y, X) =~ E5'(Y, X) — lim hm Est
(Y, X) is always a monomorphism, and the map [Y, >.¢ X ]— lim hm LY, Z“ Xw]/
Fs4=s(Y, X) is always an epimorphism. We say the spectra] sequence
{E$'(Y, X)},»1 converges completely to [Y, X ] if the above two maps are
both isomorphisms. Use the cofiberings X, ,—»X,—>™X,, to show that
lim X o m=pt by means of Verdier’slemma. This implies that hm LY, X, .1
-—~0——]lm [Y, X,..]. Then [1, Theorem 8.2] says

(5.6) thespectral sequence {E$>'(Y, X)},», converges completely to [Y, X .1 if
and only if lim' E$-((Y, X)=0 for each s, t.

We say the spectral sequence {E{*!(Y, X)},»; converges finitely to [Y, X ]
if for each s, t there exists ro=ry(s, t)<co such that E$;'(Y, X)=Es' (Y, X)
whenever ro<r<oo. From (5.4) it follows that

(5.7) the spectral sequence {E$'(Y, X)},»; converges completely if it
converges finitely.

Under the assumption that BP,Y is BP,-free, E{Y(Y, X)=Homgp,zp
(BP.Y, BP,W,) and E5'(Y, X)=Exty}.gp (BP.Y, M,) in the BP,-Adams
spectral sequence {E$'(Y, X)},5 .

Proposition 5.5. Let n be a positive integer not less than the length of J
and Y be a CW-spectrum. Let W={W,, d,};>o be a BP-geometric resolution
over M (BPJ AY) which admits an co-factorized system X={X,}n>:- If n
is not divided by p—1, then the canonical map q: ZAX —~(ZAX), is a
homotopy equivalence for any CW-spectrum Z.

Proof. Consider the BP,-Adams spectral sequence {E$(Z)= E$'(S,

Z A X)},», associated with the tower {ZA > ™™ X,, 1Aa,},>, for each CW-
spectrum Z. By Lemma4.7 we observe that E$*(Z)~Extyf gp (BPy,
M,BPJ. . (YAZ))=0 for all s>n?. Therefore ES., (Z)=Ess (Z) for all m=1.
Thus the spectral sequence {E$*(Z)},», converges completely to n,(Z A X),, by
(5 7). Hence n4.(Z A X),, has a decreasing filtration n.(Z A X)), =F°(Z)> F\(Z)
o F»+(Z)={0} such that FS(Z)/Fs*Y(Z)~ Es* (Z). Let {Z;} be a

set of finite subspectra of Z whose union is just Z. Since lim 74(Z; A X, ;)=
n4(Z A X,, ;), the canonical map hTm EsY(Z,)—>Es> (Z)isan isom:)rphism for every

r, 1Sr<oo. By a downward induction on s we verify that the canonical map
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lim FS(Z,)->F5(Z) is an isomorphism, and hence the map lim 7.(Z,A X),
in*(Z A X),, becomes an isomorphism when taking s=0 especiafly. Therefore
it is shown that the map ¢q: ZA X _—(Z A X), induces an isomorphism in
homotopy, since the canonical map ¢q: Z,A X —(Z,A X),, is a homotopy
equivalence for every finite CW-spectrum Z;.

Theorem 5.6. Let n be a positive integer not divided by p—1, and Y be
a BP-local CW-spectrum such that BP,Y is v,-torsion for every k, 0<k<n,
and it is uniquely v,-divisible. Then Y is BP-nilpotent complete, and the
BP,-Adams spectral sequence {E$''(S, KY)},» converges completely to m.(Y).
(Cft., [12, Theorem 97]).

Proof. The hypothesis on BP,Y implies that BPA Y=Y "M (BPAY)
by [17, Proposition 2.2]. Apply Proposition 5.5 to the Adams BP-geometric
resolution Wpp y with the oco-factorized system KY={K,Y},>;. Then we
observe that the canonical map q: BPA(BP~Y)—»>BP~(BPAY) is a homotopy
equivalence. From (5.3) the result follows immediately, since the BP,-Adams
spectral sequence derived from K'Y converges completely to n,(BP~Y) as shown
in the proof of Proposition 5.5.

Let f: BPAY—BPAY' be a BP-Hopf module map. By Proposition 4.3
the map finduces a map f,: BP*Y-BP"Y’, whenever [>' W, Y, W, ,,Y']=0
and the sequences [> 'K, .Y, W, Y']-[>'K, Y, W, Y ]-[>'K,_.,Y,
W, .+,Y'] are exact for all m=1. Note that

(5.8) fo: BP"Y-BP"Y' is a homotopy equivalence if a BP-Hopf module
map f: BPAY-BPAY’ is so.

Theorem 5.7. Let J be an invariant regular sequence of length n.
Suppose that p is odd and n*+n<2p. Then there exists a unique BP-local
CW-spectrum Y such that BP A Y is isomorphic to v, 'BPJ as BP-Hopf module

spectra.

Proof. Putting Theorem 4.9 and Propositions 5.1 and 5.5 together we can
show the existence of a v, 1BP-local CW-spectrum Y with the desired property.
The uniqueness of Y, is immediate by use of (5.8) and Theorem 5.6 because the
assumption on (5.8) is satisfied as shown in the proof of Theorem 4.9.
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