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The Radon-Nikodym theorem
for LP-spaces of W *algebras

By

Lothar M. ScumiTt*

Abstract

We prove an analogue of Sakai’s [15] Radon-Nikodym theorem for L?-spaces of W*-
algebras. Following Takesaki [20] we characterize the Radon-Nikodym derivatives by
analytic extensions of modular automorphism groups. Finally we relaie the facial structure
in L?-spaces of W*-algebras to Connes’ [2] unitary Radon-Nikodym cocycles.

§1. Main Results

Sakai’s Radon-Nikodym theorem [15] describes the facial structure in
the positive cone of the predual LM W) of a W*-algebra M. Haagerup [9]
succeeded to construct the spaces L?(H), 1<p<oco. They are obtained as
certain subspaces of measurable operators affiliated with the crossed product
of M and modular automorphisms. In what follows we shall obtain an ana-
logue of Sakai’s result for Z2(.9H), 1< p<co, by use of a Radon-Nikodym lem-
ma for measurable operators affiliated with a semifinite W*-algebra. This
result is in fact a direct consequence of an underlying facial principle for meas-
urable operators. Takesaki [20] obtained the uniqueness of Sakai’s positive
Radon-Nikodym derivative and gave a characterization of non-necessarily
positive derivatives. Connes [3] obtained a Radon-Nikodym theorem for
weights in terms of analytic extensions of the associated unitary cocycle. We
shall prove the corresponding versions for L2( ).

1.1. Haagerup’s definition of LP-spaces of W *-algebras [9], [22]

Consider a W*-algebra . Let ¢ be a normal, faithful, semifinite weight
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on M and let o%, t € R, be the corresponding group of modular automorphisms
of M. We denote the crossed product [5, Part 1, Def. 2.10] of <# and ¢ by
TN=MQR. M has a normal, faithful representation = in JI [5, Part 1, Prop.
2.5] and #(M):=L<(M) is characterized as the set of fixed points under the
dual action 6 [5, Part 1, Prop. 4.12]. JI is semifinite and has a n.fs. trace 7,
which is canonically associated to ¢—see [8, Lemma 5.2]. If 91 denotes the
space of r-measurable operators (compare §2), then

LA H):= {T€T|6/T) = e T} .

We shall write J for the natural involution T+—T* in L*(H). If v& My,
then 4y is defined as the Radon-Nikodym derivative [14, Thm. 5.12] of the
dual weight v [6, Def. 3.1] of ¢~ with respect to z, i.e. ¥»=7(hy+). It can be shown
[22, Chapter II, Cor. 6], that sy L'(H) and that the map —>hy extends to
an order isomorphism of s onto LY(H) [22, Chapter II, Thm. 7]. This
gives rise to a linear functional #r on L(.¥) defined by

tr(hy):= (1), ¥EMx .
The duality between L?(H) and LY(H), 1< p<<co, l—}—izl, is defined
P q
as [22, Chapter II, Thm. 32]:

<S8, T>,, = tr(ST) = tr(TS), S€ LX(M), TEL(H) .

1.2. Radon-Nikodym theorem for Z”-spaces

Suppose T, SEL( M), 1<p<oo, and 0ZTLS. Then there exists a
unique he M, 0<=(h) <supp(S) such that

T = n(h)Jz(h)J S .

1.3. Separating vectors in Z”-spaces:

Suppose 1 < p<oo and S LA(H)*, i.e. S€L?( M) and S>0. We call S
separating, if x& M, =(x)S=0= x=0. We call S cyclic, if z(.H)S is dense
in L2(SM). As one might expect, we have supp(S)=1 < S is separating & §
is cyclic. Hence there exist separating vectors in L?(H)* if and only if M
is o-finite.

Let M be a o-finite W*-algebra and consider two separating vectors .S,
Te LMt as well as the corresponding linear functionals vr:=tr(z(-)S),
o=tr(z(-)T)E M. Haagerup [10, §3] has shown that

1.3.1. z(a¥ (%)) = Sz (x)S7, xE M,
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1.3.2. (Dw: DY), = = Y(T*S™).

In fact (1.3.2) holds also, if (Dw: Dvr), is defined as in [4, p. 479] or [1, p. 394]
and T is not necessarily a separating vector.
1.4. Analytic extensions of modular automorphism groups

Suppose v is a n.f.s. weight on 9. Then we shall write A*(s), sER,
for the set of x&. % such that the map t+—a¥(x), tE R, has a o(H, H4)-con-
tinuous extension z—o¥(x)E M to the strip

I's={z||Imz|<|s|, s-Im z>0},

which is o(H, M)-analytic in I'?.
The following result has been obtained by Takesaki [20, Thm. 15.3] in the

case p=1.

Theorem. Suppose M is a o-finite W*-algebra and 1<p<<oco. Let S
e (M)t be a separating vector, Y(-)=tr(z(-)S?) & My be the corresponding
linear functional and x& M. Then the following conditions are equivalent:

(a) 2(X)Jz(x)J S<S
®) xeuw%) and ||% (I <1 .

1.5. Analytic extensions of Raden-Nikodym cocycles
Our final result has been obtained by Connes [3] not only in the case p=1

but for n.f.s. weights.

Theorem. Suppose M is a o-finite W*-algebra and 1<p<oco. Let
S, TE€ LA(M)", 'supp(S)=1 and consider the corresponding linear functionals
Vi =tr(z(-)S?), o:=tr(zx(-)T?)& My. Then the following two conditions are
equivalent:
(a) TS
(b) The function t—(Dw: Dyr),, t &R, has a o( M, Msx)-continuous extension

to I'_,,, which is analytic in 'Y, and

l(Do: DYr)_ifgl | <1

Furthermore if one of the above conditions holds, then

yi= (Do: DY)_ipy
satisfies
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T==(y)Jae(y)JS.

Remark. The theorem shows that the (operator) order relation in L?(-5)
T<S is exactly the order relation WSco(ZL) for the corresponding functionals
74

in the sense of Connes-Takesaki [4, Ch. II, Def. 4.1].

§2. Measurable Operators with Respect to a Trace

2.1. Results of Haagerup-Terp [22] — compare also [11] —

Suppose Jl is a semifinite W *-algebra acting on a Hilbert space H. Let
z be a n.f.s. trace on JI. A subspace ¥ of H is called z-dense, if for e Ry,
there exists a projection e< JI such that

eHC ¥ and t(1—e)<e .
A closed, densely defined operator T affiliated with J is called r-measurable,
if its domain of definition 9(T) is r-dense. We denote the set of r-measur-
able operators by 9. If Tisa selfadjoint operator affiliated with JI and
T=§w t dE(¢) is its spectral decomposition, then T € 91 if and only if for every
EER—;’: there exists £>0 such that (1 —E(—t, t]))<<e [22, Chapter I, Prop. 21].
If T€J], then (T |9)” =T for every r-dense subspace X< 9)(T) [22, Chapter

I, Prop. 12]. If S, T 652, then S*&J] and S+T, S-T are densely defined,
preclosed and S+T, S.T&Jl. In what follows, we shall always consider the

strong sum and product in 9] and omit the closure sign. 9 is a *-algebra
with respect to strong sum, strong product and adjoint operation [22, Chapter
1, Prop. 24].

2.2. Lemma. Suppose S, T<J].

(a) If T-S=0, then rightsupp (T)-leftsupp (S)=0.

(b) Ifleftsupp (T)Vrightsupp (T)<leftsupp (S) and S*¥*TS=0, then T=O0.

(c) Suppose 0T, S and supp(S)=1. Then the following two statements
are equivalent:

) T<S?
ii) The operator T?S™' has domain of definition 9D(S™) and norm less
than 1.

(d) TFacial principle: If O T<S*S, then there exists a unigue x&Jl,
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0<x< leftsupp (S) such that
T = S*xS.

(e) Ifleftsupp (S)=1 and S*TS >0, then T >0.

Proof. (a) Using polar decomposition and spectral calculus one re-
duces (a) to the bounded case, which is known.

In the remainder of the proof we shall assume w.l.o.g. that $>0 and
supp(S)=1.
(b) Let Szgwt dE(t) be the spectral decomposition of S. Then we have

0

E((i— oo)>TS:0 - T=0.

(c) and (d) 0L T <S? implies 9(S) S D(T).
For £ 9D(S)=5"9D(S™*) we set
y(S€) = TV .

It follows from the hypothesis that y=7"25"! has norm less than 1.
Conversely, if T%257! has domain of definitions 9(S™!) and norm less
than 1, then let ye J] be its closure. We have

S = T2 on 9)(S)
and ||y||<1.
Since 9)(S) is r-dense we obtain
yS = TV,
Hence T=Sy*yS=58xS < 8% where 0< x:=y*y<1
(e) We obtain from (b) that T=T7% since
STS — % S(TLTH)S .

Now 0 STS<S|T|S and (d) imply the existence of x& Jl, such that
STS = S| T|Y2x| T|*2S

So T=|T|"x|T|**>0 by (b).
O

The following lemma generalizes a well known result for bounded operators.
The main idea in the proof is due to Pedersen [12].

2.3. Lemma. Suppose S, T€Jl. If0LST<S and 0<a<]1, then T*<S°.
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Proof. Assume first that 7 is bounded and S has a bounded inverse.
Then the proof of [20, Chapter 1, Prop. 6.3] applies and yields the desired
result. In general let

S = Smt dE(t) and T = Smt dF(t)
0 0
be the spectral decomposition of S and T respectively. If e,=E([0, n]) A
F([0, n]), then X= U e, H is a r-dense subspace of H. Hence it is a core for
nEN
S*—T%. If Ece, H, then
1%, & =<T°F(0, n])¢, &>

= (T F([0, n]))*¢, &>
< inf L(S-+eD)¢, &

= inf {(S+eD)*E([0, n))¢, &>
e>0
— (SUE, £
This completes the proof. ]

The following result has been obtained by Pedersen and Takesaki [13] in the
bounded case

2.4. Lemma. Suppose S, T€Jl, S, T>0. If
(@) (SY*T S'2)\V:=|TY? $'2| < S and supp(T)<supp(S)
then there exists a unique he& J1 such that
(b)) 0<A<supp(S)
and T =hSh.

Conversely (b) implies (a). Furthermore, if T<S, then (2) is satisfied thanks
to Lemma 2.3.

Proof. 1If (2) holds, then Lemma 2.2 (d) implies that
(SM2T S22 = S'2p M2
for an he J1 with 0<A<supp(S). Hence
ST §Y2 = SR Sh S'2
Using Lemma 2.2 (b) this implies (b). If (b) is satisfied, then
ST Y2 = S¥2h Sh SY2

The uniqueness of the square root shows that
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(ST S22 — 0 SP<S .

This and Lemma 2.2 (d) prove that /1 is uniquely determined. |

§3. Proof of theorems

Proof of 1.2. This is an immediate consequence of Lemma 2.4 if cne
observes, that the uniqueness-statement forces the delivered 4 to be a fixed
point under the dual action 4.

O
Proof of 1.3. Using Lemma 2.2 (a) we show that
{=(M)S}™ = supp(S)"L* (M) .

With this in mind the first statement in (1.3) is a direct consequence of the
bipolar theorem and Lemma 2.2 (a). (1.3.1) and (1.3.2) for separating T
follow from [6, Thm. 3.2], [14, Thm. 4.6] and [2, Lemma 1.2.3]:

w(oh(x)) = ot(z(x) = hifz(hy™ = S'=(x)S,
=(Dw: Dy),) = (D&: DY), = (D&: Dr)(Dr: DY), = TS .

If T is not separating, fix Re LN M)* with supp(R)=supp(T)*, let o,E H;
denote the functional corresponding to 7+R and p=="'(supp T)=supp().
Now we obtain

n(Dw: Dyr)) = a((Dw: Day), (Do, Dyr),) =
= 2(p(Dw,: Dyr), = n(p) (T+R)* S = T* 7.

Proof of 1.4 Theorem. (a)=>(b). If (a) holds, then
a¥(x) Sa¥(x*)<S, teR.

Reducing to a r-dense subspace of D(SY*)N D(|S¥2c¥(x*)|) as in the proof
of Lemma 2.3 one shows

G.1 <€, S at(x*)n> | <IIEl]-11S7]l, €, nE D(S™?) .
Now for &, 7€ D(SY?) we define

Jen(2) = <a(x)S#2¢, S-ivey)
S is continuous and bounded in I'y;,, and is analytic in I'},,.

(3.1) and the three lines principle show that this defines a norm bounded, ope-
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rator valued function z— o,(x), z&EI'y,,, which satisfies
(o ()€, S 0D = f¢ .(2), &, 1€ D(S?) .
lloszs(DN<T.

Since this construction is invariant under unitary operators in JI’ and
under the dual action ¢ we conclude o (x)==(H). If £,  are arbitrary vec-
tors in 4, then there exist sequences &,, 7, € D(S*?) with £ =lim &, 7 =lim $"*7,,.

n>oo n->c0
Then

<o, 1> = lim f ,(2)

uniformly on I'y,, Hence zi—o0,(x) is continuous on I, and analytic in
I}, for the weak operator topology. Using the iemma, in [19, Sec. 9.24]
as well as the equivalence between o(. %, <M+) and the weak operator topology
on bounded sets we obtain (b).

(b)=>(a). First we claim
(.2) (DS = SP(e%(x))  for xEJl‘P(EII—’) .
In order to obtain this we consider for &, 7€ 9(S"?) the following two func-
tions on I'y,,:
z > {r(x)SiP€, SW-iviy>
z = (ol (x))E, SV .

These functions are continuous I'y,, and analytic in I'},,,. So they are equal,
since they are equal on the real line by (1.3.1). This yields (3.2). (a) follows
now from (b) and (3.2). |

Proof of 1.6 Theorem. If (a) holds, then by Lemma 2.2 (¢) we know
that the operator

(T+supp(T)™) supp(T)S~*

has domain of definition 9(S~*?) and norm less than 1. Hence by (i) = (ii)
of the proposition in [19, Sec. 9.24] and 1.3.2 we obtain that the map

f@) = (T%S7%)™ = ((T+supp(T)")** supp(T)S~)"
is a well defined #(%)-valued extension of

t — a((Dw: Dyr),)



TeeE RADON-NIKODYM THEOREM 1033

which is continuous with respect to the strong operator topology on I"_,;, and
analytic in I'2,,, The three lines principle then shows that f is uniformly
bounded by 1. So it is even s(HM, <M+ )-continuous and we obtain (b).

If (b) holds, then by 1.3.2 and (iii)=>(ii) of the proposition in [19, Sec.
9.24] we know that P(TYV2S~¥%)=4g)(S~?). The uniqueness of analytic ex-
tensions shows that

w(Dw: DY)_ipy) = (TS .

Hence we can apply Lemma 2.2 (c) again to conclude (a). The remainder
of Theorem 1.6 is clear by the proof of Lemma 2.2 (c).

|

3.3, Remark. By the way we have obtained the following:
Suppose H is a o-finite W*-algebra, x= M and v= My is faithful. Then
for s>>0 there exists a unique y € A¥(s) such that

y=0
and x = o} ,(»)ots()* = ot (»)e¥is(y) .

3.4. Remark. The facial principle has further applications:

For o-finite W*-algebras it allows to define completely positive, dense embed-
dings of M into L2(M) and of L'(H) into LX.HM). Asin[l17, Thm. 3.1], [18]
this allows to transport semi-discieteness and injectivity from ¥ to L?(.H)
and vice versa.
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