Publ. RIMS, Kyoto Univ. 21 (1986), 925–947

BP-Hopf Module Spectrum and BP*-Adams Spectral Sequence

Dedicated to Professor Masahiro Sugawara on his 60th birthday

By

Katsumi SHIMOMURA* and Zen-ichi YOSIMURA**

Let *BP* be the Brown-Peterson spectrum for a fixed prime *p*. It is an associative and commutative ring spectrum whose homotopy is $BP_* = Z_{(p)}[v_1, ..., v_n, ...]$. For any *CW*-spectrum *Y*, the Brown-Peterson homology BP_*Y is not only an associative BP_* -module but also an associative BP_*BP -comodule. In this note we deal with associative *BP*-module spectra *E* whose homotopies E_* are associative *BP_*BP*-comodules. An associative *BP*-module spectrum with such a structure is called a *BP*-Hopf module spectrum (see 1.1 for the definition). For every invariant regular sequence $J = \{q_0, ..., q_{n-1}\}$, the associative *BP*-module spectrum if n < 2(p-1) (Proposition 1.2).

As is well known [1], $BP \wedge Y$ has the Adams geometric resolution $W_{BP,Y} = \{W_k Y = \overline{BP^k} \wedge BP \wedge Y, d_k \colon W_k Y \rightarrow W_{k+1}Y\}_{k \ge 0}$ where \overline{BP} denotes the cofiber of unit $i \colon S \rightarrow BP$ and $\overline{BP^k} = \overline{BP} \wedge \cdots \wedge \overline{BP}$ with k-factors. Applying BP_* -homology to $W_{BP,Y}$ we obtain a relative injective resolution of BP_*Y by extended BP_*BP_* comodules. We will show that each BP-Hopf module spectrum E admits a BP-geometric resolution $W_E = \{W_k = \overline{BP^k} \wedge E, d_k \colon W_k \rightarrow W_{k+1}\}_{k \ge 0}$ inducing a relative injective resolution of E_* (Theorem 3.3).

Let $K_m Y$ denote the fiber of the map $\overline{BP^{m+1}} \wedge Y \rightarrow \sum^{m+1} Y$. Then there is a cofiber sequence $K_{m-1}Y \xrightarrow{b_{m-1}} W_m Y \xrightarrow{c_m} K_m Y \xrightarrow{a_m} \sum^1 K_{m-1}Y$ and the differential map $d_m \colon W_m Y \rightarrow W_{m+1}Y$ is factorized as $d_m = b_m c_m \colon W_m Y \rightarrow K_m Y \rightarrow W_{m+1}Y$. We will give a sufficient condition under which a *BP*-geometric resolution W=

Communicated by N. Shimada, April 24, 1986.

^{*} Department of Mathematics, Hiroshima University, Hiroshima.

^{**} Department of Mathematics, Osaka City University, Osaka.

 $\{W_k, d_k\}_{k \ge 0}$ admits an ∞ -factorized system $X(\infty)$ like $KY = \{K_mY, a_m, b_{m-1}, c_m\}_{m \ge 1}$ (Theorem 4.6). Moreover we will show that the *BP*-geometric resolution $W_{v_n^{-1}BPJ} = \{\overline{BP}^k \wedge v_n^{-1}BPJ, d_k\}_{k \ge 0}$ admits an ∞ -factorized system under some restriction on the fixed prime p and the length n of J (Theorem 4.9).

The BP_* -Adams spectral sequence $E_2^{s,t}(S, KY) = \operatorname{Ext}_{BP*BP}^{s,t}(BP_*, BP_*Y)$ $\Rightarrow \pi_*(BP^Y)$ is derived from the tower $\{\sum^{-m} K_m Y, a_m\}_{m \ge 1}$ with homotopy inverse limit BP^Y . With an ∞ -factorized system $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \ge 1}$ of a *BP*-geometric resolution over a *BP*-Hopf module spectrum *E*, we associate the spectral sequence $E_2^{s,t}(S, X) = \operatorname{Ext}_{BP*BP}^{s,t}(BP_*, E_*) \Rightarrow \pi_*(X_\infty)$ where X_∞ denotes homotopy inverse limit of the tower $\{\sum^{-m} X_m, a_m\}_{m \ge 1}$. Discussing the convergence of the spectral sequence we will prove our main result (Theorem 5.7) that there exists a unique *BP*-local *CW*-spectrum Y_J such that $BP \wedge Y_J$ is isomorphic to $v_n^{-1}BPJ$ as *BP*-Hopf module spectra under some restriction on *p* and *n*.

In this note we work in the *homotopy* category of *CW*-spectra, and we do not necessarily assume that a ring spectrum or a module spectrum is associative if not stated.

§1. BP-Hopf Module Spectrum

1.1. The Brown-Peterson spectrum BP is an associative and commutative ring spectrum with a multiplication $m: BP \land BP \rightarrow BP$ and a unit *i*: SBP. We call a CW-spectrum E a BP-Hopf module spectrum if E is an associative (left) BP-module spectrum together with a (left) BP-module map $\eta_E: E \rightarrow BP_{\land}E$ such that $\phi_E \eta_E = 1$ and $(1 \land \eta_E) \eta_E = (1 \land i \land 1) \eta_E$ where ϕ_E is the BP-module structure map of E and 1 denotes the identity map. If the coassociativity of η_E is not necessarily satisfied, we call such an E a quasi BP-Hopf module spectrum. As an obvious example we have

(1.1) For any CW-spectrum X, $BP \wedge X$ is a BP-Hopf module spectrum whose structure maps are given by $\phi_{BP \wedge X} = m \wedge 1$ and $\eta_{BP \wedge X} = 1 \wedge i \wedge 1$.

Given BP-Hopf module spectra E and F, a map $f: E \to F$ is said to be a BP-Hopf module map if f is a (left) BP-module map such that $\eta_F f = (1 \wedge f)\eta_E$. For any CW-spectra X and Y we have easily

(1.2) Let $f: BP \land X \rightarrow BP \land Y$ be a BP-Hopf module map and Y be a

926

BP-module spectrum. Then there exists a unique map $f': X \rightarrow Y$ such that $1 \wedge f' = f$.

In fact, f' is given by the composite map $\phi_Y f(i \wedge 1)$.

(1.3) i) Let E be a BP-Hopf module spectrum. Then E_*X is an associative BP_*BP -comodule whose coaction map is given by $\psi_X: E_*X \rightarrow BP_*(E \wedge X) \cong BP_*BP \bigotimes_{BP_*} E_*X$ induced by η_E .

ii) Let $f: E \rightarrow F$ be a BP-Hopf module map. Then it induces a homomorphism $f_*: E_*X \rightarrow F_*X$ of BP_{*}BP-comodules.

Let *E* be an associative *BP*-module spectrum. Given an (associative) *BP*module spectrum *Y*, E^*Y is an (associative) BP^*BP -comodule whose coaction map is given by $\psi_Y : E^*Y \rightarrow E^*(BP \land Y) \cong BP^*BP \bigotimes_{BP^*} E^*Y$. A map $f: Y \rightarrow \sum^d E$ is a *BP*-module map if and only if it represents a primitive element in E^dY (see [14, 15]). We denote by Pr E^*Y the *BP**-module consisting of all primitive elements in E^*Y . If $f: Y \rightarrow Z$ is a *BP*-module map, then it induces a homomorphism $f^*: E^*Z \rightarrow E^*Y$ of *BP*BP*-comodules, and hence $f^*: Pr E^*Z \rightarrow Pr E^*Y$.

1.2. Let $J = \{q_0, ..., q_{n-1}\}$ be an invariant regular sequence in BP_* of length n (see [5]) and $J_m = \{q_0, ..., q_{m-1}\}$ the subsequences for each $m, 0 \le m \le n$, in which $J_n = J$. By Baas [2] there exists an associative BP-module spectrum BPJ_m with pairing $\phi_m : BP \land BPJ_m \rightarrow BPJ_m$, whose homotopy is $BPJ_{m*} \cong BP_*/(q_0, ..., q_{m-1})$. BPJ_m and BPJ_{m+1} are related by a cofiber sequence

(1.4)
$$\sum_{m} d_{m} BPJ_{m} \xrightarrow{j_{m}} BPJ_{m} \xrightarrow{j_{m}} BPJ_{m+1} \xrightarrow{k_{m}} \sum_{m} d_{m+1} BPJ_{m}$$

of *BP*-module spectra, where $d_m = \dim q_m$ is the dimension of q_m in *BP*_{*} and q_m acts as left multiplication by q_m , thus it is the composite map $\phi_m(q_m \wedge 1)$. Further we have a multiplication $\mu_m : BPJ_m \wedge BPJ_m \rightarrow BPJ_m$ which makes BPJ_m into a quasi-associative ring spectrum (see [4, Proposition 5.5]). Putting $j = j_{n-1} \cdots j_0$: $BP \rightarrow BPJ$ it is a map of ring spectra as well as *BP*-module spectra.

A *BPJ*-module spectrum F is said to be *quasi-associative* if the following two equalities hold (cf., [4, Remark 5.3]):

(i) $\mu_F(\phi \wedge 1) = \phi_F(1 \wedge \mu_F)$: $BP \wedge BPJ \wedge F \rightarrow F$,

(ii) $\phi_F(1 \wedge \mu_F)(T \wedge 1) = \mu_F(1 \wedge \phi_F)$: BPJ \wedge BP \wedge F \rightarrow F,

where μ_F and $\phi_F = \mu_F(j \wedge 1)$ denote the *BPJ*- and *BP*-module structure maps of *F* respectively, and *T*: *BPJ* \wedge *BP* \rightarrow *BP* \wedge *BPJ* is the switching map.

Let E be an associative BP-module spectrum, F be a quasi-associative BPJ-

module spectrum and X be a CW-spectrum such that BPJ_*X is BPJ_* -free. For $0 \le m < n$ we consider the homomorphism

$$\kappa: [BPJ_m \land X, E \land F] \longrightarrow \operatorname{Hom}_{BPJ_*}(BPJ_*(BPJ_m \land X), E_*F)$$

defined to be $\kappa(f) = (1 \wedge \mu_F)_*(T \wedge 1)_*(1 \wedge f)_*$, which is an isomorphism in our case because of [1, Proposition 13.5]. Then the cofiber sequence (1.4) gives rise to a split short exact sequence $0 \rightarrow (E \wedge F)^{*-d_m-1}(BPJ_m \wedge X) \rightarrow (E \wedge F)^*$ $(BPJ_{m+1} \wedge X) \rightarrow (E \wedge F)^*(BPJ_m \wedge X) \rightarrow 0$ of BP^* -modules. This sequence splits as BP^*BP -comodules, because $(E \wedge F)^*(BPJ_m \wedge X) \cong BP^*BP \bigotimes_{BP^*} \Lambda_{(E \wedge F)^*X}(x_0,...,x_{m-1})$ and hence it is an extended BP^*BP -comodule (use [4, Lemmas 5.1 and 5.2]). Here $\Lambda_R(x_0,...,x_{m-1})$ is the exterior algebra over R in the variables x_i with dimension $d_i + 1$. Therefore we see

(1.5) i) $\Pr(E \wedge F)^*(BPJ_{m+1} \wedge X) \cong \Lambda_{(E \wedge F)^*X}(x_0, ..., x_m)$, and

ii) j_m : $BPJ_m \rightarrow BPJ_{m+1}$ induces an epimorphism j_m^* : $Pr(E \wedge F)^*(BPJ_{m+1} \wedge X) \rightarrow Pr(E \wedge F)^*(BPJ_m \wedge X)$ for each $m, 0 \leq m < n$. (Cf., [14, 15]).

Lemma 1.1. Let J be an invariant regular sequence in BP_* of finite length. Then BPJ is a quasi BP-Hopf module spectrum such that $j: BP \rightarrow BPJ$ is a quasi BP-Hopf module map.

Proof. Let $J = \{q_0, ..., q_{n-1}\}$. For $0 \le m < n$ we inductively show that BPJ_{m+1} is a quasi BP-Hopf module spectrum so that the cofiber sequence (1.4) is of quasi BP-Hopf module spectra. Assume that there exists a BP-module map $\eta_m : BPJ_m \rightarrow BP \land BPJ_m$ with $\phi_m \eta_m = 1$. We observe that $(\cdot q_m \land 1)_* = (1 \land \cdot q_m)_* : BPJ_{m*}BPJ_m \rightarrow BPJ_{m*}BPJ_m$ since $\eta_L(q_m) \equiv \eta_R(q_m) \mod J_m$. Using the isomorphism $\kappa : [BPJ_m, BP \land BPJ_m] \rightarrow \operatorname{Hom}_{BPJ_m*}(BPJ_{m*}BPJ_m, BP_*BPJ_m)$, it is shown that $\kappa(\eta_m \cdot q_m) = (1 \land \mu_m)_*(T \land 1)_*(\cdot q_m \land \eta_m)_* = \kappa((1 \land \cdot q_m)\eta_m)$, and hence $\eta_m \cdot q_m = (1 \land \cdot q_m)\eta_m$. So we can find a map $\eta'_{m+1} : BPJ_{m+1} \rightarrow BP \land BPJ_{m+1}$ such that $\eta'_{m+1}j_m = (1 \land j_m)\eta_m$ and $(1 \land k_m)\eta'_{m+1} = \eta_m k_m$.

We next replace this map η'_{m+1} with a *BP*-module one. By (1.5) we observe that $j_m: BPJ_m \rightarrow BPJ_{m+1}$ induces an epimorphism $j_m^*: \Pr(BP \land BPJ_{m+1})^*BPJ_{m+1}$ $\rightarrow \Pr(BP \land BPJ_{m+1})^*BPJ_m$. Pick a *BP*-module map $\eta''_{m+1}: BPJ_{m+1} \rightarrow BP \land$ BPJ_{m+1} such that $\eta''_{m+1}j_m = (1 \land j_m)\eta_m$. In order to show that $(1 \land k_m)\eta''_{m+1} = \eta_m k_m$ we consider the commutative diagram

with exact rows. Since the left vertical arrow is trivial, the equality $\eta'_{m+1}j_m = \eta''_{m+1}j_m$ implies that $(1 \wedge k_m)\eta'_{m+1} = (1 \wedge k_m)\eta''_{m+1}$ and hence $(1 \wedge k_m)\eta''_{m+1} = \eta_m k_m$ as desired.

Applying Five lemma we see that the *BP*-module map $\rho_{m+1} = \phi_{m+1}\eta''_{m+1}$: $BPJ_{m+1} \rightarrow BPJ_{m+1}$ is a homotopy equivalence with $\rho_{m+1}j_m = j_m$ and $k_m\rho_{m+1} = k_m$. Putting $\eta_{m+1} = \eta''_{m+1}\rho_{m+1}^{-1}$, it is a *BP*-module map such that $\phi_{m+1}\eta_{m+1} = 1$, $\eta_{m+1}j_m = (1 \land j_m)\eta_m$ and $(1 \land k_m)\eta_{m+1} = \eta_m k_m$, as desired.

Proposition 1.2. Let J be an invariant regular sequence in BP_* of length n. If n is less than 2(p-1), then BPJ is a BP-Hopf module spectrum.

Proof. By (1.5) we observe that the map $j: BP \rightarrow BPJ$ induces an epimorphism $j^*: \Pr(BP \land BP \land BPJ)^*BPJ \rightarrow \Pr(BP \land BP \land BPJ)^*BP$, and $\Pr(BP \land BP \land BPJ)^*BPJ \cong A_{(BP \land BP \land BPJ)^*}(x_0, ..., x_{n-1})$. Since $(BP \land BP \land BPJ)^* = 0$ unless $* \equiv 0 \mod 2(p-1)$ and dim $x_0 \cdots x_{n-1} \equiv n \mod 2(p-1)$, j^* becomes an isomorphism at dimension 0 when n < 2(p-1). Hence the coassociativity of η_n is immediately shown, because $j^*((1 \land \eta_n)\eta_n) = 1 \land i \land ji = j^*((1 \land i \land 1)\eta_n)$ by Lemma 1.1.

Hereafter we only treat of a fixed invariant regular sequence $J = \{q_0, ..., q_{n-1}\}$ for which BPJ_{m+1} are BP-Hopf module spectra and the cofiber sequences (1.4) are of BP-Hopf module spectra for each $m, 0 \le m < n$. Thus BPJ is assumed to be a BP-Hopf module spectrum such that $j: BP \rightarrow BPJ$ is a BP-Hopf module map.

§2. Extended BP-Hopf Module Spectrum

2.1. A BP-Hopf module spectrum E is called an extended BP-Hopf module spectrum if there exists an associative BP-module spectrum Y and a homotopy equivalence $h: E \rightarrow BP \land Y$ of BP-Hopf module spectra. If E is an extended BP-Hopf module spectrum, then E_*X is an extended BP_{*}BP-comodule for any CW-spectrum X. **Lemma 2.1.** Let E be a BP-Hopf module spectrum with comodule structure map η_E . Then there exists a homotopy equivalence $\tau_E: E \wedge BP \rightarrow BP \wedge E$ of BP-Hopf module spectra such that $\tau_E(1 \wedge i) = \eta_E$ and $T\tau_E T\tau_E = 1$, where T: BP $\wedge E \rightarrow E \wedge BP$ denotes the switching map.

Proof. Set $\tau_E = (1 \land \phi_E)(1 \land T)(\eta_E \land 1)$, which is a *BP*-Hopf module map. It has an inverse τ_E^{-1} given by $\tau_E^{-1} = (\phi_E \land 1) (1 \land T)(1 \land \eta_E)$.

For the BP-Hopf module spectrum BPJ such that $j: BP \rightarrow BPJ$ is a BP-Hopf module map, we have

Corollary 2.2. There exists a homotopy equivalence τ : BPJ \wedge BP \rightarrow BP \wedge BPJ of BP-Hopf module spectra such that $\tau(1 \wedge i) = \eta$, $\tau(j \wedge 1) = 1 \wedge j$ and $T\tau T\tau = 1$, where η denotes the comodule structure map of BPJ.

The BPJ_{*}-module BP_{*}BPJ admits the following structure maps to be considered: (i) A product map $V: BP_*BPJ \bigotimes BP_*BPJ \to BP_*BPJ$ defined as usual, (ii) two unit maps η_L , $\eta_R: BPJ_* \to BP_*BPJ$ induced by η , $i \land 1$ respectively, (iii) a counit map $\varepsilon: BP_*BPJ \to BPJ_*$ induced by BP-module structure map $\phi = \mu(j \land 1)$, (iv) a coproduct map $\Delta: BP_*BPJ \to BP_*(BP \land BPJ)$ $\cong BP_*BP \bigotimes_{BP_*} BP_*BPJ \cong BP_*BPJ \bigotimes_{BPJ_*} BP_*BPJ$ induced by $1 \land i \land 1$, and (v) a conjugation map $c: BP_*BPJ \to BP_*BPJ$ induced by τT .

Proposition 2.3. (BPJ_*, BP_*BPJ) is a Hopf algebroid, and $(j_*, (1 \land j)_*)$: $(BP_*, BP_*BP) \rightarrow (BPJ_*, BP_*BPJ)$ is a morphism of Hopf algebroids.

Proof. As is easily checked, Δ and ε are BPJ_* -bimodule maps and $(\varepsilon \otimes 1)\Delta = 1 = (1 \otimes \varepsilon)\Delta$, $(\Delta \otimes 1)\Delta = (1 \otimes \Delta)\Delta$, $c\eta_L = \eta_R$, $c\eta_R = \eta_L$, $\eta_L \varepsilon = \overline{V}(1 \otimes c)\Delta$ and $\eta_R \varepsilon = \overline{V}(c \otimes 1)\Delta$. So the former part is obtained. The latter part is immediate.

For a quasi-associative BPJ-module spectrum F, $BP_*F \cong BP_*BP \bigotimes_{BP_*} F_* \cong BP_*BPJ \bigotimes_{BPJ_*} F_*$ and it is an extended BP_*BPJ -comodule. Let E be a BP-Hopf module spectrum which is a quasi-associative BPJ-module spectrum, and X be a CW-spectrum. Then E_*X is an associative BP_*BPJ -comodule with coaction map $\psi_X: E_*X \to BP_*(E \land X) \cong BP_*BPJ \bigotimes_{BPJ_*} E_*X$ induced by η_E . As is easily seen, we have

(2.1)
$$\operatorname{Hom}_{BP*BP}(E_*X, BP_*F) = \operatorname{Hom}_{BP*BPJ}(E_*X, BP_*F).$$

Further we recall that there exists an isomorphism

(2.2) $\theta: \operatorname{Hom}_{BP*BP}(E_*X, BP_*F) \longrightarrow \operatorname{Hom}_{BPJ*}(E_*X, F_*)$

given by $\theta(u) = \phi_{F*}u$ and $\theta^{-1}(v) = (1 \otimes v)\psi_X$, where $\phi_F = \mu_F(j \wedge 1)$.

Given *BP*-module spectra *M*, *N* we denote by $[M, N]_{BP}$ the subset of [M, N] consisting of all the homotopy classes of *BP*-module maps. For a quasi-associative *BPJ*-module spectrum *F* we define a map

$$\tilde{\kappa} \colon [X, F] \longrightarrow [BPJ \land X, F]_{BI}$$

to be $\tilde{\kappa}(f) = \mu_F(1 \wedge f)$. Denote by κ the composite map

$$\kappa = \pi \tilde{\kappa} \colon [X, F] \longrightarrow [BPJ \land X, F]_{BP} \longrightarrow \operatorname{Hom}_{BPJ_*}(BPJ_*X, F_*)$$

where π assigns to a map f the induced homomorphism f_* . Notice that κ is an isomorphism when BPJ_*X is BPJ_* -free.

For *BP*-Hopf module spectra M, N we also denote by $[M, N]_{\Gamma}$ the subset of $[M, N]_{BP}$ consisting of all the homotopy classes of *BP*-Hopf module maps. Let E be a *BP*-Hopf module spectrum and F be an associative *BP*-module spectrum. Then we have an isomorphism

(2.3)
$$\Theta: [E \wedge X, BP \wedge F]_{\Gamma} \longrightarrow [E \wedge X, F]_{BP}$$

defined to be $\Theta(f) = \phi_F f$. The inverse Θ^{-1} is given by $\Theta^{-1}(g) = (1 \wedge g)(\eta_E \wedge 1)$ as in (2.2). For a quasi-associative *BPJ*-module spectrum *F* we denote by λ the composite map

(2.4)
$$\lambda = \Theta^{-1} \tilde{\kappa} \colon [X, F] \longrightarrow [BPJ \land X, F]_{BP} \cong [BPJ \land X, BP \land F]_{\Gamma}$$

which is given as $\lambda(f) = (1 \wedge \mu_F)(\eta \wedge 1)(1 \wedge f)$.

Lemma 2.4. Let F be a quasi-associative BPJ-module spectrum such that F_* is BPJ_* -free and $F_*=0$ unless $*\equiv 0 \mod 2(p-1)$. If the length of J is less than p-1, then the map $\lambda: [X, F] \rightarrow [BPJ \land X, BP \land F]_{\Gamma}$ is natural with respect to F.

Proof. Let F and G be a quasi-associative BPJ-module spectra such that F_* is BPJ_* -free and $F_*=0=G_*$ unless $*\equiv 0 \mod 2(p-1)$. For any map $h: F \to G$ it is sufficient to show that $(1 \land h)(1 \land \mu_F)(\eta \land 1) = (1 \land \mu_G)(\eta \land 1)(1 \land h)$: $BPJ \land F \to BP \land G$. The map $j: BP \to BPJ$ induces an epimorphism $(j \land 1)^*$: $Pr(BP \land G)^*(BPJ \land F) \to Pr(BP \land G)^*(BP \land F)$ by (1.5). Note that $Pr(BP \land G)^*(BPJ \land F) \cong A_{(BP \land G)^*F}(x_0, \dots, x_{n-1})$ and $(BP \land G)^*F \cong Hom_{BPJ_*}^*(BPJ_*F, BP_*G)$ = 0 unless $*\equiv 0, 1, \dots, n \mod 2(p-1)$, where n denotes the length of J. Therefore $(j \land 1)^*$ becomes an isomorphism at dimension 0 when n < p-1. Then the desired equality follows immediately, since $(j \land 1)^*((1 \land h)(1 \land \mu_F)(\eta \land 1)) = 1 \land h$ $= (j \land 1)^*((1 \land \mu_G)(\eta \land 1)(1 \land h)).$ **2.2.** For an invariant regular sequence $J = \{q_0, ..., q_{n-1}\}$ in BP_* we denote by Λ_J the set of the numbers $\sum_{0 \le i \le n-1} t_i(d_i+1)$ for all *n*-tuples $(t_0, ..., t_{n-1})$ of zeros and ones, where $d_i = \dim q_i$. Let $\sum_J = \bigvee_{d \in \Lambda_J} \sum^d$, the wedge of the suspended sphere spectra, and $\iota: S \to \sum_J$ be the canonical inclusion.

Lemma 2.5. For each BPJ-module spectrum F there exists a homotopy equivalence $e_F: BPJ \wedge F \rightarrow BP \wedge F \wedge \sum_J$ of BP-Hopf module spectra such that $e_F(j \wedge 1) = 1 \wedge 1 \wedge c$.

Proof. For $0 \le m < n$ we inductively construct a homotopy equivalence e_{m+1} : $BPJ_{m+1} \land F \rightarrow BP \land F \land \sum_{J_{m+1}}$ of BP-Hopf module spectra, where n denotes the length of J. By (1.5) we recall that j_m : $BPJ_m \rightarrow BPJ_{m+1}$ induces an epimorphism j_m^* : $\Pr(BPJ_m \land BPJ)^*BPJ_{m+1} \rightarrow \Pr(BPJ_m \land BPJ)^*BPJ_m$ for any $m, 0 \le m < n$. Then we can choose a BP-module map $\eta_{m+1,m}$: $BPJ_{m+1} \rightarrow BPJ_m \land BPJ$ such that $\eta_{m+1,m}j_m=1 \land ji$. Setting $r_m=(1 \land \mu_F)(\eta_{m+1,m} \land 1)$: $BPJ_{m+1} \land F \rightarrow BPJ_m \land F$, it is a BP-module map with $r_m(j_m \land 1)=1$. We change r_m into a BP-Hopf module map \tilde{r}_m : $BPJ_{m+1} \land F \rightarrow BPJ_m \land F$ defined to be the composition $\tilde{r}_m = e_m^{-1}(1 \land \mu_F \land 1)(1 \land j \land 1 \land 1)(1 \land e_m)(1 \land r_m)(\eta_{m+1} \land 1)$. It is easily seen that $\tilde{r}_m(j_m \land 1)=1$. Thus the sequence $BPJ_m \land F \rightarrow BPJ_{m+1} \land F \rightarrow \sum d_{m+1} BPJ_m \land F$ is a split cofibering of BP-Hopf module spectra. So we have a homotopy equivalence e_{m+1} : $BPJ_{m+1} \land F \rightarrow (BPJ_m \land F) \lor (\sum d_m + 1 BPJ_m \land F) \rightarrow BP \land F \land \sum J_{m+1}$ of BP-Hopf module spectra.

Let F and G be BPJ-module spectra. For any map $f: F \rightarrow G$ there exists a unique map

$$(2.5) f_J \colon F \land \sum_J \longrightarrow G \land \sum_J$$

such that $(1 \wedge f_J)e_F = e_G(1 \wedge f)$. This is easily shown by use of (1.2). If $f: F \to G$ is a *BPJ*-module map, then $(1 \wedge f)r_m = r_m(1 \wedge f)$ and hence $(1 \wedge f \wedge 1)e_F = e_G(1 \wedge f)$. So we see

$$(2.6) f_J = f \land 1 if f: F \longrightarrow G is a BPJ-module map.$$

Let F, G and H be BPJ-module spectra, and X and Y be CW-spectra. For any maps $f: F \rightarrow G$, $g: G \rightarrow H$ and $h: X \rightarrow Y$ the following results are immediately obtained.

(2.7)
$$1_J = 1: F \land \sum_J \longrightarrow F \land \sum_J$$
 and $(gf)_J = g_J f_J: F \land \sum_J \longrightarrow H \land \sum_J$.

$$(2.8) \quad (h \wedge f)_J = h \wedge f_J \colon X \wedge F \wedge \sum_J \longrightarrow Y \wedge G \wedge \sum_J.$$

(2.9) The diagram below is commutative:

$$\begin{array}{c|c} F \wedge \sum_{J_m} \xrightarrow{1 \wedge i} F \wedge \sum_{J_{m+1}} \xrightarrow{1 \wedge k} \sum^{d_m+1} F \wedge \sum_{J_m} \\ f_{J_m} & & \downarrow f_{J_{m+1}} & \downarrow f_{J_m} \\ G \wedge \sum_{J_m} \xrightarrow{1 \wedge j} G \wedge \sum_{J_{m+1}} \xrightarrow{1 \wedge k} \sum^{d_m+1} G \wedge \sum_{J_m} \end{array}$$

where j and k are the canonical maps.

Lemma 2.6. i) Let F be a quasi-associative BPJ-module spectrum with structure map μ_F . Then $F \wedge \sum_J$ is an associative BP-module spectrum whose structure map is $\phi_{F,J} = (\mu_F \wedge 1)(j \wedge 1 \wedge 1)$: $BP \wedge F \wedge \sum_J \rightarrow F \wedge \sum_J$.

ii) Let E be a BP-Hopf module spectrum with comodule structure map η_E . If E is a quasi-associative BPJ-module spectrum, then $E \wedge \sum_J$ is a BP-Hopf module spectrum whose comodule structure map is $\eta_{E,J} : E \wedge \sum_J \rightarrow BP \wedge E \wedge \sum_J$.

Proof. From the quasi-associativity of μ_F it follows that the map $\phi_F = \mu_F(j \wedge 1)$ is a *BPJ*-module map. Then (2.6) implies that $\phi_{F,J} = \phi_F \wedge 1$. Hence i) is obtained. ii) is immediate by means of (2.7) and (2.8).

It is easy to show

Lemma 2.7. Let F and G be quasi-associative BPJ-module spectra, and $f: F \rightarrow G$ be a BP-module map. Then,

i) $f_J: F \wedge \sum_J \to G \wedge \sum_J$ is a BP-module map. Moreover,

ii) if F and G are BP-Hopf module spectra and f is a BP-Hopf module map, then f_J is a BP-Hopf module map, too.

§3. Geometric Resolution

3.1. Let *E* and *M* be *BP*-Hopf module spectra. A complex $W = \{W_k, d_k: W_k \rightarrow W_{k+1}\}_{k \ge 0}$ consisting of *CW*-spectra and maps is called an *E-geometric* resolution over *M* if the following three conditions are satisfied:

(i) There exists a *BP*-Hopf module map $\delta: M \to E \land W_0$ with $(1 \land d_0)\delta = 0$.

(ii) The long sequence

* $\longrightarrow M \xrightarrow{\delta} E \wedge W_0 \xrightarrow{1 \wedge d_0} E \wedge W_1 \longrightarrow \cdots \longrightarrow E \wedge W_k \xrightarrow{1 \wedge d_k} E \wedge W_{k+1} \longrightarrow \cdots$ splits as a sequence of *BP*-module spectra. That is, there exist *BP*-module maps $\varepsilon: E \wedge W_0 \rightarrow M$ and $s_k: E \wedge W_{k+1} \rightarrow E \wedge W_k, k \ge 0$, such that $\varepsilon s_0 = 0 = s_k s_{k+1}, \varepsilon \delta = 1$, $\delta \varepsilon + s_0 (1 \wedge d_0) = 1$ and $(1 \wedge d_k) s_k + s_{k+1} (1 \wedge d_{k+1}) = 1$ for each $k \ge 0$.

(iii) $E \wedge W_k$ is an extended *BP*-Hopf module spectrum for each $k \ge 0$.

From (1.3) we verify that if $W = \{W_k, d_k : W_k \rightarrow W_{k+1}\}_{k \ge 0}$ is an *E*-geometric resolution over *M*, then

(3.1) $E_*W = \{E_*W_k, (1 \land d_k)_* : E_*W_k \rightarrow E_*W_{k+1}\}_{k \ge 0}$ is a relative injective resolution of M_* by extended BP_*BP -comodules.

Let us denote by \overline{BP} the cofiber of unit $i: S \rightarrow BP$, although the fiber of unit i was denoted as \overline{BP} in [1] or [3]. Let E be a BP-module spectrum with structure map $\phi_E: BP \wedge E \rightarrow E$. The cofibering $E \xrightarrow{i \wedge 1} BP \wedge E \xrightarrow{\pi \wedge 1} \overline{BP} \wedge E$ splits, and hence there exists a unique map

(3.2)
$$\psi_E \colon \overline{BP} \wedge E \longrightarrow BP \wedge E$$

such that $(\pi \wedge 1)\psi_E = 1$ and $(i \wedge 1)\phi_E + \psi_E(\pi \wedge 1) = 1$. When *E* is a *BP*-Hopf module spectrum whose comodule structure map is $\eta_E: E \to BP \wedge E$, the cofibering $\overline{BP} \wedge E \xrightarrow{\psi_E} BP \wedge E \xrightarrow{\phi_E} E$ admits another splitting. Thus there exists a unique map

$$(3.3) \qquad \qquad \rho_E \colon BP \wedge E \longrightarrow \overline{BP} \wedge E$$

such that $\rho_E \psi_E = 1$ and $\eta_E \phi_E + \psi_E \rho_E = 1$. We define two maps $\overline{\phi}_E : BP \wedge \overline{BP} \wedge E$ $\rightarrow \overline{BP} \wedge E$ and $\overline{\eta}_E : \overline{BP} \wedge E \rightarrow BP \wedge \overline{BP} \wedge E$ to be

(3.4)

$$\overline{\phi}_{E} = \rho_{E}(m \wedge 1)(1 \wedge \psi_{E}): BP \wedge BP \wedge E \longrightarrow BP \wedge BP \wedge E$$

$$\longrightarrow BP \wedge E \longrightarrow \overline{BP} \wedge E,$$

$$\overline{\eta}_{E} = (1 \wedge \rho_{E})(1 \wedge i \wedge 1)\psi_{E}: \overline{BP} \wedge E \longrightarrow BP \wedge E$$

$$\longrightarrow BP \wedge BP \wedge E \longrightarrow BP \wedge \overline{BP} \wedge E.$$

Lemma 3.1. Let E be a BP-Hopf module spectrum. Then $\overline{BP} \wedge E$ is a BP-Hopf module spectrum such that $\rho_E: BP \wedge E \to \overline{BP} \wedge E$ is a BP-Hopf module map.

Proof. By routine computations we can show the equalities $\overline{\phi}(i \wedge 1 \wedge 1) = 1$, $\overline{\phi}(1 \wedge \overline{\phi}) = \overline{\phi}(m \wedge 1 \wedge 1)$, $\overline{\phi}\overline{\eta} = 1$, $\overline{\eta}\overline{\phi} = (m \wedge 1 \wedge 1)(1 \wedge \overline{\eta})$ and $\overline{\phi}(1 \wedge \rho) = \rho(m \wedge 1)$ without use of the coassociativity of η_E . Here the subscript *E* is omitted in $\overline{\phi}_E$, $\overline{\eta}_E$ and ρ_E . Moreover we obtain the equalities $(1 \wedge \overline{\eta})\overline{\eta} = (1 \wedge i \wedge 1 \wedge 1)\overline{\eta}$ and $\overline{\eta}\rho$ $= (1 \wedge \rho)(1 \wedge i \wedge 1)$ under the assumption that η_E is coassociative.

Remark. Such *BP*-Hopf module structure maps $\phi_{\overline{BP}\wedge E}$ and $\eta_{\overline{BP}\wedge E}$ on $\overline{BP}\wedge E$ that $\rho_E: BP\wedge E \to \overline{BP}\wedge E$ becomes a *BP*-Hopf module map are uniquely determined.

3.2. Given any *BP*-Hopf module spectrum *E* two maps $d_E: E \rightarrow \overline{BP} \wedge E$ and $s_E: BP \wedge \overline{BP} \wedge E \rightarrow BP \wedge E$ are defined to be

934

(3.5)
$$d_E = (\pi \wedge 1)\eta_E \colon E \longrightarrow BP \wedge E \longrightarrow \overline{BP} \wedge E$$
$$s_E = -(m \wedge 1)(1 \wedge \psi_E) \colon BP \wedge \overline{BP} \wedge E \longrightarrow BP \wedge BP \wedge E \longrightarrow BP \wedge E.$$

Note that $d_E = -\rho_E(i \wedge 1)$, $s_E = -\psi_E \overline{\phi}_E$ and s_E is a *BP*-module map. Similarly $d_{\overline{BP} \wedge E} : \overline{BP} \wedge E \to \overline{BP}^2 \wedge E$ and $s_{\overline{BP} \wedge E} : BP \wedge \overline{BP}^2 \wedge E \to BP \wedge \overline{BP} \wedge E$ are defined to be $d_{\overline{BP} \wedge E} = (\pi \wedge 1 \wedge 1)\overline{\eta}_E$ and $s_{\overline{BP} \wedge E} = -(m \wedge 1 \wedge 1)(1 \wedge \overline{\psi}_E)$, where $\overline{BP}^2 = \overline{BP} \wedge \overline{BP}$. Obviously $d_{\overline{BP} \wedge E} = -1 \wedge d_E$. By easy calculations we have

Lemma 3.2. Let E be a BP-Hopf module spectrum. Then $\phi_E s_E = 0 = s_E s_{\overline{BP} \wedge E}$, $s_E(1 \wedge d_E) = \psi_E \rho_E$, $(1 \wedge d_E) s_E + s_{\overline{BP} \wedge E}(1 \wedge d_{\overline{BP} \wedge E}) = 1$ and moreover $(1 \wedge d_E)\eta_E = 0 = d_{\overline{BP} \wedge E} d_E$.

Let *E* be a *BP*-Hopf module spectrum with structure maps ϕ_E and η_E . For each $k \ge 1$, $\overline{BP^k} \land E$ becomes a *BP*-Hopf module spectrum whose structure maps $\phi_k : BP \land \overline{BP^k} \land E \to \overline{BP^k} \land E$ and $\eta_k : \overline{BP^k} \land E \to BP \land \overline{BP^k} \land E$ are inductively constructed by $\phi_k = \overline{\phi}_{k-1}$ and $\eta_k = \overline{\eta}_{k-1}$, where $\phi_0 = \phi_E$, $\eta_0 = \eta_E$ and $\overline{BP^k} = \overline{BP} \land \cdots \land \overline{BP}$ with *k*-factors.

Theorem 3.3. Let E be a BP-Hopf module spectrum. Then there exists a BP-geometric resolution $W_E = \{W_k = \overline{BP^k} \land E, d_k: W_k \rightarrow W_{k+1}\}_{k \ge 0}$ over E.

Proof. Consider the map $d_k: \overline{BP^k} \wedge E \to \overline{BP^{k+1}} \wedge E$ defined to be $d_k = (\pi \wedge 1 \wedge 1)\eta_k$. Then Lemma 3.2 implies that the long sequence $* \to E \xrightarrow{\eta_E} BP \wedge E \xrightarrow{1 \wedge d_0} BP \wedge \overline{BP} \wedge E \xrightarrow{1 \wedge d_1} BP \wedge \overline{BP^2} \wedge E \to \cdots$ splits as a sequence of *BP*-module spectra. Hence the complex $W_E = \{W_k = \overline{BP^k} \wedge E, d_k\}_{k \ge 0}$ is a *BP*-geometric resolution over *E*.

Proposition 3.4. Let $W = \{W_k, d_k\}_{k \ge 0}$ be a BP-geometric resolution over M. Assume that M and W_k , $k \ge 0$, are quasi-associative BPJ-module spectra. Then $W = \{W_k, d_k\}_{k \ge 0}$ is a BPJ-geometric resolution over $M \land \sum_J$.

Proof. $W = \{W_k, d_k\}_{k \ge 0}$ possesses a split sequence

$$* \longrightarrow M \underset{\varepsilon}{\overset{\delta}{\longleftrightarrow}} BP \wedge W_0 \underset{s_0}{\overset{1 \wedge d_0}{\longleftrightarrow}} BP \wedge W_1 \underset{s_1}{\overset{1 \wedge d_1}{\longleftrightarrow}} BP \wedge W_2 \underset{\leftarrow}{\longleftrightarrow} \cdots$$

in which δ is a *BP*-Hopf module map and ε and s_k , $k \ge 0$, are *BP*-module maps. This gives rise to another split sequence

$$* \longrightarrow M \land \sum_{J} \xleftarrow{\delta_{J}}{BP \land W_{0} \land \sum_{J}} \xrightarrow{1 \land d_{0,J}}{S_{0,J}} BP \land W_{1} \land \sum_{J} \xleftarrow{1 \land d_{1,J}}{S_{1,J}} BP \land W_{2} \land \sum_{J} \xleftarrow{W_{1,J}}{W_{2,J}} \cdots$$

by means of (2.5), (2.7), (2.8) and Lemmas 2.6 and 2.7. Set $\tilde{\delta} = e_{W_0}^{-1} \delta_J$:

 $M \wedge \sum_{J} \rightarrow BPJ \wedge W_0$, which is a *BP*-Hopf module map by Lemmas 2.5 and 2.7 ii). Then the long sequene

$$* \longrightarrow M \wedge \sum_{J} \xleftarrow{\tilde{s}}{BPJ} \wedge W_{0} \xleftarrow{1 \wedge d_{0}}{S_{0}} BPJ \wedge W_{1} \xleftarrow{1 \wedge d_{1}}{\tilde{s}_{1}} BPJ \wedge W_{2} \xleftarrow{\cdots} \cdots$$

becomes a split sequence of *BP*-module spectra, too. Here the *BP*-module maps $\tilde{\varepsilon}$ and \tilde{s}_k , $k \ge 0$, are defined to be $\tilde{\varepsilon} = \varepsilon_J e_{W_0}$ and $\tilde{s}_k = e_{W_k}^{-1} s_{k,J} e_{W_{k+1}}$. Since *BPJ* $\wedge W_k$ is an extended *BP*-Hopf module spectrum by Lemma 2.5, the desired result is obtained.

Combining Proposition 3.4 with Theorem 3.3 we have

Corollary 3.5. Let E be a BP-Hopf module spectrum which is a quasiassociative BPJ-module spectrum. Then the complex $W_E = \{W_k = \overline{BP}^k \land E, d_k\}_{k \ge 0}$ is a BPJ-geometric resolution over $E \land \sum_J$.

§4. Factorized System

4.1. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an *E*-geometric resolution over *M*. We say W admits an *m*-factorized system $X(m) = \{X_j, a_j, b_{j-1}, c_j\}_{1 \le j \le m}$ if the following properties are satisfied:

(i) $X_{i-1} \xrightarrow{b_{j-1}} W_i \xrightarrow{c_j} X_i \xrightarrow{a_j} \sum X_{i-1}$ is a cofiber sequence, and

(ii) $d_{j-1} = b_{j-1}c_{j-1}$ and $d_m b_{m-1} = 0$ for each $j, 1 \le j \le m$,

where $X_0 = W_0$, $b_0 = d_0$, $c_0 = 1$ and $1 \le m \le \infty$.

Let $X(m) = \{X_j, a_j, b_{j-1}, c_j\}_{1 \le j \le m}$ be an *m*-factorized system of $W = \{W_k, d_k\}_{k \ge 0}$. Pick up a map $b_m: X_m \to W_{m+1}$ with $b_m c_m = d_m$ and a split sequence

$$* \longrightarrow M \xleftarrow{\delta}{\underset{\varepsilon}{\longleftrightarrow}} E \land W_0 \xleftarrow{1 \land d_0}{\underset{s_0}{\longleftrightarrow}} E \land W_1 \xleftarrow{1 \land d_1}{\underset{s_1}{\longleftrightarrow}} E \land W_2 \xleftarrow{\cdots} \cdots$$

of *BP*-module spectra in which δ is a *BP*-Hopf module map and fix them. Choose a map $u_m: E \wedge X_{m-1} \rightarrow \sum^{-1} E \wedge X_m$ such that $(1 \wedge a_m)u_m = 1 - (1 \wedge c_{m-1})$ $s_{m-1}(1 \wedge b_{m-1})$, and then replace it with the map

(4.1)
$$t_m \colon E \wedge X_{m-1} \longrightarrow \sum^{-1} E \wedge X_m$$

given by $t_m = u_m - (1 \wedge c_m)s_m(1 \wedge b_m)u_m$. Since $(1 \wedge a_m)u_m(1 \wedge a_m) = 1 \wedge a_m$ and $(1 \wedge a_m)u_m(1 \wedge c_{m-1})s_{m-1} = 0$, we can easily check

(4.2) (i)
$$s_m(1 \wedge b_m)t_m = 0 = t_m(1 \wedge c_{m-1})s_{m-1}$$
,
(ii) $t_m(1 \wedge a_m) + (1 \wedge c_m)s_m(1 \wedge b_m) = 1$ and

 $(1 \wedge a_m)t_m + (1 \wedge c_{m-1})s_{m-1}(1 \wedge b_{m-1}) = 1.$

Notice that the map t_m is a *BP*-module map, because $(1 \wedge a_m)t_m(\phi_E \wedge 1) = (1 \wedge a_m)(\phi_E \wedge 1)(1 \wedge t_m)$ by use of (4.1). Hence the long sequence

 $(4.3) \quad \cdots \longrightarrow E \wedge X_{m-1} \xrightarrow{1 \wedge b_{m-1}} E \wedge W_m \xrightarrow{1 \wedge c_m} E \wedge X_m \xrightarrow{1 \wedge a_m} \sum E \wedge X_{m-1} \longrightarrow \cdots$

splits as a sequence of BP-module spectra. Immediately (4.2) implies

(4.4)
$$(1 \wedge a_m)t_m = t_{m-1}(1 \wedge a_{m-1}), \quad (1 \wedge a_m)t_m(1 \wedge a_m) = 1 \wedge a_m \quad and t_m(1 \wedge a_m)t_m = t_m.$$

Lemma 4.1. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an E-geometric resolution over Mand $X(m) = \{X_j, a_j, b_{j-1}, c_j\}_{1 \le j \le m}$ be its m-factorized system. Then there exists a BP-Hopf module map $\varepsilon_m \colon E \land X_m \to \sum^m M$ such that $\varepsilon_m = \varepsilon_{m-1}(1 \land a_m)$ and the long sequence

$$\cdots \xrightarrow{1 \wedge c_m} \sum^{-1} E \wedge X_m \xrightarrow{1 \wedge a_m} E \wedge X_{m-1} \xrightarrow{1 \wedge b_{m-1}} E \wedge W_m \xrightarrow{1 \wedge c_m} E \wedge X_m \xrightarrow{\varepsilon_m} \sum^m M \longrightarrow \ast$$

splits as a sequence of BP-module spectra.

Proof. Consider the composite map $\varepsilon_m = \varepsilon(1 \wedge a_1) \cdots (1 \wedge a_m)$: $E \wedge X_m \rightarrow \sum^m M$. Obviously $\delta \varepsilon_m = (1 \wedge a_1) \cdots (1 \wedge a_m)$ and it is a *BP*-Hopf module map. Therefore ε_m is also a *BP*-Hopf module map since $(1 \wedge \delta)\eta_M \varepsilon_m = (1 \wedge \delta)(1 \wedge \varepsilon_m)$ $(\eta_E \wedge 1)$. Set $\delta_m = t_m \cdots t_1 \delta$: $M \rightarrow \sum^{-m} E \wedge X_m$, then (4.2) and (4.4) imply that $\varepsilon_m \delta_m = 1$ and $\delta_m \varepsilon_m + (1 \wedge c_m) \varepsilon_m (1 \wedge b_m) = 1$. The result is now immediate from (4.3).

Let $W = \{W_k, d_k: W_k \to W_{k+1}\}_{k \ge 0}$ be a complex of *CW*-spectra, and $X \xrightarrow{b} W_m$ $\xrightarrow{c} Y \xrightarrow{a} \sum^1 X$ be a cofiber sequence. Suppose that two sequences $[\sum^1 W_m, W_{m+2}] \to [\sum^1 W_m, W_{m+3}] \to 0$ and $[\sum^1 X, W_{m+1}] \to [\sum^1 X, W_{m+2}] \to [\sum^1 X, W_{m+3}]$ induced by *d*'s are both exact. Then an easy diagram chasing shows that there exists a map $\overline{b}: Y \to W_{m+1}$ satisfying $\overline{b}c = d_m$ and $d_{m+1}\overline{b} = 0$ if $d_m b = 0$. Hence we obtain immediately.

Proposition 4.2. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an E-geometric resolution over M such that $[\sum^1 W_m, W_{m+3}] = 0$. Assume that W admits an m-factorized system $X(m) = \{X_j\}_{1 \le j \le m+1}$ Then W admits an (m+1)-factorized system $X(m+1) = \{X_j\}_{1 \le j \le m+1}$ if the sequence $[\sum^1 X_{m-1}, W_{m+1}] \rightarrow [\sum^1 X_{m-1}, W_{m+2}] \rightarrow [\sum^1 X_{m-1}, W_{m+3}]$ is exact.

Let $W = \{W_k, d_k\}_{k \ge 0}$ and $W' = \{W'_k, d'_k\}_{k \ge 0}$ be two complexes of CW-

spectra, and $g = \{g_k\}_{k \ge 0} \colon W \to W'$ be a map of complexes. Let $X \xrightarrow{b} W_m \xrightarrow{c} Y$ $\xrightarrow{a} \sum^1 X$ and $X' \xrightarrow{b'} W'_m \xrightarrow{c'} Y' \xrightarrow{a'} \sum^1 X'$ be two cofiber sequences, and $\overline{b} \colon Y \to W_{m+1}$ and $\overline{b'} \colon Y' \to W'_{m+1}$ be maps satisfying $\overline{b}c = d_m$, $\overline{b'}c' = d'_m$ and $d_{m+1}\overline{b} = 0$ $= d'_{m+1}\overline{b'}$ respectively. Suppose that $[\sum^1 W_m, W'_{m+1}] \to [\sum^1 W_m, W'_{m+2}] \to 0$ and $[\sum^1 X, W'_m] \to [\sum^1 X, W'_{m+1}] \to [\sum^1 X, W'_{m+2}]$ are both exact. Given a map $f \colon X \to X'$ with $b'f = g_m b$, we can easily choose a map $h \colon Y \to Y'$ such that $\overline{b'}h = g_{m+1}\overline{b}$, $hc = c'g_m$ and $a'h = (\sum^1 f)a$. Hence we have

Proposition 4.3. Let $W = \{W_k, d_k\}_{k \ge 0}$ and $W' = \{W'_k, d'_k\}_{k \ge 0}$ be E-geometric resolutions over M and N respectively, and $X(m) = \{X_j\}_{1 \le j \le m}$ and $X'(m) = \{X'_j\}_{1 \le j \le m}$ be their m-factorized systems. Given a map $g: W \to W'$ of complexes, there exists a map $f(m): X(m) \to X'(m)$ of m-factorized systems if $[\sum^1 W_k, W'_{k+2}] = 0$ and the sequences $[\sum^1 X_{k-1}, W'_k] \to [\sum^1 X_{k-1}, W'_{k+1}] \to [\sum^1 X_{k-1}, W'_{k+2}]$ are exact for all $k, 1 \le k \le m-1$.

4.2. Let $W = \{W_k, d_k\}_{k \ge 0}$ be a *BPJ*-geometric resolution over N and F be a quasi-associative *BPJ*-module spectrum. Suppose that F satisfies the condition:

 $(4.5)_{W} \quad \kappa \colon [\sum^{t} W_{k}, F] \to \operatorname{Hom}_{BPJ_{*}}^{-t}(BPJ_{*}W_{k}, F_{*}) \text{ is an isomorphism for each} \\ k \ge 0.$

For example, all F satisfy the condition $(4.5)_W$ whenever BPJ_*W_k is BPJ_* -free (see 2.1).

Let $X(m) = \{X_j, a_j, b_{j-1}, c_j\}_{1 \le j \le m}$ be an *m*-factorized system of *W*. By making use of (4.3) and Five lemma we see that $\kappa: [\sum^t X_m, F] \to \operatorname{Hom}_{B^t PJ_*}^{f}(BPJ_*X_m, F_*)$ is an isomorphism, too. From Lemma 4.1 we obtain that the sequence $BPJ_*W_m \to BPJ_*X_m \to N_{*-m} \to 0$ is split exact of BPJ_* -modules. This gives rise to a split exact sequence $0 \to \operatorname{Hom}_{B^t PJ_*}^{m-1}(N_*, F_*) \xrightarrow{\varepsilon_m^*} [\sum^t X_m, F] \to [\sum^t W_m, F]$. Recall that there exists an isomorphism $\theta: \operatorname{Hom}_{B^* BP}(N_*, BP_*F) \to \operatorname{Hom}_{B^* J_*}(N_*, F_*)$ by (2.2). Replacing ε_m^* with the composite map $\varepsilon_m^*\theta$, denoted by ξ_m , we have a split exact sequence

$$(4.6) \qquad 0 \longrightarrow \operatorname{Hom}_{BP*BP}^{-m-t}(N_*, BP_*F) \xrightarrow{\xi_m} [\Sigma^t X_m, F] \xrightarrow{c_m^*} [\Sigma^t W_m, F]$$

Lemma 4.4. Let $W = \{W_k\}_{k \ge 0}$ be a BPJ-geometric resolution over N and $X(m) = \{X_j\}_{1 \le j \le m}$ be its m-factorized system. Let F be a quasi-associative BPJ-module spectrum satisfying the condition $(4.5)_W$ such that $F_* = 0$ unless $* \equiv 0 \mod 2(p-1)$. Suppose that the length of J is less than p-1. Then the

map ξ_m : Hom_{BP*BP}^{*m*-t}(N_{*}, BP_{*}F) \rightarrow [$\sum^t X_m$, F] is natural with respect to F. Moreover it is an isomorphism if [$\sum^t W_m$, F]=0.

Proof. The composite map $\xi_m(\delta_*)^*\theta^{-1}\kappa$: $[\sum^{m+t}W_0, F] \rightarrow [\sum^t X_m, F]$ is induced by the composition $a_1 \cdots a_m$, because $\delta \varepsilon_m = (1 \wedge a_1) \cdots (1 \wedge a_m)$. Obviously $\theta^{-1}\kappa = \pi \Theta^{-1}\kappa = \pi \lambda$, so it follows from Lemma 2.4 that $(\delta_*)^*\theta^{-1}\kappa$: $[\sum^{m+t}W_0, F]$ $\rightarrow \operatorname{Hom}_{BP*BP}^{-m-t}(N_*, BP_*F)$ is natural with respect to F. Since $(\delta_*)^*\theta^{-1}\kappa$ is an epimorphism it is obvious that ξ_m is also natural with respect to F. The latter part is immediate from (4.6).

As a sufficient condition under which $[\sum^{t} G, F] = 0$ holds we have

Lemma 4.5. Let F and G be quasi-associative BPJ-module spectra such that $F_*=0=G_*$ unless $*\equiv 0 \mod 2(p-1)$ and G_* is BPJ*-free. If the length n of J is less than 2p-3, then $[\sum^t G, F]=0$ for each t, $1\leq t< 2(p-1)-n$.

Proof. Note that $BPJ_*G=0$ unless $*\equiv 0, 1, ..., n \mod 2(p-1)$. This implies that $[\sum^t G, F] \cong \operatorname{Hom}_{BPJ_*}^{-t}(BPJ_*G, F_*)=0$ when $1 \leq t < 2(p-1) - n$.

Theorem 4.6. Suppose that the length of J is less than p-1. Let $W = \{W_k, d_k\}_{k \ge 0}$ be a BP-geometric resolution over M such that M and $W_k, k \ge 0$, are quasi-associative BPJ-module spectra with W_{k*} BPJ*-free and $W_{k*}=0$ unless $*\equiv 0 \mod 2(p-1)$. If $\operatorname{Ext}_{BP*BP}^{m+2}(M_*, M_*)=0$ for all $m\ge 1$ and $t \in A_J$, then W admits an ∞ -factorized system $X(\infty)$. Moreover, its ∞ -factorized system is uniquely given if $\operatorname{Ext}_{BP*BP}^{m+1}(M_*, M_*)=0$ for all $m\ge 1$ and $t \in A_J$. (Cf., [13, Lemma 3.1]).

Proof. $W = \{W_k, d_k\}_{k \ge 0}$ is a *BPJ*-geometric resolution over $M \land \sum_J$ by Proposition 3.4. Note that $[\sum^1 W_i, W_k] = 0$ for all *i*, $k \ge 0$, because of Lemma 4.5. Inductively we assume that *W* admits an *m*-factorized system $X(m) = \{X_j\}_{1 \le j \le m}$, to show the existence of its ∞-factorized system $X(\infty)$. By Lemma 4.4 we have an isomorphism ξ_m : Hom^{*m*}_{*P*+*BP*} $(M_* \sum_J, BP_*W_k) \rightarrow [\sum^1 X_{m-1}, W_k]$ which is natural with respect to W_k . The sequence $0 \rightarrow M_* \sum_{J_i} \rightarrow M_* \sum_{J_{i+1}} M_* - d_i - 1 \sum_{J_i} \rightarrow 0$ is exact of BP_*BP -comodules and split exact of (free) BPJ_* modules. Hence our first hypothesis implies that $Ext^{m+2, pm}_{BP, BP}(M_* \sum_J, M_*) = 0$ for all $m \ge 1$. Using the natural isomorphism ξ_m this means that the sequence $[\sum^1 X_{m-1}, W_{m+1}] \rightarrow [\sum^1 X_{m-1}, W_{m+2}] \rightarrow [\sum^1 X_{m-1}, W_{m+3}]$ is exact. Apply Proposition 4.2 to botain an (m+1)-factorized system $X(m+1) = \{X_j\}_{1 \le j \le m+1}$.

The uniqueness of $X(\infty)$ is easily shown by use of Proposition 4.3, because our latter hypothesis implies that the sequences $[\sum_{m=1}^{1} X_{m-1}, W_m] \rightarrow [\sum_{m=1}^{1} X_{m-1}]$ W_{m+1}] \rightarrow [$\sum {}^{1}X_{m-1}$, W_{m+2}] are exact for all $m \ge 1$.

4.3. Let $W = \{W_k, d_k\}_{k \ge 0}$ be a *BP*-geometric resolution over *M* such that W_k is a quasi-associative *BPJ*-module spectrum for each $k \ge 0$. Let *L* and *N* be *BP*-Hopf module spectra and $f: L \to N$ be a *BP*-Hopf module map inducing an isomorphism $f_*: BPJ_* \bigotimes_{BP_*} L_* \cong N_*$. Then the map *f* induces an isomorphism $(f_*)^*: \operatorname{Hom}_{BP_*BP}(N_*, BP_*W_k) \to \operatorname{Hom}_{BP_*BP}(L_*, BP_*W_k)$. Hence we have an isomorphism

(4.7)
$$\operatorname{Ext}_{BP*BP}^{s,t}(N_*, M_*) \cong \operatorname{Ext}_{BP*BP}^{s,t}(L_*, M_*).$$

Specially $j: BP \rightarrow BPJ$ induces an isomorphism

(4.8) $\operatorname{Ext}_{BP*BP}^{s,t}(BPJ_*, M_*) \cong \operatorname{Ext}_{BP*BP}^{s,t}(BP_*, M_*).$

Lemma 4.7. Let C be an associative BP_*BP -comodule which is a direct limit of finitely presented v_{n-1} -torsion comodules. If n is not divided by p-1, then $\operatorname{Ext}_{BP_*BP}(BP_*, v_n^{-1}C) = 0$ for all $s > n^2$.

Proof. We may assume that C itself is finitely presented and v_{n-1} -torsion. Choose a Landweber prime filtration $C = C_0 \supset C_1 \supset \cdots \supset C_r = \{0\}$ so that each subquotient C_k/C_{k+1} is a suspension of $BP_*/I_{n(k)}$ for some $n(k) \ge n$. Then $v_n^{-1}C$ has a filtration $v_n^{-1}C = B_0 \supset B_1 \supset \cdots \supset B_q = \{0\}$ so that all subquotients are suspensions of $v_n^{-1}BP_*/I_n$. By Morava's Theorem [8, Theorem 3.16] Ext^s_{BP*BP} $(BP_*, v_n^{-1}BP_*/I_n) = 0$ for all $s > n^2$ whenever $p - 1 \not < n$. The desired result is easily shown.

Let us denote by L_n , $n \ge 0$, the localization functor with respect to $v_n^{-1}BP_*$ homology (see [3] or [11]). Consider the functor N_n , $n \ge 0$, derived from the cofibering $X \rightarrow L_{n-1}X \rightarrow \sum^{-n+1} N_nX$, where $N_0 = 1$. We put $M_n = L_nN_n$, $n \ge 0$. By [17, Theorem 2.3] we notice that N_nX is v_k -torsion for each k, $0 \le k < n$, and $M_nX = v_n^{-1}N_nX$ if X is an associative BP-module spectrum.

Corollary 4.8. Let n be a positive integer not less than the length of J. Suppose that p is odd and $n^2 + n < 2p$. Then $\operatorname{Ext}_{BP*BP}^{m+k}(BP_*, M_nBPJ_*) = 0$ for all $m \ge 1$, $k \ge 1$ and $t \in A_J$.

Proof. In the $m+k > n^2$ case the result is immediate from Lemma 4.7. In the $m+k \le n^2$ case it is obvious that $\operatorname{Ext}_{BP^*BP}^{*,-m-t}(BP_*, M_nBPJ_*)=0$ for all $t \in \Lambda_J$, since $1 \le m \le m+n \le n^2+n-1<2(p-1)$.

Given an *E*-geometric resolution $W = \{W_k, d_k\}_{k \ge 0}$ over *M*, $L_n W = \{L_n W_k, L_n d_k\}_{k \ge 0}$ is also an *E*-geometric resolution over $L_n M$, because $E \wedge L_n X$

 $=L_n(E \wedge X) = L_nE \wedge X$ by Ravenel's result [12, Theorem 1]. Recall that the radical of J is just $I_n = (p, v_1, ..., v_{n-1})$ where n denotes the length of J. So it follows from [17, Proposition 2.2] that $L_nF = v_n^{-1}F$ whenever F is a quasi-associative BPJ-module spectrum.

Let $W_{BPJ} = \{W_k = \overline{BP}^k \land BPJ, d_k\}_{k \ge 0}$ be the *BP*-geometric resolution over *BPJ* constructed in Theorem 3.3. The *BP*-geometric resolution $L_n W_{BPJ}$, obtained by applying the localization functor L_n to the *BP*-geometric resolution W_{BPJ} , coincides with the *BP*-geometric resolution $W_{v_n^{-1}BPJ} = \{\overline{BP}^k \land v_n^{-1}BPJ, d_k\}_{k \ge 0}$ over $v_n^{-1}BPJ$.

Theorem 4.9. Let J be an invariant regular sequence of length n. Suppose that p is odd and $n^2 + n < 2p$. Then the BP-geometric resolution $W_{v_n^{-1}BPJ} = \{L_n W_k = \overline{BP^k} \land v_n^{-1}BPJ, d_k\}_{k \ge 0}$ over $v_n^{-1}BPJ$ admits a unique ∞ -factorized system $Y(\infty)$.

Proof. For any quasi-associative BPJ-module spectrum F the map κ : $[\sum^{t} L_n W_k, L_n F] \rightarrow \operatorname{Hom}_{B^P J_*}^{t}(BPJ_*L_n W_k, L_n F_*)$ is an isomorphism because $[\sum^{t} L_n W_k, L_n F] \cong [\sum^{t} W_k, L_n F] \cong \operatorname{Hom}_{B^P J_*}^{t}(BPJ_*W_k, v_n^{-1}F_*)$. Thus all $L_n F$ satisfy the condition (4.5)_W where the BPJ-geometric resolution $W_{v_n^{-1}BPJ}$ over $v_n^{-1}BPJ \wedge \sum_J$ is abbreviated as W. Moreover it follows from Lemma 4.5 that $[\sum^{1} L_n W_i, L_n W_k] \cong [\sum^{1} W_i, L_n W_k] = 0$ for all $i, k \ge 0$. Inductively we assume that $W_{v_n^{-1}BPJ}$ admits an m-factorized system $Y(m) = \{Y_j\}_{1 \le j \le m}$. By Lemma 4.4 there exists an isomorphism ξ_m : $\operatorname{Hom}_{B^P * BP}(BPJ_*\sum_J, BP_*L_n W_k) \rightarrow [\sum^{1} Y_{m-1}, L_n W_k]$, which is natural with respect to W_k . Combining Corollary 4.8 with (4.7) it is shown that $\operatorname{Ext}_{B^P * B^P}^{m+k}(BPJ_*, v_n^{-1}BPJ_*) = 0$ for all $m \ge 1$, $k \ge 1$ and $t \in A_J$, when $n \ge 1$. As in the proof of Theorem 4.6 this implies that the sequence $[\sum^{1} Y_{m-1}, L_n W_{m+k-1}] \rightarrow [\sum^{1} Y_{m-1}, L_n W_{m+k}] \rightarrow [\sum^{1} Y_{m-1}, L_n W_{m+k+1}]$ is exact. In the n=0 case the exactness is easily shown since $[Y, L_0 W] \cong \operatorname{Hom}(\pi_* Y, \pi_* W \otimes Q)$. Applying Propositions 4.2 and 4.3 we obtain the desired result.

§ 5. Homotopy Inverse Limit

5.1. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an *E*-geometric resolution over *M*. Assume that *W* admits an ∞ -factorized system $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \ge 1}$. For a *CW*-spectrum *Y* the tower $\{\sum^{-m} Y \land X_m, 1 \land a_m\}_{m \ge 1}$ has a homotopy inverse limit $\lim_{m} \sum^{-m} Y \land X_m$ denoted by $(Y \land X)_{\infty}$. It possesses the canonical projections $q_m: (Y \land X)_{\infty} \to \sum^{-m} Y \land X_m$ such that $(1 \land a_m)q_m = q_{m-1}$. The *BP*-Hopf module

maps $\varepsilon_m \colon \sum^{-m} E \wedge X_m \to M$ given in Lemma 4.1 induce a *BP*-Hopf module map (5.1) $\varepsilon_m \colon E \wedge X_m \longrightarrow M$

defined to be $\varepsilon_{\infty} = \varepsilon_m (1 \wedge q_m) = \varepsilon (1 \wedge q_0)$.

Proposition 5.1. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an E-geometric resolution over M which admits an ∞ -factorized system $X = \{X_m\}_{m \ge 1}$. If the canonical map $q: E \wedge X_{\infty} \rightarrow (E \wedge X)_{\infty}$ is a homotopy equivalence, then the BP-Hopf module map $\varepsilon_{\infty}: E \wedge X_{\infty} \rightarrow M$ is a homotopy equivalence, too.

Proof. Consider the commutative diagram

in which the left vertical arrow is trivial. The two rows are exact by Lemma 4.1. Hence we observe that $\lim_{m} E_{*+m}X_m \cong M_*$ and $\lim_{m} E_{*+m}X_m = 0$. This implies that the map ε_{∞} induces an isomorphism $\varepsilon_{\infty*} \colon E_*X_{\infty} \to M_*$ under our hypothesis.

Corollary 5.2. Assume that E is connective and of finite type and that all W_k , $k \ge 0$, are (N+k)-connected for some N independent on k. Then the BP-Hopf module map $\varepsilon_{\infty} : E \wedge X_{\infty} \to M$ is a homotopy equivalence.

Proof. From [1, Theorem 15.2] it follows that the canonical map $q: E \land X_{\infty} \rightarrow (E \land X)_{\infty}$ is a homotopy equivalence.

Given a ring spectrum E we form a cofibering $S \xrightarrow{i} E \xrightarrow{\pi} \overline{E}$ and put $\overline{E}^k = \overline{E} \wedge \cdots \wedge \overline{E}$ with k-factors. Consider the Adams geometric resolution $W_{E,Y} = \{W_k Y = \overline{E}^k \wedge E \wedge Y, d_k : W_k Y \rightarrow W_{k+1} Y\}_{k \ge 0}$ for a CW-spectrum Y, where d_k is defined to be $d_k = (-1)^k (1 \wedge \pi \wedge 1 \wedge 1) (1 \wedge 1 \wedge i \wedge 1)$. Note that the Adams geometric resolution $W_{E,Y}$ gives an E-geometric resolution over $E \wedge Y$ when E is a ring and BP-Hopf module spectrum. Let $K_m Y$ denote the fiber of the obvious map $\overline{E}^{m+1} \wedge Y \rightarrow \sum^{m+1} Y$, thus $\sum^m Y \xrightarrow{\alpha_m} K_m Y \rightarrow \overline{E}^{m+1} \wedge Y \rightarrow \sum^{m+1} Y$ be a cofiber sequence, $m \ge 0$, where $K_0 Y = E \wedge Y$ and $\alpha_0 = i \wedge 1$. Then we have a cofiber sequence $K_{m-1} Y \xrightarrow{b_{m-1}} W_m Y \xrightarrow{c_m} K_m Y \xrightarrow{a_m} \sum^1 K_{m-1} Y$ such that $b_m c_m = d_m$ and $a_m \alpha_m = \alpha_{m-1}$ (see [3]). Hence we see

(5.2) $KY = \{K_mY, a_m, b_{m-1}, c_m\}_{m \ge 1}$ is an ∞ -factorized system of the E-geometric resolution $W_{E,Y}$.

The tower $\{\sum_{m=1}^{m} K_m Y, a_m\}_{m \ge 1}$ has a homotopy inverse limit E^Y with a

map $\alpha: Y \to E^{\wedge}Y$ inducing the maps $\alpha_m: Y \to \sum^{-m} K_m Y$. A *CW*-spectrum Y is said to be *E-nilpotent complete* if the map $\alpha: Y \to E^{\wedge}Y$ is a homotopy equivalence. Any *E*-module spectrum is obviously *E*-nilpotent complete. Note that $1 \land \alpha: E \land Y \to E \land (E^{\wedge}Y)$ has a left inverse constructed using the map $q_0: E^{\wedge}Y \to E \land Y$. The left inverse $(m \land 1)(1 \land q_0)$ coincides with ε_{∞} given in (5.1), where *m* denotes the multiplication of *E*. Since $E \land Y$ is *E*-nilpotent complete, it follows that $1 \land \alpha: E \land Y \to E \land (E^{\wedge}Y)$ is a homotopy equivalence if and only if the canonical map $q: E \land (E^{\wedge}Y) \to E^{\wedge}(E \land Y)$ is so. Therefore we have

(5.3) An E-local CW-spectrum Y is E-nilpotent complete if the canonical map $q: E \land (E^Y) \rightarrow E^{(E \land Y)}$ is a homotopy equivalence.

5.2. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an *E*-geometric resolution over *M*, which admits an ∞ -factorized system $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \ge 1}$. Consider the tower $\{\sum^{-m} E \wedge X_m, 1 \wedge a_m\}_{m \ge 1}$ with homotopy inverse limit $(E \wedge X)_{\infty}$. Since $(1 \wedge a_m) \cdots (1 \wedge a_k) t_k \cdots t_m (1 \wedge a_m) = 1 \wedge a_m$ by means of (4.4), it is easily seen that

(5.4)
$$\operatorname{Im} \{ (1 \wedge a_m)_* \colon [Y, \sum^{-1} E \wedge X_m] \longrightarrow [Y, E \wedge X_{m-1}] \} \\ = \operatorname{Im} \{ (1 \wedge a_m \cdots a_k)_* \colon [Y, \sum^{-k+m-1} E \wedge X_k] \longrightarrow [Y, E \wedge X_{m-1}] \}$$

for any $k \ge m$. Thus the inverse system $\{[Y, \sum^{-m} E \land X_m], (1 \land a_m)_*\}_{m \ge 1}$ satisfies the Mittag-Leffler condition. This result implies that

(5.5)
$$q_{\sharp} \colon [Y, (E \land X)_{\infty}] \longrightarrow \lim_{m} [Y, \sum^{-m} E \land X_{m}]$$

is an isomorphism because $\lim_{m \to \infty} \left[\sum_{m \to \infty} Y, \sum_{m \to \infty} E \wedge X_{m} \right] = 0.$

Lemma 5.3. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an E-geometric resolution over Mwith an ∞ -factorized system $X = \{X_m\}_{m \ge 1}$. Then $q^* : \lim_m [\sum^{-m} E \wedge X_m, Y] \rightarrow [(E \wedge X)_{\infty}, Y]$ is an isomorphism for any CW-spectrum Y.

Proof. Since $(1 \wedge a_{m+1})t_{m+1}\cdots t_1 = t_m \cdots t_1$ for any $m \ge 1$, the maps $t_m \cdots t_1$: $E \wedge X_0 \to \sum^{-m} E \wedge X_m$ give rise to a unique map $t: E \wedge X_0 \to (E \wedge X)_\infty$ such that $q_0 t = (1 \wedge a_1)t_1$ and $q_m t = t_m \cdots t_1$ for each $m \ge 1$. By use of (4.4) it is obvious that $q_m t q_0 = q_m$, since $(1 \wedge a_{j+1})q_{j+1} = q_j$. Applying (5.5) in the $Y = (E \wedge X)_\infty$ case we obtain that $q_{\sharp}(tq_0) = q_{\sharp}(1)$, and hence $tq_0 = 1$. Therefore it is easy to show that q^{\sharp} is an epimorphism. Next, choose a map $f_m: \sum^{-m} E \wedge X_m \to Y$ with $f_m q_m = 0$. Then $f_m(1 \wedge a_{m+1}) = f_m t_m \cdots t_1(1 \wedge a_1) \cdots (1 \wedge a_{m+1}) = 0$, so q^{\sharp} is a monomorphism.

For a ring spectrum F, a tower $\{Z_m, f_m\}_{m \ge 1}$ of CW-spectra is said to be an

F-nilpotent resolution of a *CW*-spectrum Z if (i) Z_m is *F*-nilpotent for each $m \ge 1$, and (ii) there exists a map $g: Z \rightarrow \lim_m Z_m$ inducing an isomorphism $g^*: \lim_m [Z_m, N] \rightarrow [Z, N]$ for any *F*-nilpotent spectrum N (see [3, Definition 5.6]).

Theorem 5.4. Let $W = \{W_k, d_k\}_{k \ge 0}$ be an E-geometric resolution over M such that each W_k is E-nilpotent, and $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \ge 1}$ be its ∞ -factorized system. Assume that the canonical map $q \colon E \land X_{\infty} \to (E \land X)_{\infty}$ is a homotopy equivalence. Then the tower $\{\sum^{-m} X_m, a_m\}_{m \ge 1}$ is an E-nilpotent resolution of homotopy inverse limit X_{∞} when E is a ring and BP-Hopf module spectrum.

Proof. Each X_m is obviously *E*-nilpotent. So it is sufficient to show that $q^*: \lim_{m} [\sum^{-m} X_m, E \wedge Y] \rightarrow [X_{\infty}, E \wedge Y]$ is an isomorphism, when taking $E \wedge Y$ specially as an *E*-nilpotent spectrum *N*. Consider the commutative diagram

in which $i: S \rightarrow E$ denotes the unit map of E. The upper arrows are both isomorphisms by Lemma 5.3 and the assumption on the map q. Note that the vertical arrows $(i \wedge 1)^*$ are split epimorphisms because E is a ring spectrum. Hence we see easily that the bottom arrow is an isomorphism as desired.

5.3. Let $W = \{W_k, d_k\}_{k \ge 0}$ be a *BP*-geometric resolution over *M* and $X = \{X_m, a_m, b_{m-1}, c_m\}_{m \ge 1}$ be its ∞ -factorized system. Consider the *BP*_{*}-Adams spectral sequence $\{E_r^{s,t}(Y, X)\}_{r\ge 1}$ constructed using the tower $\{\sum^{-m} X_m, a_m\}_{m\ge 1}$ with homotopy inverse limit X_{∞} . Denote by $X_{m,j}$ and $X_{\infty,m}, -1 \le j < m < \infty$, the fibers of the composite maps $a_{j+1} \cdots a_m \colon \sum^{-m} X_m \to \sum^{-j} X_j$ and $q_m \colon X_{\infty} \to \sum^{-m} X_m$ respectively. Obviously $X_{m,m-1} = \sum^{-m} W_m, X_{m,-1} = \sum^{-m} X_m$ and the sequence $X_{k,m} \to X_{k,j} \to X_{m,j}$ is a cofibering, $-1 \le j < m < k \le \infty$.

Given a CW-spectrum Y we set

$$Z_{r^{s,t}}^{s,t}(Y, X) = \operatorname{Ker}\{[Y, \sum^{s+t} X_{s,s-1}] \longrightarrow [Y, \sum^{s+t+1} X_{s+r-1,s}]\}$$

$$B_{r^{s,t}}^{s,t}(Y, X) = \operatorname{Im}\{[Y, \sum^{s+t-1} X_{s-1,s-r}] \longrightarrow [Y, \sum^{s+t} X_{s,s-1}]\}$$

$$E_{r^{s,t}}^{s,t}(Y, X) = Z_{r^{s,t}}^{s,t}(Y, X)/B_{r^{s,t}}^{s,t}(Y, X)$$

for each r, $1 \le r \le \infty$. Further we define a decreasing filtration of $[Y, \sum^{d} X_{\infty}]$ by

 $F^{s,d-s}(Y, X) = F^{s}[Y, \sum^{d} X_{\infty}] = \operatorname{Ker} \{ [Y, \sum^{d} X_{\infty}] \longrightarrow [Y, \sum^{d-s+1} X_{s-1}] \}.$

The composite map $F^{s,t}(Y, X)/F^{s+1,t-1}(Y, X) \cong E^{s,t}_{\infty}(Y, X) \to \lim_{r>s} E^{s,t}_r(Y, X)$ is always a monomorphism, and the map $[Y, \sum^d X_{\infty}] \to \lim_s [Y, \sum^d X_{\infty}]/F^{s,d-s}(Y, X)$ is always an epimorphism. We say the spectral sequence $\{E^{s,t}_r(Y, X)\}_{r\geq 1}$ converges *completely* to $[Y, X_{\infty}]$ if the above two maps are both isomorphisms. Use the cofiberings $X_{\infty,m} \to X_{\infty} \to \sum^{-m} X_m$ to show that $\lim_m X_{\infty,m} = pt$ by means of Verdier's lemma. This implies that $\lim_m [Y, X_{\infty,m}] = 0 = \lim_m [Y, X_{\infty,m}]$. Then [1, Theorem 8.2] says

(5.6) the spectral sequence $\{E_r^{s,t}(Y, X)\}_{r\geq 1}$ converges completely to $[Y, X_{\infty}]$ if and only if $\lim_{r>s} E_r^{s,t}(Y, X) = 0$ for each s, t.

We say the spectral sequence $\{E_r^{s,t}(Y, X)\}_{r \ge 1}$ converges finitely to $[Y, X_{\infty}]$ if for each s, t there exists $r_0 = r_0(s, t) < \infty$ such that $E_{r_0}^{s,t}(Y, X) = E_r^{s,t}(Y, X)$ whenever $r_0 \le r < \infty$. From (5.4) it follows that

(5.7) the spectral sequence $\{E_r^{s,t}(Y,X)\}_{r\geq 1}$ converges completely if it converges finitely.

Under the assumption that BP_*Y is BP_* -free, $E_1^{s,t}(Y, X) \cong \operatorname{Hom}_{BP*BP}^t(BP_*Y, BP_*W_s)$ and $E_2^{s,t}(Y, X) \cong \operatorname{Ext}_{BP*BP}^{s,t}(BP_*Y, M_*)$ in the BP_* -Adams spectral sequence $\{E_r^{s,t}(Y, X)\}_{r\geq 1}$.

Proposition 5.5. Let n be a positive integer not less than the length of J and Y be a CW-spectrum. Let $W = \{W_k, d_k\}_{k \ge 0}$ be a BP-geometric resolution over $M_n(BPJ \land Y)$ which admits an ∞ -factorized system $X = \{X_m\}_{m \ge 1}$. If n is not divided by p-1, then the canonical map $q: Z \land X_{\infty} \rightarrow (Z \land X)_{\infty}$ is a homotopy equivalence for any CW-spectrum Z.

Proof. Consider the BP_* -Adams spectral sequence $\{E_r^{s,t}(Z) = E_r^{s,t}(S, Z \wedge X)\}_{r \ge 1}$ associated with the tower $\{Z \wedge \sum^{-m} X_m, 1 \wedge a_m\}_{m \ge 1}$ for each *CW*-spectrum *Z*. By Lemma 4.7 we observe that $E_2^{s,*}(Z) \cong \operatorname{Ext}_{BP*BP}^{s,*}(BP_*, M_n BPJ_*(Y \wedge Z)) = 0$ for all $s > n^2$. Therefore $E_{n^2+1}^{s,t}(Z) = E_{n^2+m}^{s,t}(Z)$ for all $m \ge 1$. Thus the spectral sequence $\{E_r^{s,t}(Z)\}_{r \ge 1}$ converges completely to $\pi_*(Z \wedge X)_{\infty}$ by (5.7). Hence $\pi_*(Z \wedge X)_{\infty}$ has a decreasing filtration $\pi_*(Z \wedge X)_{\infty} = F^0(Z) \supset F^1(Z)$ $\supset \cdots \supset F^{n^2+1}(Z) = \{0\}$ such that $F^s(Z)/F^{s+1}(Z) \cong E_{n^2+1}^{s,*}(Z)$. Let $\{Z_{\lambda}\}$ be a set of finite subspectra of Z whose union is just Z. Since $\lim_{\lambda} \pi_*(Z_{\lambda} \wedge X_{m,j}) \cong \pi_*(Z \wedge X_{m,j})$, the canonical map $\lim_{\lambda} E_r^{s,t}(Z_{\lambda}) \rightarrow E_r^{s,t}(Z)$ is an isomorphism for every $r, 1 \le r < \infty$. By a downward induction on s we verify that the canonical map $\lim_{\lambda} F^{s}(Z_{\lambda}) \to F^{s}(Z) \text{ is an isomorphism, and hence the map } \lim_{\lambda} \pi_{*}(Z_{\lambda} \wedge X)_{\infty}$ $\to \pi_{*}(Z \wedge X)_{\infty}$ becomes an isomorphism when taking s = 0 especially. Therefore it is shown that the map $q: Z \wedge X_{\infty} \to (Z \wedge X)_{\infty}$ induces an isomorphism in homotopy, since the canonical map $q: Z_{\lambda} \wedge X_{\infty} \to (Z_{\lambda} \wedge X)_{\infty}$ is a homotopy equivalence for every finite CW-spectrum Z_{λ} .

Theorem 5.6. Let n be a positive integer not divided by p-1, and Y be a BP-local CW-spectrum such that BP_*Y is v_k -torsion for every k, $0 \le k < n$, and it is uniquely v_n -divisible. Then Y is BP-nilpotent complete, and the BP_* -Adams spectral sequence $\{E_r^{s,i}(S, KY)\}_{r \ge 1}$ converges completely to $\pi_*(Y)$. (Cf., [12, Theorem 9]).

Proof. The hypothesis on BP_*Y implies that $BP \wedge Y = \sum^{-n} M_n(BP \wedge Y)$ by [17, Proposition 2.2]. Apply Proposition 5.5 to the Adams BP-geometric resolution $W_{BP,Y}$ with the ∞ -factorized system $KY = \{K_mY\}_{m \ge 1}$. Then we observe that the canonical map $q: BP \wedge (BP^{\wedge}Y) \rightarrow BP^{\wedge}(BP \wedge Y)$ is a homotopy equivalence. From (5.3) the result follows immediately, since the BP_* -Adams spectral sequence derived from KY converges completely to $\pi_*(BP^{\wedge}Y)$ as shown in the proof of Proposition 5.5.

Let $f: BP \land Y \rightarrow BP \land Y'$ be a *BP*-Hopf module map. By Proposition 4.3 the map f induces a map $f_{\infty}: BP^{\land}Y \rightarrow BP^{\land}Y'$, whenever $[\sum^{1} W_{m}Y, W_{m+2}Y']=0$ and the sequences $[\sum^{1} K_{m-1}Y, W_{m}Y'] \rightarrow [\sum^{1} K_{m-1}Y, W_{m+1}Y'] \rightarrow [\sum^{1} K_{m-1}Y, W_{m+2}Y']$ are exact for all $m \ge 1$. Note that

(5.8) f_{∞} : BP^Y \to BP^Y' is a homotopy equivalence if a BP-Hopf module map f: BP $\land Y \to BP \land Y'$ is so.

Theorem 5.7. Let J be an invariant regular sequence of length n. Suppose that p is odd and $n^2 + n < 2p$. Then there exists a unique BP-local CW-spectrum Y_J such that $BP \wedge Y_J$ is isomorphic to $v_n^{-1}BPJ$ as BP-Hopf module spectra.

Proof. Putting Theorem 4.9 and Propositions 5.1 and 5.5 together we can show the existence of a $v_n^{-1}BP$ -local CW-spectrum Y_J with the desired property. The uniqueness of Y_J is immediate by use of (5.8) and Theorem 5.6 because the assumption on (5.8) is satisfied as shown in the proof of Theorem 4.9.

References

- [1] Adams, J. F., *Stable homotopy and generalized homology*, University of Chicago Press, Chicago (1974).
- [2] Baas, N. A., On bordism theory of manifolds with singularities, *Math. Scand.*, 33 (1973), 279–302.
- [3] Bousfield, A. K., The localization of spectra with respect to homology, *Topology*, 18 (1979), 257-281.
- [4] Johnson, D. C. and Yosimura, Z., Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka J. Math., 17 (1980), 117–136.
- [5] Landweber, P. S., Invariant ideals in Brown-Peterson homology, *Duke Math. J.*, 42 (1975), 499–505.
- [6] —, New applications of commutative algebra to Brown-Peterson homology, Proc. Algebraic Topology Waterloo 1978, *Lecture Notes in Math.* 741, Springer-Verlag, 1979.
- [7] Miller, H. R. and Ravenel, D. C., Morava stabilizer algebras and the localization of Novikov's E₂-term, *Duke Math. J.*, 44 (1977), 433–447.
- [8] Miller, H. R., Ravenel, D. C. and Wilson, W. S., Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math., 106 (1977), 469–516.
- [9] Morava, J., On the Novikov algebra $\operatorname{Ext}_{c}^{*,*}(U, U)$, to appear.
- [10] —, The cohomology of the Morava stabilizer algebras, *Math. Z.*, 152 (1977), 287–297.
- [11] ——, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351–414.
- [12] Ravenel, D. C., The geometric realization of the chromatic spectral sequence, Proc. J. C. Moore Conference, Princeton, 1983.
- [13] Toda, H., On spectra realizing exterior part of the Steenrod algebra, Topology, 10 (1971), 53-65.
- [14] Würgler, U., Cobordism theories of unitary manifolds with singularities and formal group laws, *Math. Z.*, 150 (1976), 239–260.
- [15] —, On products in a family of cohomology theories associated to the invariant prime ideals of $\pi_*(BP)$, Comment. Math. Helv., 52 (1977), 457–481.
- [16] Yosimura, Z., BP operations and homological properties of BP*BP-comodules, Osaka J. Math., 20 (1983), 123–136.
- [17] —, Localization of *BP*-module spectra with respect to *BP*-related homologies, *Osaka J. Math.*, 21 (1984), 419–436.