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In [S-Z], Steenbrink and Zucker proposed and studied "admissible vari-

ation of Mixed Hodge structure" on a curve as an "appropriate" notion. Here,

we give a definition of admissible variation of mixed Hodge structure on a

complex variety by "curve test9' and afford the evidence that this is a good

notion.

O.L We shall recall what is an admissible VMHS on a curve, proposed by

Steenbrink-Zucker. Let X be a curve and X* a Zariski open subset of X,

A graded polarizable variation of mixed Hodge structure on X* is called

admissible, if it satisfies

(a) There exists the relative monodromy filtration of the logarithm of the

unipotent part of the monodromy around each point in X\X* with respect to

the weight filtration.

(b) The Hodge filtration F extends to a subsheaf of the canonical extension

such that GiwGrF is locally free. Furthermore for any morphism/: D-^X from

unit disc D to X the Hodge filtration off*H satisfies the same conditions.

0.2. Let X be a complex analytic space, and X* a non singular Zariski

open subset of X. A graded polarizable VMHS on X is called admissible (on X)

if its restriction to any curve in X (not totally contained in X\X*) is admissible.

Such a definition by "curve test'9 is seldom a good notion unless it is a property

of codimension 1 (or 0, 2). This means that if this property is true outside a

closed analytic subset of codimension 2 (or 1, 3) then this holds on the whole
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space. As an example we recall the regularity of Integrable connections or the

quasi-unipotency of constructible sheaves.

In this article, we prove that "admissible" VMHS has a property of

codimension 1 when X is non-singular and X* is the complement of normally

crossing hypersurface.

The proof makes an essential use of the purity theorem for a variation of

Hodge structure.

This paper includes also a study of general notions which will be useful for

further studies of mixed Hodge structures.

The author thanks Y. Shimizu for helpful discussions.

§ 1. Admissible Variation of Mixed Hodge Structure

l.lo We shall recall the definition of Hodge structure. For an integer w,

a Hodge structure H of weight w is a triplet (HC9 F(H), F(H)), where Hc is a

finite-dimensional C-vector space and F(H), F(H) are two finite filtrations of

Hc such that Hc^ © H"(H). Here H*«(H) = F*(H) n F«(H). Let C(H) be
p+q=w

the Weil operator defined by C(H)|H,«(H) = i*~*.

1.2. For a C-vector space V, let us denote by V the complex conjugate

and let — : F-* V be the R -linear isomorphism such that ~av = av for a e C and

ve V. For a homomorphism /: V-*V of C-vector space let /: F-»F' be the

homomorphism given by/(i;)=/(V).

For a Hodge structure H of weight w, the complex conjugate H of H is

the Hodge structure of weight w defined by (H)C=(HC)-, F*(H) =

F«(H) = F«(H)- . We have H^(H) = H«>(H)- and C(H) = C(H)~

1.3. A polarization of a Hodge structure H of weight w is a bilinear

homomorphism S: HC®HC-»C such that

(1.3.1) S(F'(H),F«(H)) = S(F'(H)>F«(H)) = 0 for p + q>w.

(1.3.2) S(C(H)«, v) is a positive definite Hermitian form on Hc.

1.4. A mixed Hodge structure H of weight w is data (H€, W(H)9 F(H),

F(H)). Here, Hc is a finite-dimensional C-vector space, and W(H)9 F(H) and

F(H) are filtrations of Hc such that Grj^(H) is a Hodge structure of weight
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together with the induced filtrations of F(H) and F(H). If w = 0, we call

it simply a mixed Hodge structure.

I.§. Let X be a complex manifold and X its complex conjugate. A vari-

ation of Hodge structure H is data (Hc, F(H)9 F(H)). Here Hc is a locally

free C^-module with finite rank and F(H) (resp. F(H)) is a filtration of @X®HC

(resp. 0j®Hc) by vector subbundles such that for any xeX, H(x) = (Hc>x5

F(H)(x), F(H)(x)) is a Hodge structure of weight w and vFP(H)^FP-1(H)

(resp. vFp(H)(=:Fp~1(H)) for any vector field v on X (resp. X). Here X is the

complex conjugate of X.

A polarization S of a variation of Hodge structure H is a homomorphism

S: HC®HC->C such that at each point XEX, Sx gives a polarization of H(x).

A variation of Hodge structure is called polarizable if it admits a polarization.

1.6= A variation of mixed Hodge structure H on X consists of data

(HC9 W(H), F(H), F(H)); Hc is a locally free C^-module of finite rank,

is a filtration of Hc by locally free C^-modules and F(H) (resp. F(H)) is a

filtration of &X®HC (resp. 0j®Hc) by vector subbundles, such that vFp(H)

cFP-^H) (resp.uF'OHOcF'-^H)) for any vector field v on X (resp. X) and

that Gr^(H) is a variation of Hodge structure of weight k.

A variation of mixed Hodge structure H is called graded polarizable if
js polarizable for any k.

L7o Let/: X-»7be a holomorphic map. Then for a variation of mixed

Hodge structure H on Y9 we can naturally define /*(H) a variation of mixed

Hodge structure on X. If H is graded polarizable, then so is/*(H).

Io80 Let D be the unit disc and D* the punctured unit disc; D = {ze C\

\z\ < 1}, D* = D\{0}. Following Steenbrink-Zucker [S-Z], we say that a VMHS

(variation of mixed Hodge structure) H on D* is pre-admissible if it satisfies

(1.8.1) H is graded polarizable.

(1.8.2) The monodromy M of Hc around the origin is quasi-unipotent.

(1.8.3) The logarithm N of the unipo tent part of M admits a weight filtration

relative to W(R) (see §3).

(1.8.4) Let ^(H), Wk(0D(H)) (resp. 0D(H) and Wk(0D(H)y) be the canonical
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extension of 0D*®HC and &D*®Wk(H) (resp. 0D*®HC and 0$*®

Wk(W)\ Then F(H) (resp. F(H)) extends to a subbundle of 0D(H)

(resp. 0D(H)) such that Gr/(H)Grf (^(H)) (resp. GrJ(H)Gr f C^(H») is

locally free.

1.9. Let Jf be an analytic space, and Z* a non-singular Zariski open subset

of X. Let H be a VMHS on X*. We say that H is admissible if we have

(1.9.1) H is graded polarizable.

(1.9.2) For any/: D-+X such that /(£>*) <zX*,/|}(H) is pre-admissible. Here

/0: D*-*X* is the restriction of/.

When Z = D and Z* = D* and the monodromy is unipotent, any pre-

admissible VMHS on D* is admissible by the following lemma.

Lemma 1.9.1. Let /: D-+D be z^zn (n£l) and let H be a VMHS on

D* and H'=/*H. TTien we

(1.9.3) Assume that the monodromy of H' is unipotent. Then the condition

(1.8.4) /or H' implies (1.8.4) /or H.

(1.9.4) Assume that the monodromy of H is unipotent. Then the condition

(1.8.4) for H implies (1.8.4) for W.

Proof. Let G = Zn be the Galois group of/: D->D. Then we have

or (/*^(

or ] | I z - -

according to the meaning of canonical extension (i.e. left or right). In either

case, (1.8.4) for H' implies (1.8.4) for H because the G-invariant of a vector

bundle is also a vector bundle. (1.9.4) follows from the fact

0(Wk(W))=f*0(Wk(W)) and F*(H')=/*F*(H). Q.E.D.

If If is admissible, then F*(H) (resp. Fp(HJ) extends to a coherent submodule

of the canonical extension of 0^*(H) (resp.

1.10. We conjecture the following

Conjectures Assume that X is equi-dimensional and let Z be a

closed analytic subset of X with codimension ^2. //H|^*\z is admissible in

X\Z, then H is admissible in X.
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Note that the quasi-unipotency (1.8.2) Is a consequence of [K].

Later, we shall prove this conjecture when X is non-singular and X\X* Is

a normally crossing hypersurface (Theorem 4.5.2). As a corollary of this

theorem, we have

Proposition 1.10.1. Let X* be a non-singular Zariski open subset of a

complex analytic variety X and Y a closed analytic subset of X such that

X*\Yis dense in X*. Then, for any VMHS H on X* ifH\x*\Y is admissible in

X then H is admissible in X.

Proof. Let us take/: X'-*X satisfying (1.10.1)-(1.10.4).

(1.10.1) X' is non-singular.

(1.10.2) /is proper.

(1.10.3) f~l(X*)-+X* is an isomorphism.

(1.10.4) f~l(X\X*) Is a normally crossing hypersurface.

Then H Is admissible If and only if/*H|/-i(Xt) is admissible. In fact, any curve

(p: D-+X such that cp(D*)cX* comes from a curve in X'. Similarly H|x+\y Is

admissible If and only If /*H| /-i(XMY) is admissible In X'. Therefore, by

replacing H with/*H, we may assume from the beginning that X is non-singular

and X\X* Is a normally crossing hypersurface. Set Z = Y n X* n (X\X*). Then

H|XMZ Is admissible In X\Z. Since codim Z^2, we can apply Theorem 4.5.2.

1.11. Remark also the following.

Proposition! 1.11.1. Let us assume X non-singular. If codim (X\X*)^2,

then a graded polarizable VMHS on X* extends to a graded polarizable

VMHS on X.

This Is a consequence of the following lemma and W. Schmid's theorem

[S]: a polarizable variation of Hodge structure outside a closed hypersurface

extends to a globally defined polarizable VHS, If the associated local system

extends.

Lemma 1.11.2. Let X be a complex manifold, Z a closed analytic subspace

of codimension ^2. Let ^ be a vector bundle of X and W a filtration by

subbundles of 3?. Let ^ be a coherent (9X\Z submodule of &\x\z such that
r) is a locally free &x\z-module. Assume further that, for any k,

extends to a subbundle of Grjf defined on X. Then ^ extends to a
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subbundle ^ of ^ defined on X such that ^GrJT is a subbundle o/Grf .

Proof. Let j : X\Z^X be the inclusion map. Set & =j*

We shall show that # n Wk is a subbundle of Wk by the induction on k. Consider

the following exact sequence

0 _
JF n wk-t & n Frfc

By the hypothesis of the induction, Wk-J^ ft ^i-i *s locally free and hence

<^z(Wfc-i/# n FTk_1) = 0. By the construction of ̂  we have Je°z(Wkl^ ft Wk) = Q.

Therefore we have Jf$(Gr% /#(Grf )) = 0. This means that <r(Grf) is the

extension as a subbundle of Grf. Therefore Gr^/^Gr^ is locally free and

hence so is Wk/& ft Wk. Q. E. D.

Similarly, the preceding lemma, together with Schmid's nilpotent orbit theorem

[S], implies the following.

Proposition 1.11.3. Let X be a complex manifold, X* the complement of a

normally crossing hypersurface, Z a closed analytic subset of X of codimension

^landHagraded polarizable VMHSonX*. Then */H|XMZ is admissible on

X\Z, then the Hodge filtration F(H) extends to coherent subsheave of the

canonical extension (9X(H) of (9X*®HC such that GrF(H)Gr^x<H» is a

locally free @x-module.

§ 2. Perverse Sheaves in a Normally Crossing Case

28L Let us consider X=Cl and for Jc=/ = {l,..., I}, we set Xj = {zeX;

Zj = Q for jeJ} and Xy = { z e X j i z^-^0 for j£ J}. Let & be the category of

perverse sheaves &' on X such that ^'\XJ has locally constant cohomology

groups. A. Galligo, M. Granger and Ph. Maisonobe [G-G-M] shows that &>

is equivalent to the category {Ma;/a/?, g^}. Here Ma (acj) is a vector space

and/a^: M^-*Ma, gft(X: Ma->Mft are given for jgcacij, such that they satisfy

(2.1.1) f*fi°fpy=f*y> 9yft9^ = 9^ fol" ^^J,

(2.L2) /« = ̂ . = W,

(2.1.3) ff,,.upf,\>p,p=f,,,npff,np,p for any a, 0,

(2.1.4) If a:r>j3 and Sa = Sj8+l then l—g^f^ is invertible.

Now consider the condition that J^' is the minimal extension of a locally
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constant sheaf on X*. In terms of {MJ this is to saying that Ma = 0 for

and fay is surjective and gw is injective for yea. If we consider the condition

that <Fm is a direct sum of such minimal extensions, we arrive to the arguments

that we are going to describe in this section.

2c20 Let /: A-+B and g: B^A be morphisms in an abelian category.
/

We write A^ulB if we have the following equivalent conditions:

(2.2.1)

(2.2.2) Im(#o/)2^:Im0 and

This is a self-dual notion., i.e., if T is an exact contravarient functor, A', *
9

T(9)
implies

T ( f )
>

2»3o More generally, let 1 be a finite set and let © be the set of subsets of 1.

For an abelian category s£ let P(l, j/) be the category defined as follows.

Ob(P(J, j*)) consists of {MJae@ and fap: M,->Ma and gfiat: M^M^ for fiaa

satisfying (2.1.1), (2.1.2) and (2.1.3). The morphisms are defined in an obvious

way. For 7 e © let My(I, j*) be the set of objects ((AfJ, (/^), (g^) in P(l, j/)

satisfying

(2.3.1) Ma = Q if a2y.

(2.3.2) /ay is surjective and gw is injective if a^y .

Let M(/, s£) be the set of objects which is isomorphic to the direct sum of

objects in \j Ma(I, j/).
a

Proposition 2.3.1. Let M = ((Ma), (fap), (gpj) be an object of P(I, j/).

Then the following conditions are equivalent.

(2.3.3) MeM(7, j*).

f.P
(2.3.4) Mp : ^ Mxfor any a, jS wfr/i oeiD/L

ff^«j>
(2.3.5) (2.3.4) holds for any a, £ wifh a^jS and *a = #)8+l.

(2.3.6) // we set P8(M) = n Ker 0,.
5=a

is injective for
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Proof. Since (2.3.6)o(2.3.3)=*(2.3.4)=>(2.3.5) Is evident, we shall show

(2.3.5)=>(2.3.3). When |/| ^ 1, this is evident. We shall assume |/| > 1. Taking
an element i0 of /, let I0 = /\{/0} and 60 the set of subsets of J0. Set ^ =

P(/0, j*). Then P(l, j*) is equivalent to P({i0}, 99\ by the following functor.

For Af = ((MJ, (/„,), (^a))eOb(P(J, j/)) set

e Ob

Then (/aU{Io}§a)a and (0a.aUUo))a define /(M): i(M)-+j(M) and g(M): j(
respectively. Thus t(M} = (i(M)J(M)J(M),g(M)) gives an object of P({i0},

^). Now assume that M e Ob(P(/, j*)) satisfies (2.3.5).

Since <M) satisfies (2.3.5), t(M) belongs to M((i0), ^). Hence M^

M!©M2 such that i(M1) = 0 and i(M2)-*j(M2) is surjective and 7(M2)-*i(M2)
Is injective. As (2.3.5) and (2.3.3) are stable by direct summands, we may assume

either i(M) = 0 or i(M)-»j(M)»i(M). In the first case i(M) = Q, the hypothesis

of the induction implies j(M) E M(/0, j&\ Hence M belongs to M(J, jtf).

Therefore, we may assume i(M)-»j(M)>^>i(M), or equivalently, /a/8 is surjective

and g^ is injective if a=^^ and a 9 i0, j8 ^ i0. Now, we may assume this for all

i0 G I. Hence M belongs to M(/, j^). Q. E. D.

§ 30 Relative Weight (cf. [S-Z])

3.1. Let W be a filtration of an object H in an abelian category and let

N be a nilpotent endomorphism of H such that NWkcWk. A relative weight

filtration M is a filtration of H such that

(3.1.1)

(3.1.2) Nl: GrjJ+jGrjf - >Gr|lzGrf is an isomorphism for any 1^1 and k.

Remark that It is unique if it exists. We shall denote it by M(N, W). As

shown in [S-Z] we have

(3.1.3) M£N, W) n Wk=Wk n (NJ)'lM^2j(N9 W) for j^O and l^k+j-1 .

(3.1.4) M£N, W) n Wk = NJ(Ml+2j(N, W) n WJ + M^N, W) n Wk.i

for j^O, l^k-j.

The last one implies

(3.1.5) M(N9 W)ldNs'M(N, W)l + 2r + M(N, W)l(]Wl+r.1 for
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Note also the following result In [S-Z].

Lemma 3.1.1 ([S-Z]). Assume that H=Wk and that the\w eight filtration of

N\Wh,l relative to W n ̂ i-i exists. Then the relative weight filtration of N

exists if and only if we have

i-i) for any j^l .

3020 Now assuming the existence of relative weight filtration, we shall

deduce their properties. We denote by M the weight filtration of a nilpotent

endomorphism N of H relative to a filtration FFof H. After [Z], we define

(3.2.1) Kk = Kk(W)= r\
j=o

They are the dual notions of each other. We have

(3.2.2) K^W.nN^K,^,

3.2.1. Mk= ; W(Wt+] (]Mk+2j) = r\
j=o j=0

Proof. By the duality3 it is enough to show

(3.2.3) MknWk+r^ ±QNJ(Wk+JnMk+2j) for r^O.

We shall prove this by the induction of r. This is true for r = 0 and for r > 0,
we have

Mk n wk+r<=N"(wk+r n M,c+2r)+M, n HW,-I

<=N'(wk+r n Mk+2r) + 'E NJ(wk+J n Mk+2J)
J=0

by (3.1.4) and the hypothesis of the induction. Q. E. D.

Corollary 302020 Kk c Mk c I/r

3o2o30 For p^g, K(^(Wp/W^)) fl^rf 1(^(^/1^)) are the filtration

induced from K(W) and I(W), respectively. Here W(Wp/Wq) is the filtration of

Wp/Wq induced from W.

Proof. It is enough to show
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(3.2.4) iknwr<=f,W(wt+Jnwr
7=0

This is trivial for p^fc. When p^/c, we shall prove

(3.2.5) 7kn »i<= Z?W»i+j)

by the descending induction on p. We have

P-fc + l
I k f \ W p ^ I k f } W p + i ^ Z o

Therefore, we have

/* n Wp c if N^t+J. + N
7=0

The last term is contained in N*>-k+lWp + Mk_v n Wp by Lemma 2.2.1, and the

preceding lemma implies Mfc_ l n FFpc: £ JVJ"(Wfc- 1 +j H W^,). Thus the induction

proceeds.

Lemma 3.2,4, Mk n Wk+f = Nr(Mk+2, n Wi+r) + X j k + r_1 n Mk for r^O and

Mknwk+r=Nr(Mk+2r n Wi+rHtf'-Wk+zr-i n ffk + r_1) + K f c + r_2 n Mk for

Proof. We have, for r^ 1

(3.2.6) Mtn ^+rc=N'(Mk+2rn »i

Therefore, the second assertion follows from the first. We shall show the first

one by the induction on k. By the hypothesis of the induction, we have

(3.2.7)

c:N^(Mk+2r n Wk+r.^Kk+r.2 n Mk_2 .

Therefore, we have

Mkn wi+r.1<=N'(Afk+2r n Jii^-O+JV-^^.a n wi+^i nM f e .
Since the last term is Kk+r_ 1 n Mk by (3.2.2), we are done. Q. E. D.

Proposition 3.2,5,, Mk= f; NJKk+2i= r\ (N*)-lIk-2t.
j=o j=o

ao

Proof. By the duality, it is enough to show Mka £ NJKk+2t-. We shall
J=o

prove this by the descending induction on k. By the preceding lemma, we have
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By (3.1.5) we have

Thus, we have

Q.E.D.

3.2.5.1. For j^O, Wk+l

Proof. For 0^v<j, we have

For v^j, we have

for r^O.

Proof. We have, by the preceding lemma and Corollary 3.2.2,

Therefore, it is enough to show

(3.2.8) M k n w
j=o

We shall show this by the descending induction on r. Note that (3.2.8) is true

if r is so big that Nr+1 =0. Now we have, for any r^O,

2(Mk+2 n Wk

by Lemma 3.2.4. This implies

Mk n ff fc_ rdjv(M fc+2 n wt.P)+N-c+1)xt.r.2 n wk_r+Mk n ^^^ .

The first term of the right hand side is contained, by the hypothesis of the

induction, in N NJWk.rnN-tr+*+»Kk-r-2c: N*+lWk_.r n N-W+
J=0 j=0

Kk_r_2 modulo W^r-i. Thus the induction proceeds. Q. E. D.

Lemma 302«/70 For any r and k we have
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Proof. For r^O, this is nothing but the preceding lemma. For r>0,

we have

Mk n wk+r=N'(Mk+2r n wk+r)+Mk n wk+r.,

= AP(Z
j=0

Wk+r^. Q.E.D.
j=o

Lemma 3«,20§8 Let (p be the projection Mk-^GT^. Then we have the

direct sum decomposition

<p(Mknwk+r)= @

Proof. By the preceding lemma it is enough to show that for m + r, m ̂  0

(3.2.9) X = Nm+I-Wk+rnN-(m+VKk+r_2

n( E NJ+'Wk+rnN-u+»Kk+r-
0^j<m,j+r^0

In order to see this, it is enough to show

By Lemma 3.2.1, this follows from

(3.2.10) N^N-^^XnW^^W^

which we are going to prove.

For v^2m + r— 1, this follows from

If v ̂  2m + r + 1 > m 4- r, we have

The remaining case is v = 2m + r. Then, we have

2m+2r- l -2v Q.E.D.

Theorem 3.2.9, We have a canonical decomposition
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This theorem is one of the key points of this article. (See Remark 5.3.2.)

33. Let Wand W be a filtration of objects H and FT in an abelian category,

respectively. Let/: H->H' and g\ H'-»H be raorphisms preserving filiations.

L 3.3.1. Assume (3

(3.3.1) fog is nilpotent.

(3.3.2) The weight filtration of fog relative to W exists.

(3.3.3) For any k we have Grjf < * Gr]f' .
>

Then the weight filtration of g°f relative to W exists and we have

(3.3.4) fMJgof, HOcM^tfa, W).

(3.3.5) gMtfog, W) <= Mk_ ,fo =/, W) .

We shall denote fog and g°fby the same letter N. We shall first show

Lemma 3o3o2o If M = M(N, W) and M' = M(N, W) exist, then we have

(3.3.4) and (3.3.5).

Proof. By the duality, it is enough to show one of them, say (3.3.4). We set

Kk= r\(NJTlWk_j and K'k=

By Proposition 3.2.5, it is enough to show

(3.3.6) fK^K'

We have, for j^O

(N>'Kk)cWk-j and (

Hence (3.3.3) impKes/(AT-''Kk)czWi_J._1. This shows (3. 3. 6). Q. E. D.

Now, we shall show the existence of the weight filtration of N relative to W.

We may assume, by the induction, that H = W0, W = W0 and that M = M(N\W_1,

W\w_^ exists. Therefore, the preceding lemma implies fMk<^M'k^1 and ^(M^ n

W-1)aMk_1. Here M' denotes M(N, W). By Lemma 3.1.1, it is enough to

show

(3.3.7) ImN-*' nW.^NJ'W^t + M.j., for

We have, by (3.3.3),
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ImNJ n W.lcg(NJ'lW0 n WLJ

On the other hand, we have

The induction on k deduced from this

Therefore, we obtain

.1+MLl fl WLJ

This shows (3.3.7) and we have completed the proof of Proposition 3.3.1.

Remark that Proposition 3.3.1 means that the existence of relative weight

filtration is a micro-local property.

3.A For a filtration W and a nilpotent endomorphism N such that NWk

c Wk, if the relative weight filtration M(N, W) exists, we define the filtration

(3.4.1) (N*W)k = NWk+l+M£N, W) n Wk

= NWk+l+Mk(N9W)KWk+i

= NWk+l+ n(NJrlWk.j.j^o

The first equality follows from (3.1.4) and the second follows from Proposition

3.2.5.

Note that its dual notion is

(3.4.2) (NlW)k=Wk

In the sequel, we only treat N#W, as we can treat N{W similarly.

Lemma 3.4.1. We have

(3.4.3) (NWk+1+M(N, w)k n wk) n w^N(wk^ n wj+M(N, W)k

and

(3.4.4) N(Wk+1 + Wl) + (M(N, W)k+ Wj n (Wk+

= NWk+l+M(N, W)k{]Wk+Wl.
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Proof. (3.4.3) is trivial when l^k+L When J^fc, we shall prove (3.4.3)

by the induction on /. Writing M for M(N, W), we have

Hence we obtain Wlr\(N^tW)kc:NWl-{'Mkr(Wl. The equality (3.4.4) follows

from (M(JV, W)k+Wt) fl (JFk + WJ = M(N, W\ n Pffc+ JF,.

Lemma 3.4.2. FPe

(0)

( i )
{>

(ii) T/?e relative weight filtration of N^W is M(N, W).

(ni) GrfGrf^ = (° for l< /c~1

JVGrf for / = fc-l

for

Proof. (0) follows from Lemma 3.1.1.

We write M for M(N, W). Then we have

(3.4.5) (N*W)k n Wi =

This shows Ker (GT%*w^GrF+1) = MknWkIMknWkn(N*W)k-l. Now we

have

(3.4.6) NWk+1n(MknWk + (NtW)k-Jc(N*W)k-i,

In fact, the left hand side of (3.4.6) is contained in NWk+1 n Wk.

The property (i) then follows from (3.4.6).

Now we shall prove (ii). It is enough to show the following properties.

(3.4.7) Mk_ln(N^W)kc:Nl(Mk + ln(N^W)k) + (N^W)k^ for J ^ l ,

and

(3.4.8) (Ni,W)kn(Ntr1(Mk-l-1+(N^W)k-1')<=Mk+l.l + (N#W)k-1 for J^l .

We have, by (3.1.4)

c= N\Mk + , n

We have also

n (N'
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Thus we have (3.4.7) and (3.4.8).

Finally we shall show (iii). By Lemma 3.4.1, we may assume that W

is the trivial filtration. Then we have

0 Jc<-l

for k*-l.

Therefore Gr*f = Im N and, for fc^O,

Gr»*w = (Im N + Mk)/(Im N + Mk _ J = MJ(Im N + Af fc _ 0 fl Mfc

Thus we obtain (iii).

Corollary 30403o

Gr^ = Im(iV: Grf+1-*Grf+1)0Coker(]V:

Proof. By the preceding lemma we have

(3.4.9) Gr%*w = lm(N: Grf+1

The last term is isomorphic to

Since (IV* PF)fc n ¥Fk <= A/Wk+ 1 n F7k + Wk n Mfc c (JV^ ff)fc_ t + fFfc n Mfc, we have

)^wknMk/Mkn(N^w)k,1
s wk n Mki(Mk n NWk+Mk-i n wy=w; n Mk/(N(Mk+2 n »y+Mk_1 n FFfe).

This shows the desired result.

§ 40 Infinitesimal Mixed Hodge Modules

4.1. Let w be an integer, let F and F be two filiations of a finite-

dimensional C-vector space H, and let S: H®H-»C be a non-degenerate

bilinear form satisfying

(4.1.1) S(x,y) = (-irS(y,x) for x,

(4.1.2) S(F*,(F«)-) = 0 for p + ^ > w .

Let {JVl9..., N/} be a mutually commuting set of nilpotent endomorphisms of

H such that S(NjX, y) + S(x, Njy) = Q and NjFPcF?-1, NjpPaFP-1. Then

the following conditions are equivalent (essentially due to [C-K]. See [K-K]).
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(4.1.3) There exists c such that (H, e i Z t J N j p , e~iZtJNjF) is a Hodge structure

of weight w and S polarizes it when tj > c.

(4.1.4) The weight filtration W of A f = X tjNj does not depend on tl9..., £*>0
_ j

and (W, F, F) is a mixed Hodge structure of weight w and the bilinear

form Sk: Pk®Pk-+ C given by Sk(x9 y) = S(x, Nky) polarizes the primitive

part Pk Ker(Nk+1: Grf->GrFfc_2).

If these equivalent conditions are satisfied, we say that (H; F, F; Nl9...9 N,; S)

is a nilpotent orbit of weight w. If (H; F, F; A/\,..., N^; S) is a nilpotent orbit

for some S, then we say also that (H; F, F; Nl9...9 Nt) is a nilpotent orbit.

4o2o Let W3 F and F be three filtrations of a finite-dimensional C-vector

space H and let Nl9...9 Nl be nilpotent endomorphisms of H such that

(4.2.1) NjFPdPP-1, NjFP^pp-1 and NjWkaWk.

If (Grf, F(Grf), F(Grf); AM^jv.., A^Grf) is anilpotent orbit of weight

k for any k, then we say that (H; W\ F, F; Nl9...9 Nj) is a pre-infinitesimal

mixed Hodge module (that we shall abbreviate to pre-IMHM, in the sequel).

43. Let (H',W'9F9FiNi9...9N^ be a pre-IMHM. Set / = {!,...,/}.

If, for any Jcz/, there exists a filtration M(J) of H such that

(4.3.1) NjMk(J)cMk.2(J) for jeJ

(4.3.2) M(J) is the weight filtration of £ JV,- relative to FF0
jfeJ

Then we say that (H; PF; F, F; JV1?..., Nz) is an infinitesimal mixed Hodge

module (abbreviated to IMHM in the sequel). Then by the result of [C-K],

(4.3.3) M(J) is the weight filtration of N relative to W for any JVeC(J) =

[ X t j N j i t j X ) } .
jeJ

If (H; W; F, F; Nl9..., Nt) and (H'; W'\ F', F'; NJ,..., Ni) are pre-IMHM9s,

then their tensor product (H®H'; W®W'; F®F'3 F{x)F'; Nj®^,..., N^Nj)

and their inner-Horn (Hom(H? H'); Hom(PF3 IT); Hom(F? F'), Hom(F? F');

— Hom(Nl5 Ni),...,--Hom(Nj, NJ)) are also pre-IMHM's. The tensor product

and the inner-Horn of IMHM's are also IMHM's.

4o40 We shall prove in §6 the following theorem.

i 4A1. // (H; W; F, F; JV1?...? JVZ) is a pre-IMHM and if there
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exists the weight filtration of Nj relative to Wfor any j = l,..., /, then it is an

IMHM.

4.5,, Let X be the n-dimensional polydisc Dn and let X* be D*w. Here,

D* is the punctured disc D\{0}. Let H = (HC, W(H), F(H), F(H)) be a graded

polarizable variation of mixed Hodge structure on X*. Letting 0^(H) be a

canonical extension of 0X*®HC, we extend 0X*®FP(H) as a filtration of

subbundles W(0X(H)) of 0j(H). Similarly we define %(H) and JF(0j(H)).

Let us assume that

(4.5.1) F(H) (resp. F(H)) extends to a filtration of 0*(H) (resp. 0j(H)) such

that Gr*^*<H»GrF(H) (resp. Gr*^<H»GrF(H)) is locally free.

For the sake of simplicity, we assume further

(4.5.2) The monodromy My of Hc around z/ = 0 is unipotent.

Let Nj be the logarithm of M}.

Set U = {z e X* ; Re zy > 0} and we define <F(HC) = F( 17 ; Hc). We identify

<F(HC) and C(0}®x^(H) by si-»gra^lo«^ se0x(H). Then F(H) and F(H)

give the filtration F(*F(H)) and F(W(HC)) of ^(Hc). By the nilpotent orbit

theorem ([S]) due to W. Schmid, we have

Proposition 4.5.1. !P(H) = (y(Hc), ¥(W(HC))> F(V(K», F(!P(H)); JV l5...,
NJ is a pre-IMHM.

Note that H is admissible in X if !F(H) is an infinitesimal mixed Hodge

module. Thus, together with Proposition 1.11.3, Theorem 4.4.1 implies

Theorem 4.5.2. Let X be a complex manifold, X* the complements of a

normally crossing hypersurface of X and Z a closed analytic subset of X of

codimension ^2. J/H is a variation of mixed Hodge structure on X* and if

H\x*\z is admissible in X\Z9 then H is admissible in X.

§ 5. Properties of Infinitesimal Mixed Hodge Modules

5.1. In this section, we shall study the properties of infinitesimal mixed

Hodge modules. Hereafter we write IMHM for infinitesimal mixed Hodge

module. In the course of arguments, we shall make a frequent use of the

following
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Theorem 5.1.1. Let H = (W(H)9 F(H), F(H)) be a mixed Hodge structure.

Let {G!,..., G/} be a distributive family (see [K]) of filiations of H w £^e

category of mixed Hodge structure. Then (G l5..., Gj, lf(H), F(H)} is a

distributive family.

Proof. We shall first show {G1?..., G,, ff(H)} is distributive. Since {Gj

,..., G|} is distributive, it is enough to show

(see [K]).

This follows from the fact that H*->Wk(H) is an exact functor on the category of

mixed Hodge structure. Similarly {Gl9...5 Gj, F(H)} is a distributive family.

Since VF(H) is a filtration of H in the category of mixed Hodge structure, we can

argue as :{G1?..., GJ is distributive =>{G]3..., Gh W(H)} is distributive =>{G l9...,

G/? W(H), F(H)} is distributive.

502o The following proposition is proved by Deligne (see [S-Z]). We

shall give another proof.

. §.20L Let W, F, F be filiations o/H and let N be a nilpotent

endomorphism ofH satisfying

and NWkaWk.

Assume further

(5.2.1) There exists the weight filtration M of N relative to W.

(5.2.2) Grjf is a mixed Hodge structure with the induced filtration of M as a

weight filtration and with the induced filtrations from F and F as

Hodge filtration.

Then, (M; F, F) is a mixed Hodge structure.

Proof. By the induction, we may assume that

(5.2.3) H=W0

(5.2.4) (M n Wk; F n Wk, F D Wk)

is a mixed Hodge structure if k < 0.

Lemma 50202e (M, F3 W) is a distributive family of filtrations.
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By Theorem 5.1.1, (M n W,l9 F n W-l9 Wft W.J is distributive. Hence

it is enough to show, for k^ 1

(Bk) M_ f e n (F*+ JF-OczM _fc n F^+M_ f c n if-! .

We shall show (A+i^fA) for fc^l and (Ak+2)=>(Ak) for fc^l. They establish
(Ak) and (B&) for all fc.

+i)=>(**): Since (FP n M_fe)(Gr^) = JVfe(F^+& n Mfe)(Gr^), we have
M_ f c n (F' + If _ 0 c ]Vk(Mfc n (F*+fe + Pf_ i)) + If _ j

(Ajk+2)=>(^ft): we have

(5.2.5)

Furthermore we have

(5.2.6)

Since JS^PF.! is also a mixed Hodge structure, {A*^!, F^-fe n W-l9 M_ f c _! n

IPF.i} is distributive by Theorem 5.1.1. Thus the right hand-side of (5.2.6) is

contained in F*>-k n NkW-i+F*~k n M..̂  n FF_1 = JVfc(F^ n Wr_1

Finally, (5.2.5) shows

F^ n (Mfc_! + W-jcF* n M^i +F^ n w^

Q.E.D.

Now, we shall prove the proposition 5.2.1. By the assumption (Gr^Grjf,

F(Grf Grf ), F(Grf Grf )) is a Hodge structure of weight I for any L By the
preceding proposition, we have F(GrffGr^r) = F(Gr^Grff), which implies (Grf,

F(Grf* ), F(Grf)) is a Hodge structure of weight I because an extension of Hodge

structures of weight I is also a Hodge structure of the same weight. This com-
pletes the proof of Proposition 5.2.1.

As a corollary of Proposition 5.2.1, we have

Proposition 5,23. //(If; F, F; Nl9...9 Nt) is an JMHM, then (M({1,..., I}),
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F, F) is a mixed Hodge structure. Moreover Nj is a morphism of mixed Hodge

structure (up to the Tate twist).

In particular, M(J), W9 etc. are filtrations In the category of mixed Hodge

structures.

5.2.4. Let (W\ F, F; Nl9...9 N,) be an IMHM, and let

, / !<=•• ' czjfcc={l,..., 1} be an increasing sequence. Then {W, F, M(J^9...9
M(Jk)} is distributive.

Proof. We shall prove this by the induction of k. We may assume that

Jk = {l,..., /} and that {W, M(J1),...,M(Jk_l)} is distributive. Since W and

M(Jp) (l^p<k) are filtrations of (M(Jfc); F, F) in the category of mixed Hodge

structure, {W, F, M^),..., M(Jk)} is distributive by Theorem 5.1.1.

The following is proved by Cattani-Kaplan [C-K] In the pure case and

asked by Steenbrink-Zucker ([S-Z]) in the mixed case.

502o50 Let (W; F, F; Ni9...9Nt) be an IMHM. Then, for

J19 J2c{l3..., 1} and NeC(J2) = { £ tjNj'9tj>0}9 M(J1[jJ2) is the weight
j'e/2

filtration of N relative to

Proof. We have NMk(J1 u J2)<=Mfe_2(J1 U J2)- Hence it Is enough to
show that

is an isomorphism. This follows from the fact that {M(J1 U J2), M(Jt)9 W} is

a distributive family and the fact that

Is an isomorphism, which is due to Cattani-Kaplan [C-K].

Proposition 502e6o (I) The category of pre-IMHM's is an abelian category.

(ii) The category of IMHM's is abelian, on which W, M(N1? W), GTW,

GTM(NI'W\ etc., are exact functors

J*roof. (I) Is almost evident. We shall show (ii). The problem Is only

the existence of relative weight filtrations of the kernel, the cokernel, etc.

Therefore it Is enough to show that for a morphism/: H = (FF(H), F(H), JF(H);

JV19..., NJ-*H' = (W(H'), F(H), F(H'); Nl9...9 Nt) in the category of IMHM's,

the restriction of M(Nl9 W(H)) to Ker/is the weight filtration of Nt relative to

W(H) n Ker/. Set H" = Ker/. Now H and H' have a mixed Hodge structure



1012 MASAKI KASHIWARA

with Was SL weight filtration and eiEtJNJp ande~iEtJNjp as Hodge filtrations for

*!,..., f t»0, respectively. Hence /is strict with respect to FF-filtration. On the

other hand, H and H' have another mixed Hodge structure with M(Nl9 W) as

a weight filtration, respectively. Moreover, W is a filtration of them by sub-

mixed Hodge structures. Therefore if we denote by M(H") and W(H") the

restriction of M(Nl9 W(H)) and W(H) to H", then the rows in the following

diagram are exact.

0 - > Grf+f'^Grf^'^ - > Grf+
(
z
H)Grf

0 - > GrfJp^Grf^") - > GrfJ^Grf <H> - > Grf_(f }Grf («'>.

Here M(H) = M(JVl5 JF(H)) and M(H') = M(JV1, W(W)). Since the vertical

arrows are isomorphisms except the left one, the left one is also an isomorphism.

This shows that M(H") is the weight filtration o f N l relative to W(H"). Q. E. D.

53. As an application of Theorem 3.2.9, we shall prove the following

Proposition 5.3.1. Let (W; F, F; JV l5..., AQ be a pre-IMHM. Assume

that the weight filtration M of Nl relative to W exists. Let N^W be the

filtration as defined in (3.4.1). Then (M; F, F; N2,..., N}) and (N^W; F, F;

N19 N2,..., N^ are pre-IMHM's.

Proof. In order to show the first, we have to prove the existence of a

polarization on Grf , by which (F(t), F(tJ) = (eiIltJNJF9 e~iEtJNJF) is polarized

for t !,..., r(»0. Now by Theorem 3.2.9, Grf is a product of Grf Grf 9s canoni-

cally. This is true also as a Hodge structure with (F(r), F(tJ) as Hodge fil-

trations. On the other hand, Grf Grf has a polarization free from t, by which

F(t) is polarized. Therefore Grf has a polarization by which (F(f), F(f)) is

polarized. Thus, (M; F, F; JV2,..., JVf) is a pre-IMHM. Now we shall

show (N^W'9 F, F; Nl9 N2,..., Nt) is a pre-IMHM. We have by Corollary

3.4.3

Gr^i*^ = ATiGrf+i eCoker (ATj : PffcGrf+2-^ Pf&Grf ) .

Since Grf is polarized, so is Coker^: lf&Grf+2->^Grf). Since (Grf+1; F,

F ; N1 , . . . , Nt) is a nilpotent orbit, the vanishing cycle theorem ([K-K], [C-K-S])

shows that (NlGr^+l; F, F; Nl9...9 Nt) is also a nilpotent orbit.

Remark 5.3.2, Similarly to Proposition 5.3.1, Theorem 3.2.9 implies the

following. Let X be a complex manifold, /: X-^C be a holomorphic map
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such that /~1(0) is non-singular. Let H be a graded polarizable VMHS on

^\/-i(0) admissible on X. Then the near-by cycle of H with respect to / is

also a graded polarizable VMHS.

In the following sections 5.4 and 5.5, we shall give the weight filtration

relative to N^W.

5 A Let (H; F, F; Nl9 N2) be a nilpotent orbit of weight w. Set W(H)

= M(N1 + N2\ W'=M(N1). Here, M(*) shows the weight filtration.

Lemma SAL Ker JVf n Im N2 c JV2(Ker JVf ) + Wk-2

Im N\ n Im N2 n W.k. l dim N2N$ .

Proof. By the purity theorem ([K-K], [C-K-S]) we have

Ker N{N2 c Ker N\~1N2 + Ker N\ + Wk .

Therefore the induction on k shows

Ker N\N2 c Ker N\ Ker N2+Wk.

This shows the first statement. The second statement is the dual one.

Proposition 5A20

k,1
= N2W'k + Wk-1 n Pffc n Im N2 .

Proo/. Let l^& be (N 2,fM(N ^^ 1 n ImN2. It is enough to show (5.4.1)-

(5.4.3).

(5A1) NiWk^Wk_2

(5.4.2) W-k<^N\ftk for fe^l.

(5.4.3) KerNfnlm^c:^! for fc^l.

The first one is obvious. The last one follows from the preceding Iemma0

We shall show the second. In the expression W-k = N2WLk + W-.k_1 n WLk n

ImJV23 the first term is contained in N^^W^aNl Wk and the second term is

contained in

W.k.l n Im N\ n Im N2 n W'-k elm N\N2 n W.k.l n WLk

k+l n ̂ OcJVi^.

5050 Let (IF; F9 F; JV15 AT2) be an
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Theorem 5.5.1.

We shall reduce this theorem to Proposition 5.4.2. In order to perform this

smoothly, we shall first show that these filtrations commutes with

For simplicity, we write

(5.5.1) M' = M(JV15 W),

M" = M(N2, W), M = M(N1 + N29W) = M(N2, M')

Wf = N^W, W" = N2*W and tt=N2*M' .

Hence we have

(5.5.2) W'k = N2Wk

Lemma 5.5.2. (i) W'k n Wa = N2(Wk+1 n Wa) + M'k f]Wkf] Wa.

(ii) W'k + Wa = N2(Wk+1 + Wa) + (M'k + Wa)

(iii) M( n wa = N2(M'i + 1 n wa) + M, n M; n wa.
(iv) Mt+wa= N2(M[ +1 + wa)+ (Ml + wa) n (M;
Proof, (i) follows from Lemma 3.4.1.

(ii) is trivial.

(iv) follows from the fact that {M, M', W} is distributive (Proposition

5.2.3).

Finally, we shall show (iii). Since M(HjWa) = M(N2, M'(H/Way), we have,

using (3.1.3) and the fact that {W, M, M'} is distributive,

M( n wa=(N2M'l+1 +M; n M() n w.
^(N2(M'l+1n(Ml+2+wa)+M'l+1 n

M'lnWa. Q.E.D.

Lemma 5.5.3. {M, W, W"} is distributive.

Proof. It is enough to show

(5.5.3) M, n (wa+ Wficffi, n w.+ttt n W'k.
When fl^fe+1, this is trivial because Wa=>W'k. So, assume a^fe. Then we

have

n W
c M,
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because {M, N2M'9 Wa + Wl} is distributive by Theorem 5.1.1. Since Ker(JV2|

MJ + 1(H/Wi+1))c=MI+1(H/Wi+1), we have

N2M'l+1 n (W0+ W'O^N2M'l+1 n wk+l n W+ #?)
^2(M;+1 n M,+ I+M;+ I n f^+1) n (wa+ WD
c]v2(M;+1 n wi+i)+M, n (wa+ w^aMl n fl^+M, n (wa+ wi).

Hence we have

Mt n (wa + wi)aMl n wi + Mt n Mj+1 n (w a +W" k ) .

Since M, n Wa^N2(Ml+2 n TTJ + Af, n M; n Wa^ W^ + Mt n M; n IFfl3 we have

MI n M;+I n (wa+ wi)dM'l+l n (M, n wa+Mt n î ;;)
CIM;+I n (M, n M; n wa+Ml n i^D
CMI n M; n ffa+Mz n MJ+I n WI^MI n Pfa+M, n wi.

Q.E.D.

Now, we are ready to prove Theorem 5.5.1. In order to prove this it is

enough to show

(5.5.4) N{: Grf+jGrf" > Grf.^Grf" is an isomorphism for 1^1.

This follows from

(5.5.5) N{: Gr^Grf+zGrf" >GrfGrf_^Grf" is an isomorphism.

By virtue of Lemma 5.53, Gr^GrMGr^" = GrMGr^"Gr^. Then, by Lemma

3.4.2, when k<a-i, GrfGrf"=0. When k = a-l, GrfGrf"=]¥2Grf and

(5.5.5) follows from Proposition 5.4.2 along with Lemma 5.5.2. Therefore we

can assume k^.a. We shall show, in this case

(5.5.6) M(Grf "Grf) = M(Grf "Grf).

Note that W'i n Wa = N2Wa + M"k n Wa and Ml n Wa = N2(M'l + 1 n Wa) + Ml n M[

n Wa by Lemma 5.5.2. Since N^aW'^^ we have

M^Grf" Grf) c M,(Grf" Grf).

Conversely, (3.1.5) implies

M, n wa^N2(Ml+2 n wy+M, n M; n waa wi-l+Ml n w;

and hence M(Grf"Grf)c=M(Grf"Grf). Thus (5.5.5) follows from

(5.5.7) JVi:Grf+,Grf'Grf ±njGrf_zGrf"Grf for fc^a, /^ l .

Since Grf "Grf is a direct summand of Grf "Grf by Lemma 3.4.2 and
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rJr) = M(N1|Gr?r; M"(Grf )), we have (5.5.7) and this completes the proof

of Theorem 5.5.1.

As a corollary of Theorem 5.5.1 we have

Corollary 5.5.4. // (W; F, F; Nl9..., Nt) is an IMHM, then so are

(N^W; F, F; Nl9..., Nt) and (M(Nl9 W); F, F; JV2,...? Nj.

Use Proposition 5.3.1

Proposition 5o5050

, W) fl

, W) n

In particular

Proof. We shall use the notation in (5.5.1). Noting (N^N2^W)k

NIL W'k+i + Mk n Wl = (N1 W'k+1 + Mk) n W'k+1, it is enough to prove

(5.5.8) MknW£ciN2W'k+1 + Mk(} W'k(} W'k,

(5.5.9) N2^i+l<=Nl

and

(5.5.10) Mkf] W'^

Note that

(5.5.11) &k=N2Mi

By Lemma 5.5.2 we have

Mk n W'^Mkn wk+1^N2(M'k+1 n wk+1)+MknM'k n wk+1
W'k.

Therefore we have (5.5.8).
Secondly, (5.5.9) follows from

] W'k.

Finally, by (3.1.5), we have

n Wi+1=Mk n (N,wk+2+M'k+1 n W^^N^M^ n wk+2)+Mk n M'k+i
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Ni(N2wk+2+Mk+2 n M;t+2 n wk+2)+Mk n M'k+,

5.6. Let I be a finite set and let ® be the set of subsets of 7. Let us consider

the following category MH<7) consisting of H = {H(a), W'(U), Fa(H), Fa(H),

/a/)(H), ^(H)}^,.^/. Here, H(a) is a finite-dimensional vector space, Fa(H),

Fa(H) and Wa(H) are filtrations of H(ot) and /a/((H): H(j8)->H(a), ̂ (H): H(a)
-»H(jB) satisfy the following conditions (5.6.1)-(5.6.7):

(5.6.1) f^9xx = id,

(5.6.2) ftf°ffr=fw gyf°gfa = gy, for <x=>p=>y.

(5.6.3) gai^ffttaf,t=faL,,nfg^t,ii for any a and ^.

(5.6.4)

and ^^(^c^^.^^H) for ]8<=a<=/ .

(5.6.5) Letting JVy 6 End(H(a)) be Nj = g a t a t U U ] f l l U U } i , for a^j and

U},j for a3J. ^. is nilpotent .

(5.6.6) (H(a); TF«(H); FZ(H), Fa(H); {Afy}A/} is an IMHM for any

(5.6.7) Grr^=±Grr4^| for ot = /J.

Note that if H is in MH(J), then H* defined as follows is also an object of MH(/)

(5.6.8)

For H e MH(/), let us define the Tate twist H(n) of H by

(5.6.9) H(n)(a) = H(«), ^(H(n)) = W\ + 2n(H) ,

F;(H(fi)) = F'+-(H), F;(H(n))=
/a/H(n)) =/^H),

Lemma 506el0 l/ac:^5 anJ yz>)S\a,
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Here, M(y, H(a)) = M(N9 W«(H)) for NeC(y).

Proof. We shall prove them by the induction of |j8\a|. If |j8\a| = l and

y = f}\u9 they follow from Proposition 3.3.1. When |/?\a| = l, they follow from

this case and the fact that M(y3 H(a)) = M(N, M()8\a, H(a))) for NeC(y).

Now assume |j8\a|>l. Then taking <5 such that a^^^j5, they follow from the

hypothesis of the inductions for a, (5 and <5, /?.

Lemma 5,6.20 // we set

(5.6.10) PJ(H)= O Kerfo,..: Grf "<">

Sk(H) /ias weight k with respect to the weight filtration M(a, H(a)).

Proo/. We may assume that a=l. Take NeC(/). Then M(a, H(a))

induces the weight filtration of JVlGrjf a(H), shifted by fc. On ther other hand,

P?(H) is a direct summand of Grfa(H) as an C[NlJ...,NJ«module by

Proposition 3. 3.1. Therefore M(a, H(a)) induces on Pj(H) the weight filtration

of N|PJ(H) shifted by fc. Then this Lemma follows from N\P(Uf) = 0. Q. E. D.

For y e 1, we define ^y(H) and <py(H) in MH(/\(y) as follow

(5.6.11)

a n d ( H ) = ( H ) f o r

(5.6.12) ^(H)(a) = H(aUy), FF«(^(H)) = M(y, H(a U

F.(^(H)) = Fa , y(H), Fa(^(H)) = Fa

/.^(H))=/aU7./,uy(H) and
for ac=

PropositioE 5B6o4o ^y(H) and cpy(H) are objects in MH(/\y).

Proof. (5.6.1)-(5.6.5) are evident and (5.6.6) follows from Proposition

5.3.1.

In order to prove (5.6.7), we prepare the following

Lemma 5.6.5. Let (H; F, F; Nl9 N2) and (H'; F'9 F'',N'l9 N'2) be a

nilpotent orbit of weight w and w — 1, respectively. Letf: H^H' and g: H'^H

be homomorphisms such that

(5.6.13) 9°f=Nlt /°0 = Ni,

(5.6.14) N'2°f=f°N2, N2°g = g°N'2,
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(5.6.15) H;=±H'.
9

Then, we have for any k

(5.5.16) Grf <**> ;=± Grf W>.

If ere M(*) is £/ze weight filtration.

Proof. By the duality, it is enough to show

(5.6. 17) 9Mk(Ni) c= JVi

We have, by Proposition 5.4.2,

= M
Q.E.D.

Now, we shall show (5.6.7) for ^y(H) and <py(H). For this, it is enough to

show, by Proposition 2.3.1

(5.6.18) Grf (^} ;=± Grf (^a) for ^c=a and
P>

By Theorem 3.2.9, Grf(?'^ is canonicaily a direct sum of Grf ^'

Hence (5.6.19) follows from

(5.6.20) Grf (^^>Grr ^=^ Grf (/
>

which is an immediate consequence of Lemma 5.6.5.

5o7o By Lemma 5.6.1, /aj8(H) and g^a(H) are considered as morphisms of

mixed Hodge structures /a/?: H(j8)-*H(a)(-|a\j8|) gpat: H(a)-*H(j8), with

M(J, H(a)) as weight filtrations.

Letting e^ (j el) be the base of Z(jr), we shall define the complex U(H) by

(5.7.1) Jf7(H)»= © H(a)(-w)®Ze«.
|a| = n Z

Here ea= A e^. The differential is given by £ /au{j> agj- Let us define

|a|=n

Then U(H) is a filtrered complex in the category of mixed Hodge structures.
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Theorem 5JA, Hw(Pffc(U(H))) has weight ^ k + n.

Proof. It is enough to show that Hn(Gr^U(H)) has weight ^

Then replacing H with Grw we may assume

f H(a) fc = a-|a|
0

Then Proposition 2.3.1 implies that H is a direct sum of M (1, (vector spaces)).

Thus, we may assume that, there is ye/ such that H(oc) = 0 if a;£y and H(a)

= ( FI Nj)H(y) for a:=>y. In this case, the theorem is nothing but the purity

theorem ([K-K], [C-K-S]).

5.8. Let H = (W', F, F; Nl9...9 Nt) be an IMHM. For Jcz/ = {l,..., I},

we set

(5.8.1) M(J) = M(J; W) = M(Z Np W),
JeJ

(5.8.2) VjW=Nj^-Nj^W where J = {j1,...,jr}.

By Corollary 5.5.4 and Proposition 5.5.5 <FjWis well-defined.

Set

(5.8.3)
JeJ

Then we have already remarked in Proposition 5.2.5.

(5.8.4) M ( J 1 V J 2 ) = M(N,M(J2)) for

or

Applying Theorem 5.5.1, we have

(5.8.5) M(J1; Vj2W)=VJ^(J1> W).

We have also

(5.8.6) M(K, VjW) = M(K, W) for K=>J.

In fact, for KBJ, we have NjMk(K, W)cMk_2(K, W), which implies (Nj)*M(K,

W) = M(K, W).

By Proposition 2.3.1 and Lemma 3.4.2, we can associate to W the object

£>/(H) of MH(/) given by D/(H)(a) = H, W*(DI(H))=yxW, F«(D/(H)) = jF,
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5.8.1. Let H' = (JF;F, F; N!,..., N,) be an and

H G MH(7). Then we have

HomMH(J)(H? D/(H')) = Hom(H(0), H').

Here the last Horn is the set of homomorphisms preserving W, F, F and com-

muting with N^,..., Nt.

Proof. It is enough to show that g^W^ll)^ S^W^H). We shall prove

(5.8.7) gffW"(H')c='P,\llW>(K) for jS<=a ,

by the induction of |a\/?|. If <x = /3, there is nothing to prove. Assume |a\/?| = 1.

Set a\j6= {j}. Then by (5.6.7)

n

Here the last inclusion follows from Proposition 3.3.1.

Now assume |<x\/J| 2:2. Take y such that jSgyiia. Then the induction on

|a\jS| shows

Therefore we have

JeJ

Proof. We shall prove this by the induction of |J|. For jeJ, we have

M(J) n (<Fj,{j}w)k+1=M(Nj, M(J\{J}) n

because M(J\{ j}) = M(J\{;}, !Pj ,U)MO. Therefore we have

(5.8.8)

n M»(J\{7}) n
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Note that

(5.8.9) Nj¥j\{j}Wc<Pj\{i}W for any i,jeJ.

In fact, if iVj, Nj(Vjuj}W)kcNj7j\{jii}(Wy)k+i<=(Yj\(t}W)k- Then (5.8.8)
and (5.8.9) imply

ieJ

n r\

We have

Mk(J) n Mk(J\{j}) = Mk(Nj, M(J\{j})) n

j}))k = M(J\{ j},

Therefore by the induction hypothesis,

n (vJ
ieJ\{ji

n n
ieJ\{j}

This shows that

jeJ jeJ

On the other hand, since DJ(H) belongs to MH(I), we can apply Lemma 5.6.2

and we obtain

Grf '<*>=

or

Then the induction in k shows that (*F/FF)fc is contained in

Z N j ( W j \ { j } w ) k + 1 + M k ( j ) n r \ ( * P j { \ j } W ) k .
jeJ jeJ

§ 60 The Proof of Theorem 4.4.1.

6ale In order to prove Theorem 4.4.1, it is enough to show the following.
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Lemma 60LL Let H = (W; F, F; Nl9 N2) be a pre-IMHM and assume

that there exist the weight filtration of N1 relative to W and that of N2. Then

there exists the weight filtration M of Nl + N2 relative to W and we have N}Mk

<=:Mk_2forj = l, 2,

6o20 We shall show this by the induction. Hence, we may assume that

H = WQ and that H induces on W_ l an IMHM. Let H0 be Gr^. Then we have

an exact sequence

(6.2. 1) 0 - > W. ! -*-> H -«U H0 - > 0 .

Let M(H0) and M(W_1) be the relative weight filtration of N1+N2 on H0 and

FF_ l9 respectively. In order to prove 6.1.1, it is enough to show that there

exists a section s: H0-»H of (p in (6.2.1) satisfying the following condition (6.2.2).

Note first that [NJ9 s] : H0 -> H splits as the composition of a7-(s) : H0 -» W_ t

and \l/ .

(6.2.2) a

In fact, if there exists such a section s that satisfies (6.2.2),

Mk = \l/(Mk(W- J) + s(Mfc(H0)) satisfies NjMk <=-Mk_2,

and it Is evident that M induces on H0 the weight filtration of N1+N2, shifted

by k.

6030 Now, we shall show the existence of such a section 5. Set

H = Hom(H0, W-i). Then H is an IMHM. Then (6.2.2) is equivalent to a/s)

eM_2(H). Let M'(H0), M'(H), M'(^-i) and M'(H) be the relative weight

filtration of N^ on H0, H, FF_X and H, respectively and let M"(H0), M"(H),

M"(^-i) and M"(H) be the relative weight filtration of N2. Since the exact
sequence (6.2.1) is strict with respect to the filtration M', there exists a section

s' : H0-»H such that s'Mfe(H0)c:M;(H). Therefore, we have

(6.3.1) a1(s')eMl2(H).

Similarly if we take a section s": H0-»H such that s"Mj[(H0) c MJ(H) we

have

(6.3.2) a2(s")EM'^2(H).

By the assumption t = s' - s" e H. Note that H = W_ ̂ H). Thus we have



1024 MASAKI KASHIWARA

(6.3.3) ai(s') e W_ X(H) n M12(H)

and a2(s') = J

Now, we consider the complex

>(N1*W(H))_2®(N2*W(H))_2

Then (a^s'), a2(s')) is a cochain of W-^II) of degree 1. By the purity theorem

for IMHM (Theorem 5.7.1) and the results in §5.89 H^W.^II)) has weight g09

and hence the cohomology class of (oc^s'), a2(s')) is represented by a cochain
of weight ^ 0. Thus, there exists u e H such that

(6.3.4)

a2(s')-N2weAf_2(H).

Then s = s' — u satisfies a/s)eM_2(H). This completes the proof of Theorem
4.4.1.
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