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A Study of Varation of Mixed
Hodge Structure

By

Masaki KASHIWARA®*

§0. Introductiom

In [S-Z], Steenbrink and Zucker proposed and studied ‘“‘admissible vari-
ation of Mixed Hodge structure’” on a curve as an “appropriate’’ notion. Here,
we give a definition of admissible variation of mixed Hodge structure on a
complex variety by “curve test’” and afford the evidence that this is a good

notion.

0.1. We shall recall what is an admissible VMHS on a curve, proposed by
Steenbrink-Zucker. Let X be a curve and X* a Zariski open subset of X.
A graded polarizable variation of mixed Hodge structure on X* is called
admissible, if it satisfies

(a) There exists the relative monodromy filtration of the logarithm of the
unipotent part of the monodromy around each point in X\X* with respect to
the weight filtration.

(b) The Hodge filtration F extends to a subsheaf of the canonical extension
such that Gr"” Gry is locally free. Furthermore for any morphism f: D— X from
unit disc D to X the Hodge filtration of f*H satisfies the same conditions.

0.2. Let X be a complex analytic space, and X* a non singular Zariski
open subset of X. A graded polarizable VMHS on X is called admissible (on X)
if its restriction to any curve in X (not totally contained in X\X*) is admissible.
Such a definition by “curve test’’ is seldom a good notion unless it is a property
of codimension 1 (or 0, 2). This means that if this property is true outside a
closed analytic subset of codimension 2 (or 1, 3) then this holds on the whole
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space. As an example we recall the regularity of integrable connections or the
quasi-unipotency of constructible sheaves.

In this article, we prove that “admissible”> VMHS has a property of
codimension 1 when X is non-singular and X* is the complement of normally
crossing hypersurface.

The proof makes an essential use of the purity theorem for a variation of
Hodge structure.

This paper includes also a study of general notions which will be useful for
further studies of mixed Hodge structures.

The author thanks Y. Shimizu for helpful discussions.

§1. Admissible Variation of Mixed Hodge Structure

1.1. We shall recall the definition of Hodge structure. For an integer w,
a Hodge structure H of weight w is a triplet (H¢, F(H), F(H)), where H, is a
finite-dimensional C-vector space and F(H), F(H) are two finite filtrations of
H, such that Ho~ @ Hr9(H). Here Hre(H)=F?(H) n F4(H). Let C(H) be

ptg=w

the Weil operator defined by C(H)| gpaqyy =177

1.2. For a C-vector space V, let us denote by V the complex conjugate
and let —: V— ¥ be the R-linear isomorphism such that av=aw for ae C and
veV. For a homomorphism f: V-V’ of C-vector space let f: V-V’ be the
homomorphism given by f(5)=£(v).

For a Hodge structure H of weight w, the complex conjugate H of H is
the Hodge structure of weight w defined by (H)¢=(H¢)~, FP{H)=Fr(H)",
Fi(H)= F4H)-. We have H?9H)=H?(H)~ and C(H)=C(H)"~

1.3. A polarization of a Hodge structure H of weight w is a bilinear
homomorphism S: Ho®H— C such that
(1.3.1) S(Fr(H), F4(H))=S(Fr(H), F4(H))=0 for p+q>w.
(1.3.2) S(C(H)u, v) is a positive definite Hermitian form on H.

1.4. A mixed Hodge structure H of weight w is data (H;, W(H), F(H),

F(H)). Here, H, is a finite-dimensional C-vector space, and W(H), F(H) and
F(H) are filtrations of H, such that Gr?(H) is a Hodge structure of weight
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w+ k together with the induced filtrations of F(H) and F(H). If w=0, we call
it simply a mixed Hodge structure.

1.5. Let X be a complex manifold and X its complex conjugate. A vari-
ation of Hodge structure H is data (H¢, F(H), F(H)). Here H is a locally
free Cy-module with finite rank and F(H) (resp. F(H)) is a filtration of 0,®H,
(resp. 0x®H) by vector subbundles such that for any xe X, H(x)=(Hc,,
F(H)(x), F(H)(x)) is a Hodge structure of weight w and oF?(H)cFr-1(H)
(resp. vF?P(H) < Fr~1(H)) for any vector field v on X (resp. X). Here X is the
complex conjugate of X.

A polarization S of a variation of Hodge structure H is a homomorphism
S: Hc.®H— C such that at each point x€ X, S, gives a polarization of H(x).
A variation of Hodge structure is called polarizable if it admits a polarization.

1.6. A variation of mixed Hodge structure H on X consists of data
(He, W(H), F(H), F(H)); Hc is a locally free Cy-module of finite rank, W(H)
is a filtration of H¢ by locally free Cy-modules and F(H) (resp. F(H)) is a
filtration of Ox®@H, (resp. Ox@H¢) by vector subbundles, such that vF?(H)
c FP~Y(H) (resp. vFP(H) = Fr~1(H)) for any vector field v on X (resp. X) and
that Grlf ® is a variation of Hodge structure of weight k.

A variation of mixed Hodge structure H is called graded polarizable if
Grf M) js polarizable for any k.

1.7. Let f: X—Y be a holomorphic map. Then for a variation of mixed
Hodge structure H on Y, we can naturally define f*(H) a variation of mixed
Hodge structure on X. If H is graded polarizable, then so is f*(H).

1.8. Let D be the unit disc and D* the punctured unit disc; D={ze C;
|z <1}, D¥=D\{0}. Following Steenbrink-Zucker [S-Z], we say that a VMHS
(variation of mixed Hodge structure) H on D¥ is pre-admissible if it satisfies
(1.8.1)-(1.8.4):

(1.8.1) H is graded polarizable.
(1.8.2) The monodromy M of H around the origin is quasi-unipotent.

(1.8.3) The logarithm N of the unipotent part of M admits a weight filtration
relative to W(H) (see §3).

(1.8.4) Let 0,(H), W (0p,(H)) (resp. Op(H) and W, (0p(H))) be the canonical



994 MasAk1 KASHIWARA

extension of 0,.®@H. and 0, @W(H) (resp. 05.@H, and 05.®
Wy(H)). Then F(H) (resp. F(H)) extends to a subbundle of On(H)
(resp. 0p(H)) such that Grfy,Grlf @™ (resp. Grd,,Gr JFeo®)) s

locally free.

1.9. Let X be an analytic space, and X* a non-singular Zariski open subset
of X. Let H bea VMHS on X*. We say that H is admissible if we have

(1.9.1) H is graded polarizable.

(1.9.2) For any f: D— X such that f(D*)c X*, f§(H) is pre-admissible. Here
fo: D*— X* is the restriction of f.

When X=D and X*=D* and the monodromy is unipotent, any pre-
admissible VMHS on D* is admissible by the following lemma.

Lemma 1.9.1. Let f: D—»D be z—z" (n=1) and let H be a VMHS on
D* and H'=f*H. Then we have

(1.9.3) Assume that the monodromy of H' is unipotent. Then the condition
(1.8.4) for H' implies (1.8.4) for H.

(1.9.4) Assume that the monodromy of H is unipotent. Then the condition
(1.8.4) for H implies (1.8.4) for H'.
Proof. Let G=Z, be the Galois group of f: D—D. Then we have
(f«OWH N =0(W(H)) or (fsz~ " DVO(W(H))®=0(W(H)),
(f«FP(HD)°=Fr(H) or (fu(z~""VFr(H))°=Fr(H)

according to the meaning of canonical extension (i.e. left or right). In either
case, (1.8.4) for H' implies (1.8.4) for H because the G-invariant of a vector
bundle is also a vector bundle. (1.9.4) follows from the fact

oW H))=f*0(W,(H")) and FrP(H)=f*Fr(H). Q.E.D.
If H is admissible, then F?P(H) (resp. F?(H)) extends to a coherent submodule
of the canonical extension of 0.(H) (resp. 0x.(H)).
1.10. We conjecture the following

Conjecture: Assume that X is equi-dimensional and let Z be a
closed analytic subset of X with codimension =2. If H|y.\, is admissible in
X\Z, then H is admissible in X.
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Note that the quasi-unipotency (1.8.2) is a consequence of [K].

Later, we shall prove this conjecture when X is non-singular and X\X* is
a normally crossing hypersurface (Theorem 4.5.2). As a corollary of this
theorem, we have

Propesition 1.10.1. Let X* be a non-singular Zariski open subset of a
complex analytic variety X and Y a closed analytic subset of X such that
X*\Yis dense in X*. Then, for any VMHS H on X* if H|x«\y is admissible in
X then H is admissible in X.

Proof. Let us take f: X'— X satisfying (1.10.1)-(1.10.4).
(1.10.1) X’ is non-singular.
(1.10.2) fis proper.
(1.10.3) f~Y(X*)—X* is an isomorphism.
(1.10.4) f~Y(X\X*)is a normally crossing hypersurface.

Then H is admissible if and only if f*H]|;-1(x+, is admissible. In fact, any curve
¢@: D—X such that ¢(D*)c X* comes from a curve in X'. Similarly H|y.y is
admissible if and only if f*H|;-ix:\y, is admissible in X'.  Therefore, by
replacing H with f*H, we may assume from the beginning that X is non-singular
and X\X* isa normally crossing hypersurface. SetZ=Y¥n X*n(X\X*). Then
Hlx.z isadmissible in X\Z. Since codim Z=2, we can apply Theorem 4.5.2.

1.11. Remark also the following.

Proposition 1.11.1. Let us assume X non-singular. If codim (X\X*)=2,
then a graded polarizable VMHS on X* extends to a graded polarizable
VMHS on X.

This is a consequence of the following lemma and W. Schmid’s theorem
[S]: a polarizable variation of Hodge structure outside a closed hypersurface
extends to a globally defined polarizable VHS, if the associated local system
extends.

Lemma 1.11.2. Let X be a complex manifold, Z a closed analytic subspace
of codimension =2. Let & be a vector bundle of X and W a filtration by
subbundles of . Let & be a coherent Oy\; submodule of £|x\; such that
GtV |#(Grf) is a locally free Oyx\,-module. Assume further that, for any k,
F(Gr)) extends to a subbundle of Gr}l defined on X. Then % extendsto a
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subbundle & of & defined on X such that ZGr) is a subbundle of Grf¥.

Proof. Letj: X\ZSX be the inclusion map. Set & =), F cj,.j | ¥=2.
We shall show that & n W, is a subbundle of W, by the induction on k. Consider
the following exact sequence

0— ~Wk—1 N ~Wk N ~G"ll<v - 50
F N Wiy F N W, F(GrY)

By the hypothesis of the induction, W,_,/% n W,_, is locally free and hence
HYW,._1|F n W,_,)=0. By the construction of % we have s#%(W,/Z n W,)=0.
Therefore we have #Y(Grf/%(Grlf))=0. This means that #(Gr¥) is the
extension as a subbundle of Grl’. Therefore Gr’/Z Gr is locally free and
hence so is W,/Z n W,. Q.E.D.

Similarly, the preceding lemma, together with Schmid’s nilpotent orbit theorem
[S], implies the following.

Proposition 1.11.3. Let X be a complex manifold, X* the complement of a
normally crossing hypersurface, Z a closed analytic subset of X of codimension
22 and H a graded polarizable VMHS on X*. Then if H|x.\ is admissible on
X\Z, then the Hodge filtration F(H) extends to coherent subsheave of the
canonical extension Oy(H) of Ox«®H¢ such that Grpy,Gr¥exM) s g

locally free Ox-module.

§2. Perverse Sheaves in a Normally Crossing Case

2.1. Let us consider X=C"! and for J=I={1,..., [}, we set X;={ze X;
z;=0 for jeJ} and X¥={ze X;; z;#0 for j¢ J}. Let 2 be the category of
perverse sheaves #° on X such that & '|X% has locally constant cohomology
groups. A. Galligo, M. Granger and Ph. Maisonobe [G-G-M] shows that 2
is equivalent to the category {M,; f,s, 9p.}. Here M, (x=1) is a vector space
and f,z: My—M,, gg,: M,—M, are given for fcac], such that they satisfy

(211) faﬁofﬁy=fays gyﬁgﬁa=gya for dDﬁD'}),
(2.1.2) Juu=9ua=1d,

(2.1.3) 9uavpSavp, 8 =Franpdans, s for any «, B,
1.4 If «> B and #a=4#p+1 then 1—g,,f,s is invertible.

Now consider the condition that & is the minimal extension of a locally
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constant sheaf on X%. In terms of {M,} this is to saying that M,=0 for y¢Za,
and f,, is surjective and g,, is injective for yca. If we consider the condition
that & is a direct sum of such minimal extensions, we arrive to the arguments
that we are going to describe in this section.

2.2. Let f: A>B and g: B—~A be morphisms in an abelian category.

!
We write AZB if we have the following equivalent conditions:

g9
'3

(2.2.1) B Imf®Kerg.

2.2.2) Im(gef) ™ 5Img and Kerf >y Ker(gof).

This is a self-dual notion, i.e., if T is an exact contravarient functor, A_——B

g
>

i . T(9)
implies T(A4)—— T(B).
)

2.3. More generally, let I be a finite set and let S be the set of subsets of I.
For an abelian category « let P(I, &) be the category defined as follows.
Ob(P(I, «)) consists of {M,},.s and f,;: Mg—M, and g,,: M,—»M, for fca
satisfying (2.1.1), (2.1.2) and (2.1.3). The morphisms are defined in an obvious
way. Forye® let M,(I, o) be the set of objects (M,), (f,5), (95.) in P, &)
satisfying
23.1) M,=0 if aby.

(2.3.2) Jay 18 surjective and g, is injective if a>7y.

Let M(I, «#) be the set of objects which is isomorphic to the direct sum of
objects in \U M,(I, «7).

Proposition 2.3.1. Let M=((M,), (f.5), (9s,)) be an object of P(I, «).
Then the following conditions are equivalent.
(2.3.3) MeM(, &).
Sep
(234) Mz, —— M, for any a, p with a> f.

9pa
>

(2.3.5) (2.3.4) holds for any a, B with a> B and fa=%p+1.
(2.3.6) If we set P(M)=\ Kerg,, then M, ® [,,(Py(M)) and gg,:
BSa Bca
SusPp(M)—Pg(M) is injective for a> f.
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Proof. Since (2.3.6)<>(2.3.3)=>(2.3.4)=(2.3.5) is evident, we shall show
(2.3.5)=(2.3.3). When [I|£1, thisis evident. We shall assume |/|>1. Taking
an element i, of I, let I,=1\{iy} and &, the set of subsets of I,. Set #=
P(I,, o). Then P(I, o) is equivalent to P({iy}, #), by the following functor.
For M=((M,), (fup); (95.)) € Ob(P(I, 7)) set

i(M)=((M,), (fap)> (95s); % BE So) € Ob(%)

Jj(M) =(Myyio)» (fano,ﬂUio)s (gﬂu(io},au(io)); a, feSy)e Ob (£).
Then (fuuiopa)e 804 Gy 10))s define f(M): i(M)—j(M) and g(M): j(M)—i(M),
respectively. Thus (M) =(i(M), j(M), f(M), g(M)) gives an object of P({iy},
#). Now assume that M € Ob(P(I, &)) satisfies (2.3.5).

Since t(M) satisfies (2.3.5), t(M) belongs to M((ip), #). Hence M=
M;@®M, such that i(M,)=0 and i(M,)—j(M,) is surjective and j(M,)—i(M,)
isinjective. As(2.3.5) and (2.3.3) are stable by direct summands, we may assume
either i(M)=0 or i(M)—»j(M)—i(M). In the first case i(M)=0, the hypothesis
of the induction implies j(M)e M(I,, ). Hence M belongs to M(I, «7).
Therefore, we may assume i(M)-»j(M)—i(M), or equivalently, f,, is surjective
and g, is injective if a> f and a3 iy, fi,. Now, we may assume this for all
ipel. Hence M belongs to M(I, «). Q.E.D.

§ 3. Relative Weight Filtration (cf. [S-Z))

3.1. Let W be a filtration of an object H in an abelian category and let
N be a nilpotent endomorphism of H such that NW,cW,. A relative weight
filtration M is a filtration of H such that

(3.1.1) NMkCMk—Z
(3.1.2) N': Gr}4,Grff — Gr} ,Gr¥ is an isomorphism for any /=1 and k.

Remark that it is unique if it exists. We shall denote it by M(N, W). As
shown in [S-Z] we have

(3.1.3)  M(N, W) n W,=W, 0 (N9)"'M,_, N, W) for j=0 and I2k+j—1.

(3.1.4) M(N, W)n We=NI(My.., (N, W)n W)+M(N, W)n W,_,
for j=0, I<k—j.
The last one implies

(3.1.5) M(N, W),c N"M(N, W), ,,,+M(N, W),n W,,,_,  for r20.
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Note also the following result in [S-Z].

Lemma 3.1.1 ([S-Z]). Assume that H= W, and that thelweight filtration of
N|W,_, relative to Wn W,_, exists. Then the relative weight filtration of N
exists if and only if we have

NiWn M—1CNjVVIc—1+Mk—j—1(N|Wk—1a wWnWe-1) forany jz1.

3.2, Now assuming the existence of relative weight filtration, we shall
deduce their properties. We denote by M the weight filtration of a nilpotent
endomorphism N of H relative to a filtration Wof H. After [Z], we define

(3.2.1) K=K (W)= N (NI W,_,,
j=0

L=1,(W)= Jzo NjWk+j-
They are the dual notions of each other. We have
3.2.2) K,=W,nN7K,_4,
Li=W+NIl}y.
Lemma 3.2.1. M= 3 NI (Wi ;N Myy,)= _f\o (NI W— j+ My —5)).
Jj=o Jj=
Proof. By the duality, it is enough to show
(3.2.3) M0 W, jz';o Ni(Wy ;0 Myyz,)  for r20.
=

We shall prove this by the induction of r. This is true for r=0 and for r>0,
we have

M N Wi e EN" Wit o N M2 )+ My 0N Wy g
SN oy 0 Mg )+ 3, N Wiy 1 M)
by (3.1.4) and the hypothesis of the induction. Q.E.D.
Corollary 3.2.2. K,cM,<I,.

Lemma 3.2.3. For pzq, K(W(W,/W,)) and I(W(W,/W,)) are the filtration
induced from K(W) and I(W), respectively. Here W(W,/W),) is the filtration of
W,|W, induced from W.

Proof. 1Tt is enough to show
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(3.2.4) INW,c go Ni(Weo ;0 W,).
This is trivial for p<k. When p=k, we shall prove
(3.2.5) I, W,c jg'; Ni(Wys )
by the descending induction on p. We have

LAW,cl, W, e Y

J

P—k+1
2. NI (W4 ).
Therefore, we have
Pk .
IL.nWw,c j;o NiWey j+NPEIW, N W,.

The last term is contained in NP~**1W + M, _, n W, by Lemma 2.2.1, and the
preceding lemma implies M, _, N W,= 3> NJ(W,_;,;n W,). Thus the induction
proceeds.

Lemma 3.24. M, N W, ,=N'M;;,, N Wy, )+Kys,—1 N M, for r=0 and
M N Wy, =N My 2 N Wiy )+ N My 2p-2 N Wirp—1) + Kiyp—z 0 My for
r=1.

Proof. We have, for r=1
(326) Mkn VVk+rCIV’.(A4k+2rn I/Vk+r)+Mkﬁ I/Vk+r—-1'

Therefore, the second assertion follows from the first. We shall show the first
one by the induction on k. By the hypothesis of the induction, we have

(3.27) NMn Wi )M, 0 Wity
ENF Myt 2o N Wegrm )+ Kigrm2 N My
Therefore, we have
MO Witrm1 EN" My 200 Wieipm )+ N Ky N Wiy oo g N M.
Since the last term is K, ,_; N M, by (3.2.2), we are done. Q.E.D.

00

Proposition 3.2.5. M,= 3 NiK,,,,= _}'\0 (NI) I, _,,.
A

Jj=0
Proof. By the duality, it is enough to show M, c i NiKy ;. We shall
Jj=0
prove this by the descending induction on k. By the preceding lemma, we have

MN Wiry ©NM;y s+ K.
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By (3.1.5) we have
MycNM,,+ M0 W,.

Thus, we have

MSNM, s+ K, 3 NIKy s+ Ky Q.E.D.
=1

Lemma 3.2.5.1. For j=0, W, n(N/) 1K, <K, ;.
Proof. For 0=<v<j, we have
N Wt N(ND)TTK) Wiy S Wierj—y -
For vz j, we have
NY Wy N(NIY K eNY K e Wy -y -

Lemma 3.2.6. M, nW,._,= i NiW,_ nNnN-UDE 4+ M, 0N Wy
j=o
for r=0.

Proof. We have, by the preceding lemma and Corollary 3.2.2,
NiW,_ A N-U**DK, e NI(W,, A N"CIHHDK, Ve NIK o5& M.

Therefore, it is enough to show
(3.28) M nW._,.c j‘z;jo NiW,_ . N N-Ut*DK o+ Wy

We shall show this by the descending induction on r. Note that (3.2.8) is true
if r is so big that N**1=0. Now we have, for any r=0,

N (M N W) =My 3,2 N Wi,
SN My N Wi )+ N M N W - )+ K2

by Lemma 3.2.4. This implies
M NW,_,cNM, , 0 W,_)+ N DK, _._,aW_.+M0W,_,_,.
The first term of the right hand side is contained, by the hypothesis of the
induction, in N 3, NiW,_, A N-C+*DK,_ _,c 3 N+, 0 N-C+++D,
K, _,_, modulo W::)_l. Thus the induction proceé(:i(s). Q.E.D.
Lemma 3.2.7. For anyr and k we have

Mkn VVk+r= Z Nj+rVVk+rnN_(j+1)Kk+r—2+Mkn VVlc+r—1'

J,Jjtrz0



1002 M. KASHIWARA

Proof. For r<0, this is nothing but the preceding lemma. For r>0,
we have

M N Werr=N" My 2 D Wi )+ M N Wy -4
=N"( Zo NiWep, NN=UTHOK, o+ My N Wiego o )+ My N Wi,y
f=

= 3 NIy ANTU DK,y 4 My Wiy Q.E.D.
P2

Lemma 3.2.8. Let ¢ be the projection M,—~GrM. Then we have the
direct sum decomposition

oM N Wy )= @ PN Wy , NN"UDK, L )@ (M N Wiry—q).

j.jtrz0
Proof. By the preceding lemma it is enough to show that for m+r, m=0
(329) X=Nm"W,, , NN- DK, ..,
n( b NIF"Wepy NN"UDK 5 + M0 Wi+ M) © My

0<j<m,j+r20
In order to see this, it is enough to show
N=OX N W S My oms 201 -
By Lemma 3.2.1, this follows from
(3.2.10) NY (N DX N Wier ) Wik amrzr—1-vt Myt ams2r—1-2v5
which we are going to prove.

For v=22m+r—1, this follows from

Witr Wik oma2e—1-v-
Ifv22m+r+1>m+r, we have
Nv-mrXc Nv-m-r—m-1K .. _,
CKisr-2--2mr-1) =Kt amt20-v-1 S Wis 2ms2r-1-v -
The remaining case is v=2m+r. Then, we have

Nv—m-—rXCNm( Z N_(j+1)Kk+r—2+ m+r—1+Mk‘l)

0T <m
CKitr—2t Wisro 1+ My o 1 Wi oo i+ My gy
=Wisomrzr—1-v T Misomizr—1-2v- Q.E.D.

Theorem 3.2.9. We have a canonical decomposition

Grf = Gk-) Gry Gr¥.
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This theorem is one of the key points of this article. (See Remark 5.3.2.)
3.3. Let Wand W’ be a filtration of objects H and H’ in an abelian category,
respectively. Let f: H-H’ and g: H'—=H be morphisms preserving filtrations.
Proposition 3.3.1. Assume (3.3.1)-(3.3.2):
(3.3.1) feg is nilpotent.
(3.3.2) The weight filtration of fog relative to W' exists.

(3.3.3) For any k we have Gty — Gr¥'".
>

Then the weight filtration of gof relative to W exists and we have
(3.3.4) IMgof, WYy M, —,(fog, W').
(3.3.5) gM(fog, W)= M,_(gof, W).
We shall denote fog and gof by the same letter N. We shall first show

Lemma 3.3.2. If M=M(N, W) and M'=M(N, W’) exist, then we have
(3.3.4) and (3.3.5).

Proof. By the duality, it is enough to show one of them, say (3.3.4). Weset
K= N (N)"W,_; and K= (NI W,
=0 j=0

By Proposition 3.2.5, it is enough to show
(3.3.6) K =Kj_y.
We have, for j=0
(N'Ky)cW,_; and (gof)(N'K)cW,_;_;
Hence (3.3.3) implies f(N/K;)= W, _;_,. This shows(3.3.6). Q.E.D.

Now, we shall show the existence of the weight filtration of N relative to W.
We may assume, by the induction, that H= W,, H'= W}, and that /{=M(N|, _,,
Wlw_,) exists. Therefore, the preceding lemma implies fM, =M, _, and g(M; n
W' )< M,_,. Here M’ denotes M(N, W’). By Lemma 3.1.1, it is enough to
show

(3.3.7) ImNinW_,cNIW_ +F_;_, for j=1.

We have, by (3.3.3),
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ImN/inW_,cg(NI-1Wyn W)
cg(NI WL + ML, n W) cgNI WL + M _;_,.

On the other hand, we have
WicfWet Wing ' W1 W+ (M N Wi+ W) N g™ Wiy
cfW,+ M N Wi +W,_,.

The induction on k deduced from this
Wi=fW,+M,nW;.
Therefore, we obtain

gNI W cgNI~W(fW_+M_,nW.))
CNIW_ +NIT\M _,cNIW_+M_,;cNW_+M_;_,.

This shows (3.3.7) and we have completed the proof of Proposition 3.3.1.
Remark that Proposition 3.3.1 means that the existence of relative weight

filtration is a micro-local property.

3.4. For a filtration W and a nilpotent endomorphism N such that NW,
= W,, if the relative weight filtration M(N, W) exists, we define the filtration
N.W by

(3.4.1) (NeW)=NW,,,+ M(N, W)n W,
=NWeer +M(N, W) Wyt s
=NWiy+ _f\o(Nj)_WVk—j-

jz

The first equality follows from (3.1.4) and the second follows from Proposition
3.2.5.
Note that its dual notion is

(34.2) (N Wh=W_y+MN, W)n N~'W,_,
=W 1+ M(N, W)NN"'W,_,.

In the sequel, we only treat N, W, as we can treat N, W similarly.

Lemma 3.4.1. We have
(3.43) (NWs 1 +M©, W) 0 W) 0 Wy= N(Wyy 0 W)+ MN, W0 W0 W,
and

(3.4.4) NWys1+W)+(M(N, W+ W) n (W + W)
=NWr1+MN, W) 0 W+ W,.
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Proof. (3.4.3) is trivial when I=k+1. When [<k, we shall prove (3.4.3)
by the induction on I. Writing M for M(N, W), we have

WiN (N W)= Wi N(NW) 0 W,
S(NWi 1+ M) N W eNMy 5 N Wiy +W)+M s NW+M,.

Hence we obtain W, n (N W), cNW,+M,nW,. The equality (3.4.4) follows
from (M(N, W)+ W) n(W,+W)=M(N, W),.n W,+ W,
Lemma 3.4.2. We have
(0) NWey N W (NuW)—y-
(i) Grfy; & Gri"¥.
>
(ii) The relative weight filtration of Ny W is M(N, W).
(i) GrrGeyw={0 for I<k-1
NGty  for I=k-1
Coker (N; Gr¥¥-"IGrlf - Gr¥ W™ ")GrlV) for I>k.
Proof. (0) follows from Lemma 3.1.1.
We write M for M(N, W). Then we have

(3.4.5) (N WY N W =NW,+ M, N WM, N W+NW),_,.

This shows Ker (Gry*" ->Grl,.)=M N W, /M, 0 W, N (N W),_,. Now we
have

(3.4.6) NWer1 N (M N Wt (NuW)— ) (N Wie— o

In fact, the left hand side of (3.4.6) is contained in NW,,, n W,.
The property (i) then follows from (3.4.6).
Now we shall prove (ii). It is enough to show the following properties.

(347 My n(N W) =N (M N(NeW))+ (N W)y—y for 1z1,
and
(3.4.8) (NaW)N(ND) ' (M- 1 +(NsW)ho ) =My + (N W)y for 121
We have, by (3.1.4)
M NN W) =My N Wy i SN (M52 N Wier )+ Wi D My
SN (Mo N(NeW))+ (N W)y -
We have also
(NW) 0N (ND) T M- -y + (N Wy—y)
SNWes NN M-y + W)+ W 0 M,
SNWir s N Moy )+ NWAW N MMy + (N W)y— g -
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Thus we have (3.4.7) and (3.4.8).
Finally we shall show (iii)). By Lemma 3.4.1, we may assume that W
is the trivial filtration. Then we have

0 k<-1

N =
(N ImN+M, for k>-—1.
Therefore Gr¥y” =Im N and, for k=0,

Gri*" =Im N+ M)/(Im N+ M,_)=M,/Adm N+M,_,)n M,
=M /(M. +Im NN Mp)=M,/(M,_; +NM,,).

Thus we obtain (iii).

Corollary 3.4.3.

Gr}*" =Im (N : Grl,,—»Grl. ) ®Coker (N: W,Gr}, ,—» W,Gr}).

Proof. By the preceding lemma we have
(3.4.9) Gr}*" =Im (N: Grlt,,—»Grl, ) ®Ker (Gr}*¥ - Grl,,).
The last term is isomorphic to

(N W) 0 Wi (N W)~y 0 W

Since (N W) N W, NW o1 N W+ W, 0 My (N W), — 1 + W, N M, we have

Ker (Gri*" > Gl )= W N My/Mi 0N (N W), -4
=W N M /(M N NW+ M, -1 0 W) =W N M /(N(Mji2 0N W)+ M, N W)

This shows the desired result.

§4. Infinitesimal Mixed Hodge Modules

4.1. Let w be an integer, let F and F be two filtrations of a finite-
dimensional C-vector space H, and let S: H®H—C be a non-degenerate
bilinear form satisfying
4.1.1) SCx, ¥)=(=1)*S(y, X) for x,yeH,

4.1.2) S(Fr, (F9)")=0 for p+q>w.
Let {N,,..., N;} be a mutually commuting set of nilpotent endomorphisms of

H such that S(N;x, y)+S(x, N;y)=0 and N;FPcFr~1, N;FPc Fr~!. Then
the following conditions are equivalent (essentially due to [C-K]. See [K-K]).
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(4.1.3) There exists ¢ such that (H, e!Zt:N:F, e"iZtN,F) is a Hodge structure
of weight w and S polarizes it when ¢;>c.

(4.1.4) The weight filtration W of N=73_ t;N; does not depend on t,..., ,>0
_ J
and (W, F, F) is a mixed Hodge structure of weight w and the bilinear
form S,: P,® P,— C given by S,(x, y)=S(x, N*y) polarizes the primitive
part P, Ker (N**1: Grff - Gr¥, _,).
If these equivalent conditions are satisfied, we say that (H; F, F; N,,..., N;; S)

is a nilpotent orbit of weight w. If (H; F, F; Ny,..., N;; S) is a nilpotent orbit
for some S, then we say also that (H; F, F; N,,..., N)) is a nilpotent orbit.

4.2, Let W, F and F be three filtrations of a finite-dimensional C-vector
space H and let N,,..., N, be nilpotent endomorphisms of H such that

4.2.1) N;FPcFr-1, N;FrcFr-l and N;,W,cW,.
If (Grff, F(Gr)\), F(Grf'); NylG¥,..., Nilgs¥) is anilpotent orbit of weight

k for any k, then we say that (H; W; F, F; Ny,..., N)) is a pre-infinitesimal
mixed Hodge module (that we shall abbreviate to pre-IMHM, in the sequel).

43. Let (H;W;F,F;N,,..,N) be a pre-IMHM. Set I={1,...,1}.
If, for any J <1, there exists a filtration M(J) of H such that

(4.3.1) NM )M, () for jeJ
(4.3.2) M(J)is the weight filtration of Y N; relative to W.

jer
Then we say that (H; W; F, F; N,,..., N) is an infinitesimal mixed Hodge
module (abbreviated to IMHM in the sequel). Then by the result of [C-K],
(4.3.3) M(J) is the weight filtration of N relative to W for any N e C(J)=
{ X t;N;; t;>0}.
Jjed

If(H; W, F,F; N,,...., N) and (H'; W’'; F’, F'; Ni,..., N;) are pre-IMHM’s,
then their tensor product (HQH'; WQW'; FQF', FQF'; N;®Nj,..., NN®N))
and their inner-Hom (Hom(H, H'); Hom(W, W'); Hom(F, '), Hom(F, F');
—Hom(N;, Nj),...,—Hom(N,, N})) are also pre-IMHM’s. The tensor product
and the inner-Hom of IMHM’s are also IMHM’s.

4.4, We shall prove in §6 the following theorem.
Theorem 4.4.1. If (H; W; F, F; Ny,..., N)) is a pre-IMHM and if there
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exists the weight filtration of N; relative to W for any j=1,..., 1, then it is an
IMHM.

4.5. Let X be the n-dimensional polydisc D* and let X* be D*". Here,
D* is the punctured disc D\{0}. Let H=(H., W(H), F(H), F(H)) be a graded
polarizable variation of mixed Hodge structure on X*. Letting 04(H) be a
canonical extension of 0x@H., we extend O0.@W(H) as a filtration of
subbundles W(04(H)) of 0x(H). Similarly we define Ox(H) and W(Ox(H)).
Let us assume that

(4.5.1) F(H) (resp. F(H)) extends to a filtration of Oyx(H) (resp. Ox(H)) such
that Gr¥ OxH)Grp g, (resp. Gr¥ @XM Grp(yy) is locally free.

For the sake of simplicity, we assume further
4.5.2) The monodromy M; of H¢ around z;=0 is unipotent.

Let N; be the logarithm of M.

Set U={ze X*; Rez;>0} and we define ¥(H¢e)=I'(U; Hg). We identify
W(He) and Cio)® Ox(H) by sezi®™ o8z se 0y(H). Then F(H) and F(H)
give the filtration F(¥Y(H)) and F(Y(H¢)) of Y(H¢). By the nilpotent orbit
theorem ([S]) due to W. Schmid, we have

Proposition 4.5.1. Y(H) = {¥Y(H,), Y(W(H,)), F(¥(H)), F(Y(H)); Ny,...,
N,} is a pre-IMHM.

Note that H is admissible in X if ¥Y(H) is an infinitesimal mixed Hodge
module. Thus, together with Proposition 1.11.3, Theorem 4.4.1 implies

Theorem 4.5.2. Let X be a complex manifold, X* the complements of a
normally crossing hypersurface of X and Z a closed analytic subset of X of
codimension 22. If H is a variation of mixed Hodge structure on X* and if
H|y+\z is admissible in X\Z, then H is admissible in X.

§5. Properties of Infinitesimal Mixed Hodge Modules

5.1. In this section, we shall study the properties of infinitesimal mixed
Hodge modules. Hereafter we write IMHM for infinitesimal mixed Hodge
module. In the course of arguments, we shall make a frequent use of the

following
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Theorem 5.1.1. Let H=(W(H), F(H), F(H)) be a mixed Hodge structure.
Let {G,..., G} be a distributive family (see [K]) of filtrations of H in the
category of mixed Hodge structure. Then {Gy,..., G, W(H), FH)} is a
distributive family.

Proof. We shall first show {G,..., G;,, W(H)} is distributive. Since {G,

,-.-, Gy} s distributive, it is enough to show

I(Gy,..., G) n W(H)
=1(G, N W(H)...., G, N W,(H))
=5(G; N W(H),..., G, n W (H))

(see [K]).

This follows from the fact that H— W (H) is an exact functor on the category of
mixed Hodge structure. Similarly {G,,..., G,, F(H)} is a distributive family.
Since W(H) is a filtration of H in the category of mixed Hodge structure, we can
argue as :{Gy,..., G;} is distributive={G,,..., G,, W(H)} is distributive={Gq,...,
G,, W(H), F(H)} is distributive.

5.2. The following proposition is proved by Deligne (see [S-Z]). We
shall give another proof.

Proposition 5.2.1. Let W, F, F be filtrations of H and let N be a nilpotent
endomorphism of H satisfying

NFPcFr-1, NFPcFr~! and NW,cW,.
Assume further
(5.2.1) There exists the weight filtration M of N relative to W.

(5.2.2) GrY is a mixed Hodge structure with ihe induced filtration of M as a
weight filtration and with the induced filtrations from F and F as
Hodge filtration.

Then, (M; F, F) is a mixed Hodge structure.
Proof. By the induction, we may assume that

(5.2.3) H=W,

(5.2.49) MnW FnWw, FnWw)

is a mixed Hodge structure if k<0.

Lemma 5.2.2, (M, F, W) is a distributive family of filtrations.
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By Theorem 5.1.1, (M nW_,, Fn W_,, Wn W_,) is distributive. Hence
it is enough to show, for k=1

(40 My N(FP+W_)=M,_; NFP+M_ nW_,.
(B M_ N (FP+W_)cM_,nFP+M_,nW_,.

We shall show (4, , {)=(B,) for k=1 and (4;,,)=(4,) for k=1. They establish
(4,) and (B,) for all k.

(4,4 1)=(B)): Since (F? n M _)(Gr¥)= N*(Fr** n M, )(Gr¥), we have
M_,n(FP+W_ ) N«M,n (Frtk+ W_ )+ W_,
c NMM, N FPre+ M, n W_ )+ W_,cM_ nFP+W_,

(A, +2)=(4,): we have

(5.2.5) NKF? 0 (M,_,+W_))Fr=*n(M_,_,+W_,)
S NHYFPHI N (M + W_ )+ Wy e N¥FI(FPPI N My, )+ Wy
= NKF? N M,_ )+ W._,.

Furthermore we have
(5.2.6) NYFPA(My_+W_)DNW_,cFrren(N*W_,+M_,_ nW_,).

Since N*W_, is also a mixed Hodge structure, {N*W_,, FF"knW_, M_,_; N
W_,} is distributive by Theorem 5.1.1. Thus the right hand-side of (5.2.6) is
contained in FPkONNKW_ +FrknM_,_ nW_,=NFPnW_)+Frkn
M_,_nW_,.

Finally, (5.2.5) shows

FPn(M—+W_)cFPNM,_+FPnW_,
+(NO )My M +FPNW_y.
Q.E.D.

Now, we shall prove the proposition 5.2.1. By the assumption (Gr¥Grl,
F(GrMGr}), F(Gr¥GrY)) is a Hodge structure of weight I for any I. By the
preceding proposition, we have F(Gr¥Gr}Y)=F(Grf Gr}), which implies (Gr},
F(GrM), F(GrM)) is a Hodge structure of weight I because an extension of Hodge
structures of weight [ is also a Hodge structure of the same weight. This com-
pletes the proof of Proposition 5.2.1.

As a corollary of Proposition 5.2.1, we have

Proposition 5.2.3. If(W; F, F; N,,..., N) isan IMHM, then (M({1,..., I}),
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F, F)is a mixed Hodge structure. Moreover N is a morphism of mixed Hodge
structure (up to the Tate twist).

In particular, M(J), W, etc. are filtrations in the category of mixed Hodge
structures.

Proposition 5.2.4. Let (W; F, F; Ny,...,N) be an IMHM, and let
Jic-adyc{l,...,1} be an increasing sequence. Then {W, F, M(J,),...,
M(J,)} is distributive.

Proof. We shall prove this by the induction of k. We may assume that
J,={1,..., 1} and that {W, M(J,),..., M(J,_,)} is distributive. Since W and
M(J,) (1 £ p<k) are filtrations of (M(J,); F, F) in the category of mixed Hodge
structure, {W, F, M(J,),..., M(J,)} is distributive by Theorem 5.1.1.

The following is proved by Cattani-Kaplan [C-K] in the pure case and
asked by Steenbrink-Zucker ([S-Z]) in the mixed case.

Proposition 5.2.5. Let (W; F, F; N,,..., N) be an IMHM. Then, for
Ji, Joc{l,.., I} and NeC(J)={ X ;N;;t;>0}, M(J,UJ,) is the weight
jeda
filtration of N relative to M(J,). ’

Proof. We have NM(J,UJ,)eM,_,(J,UJ,). Hence it is enough to
show that

N!: Gr{“{}{l”h)GrkM(h) , Grﬁ'I_({IUJZ)Grf(‘“h)

is an isomorphism. This follows from the fact that {M(J, U J,), M(J,), W} is
a distributive family and the fact that

N': Grif{{WIDGrVUIGrY — GriJv2Gr¥UoGry
is an isomorphism, which is due to Cattani-Kaplan [C-K].

Proposition 5.2.6. (i) The category of pre-IMHM’s is an abelian category.
(ii) The category of IMHM’s is abelian, on which W, M(N,, W), Gr”,
GrM(Nu.W) etc., are exact functors

_Proof. (i) is almost evident. We shall show (ii). The problem is only
the existence of relative weight filtrations of the kernel, the cokernel, etc.
Therefore it is enough to show that for a morphism f: H=(W(H), F(H), F(H);
Ni,..., N)»H =(W#H"), FH), F(H); N,,..., N)) in the category of IMHM’s,
the restriction of M(N,, W(H)) to Ker f is the weight filtration of N relative to
WMH)nKerf. Set H'=Kerf. Now H and H' have a mixed Hodge structure
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with W as a weight filtration and ¢!Z%N;F and e~iZ%N: F as Hodge filtrations for
ti,..., 1,0, respectively. Hence f is strict with respect to W-filtration. On the
other hand, H and H' have another mixed Hodge structure with M(N,, W) as
a weight filtration, respectively. Moreover, W is a filtration of them by sub-
mixed Hodge structures. Therefore if we denote by M(H") and W(H") the
restriction of M(N,;, W(H)) and W(H) to H”, then the rows in the following
diagram are exact.

0 — GrEIGrf®) — Gr¥®Grf ® — GriH)Gry 1)

I | |

0 — GIEFIGIF ) —, Gr PG ® — G EIGrl 1),

Here M(H)=M(N,, W(H)) and M(H)=M(N,, W(H’)). Since the vertical
arrows are isomorphisms except the left one, the left one is also an isomorphism.
This shows that M(H") is the weight filtration of N, relativeto W(H"”). Q.E.D.

5.3. As an application of Theorem 3.2.9, we shall prove the following

Proposition 5.3.1. Let (W; F, F; N,,..., N) be a pre-IMHM. Assume
that the weight filtration M of N, relative to W exists. Let N4 W be the
filtration as defined in (3.4.1). Then (M; F, F; N,,..., N) and (N, W; F, F;
Ny, N,,..., N)) are pre-IMHM’s.

Proof. In order to show the first, we have to prove the existence of a
polarization on GrM, by which (F(f), F(t))=(e!Zt:NiF, e"iZtiNsF) is polarized
for ty,..., ,>0. Now by Theorem 3.2.9, Gr¥ is a product of Gr¥Gr}’s canoni-
cally. This is true also as a Hodge structure with (F(¢), F(¢)) as Hodge fil-
trations. On the other hand, Gr¥Gr) has a polarization free from ¢, by which
F(r) is polarized. Therefore Gr¥ has a polarization by which (F(¢), F(¥)) is
polarized. Thus, (M; F, F; N,,..., N) is a pre-IMHM. Now we shall
show (N.«W; F, F; N{, N,,..., N) is a pre-IMHM. We have by Corollary
343

Gr)¥ =N,Grl,,®Coker (N, : W,Gr¥, ,—W,Gr}).
Since GrY is polarized, so is Coker(N,: W,Gr¥, ,— W,Gr}¥). Since (Grl,,; F,
F; Ny,..., N)) is a nilpotent orbit, the vanishing cycle theorem ([K-K], [C-K-S])
shows that (N,GrY,; F, F; Ny,..., N)) is also a nilpotent orbit.

Remark 5.3.2. Similarly to Proposition 5.3.1, Theorem 3.2.9 implies the
following. Let X be a complex manifold, f: X—C be a holomorphic map
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such that f~1(0) is non-singular. Let H be a graded polarizable VMHS on
X\f~1(0) admissible on X. Then the near-by cycle of H with respect to f is
also a graded polarizable VMHS.

In the following sections 5.4 and 5.5, we shall give the weight filtration
relative to N, W.
5.4. Let (H; F, F; N,, N,) be a nilpotent orbit of weight w. Set W(H)
=M(N,+N,), W =M(N,). Here, M(*) shows the weight filtration.
Lemma 5.4.1. Ker N¥ nIm N, cN,(Ker N+ W, _,
ImN¢nImN,nW_,_;cIm N,N%.
Proof. By the purity theorem ([K-K], [C-K-S]) we have
Ker N¥N,=Ker N¥IN, +Ker N¥+ W,.
Therefore the induction on k shows
Ker N¥N,=Ker N¥Ker N,+ W,.
This shows the first statement. The second statement is the dual one.
Proposition 5.4.2.

M(N{Im N3)=(N4M(N1))—y NIm Ny =N, W+ Wiy N Wi—; NIm N,
=N, Wi+ W, 0 W,nImN,.

Proof. Let W, be (N,«M(N)),—; NIm N,. It is enough to show (5.4.1)-
(5.4.3).

(5.4.1) NW,.cW,_,
(5.4.2) W_,cNW, for k=1.
(5.4.3) Ker N nImN,cW,_, for kx1.

The first one is obvious. The last one follows from the preceding lemma.
We shall show the second. In the expression W_, =N, W', +W_,_, N W, N
Im N,, the first term is contained in N,N%W; = N* W, and the second term is
contained in

W-—k—l nImN’f ﬂImNzﬂ W.I..kCIlesz n W—k—l n W’—k
S NEN (Wi ) N WL NY(N,Wih 1 N W)= NEW,.

5.5. Let (W F, F; N,, N,) be an IMHM.
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Theorem 5.5.1.
Nz*M(Np W)=M(N1a Nz*W)-

We shall reduce this theorem to Proposition 5.4.2. In order to perform this
smoothly, we shall first show that these filtrations commutes with Gr”.

For simplicity, we write

(5.5.1) M'=M(N,, W),
M"=M(N,, W), M=M(N;+N,, W)=M(N,, M")
W' =N W, W'=N, W and M=N,,M'.

Hence we have

(5.5.2) Vi=N,We 1 +M;n W,
M=N,Mj}.;+M,nM;.
Lemma 5.5.2. (i) WjnW,=Ny,(W,., N W)+MnW.nW,.
(il) Wi+ W,=Ny(Wes1+ W)+ (Mi+ W) n (W +W,).
(iil) M, nW,=Ny(Mi, N W)+M,nM;n W,
(iv) M+ W,=N,(Mj,+W)+(M+ W) n (M;+W,).

Proof. (i) follows from Lemma 3.4.1.

(ii) is trivial.

(iv) follows from the fact that {M, M’, W} is distributive (Proposition
5.2.3).

Finally, we shall show (iii). Since M(H/W,)=M(N,, M'(H|W,)), we have,
using (3.1.3) and the fact that {W, M, M'} is distributive,

My W,=(N,Mj,+M;nM)n W,
S(N(Mi i N(My o + W)+ M N W)+MinM)nWw,
SN,(Mi  NW)+MnM N W,
=N,(M; . N W)+M,nM;nW,. Q.E.D.
Lemma 5.5.3. {M, W, W"} is distributive.
Proof. 1t is enough to show
(5.5.3) M, n(W,+ W) M,nW,+M,n Wy.
When a>k+1, this is trivial because W,> W;. So, assume a<k. Then we

have

Mn (WA W) =(N,Mjy + M) n (W, + Wy
M0 (W,+ W)+ NoMj .y 0 (W,+ W7)
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because {M, N,M’', W,+W}} is distributive by Theorem 5.1.1. Since Ker(N,|
M (H/ W 1)) =My ((H/ W,y 1), we have

NoMjy 0 (Wt W) SN Mi 0 W 0 (W + WY
EN,(Mppy N M+ My N Wier ) (W + W5)
SN (M1 N Wy 1) +My 0 (Wo+ W)= M0 Wi+ M0 (W + Wy).

Hence we have
M0 (W, +W) M, n Wi+M,n M. 0 (W,+W3).
Since M; N W,=N,(M,,, N W)+M,nM;n W,= Wi+M,n M;n W,, we have

M N Min(Wo+ WM n (M0 W,+M,0n W}
cM n(M;nM;nW,+M,n W}
cM,nM;nW,+M,n M, nWicM,nW,+M,nW,.
Q.E.D.

Now, we are ready to prove Theorem 5.5.1. In order to prove this it is
enough to show

(5.5.4) Ni: G ,Grf" — Gr¥ ,Gr}" is an isomor phism for 1=1.
This follows from
(5.5.5) Ni: Gr7Grl, Grf" ——Gr?GriL Grl" is an isomorphism.

By virtue of Lemma 5.5.3, Gt Gr¥Gr%" =Gr™Gr?"Gr". Then, by Lemma
3.4.2, when k<a—1, Gr”Grf"=0. When k=a—1, Gr?Grf"=N,Gr? and
(5.5.5) follows from Proposition 5.4.2 along with Lemma 5.5.2. Tlerefore we
can assume k=a. We shall show, in this case

(5.5.6) MGl Gr?)=M(Grf"Gr?).

Note that Wy n W,=N,W,+M;n W, and M,n W,=N,(M;.,nW)+M,n M,
n W, by Lemma 5.5.2. Since N,W,cW/_,, we have

M(Grf"Gr?)c M(Grf"Gr?).
Conversely, (3.1.5) implies
M N W, Ny(My, N W)+ M0 Mjn W,c Wi_ + M0 W,
and hence M(Grf"Gr?)c M(Gr?"Gr?). Thus (5.5.5) follows from
(5.5.7) Ni: G, ,Gr?7'GrY — Gl ,GrP"'GrY  for k=za, 121.

Since Grff"GrY? is a direct summand of Grf"Gr? by Lemma 3.4.2 and



1016 MASAKT KASHIWARA

M(Gr?)=M(N,|Gr?; M"(GrY)), we have (5.5.7) and this completes the proof
of Theorem 5.5.1.

As a corollary of Theorem 5.5.1 we have

Corollary 5.5.4. If (W, F,F;N,,...,N) is an IMHM, then so are
(N,+W; F, F; Ny,..., N) and (M(N, W); F, F; N,,..., N)).
Use Proposition 5.3.1

Proposition 5.5.5.
(N (N2 W) =N (N2 W)t 1 + No(N 15 W s 1
+M(N1+Ny, W)N (N1 W) N (N, W)y
=N1(N2*W)k+1+N2(N1*W)k+1
+M(Ni+ Ny W)N(N15Wes 1 N (NpsWies s -
In particular N o N, W=N, N W.

Proof. We shall use the notation in (5.5.1). Noting (N{xN,xW),=
N Wi+ M0 Wi=(N, Wy +M)n Wi,,, it is enough to prove

(5.5.8) M, nWicNWj . +M.nWin Wy,
(5.5.9) Ny Wi e N, Wi+ M0 W,

and

(5.5.10) M0 Wi N, Wi +M,.
Note that

(5.5.11) M, = N,M; ..+ M, n M.

By Lemma 5.5.2 we have
My 0 Wi M N Wiy © No(Miaq 0 Wi )+ M 0 Mi 0 Wiy
CN2 W”C"‘l ﬂ W;(’+Mk ﬂ Wl’( .
Therefore we have (5.5.8).
Secondly, (5.5.9) follows from

Ny Wis1=No(N Wi 2+ My N Wy ) NN, Wi p+ NyMie s 0 Ny Wy
N, Wi, +M.n Wi.

Finally, by (3.1.5), we have
M Wisy =M 0 (N Wiy 2+ Moy 0 Wi )ENi(Miiz N Wi )+ My 0 Miyy
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SN(NWir 2t My 2 N My 0 Wyt )+ M 0N My
SN N Wi 2+ M N My =Ny Wi + M.

5.6. Let I be a finite set and let & be the set of subsets of I. Let us consider
the following category MH(I) consisting of H={H(x), W*(H), F(H), F,(H),
Sap(H), 9p(H)} pcper. Here, H(a) is a finite-dimensional vector space, F,(H),
F,(H) and W*(H) are filtrations of H(x) and f,,(H): H(8)—H(x), g,,(H): H(x)
—H(p) satisfy the following conditions (5.6.1)—(5.6.7):

(5.6.1)
(5.6.2)
(5.6.3)
(5.6.4)

(5.6.5)

(5.6.6)
(5.6.7)

Jeu=9u=1d,

Jusfor =ty 995°9pa=9ya  for a>f>y.

GaavpSevp.p =Saanpdanp.p forany o and p.
JupFRE) S FIT1V8I(H), £, FR(H) < Fi7I1=\FI(H),

T W) S Wi_,\5(H), gpFu(H) = Fi(H),

G FI)C FRH) and  gp WiH)C Wiy p(H)  for feacl.
Letting N;e End(H(x)) be N;=g,,u(/1Jaut)}.« for a?j and
N;=fua\(ii9\y,;  for a3j, N;is nilpotent.

{H(x); W*(H); F(H), F(H); {N;};;} is an IMHM for any ac].

Grlfe —’(? Gr/l g for a>pf.

Note that if H is in MH(I), then H* defined as follows is also an object of MH(I)

(5.6.8)

H*(o)=H(a)*

Wi(H*)=(H()/ W2y 4 210y - (H))*,
Foy(H*)=(H(a)/F, P 1=I(H))*,
Fy(H*)=(E(y/FirrI=I(H)*,
Jap(H*) =g 5, (H)*
9p(H*)=(=1)IFI=1el £ ,(H)*.

For H e MH(I), let us define the Tate twist H(n) of H by

(5.6.9)

H(n) (@ =H(w), WiHn)=Wi.,(H),
Fy(H(n)=Fr*(H), FiyH(n)=Fy*"(H),
faﬂ(H(n)) =faB(H)7 gﬂa(H(n)) = gﬁa(H) -

Lemma 5.6.1. Ifacf, and y> f\a,

fpa(H)Mk(% H(a)) =M, _ 218 \a| (y, H(B)),
gaﬂ(H)Mk('y’ H(“)) < Mk(y’ H(ﬂ))
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Here, M(y, H())=M(N, W*(H)) for N € C(y).

Proof. We shall prove them by the induction of |f\a|. If |f\a|=1 and
y=P\e, they follow from Proposition 3.3.1. When |f\a|=1, they follow from
this case and the fact that M(y, H(x))=M(N, M(f\x, H(®))) for N e C(y).
Now assume |B\a|>1. Then taking § such that a& &, they follow from the
hypothesis of the inductions for «, é and §, .

Lemma 5.6.2. If we set

Gﬁm.mm=ﬁKﬂ%f&rm—ﬁG%MMCﬁwm,
=‘=a

then P¢(H) has weight k with respect to the weight filtration M(a, H(c)).

Proof. We may assume that a=I. Take NeC(I). Then M(x, H(x))
induces the weight filtration of N|Gr}f*®®, shifted by k. On ther other hand,
Pz(H) is a direct summand of Grl/*™® as an C[N,,..., NJJ-module by
Proposition 3.3.1. Therefore M(«, H()) induces on P#(H) the weight filtration
of N|Pg(H) shifted by k. Then this Lemma follows from N|P(Hf)=0. Q.E.D.

For y eI, we define y,(H) and ¢,(H) in MH(I\y) as follow

(5.6.11) Y (H)(@)=H(x), W*¥,(H)=M(y, H(@®)),
F(y,(H)=F,(H), F,,(H)=F,(H),
Jap,(H))=fp(H) and  gp(,(H))=g4,(H)  for acpclly
(5.6.12) o (H)(@)=H(axUy), Wy,(H))=M(y, H(xUy))
F(p,(H)=F,y,(H), F(p,(H))=F,,(H)
Jap(@,(H))=f4y5,p0,(H) and
gﬂy((Pa(H))=gﬁUy,aUy(H) fOI' (XCﬁCI\')).
Proposition 5.6.4. ,(H) and ¢ (H) are objects in MH(I\y).
Proof. (5.6.1)—(5.6.5) are evident and (5.6.6) follows from Proposition
5.3.1.

In order to prove (5.6.7), we prepare the following

Lemma 5.6.5. Let (H; F, F;N,,N,) and (H;F,F';N{, N;) be a
nilpotent orbit of weight w and w—1, respectively. Letf: H->H' and g: H' -»H
be homomorphisms such that
(5.6.13) gof=N;, fog=Nj,
(5614) Néof:‘foNZ, N2°g=g°N£a
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f
(5.6.15) H—H.

g9

g

Then, we have for any k

f /
(5.5.16) GriM(2) —— GrM®a),

g9

>

Here M(¥) is the weight filtration.

Proof. By the duality, it is enough to show
(5.6.17) gM(N3))c N M (Ny))+M,_(N,).
We have, by Proposition 5.4.2,

gM(N3)= M(N,|Im g)= M(N,|Im N )= N, M(N,)+M,_;(N,).
Q.E.D.

Now, we shall show (5.6.7) for ¥,(H) and ¢,(H). For this, it is enough to
show, by Proposition 2.3.1

(5.6.18) GrM.¥H) — G ¥ for fca and |o\fl=1.
>

By Theorem 3.2.9, Gr¥ "% is canonically a direct sum of Gr¥ (%" Gr}*’s,
Hence (5.6.19) follows from

(5.6.20) G- "HGrl* e_“:’ GritQ-"HGrY”,,
which is an immediate consequence of Lemma 5.6.5.

5.7. By Lemma 5.6.1, f,,(H) and g4,(H) are considered as morphisms of
mixed Hodge structures f,z: H(B)—=H(a)(—|\B])  gp.: H()—H(B), with
M(I, H()) as weight filtrations.

Letting e; (j€I) be the base of Z(D), we shall define the complex II(H) by

(5.7.1) I(Hy = & HE)(-m@Ze,.

Here e,= A e;. The differential is given by > f,,(;.¢;. Let us define
Jjea J,a ’
W(II(H)) by

WAIE)= © W oHE) (~n)®e,.

Then II(H) is a filtrered complex in the category of mixed Hodge structures.
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Theorem 5.7.1. H*(W(II(H))) has weight <k-+n.

Proof. It is enough to show that H"(Gr?II(H)) has weight <a+n.
Then replacing H with Gr” we may assume

H(x) k=a—|a]

W=7, k#a—|of.

Then Proposition 2.3.1 implies that H is a direct sum of M (I, (vector spaces)).
Thus, we may assume that, there is y=[ such that H(a)=0 if a2y and H(x)
=( IT NpH(y) for a>y. In this case, the theorem is nothing but the purity
theorem ([K-K], [C-K~S]).

58. Let H=(W; F, F; N,,...,N)) be an IMHM. For JoI={1,..,1},

we set

(5.8.1) M)=MJ; W)=M(Y N; W),
Jjed
(5.8.2) Y, W=N;,N; W where J={ji,...,J,}.
By Corollary 5.5.4 and Proposition 5.5.5 ¥, W is well-defined.
Set
(5.8.3) CH={2 t;N;; t;>0}.
Jjed

Then we have already remarked in Proposition 5.2.5.
(5.8.4) M(J,UJ)=M(N, M(J,)) for NeC(J,),
or
MU JR)=M(Jy, M(J,)).

Applying Theorem 5.5.1, we have
(5.8.5) My, ¥, ,W)=¥;,M(J,, W).
We have also
(5.8.6) M(K, Y, W)=M(K, W) for KoJ.
In fact, for K 3 j, we have N;M (K, W)< M, _,(K, W), which implies (N ;) M(K,
Wy=M(K, W).

By Proposition 2.3.1 and Lemma 3.4.2, we can associate to W the object
DI(H) of MH(I) given by DI(H)(«)=H, W«DI(H)=%¥,W, F/(DIH))=F,
FADIH)=F, f,,(DI()= TT N;, g, (DI())=id.
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Proposition 5.8.1. Let H'=(W;F, F; N,,...,N) be an IMHS and
HeMH(I). Then we have
Homyy ;) (H, DI(H"))=Hom(H(¢), H').

Here the last Hom is the sei of homomorphisms preserving W, F, F and com-
muting with N,..., N,.

Proof. 1Tt is enough to show that g,,WA(H)< ¥,W*(H). We shall prove
(5.8.7) 9pWHH)c ¥, ,WHH)  for Bca,

by the induction of |¢\B|. If a=p, there is nothing to prove. Assume |x\f|=1.
Set a\={j}. Then by (5.6.7)

g VE(H) = N; W}, (H)+ gz, Wi(H) n Wi(H)
< NjW£ H(H)+ gﬂa(Mk(Np W(H)) n Wg(H)+ Wi _,(H))
CNjW£+1(H)+Mk(Nj’ WHH)) n Wi (H) +9g45. W5 —,(H)
=(N; WE(H)) + g5 Wi - 1(H).

Here the last inclusion follows from Proposition 3.3.1.

Now assume |x\f|=2. Take y such that fSySa. Then the induction on
|e\B| shows

g W H) =¥, W (H)

gp,W(H) =¥, ,WEH).
Therefore we have

9p W (H) =gy, ¥, W (H)
<¥,,95,WH)<Y, ¥, WH) =Y, WiH).
Proposition 5.8.2.
(P, W)= j; N5 iy Whes 1 +MJI) N JQJ('PJ\U)W)H]
= jze:JNj(TJ\{j)W)k+1 +M(J)n JQ(WJ i W)

Proof. We shall prove this by the induction of |J|. For jeJ, we have
M) N (i iy W 1 =MW ;, MU\{GH N (P03 W s 1)
because M(J\{j}H)=MU\{j}, ¥;.,(sW). Therefore we have

(5.8.8) M DNy W 1
SN My (DN (P53 Wt 1)
+M(J) N M (N\GHD Ny W st -



1022 MASAKI KASHIWARA

Note that
(5.8.9) N;¥YjyyWe¥Vp W forany i,jed.

In fact, if i#j, NA(¥nWhe NPy, oWMe1 =Wk Then (5.8.8)
and (5.8.9) imply

M(J)n ife) W1
SNAY iy Wt + M) n M(\{jH N ief\?j} FnisWhs1-

We have

M(J) n M(\{GH) =M (N;; MU\{j}) N My(I\{7)
(N M\{TDh=MU\{}, ¥ W

Therefore by the induction hypothesis,
M) nMN\{iHn ieg\\”}(TJ\(i}W)kH
c M (J\{j}, ¥ W) nile\\{j}(WJ\{j} i i W1
c(FnpHWh=F,W),.
This shows that
jEZJ N3 W1 +M(J) 0 jfE\J FnipWhes 1< W),
On the other hand, since DI(H) belongs to MH(I), we can apply Lemma 5.6.2
and we obtain
Gry'™ =Y Im(Gr{; "% — Grf’¥)
+M,(J)n QJKer (Grf " — Gryuv),
or
(TJW)ijEZJ N AW e+ 1
+MJ)n jQ T Wh+FsWhe-1.

Then the induction in k shows that (¥, W), is contained in

;2} N pnyWhs 1 +M(J)N JQJ (FropnW).

§6. The Proof of Theorem 4.4.1.

6.1. In order to prove Theorem 4.4.1, it is enough to show the following.
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Lemma 6.1.1. Let H=(W; F, F; N, N,) be a pre-IMHM and assume
that there exist the weight filtration of N, relative to W and that of N,. Then
there exists the weight filtration M of N{+ N, relative to W and we have N ;M
cM,_, forj=1, 2.

6.2. We shall show this by the induction. Hence, we may assume that
H=W, and that H induces on W_, an IMHM. Let Hy be Gr§f/. Then we have
an exact sequence

(6.2.1) 0—W_, *SH-*,H,—0.

Let M(H,) and M(W_,) be the relative weight filtration of N, + N, on H, and
W_,, respectively. In order to prove 6.1.1, it is enough to show that there
exists a section s: Hy—H of ¢ in (6.2.1) satisfying the following condition (6.2.2).
Note first that [N, s]: Ho— H splits as the composition of a;(s): Hy - W_;
and V.

(6.2.2) a()M(Ho) =M, ,(W_y).

In fact, if there exists such a section s that satisfies (6.2.2),
M =y(M(W_))+s(M(H,)) satisfies N;M,cM,_,,

and it is evident that M induces on H,, the weight filtration of N;+ N,, shifted
by k.

6.3. Now, we shall show the existence of such a section s. Set
H=Hom(H,, W_,). Then H is an IMHM. Then (6.2.2) is equivalent to a(s)
eM_Z(I:I). Let M'(Hy), M'(H), M'(W_,) and M’(fl) be the relative weight
filtration of N, on Hy, H, W_, and H, respectively and let M"(H,), M"(H),
M"(W_,) and M”(I:I) be the relative weight filtration of N,. Since the exact
sequence (6.2.1) is strict with respect to the filtration M’, there exists a section
s': Ho—H such that s'"M;(Hy)< M;(H). Therefore, we have

(6.3.1) o,(s") € ML, (H).

Similarly if we take a section s”: Ho—H such that s"Mj(H,)c M (H) we
have
(6.3.2) ay(s") € M7 ,(H).

By the assumption t=s'—s"eH. Note that H= W_l(I:I). Thus we have
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(6.3.3) ay(s") e W_(FI) n M”,(F)
(N W),

and a,(s")=N,t+ay(s") € N,W_ (H)+ M” ,(H) n W_,(F) =(N,, (D) _,.
Now, we consider the complex

W_(IT): W_(H) — (N W), @ (N, W(H))_,
— (NN, W(A))_ .

Then (a;(s"), a,(s")) is a cochain of W_,(IT) of degree 1. By the purity theorem
for IMHM (Theorem 5.7.1) and the results in §5.8, H!(W_,(IT)) has weight <0,
and hence the cohomology class of (a,(s), &,(s’)) is represented by a cochain
of weight <0. Thus, there exists u € H such that

(6.3.4) ay(s)~Nque M_,(H),
ay(s)—Nyue M_,(H).

Then s=s"—u satisfies a;(s)e M_ z(ﬁ). This completes the proof of Theorem
44.1.
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