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Aspects of Integrability In Self-Dual Einstein

Metrics Related Equations

By

Kanehisa TAKASAKI*

The nonlinear system describing self-dual Einstein metrics and its generalizations are
discussed from the point of view of integrability. It is shown that these nonlinear systems
share a variety of remarkable features (such as the existence of a linear scattering problem, a
group-theoretical solution technique similar to the Riemann-Hilbert problem, and a geometric
interpretation as dynamical motion in an infinite dimensional Grassmann manifold) with
nonlinear integrable systems known until now. Differences of the relevant group-theoretical
structures between these two classes of nonlinear systems are also pointed out. These results
lead to the conclusion that the nonlinear systems in question do form a new class of nonlinear
integrable systems.

Along with the developments in the last decade the notion of "complete

integrability," or "integrability" for brevity, has become considerably

familiar to us. Some of its mathematical issues, nevertheless, seem to remain

to be fully solved. A basic question in this context is, for example, how far

the notion of nonlinear integrable systems can be really extended. In the

beginning of this field just a few examples, including the celebrated Korteweg-de

Vries equation, were known as nonlinear integrable systems, but after the

discovery and progress of a number of techniques we now have an enormous

list of "soliton equations" [1-4]. There are also attempts of quantization of

these equations [5]. Further, some of these techniques later turned out to be

also applicable to the self-dual Yang-Mills equations [6-10]. Recently their

higher dimensional [11] and supersymmetric [12-14] analogues were investigated

along the same lines. The frontier of what should be called nonlinear integrable
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systems thus has been (and, perhaps, is still) expanding continuously.

The purpose of this paper is to show that the system of nonlinear equations

defining self-dual Einstein metrics, which we call the self-dual Einstein equations,

share various remarkable features with nonlinear integrable systems known until

now. This means that the self-dual Einstein equations should be considered a

sort of nonlinear integrable system. Such a point of view is in fact not very new.

Rather, in view of the fact that the integrability of the self-dual Yang-Mills

equations is a consequence of their twistor-theoretical interpretation [15], it

would be quite natural to expect a similar situation for the self-dual Einstein

equations, because the latter also admit a twistorial description due to Penrose

[16]. The recent work of Boyer and Plebanski [17, 18] seems to be indeed

based, at least partly, on such an idea. This paper is intended to present a

more detailed analysis on this issue.

Of course the notion of integrability includes in general a variety of contents,

but this paper deals with the self-dual Einstein equations from the following three

aspects (which are in fact closely connected with each other):

i) The existence of a linear "scattering" problem whose integrability

conditions in the sense of Frobenius agree with the nonlinear system in question.

ii) A group-theoretical description of solutions with the aid of the

Riemann-Hilbert problem or of its appropriate analogue.

iii) A geometric interpretation of the nonlinear system as some dynamical

motion in a symmetric space (in particular, in an infinite dimensional Grassmann

manifold).

Detailed discussions on these aspects will be presented in the subsequent

sections (see §2 for (i), §4 for (ii) and §5 for (iii)). It would be however worth

mentioning here in advance that group-theoretical structures relevant to the

self-dual Einstein equations are somewhat distinct from (though seemingly fairly

similar to) the case of more classical examples of nonlinear integrable systems.

For example, as already pointed by Boyer and Plebanski [18], an infinite di-

mensional Lie algebra characteristic of the present case takes the form of a

tensor product y®C[/l, A"1] where A is a parameter and y a Lie algebra of

vector fields which is infinite dimensional in itself; on the other hand for soliton

equations [2-4] and the self-dual or supersymmetric Yang-Mills equations

[10, 13, 14] the same role is played by Kac-Moody-type Lie algebras, which

are typically written g®C[/l, A"1] with Q finite dimensional Lie algebras.

For this and some other reasons to be made clear in the subsequent sections, it
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seems very natural to recognize the self-dual Einstein equations as an essentially

new type of nonlinear integrable system. Besides, this is by no means an

isolated example; it will be indeed shown in §3 that there is a broad class of

nonlinear systems that should be considered "integrable" in the same sense.

§ L for Sefiff-Oiiafi Metrics

Let ds2 = gflv(x)dxfldxv denote a four-dimensional Riemannian metric with

coordinates x = (xl, x2, x3, x4), and Rapflv the components of the Riemann

curvature forms. The metric ds2 is said to be a self-dual Einstein metric if

the Riemann curvature forms are self-dual with respect to the Hodge *-operator,

i.e.

(1.1) *Rwdx" A dxv=Ra^vdx» A dxv .

The usual (vacuum) Einstein equations jR / tv = 0 automatically follow from Eq.

(1.1) (see, for example, [19, 20]), thus self-dual Einstein metrics form part of

Einstein metrics. We call Eqs. (1.1) the self-dual Einstein equations.

Since the self-dual Einstein equations, as well as the Einstein equations,

include only rational functions of derivatives of the metric components <7MV(x),

one may readily replace the real coordinates x = (xl, x2, x3, x4) by complex

ones z = (z!, z2, z3, z4) and consider these equations in complex domains.

In this paper we mainly deal with these "complexified" equations, calling them

also the self-dual Einstein equations.

Io20 Null-Tetrad Formalism

Plebanski [20] pointed out that null-tetrad formalism is very useful for

the study of self-dual Einstein metrics. In this formalism a metric is written

(1.2)

where e1,..., e4 denote a tetrad (vierbein), i.e. linearly independent 1 -forms

ea = e^dzfl. Writing the metric as above is not unique; there remains the

following arbitrariness :
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where l = l(z) and I' = l'(z) are SL(2, C)-valued arbitrary functions. We call

these transformations induced by I and /', respectively, left and right SL(2, C)

gauge transformations of the tetrad.

Main results of Plebanski [20] can be summarized as follows. First, by

choosing an appropriate right SL(2, C) gauge transformation the self-dual

Einstein equations for metric (1.2) can be reduced to the exterior differential

equations

(1.4) d(e2Ae3) = 0, d(e3Ae4-e1Ae2) = Q, d(e1*e4) = Q.

By introducing a new parameter A, they can be written more compactly as :

(1.5) d((e3 + Ae1)A(-e2 + Ae4)) = 0 (AeC).

Second, performing further a left SL(2, C) gauge transformation one can bring

the tetrad into simple canonical forms. Actually Plebanski presented two sorts

of such canonical forms, one of which takes the following form :

(1.6) e3 = dx-0xydp-0yydq, ei=dp,

-e2 = dy + 0xxdp + 0xydq, e4 = dq,

where (p, q, x, y) are appropriate coordinates and 0 = 0(p, qy x, y) is a solution

of the equation (second heavenly equation)

n 7^ 0 —0 4-0 0 —02 =0V 1 - ' / xq ^ypi^xx^yy ^ xy — u?

whereas the indices to 0 as usual denote the differentiation with respect to the

variables indicated therein. It should be also noted that Eqs. (1.4) are form-

invariant under left SL(2, C) gauge transformations.

L30 Definition of u -Potentials

What play central roles throughout this paper are potentials u% = u%(z) and

£« = £«(z) (n = l, 0, — 1,..., a = l, 2) and their generating functions (which

we call, for brevity, u- potentials)

u«= E u«l»9u«= £ W (a = l ,2)
»=-oo «=0

to be defined respectively as a solution of the exterior differential equations

(1.8) d
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(1.9) dul

where (and also throughout this paper) A denotes a parameter moving in the

Riemann sphere JP1, and d the total differentiation with respect to space-time

coordinates alone (i.e. dA = 0). In general these potentials u* and wa are required

to be just formal Laurent series of A (though in applications to various actual

solutions they can be chosen convergent ones; see §4). The existence of such

potentials evidently implies that the tetrad satisfies Eqs. (1.4), because the left

side of Eqs. (1.8) and (1.9) are always closed forms. What is important is that

the converse is also true:

Proposition (1.10). For a given tetrad such potentials ux and u* do exist

if and only if Eqs. (1.4) are satisfied.

In other words Eqs. (1.4) are exactly the integrability conditions for Eqs. (1.8)

and (1.9) to have a solution (not unique).

There are various ways to verify the above basic fact. Newman et al.

argued a construction of such potentials in [21] ? which seems to be an earliest

attempt that introduced equations like (1.8) and (1.9) into the study of the

self-dual Einstein equations. Boyer and Plebanski [17, 18] presented another

construction exploiting a geometric formalism. (In fact, what Boyer and

Plebanski called "potentials" are different from ours; they used this word to

mean another sort of potential functions including the function 0.) According

to their argument, our u -potentials can be identified with coordinate components

of a section of a certain infinite dimensional vector bundle (on the z-space)

endowed with a sort of symplectic structure; the problem of solving Eqs. (1.8)

and (1.9) then becomes equivalent to finding an isotropic section of this vector

bundle. A common characteristic of these two constructions is to reduce the

problem into solving an infinite system of equations which can be obtained by

expanding the both sides of Eqs. (1.8) and (1.9) into Laurent series of A. There,

however, is another method that enables one to construct the n-potentials more

directly. This method is an application of Darboux's theorem [22] on the

canonical forms of exterior differential 2-forms. This theorem shows that if a

2-form o) on a finite dimensional manifold is closed (i.e. dco = 0) and for some

integer r (r>l) C O A - . - A C O (r-fold)^O and C O A - - - A C O (r-f 1-fold) = 0, then at

any point there are a neighborhood of this point and functions Pl3..., Pr, Ql9...9
Qr defined therein such that dPl A • • • A dPr A dQi A • • • A dQr ^ 0 and co = £ r

i=l dPt

AdQt. If the manifold is even, say 2n9 dimensional and r = n, then this is a
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well known result in symplectic geometry; therefore following the terminology

of symplectic geometry, let us call the functions PI,..., Pr9 61,..., Qr canonical

variables. Darboux's theorem can be extended to the case where the 2-form

includes some additional parameters, and such a modified form of Darboux's

theorem can be applied to the construction of the ^-potentials. Indeed, the right

side of Eqs. (1.8) and (1.9) is a closed 2-form with a parameter A, provided the

tetrad satisfies Eqs. (1.4). Furthermore, for this 2-form the integer r is equal to

one. Therefore by virtue of Darboux's theorem one obtains a pair of canonical

variables, which are exactly the w-potentials in question. Of course one should

be careful here about the domains in the Riemann sphere in which the parameter

A moves. Namely, the two sorts of potentials u* and u" both can be obtained as

canonical variables in the canonical form of the 2-form (el+ke*)/\( — £2-f-Ae4),

but the domains in which the parameter A is supposed to move are distinct; for

the former ones the domains is a neighborhood of A = oo, whereas for the latter

it is a neighborhood of A = 0.

The notion of w-potentials forms a central theme of this paper; a variety of

roles to be palyed by them will be described in detail in the following sections.

It is however worth noting here that these potentials are also the most basic

ingredients of the curved twistor construction of self-dual Einstein metrics due

to Penrose [16]. For details, see §4; as we shall argue therein, these potentials

can be regarded as representing a family of holomorphic curves in a curved

twistor space.

Ic40 if -Potentials and Canonical Form of Tetrad

We here show that the coordinates (p9 q, x, y) can be identified with the

leading and next-to-leading coefficients of the Laurent expansion of the potentials

ul and w2; this is a basic property of M -potentials, which sometimes enables us

to save calculations to a great extent. To see the above fact, let us first note

that Eq. (1.8) is equivalent to the system of equations

(1.10)!

where o><"> denotes the 2-form co<B> = 2i=n-i dumAdul-m- From Eqs. (1.10)2

and (1.10)0 one finds that
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(1.11) du\ A du\ A dul A dul = o}<2> A o}<^ = el A e2 A e3 A e4^0,

therefore one may take (u{, wf, M£, MO) as new space-time coordinates. We

now prove:

(1.12). Take (p, q, x, y) = (u\, wf, wj, M§) as space-time

coordinates and regard the other Laurent coefficients as functions of(p, q, x, 3;).

Then there are an SL(2, C)-valued function l = (la(p, q, x, 3;)) and a scalar

function © = ©(p, q, x, 3;) satisfying the following equations:

I e* e^\ldX-0xydp-0yydq dp
\ —pi P*\ \ Av±fa dn-\-to dq dp

Proof. From Eqs. (1.10)! and (1.10)0

co< l) A a>(0) = (e3 A e4 — e1 A e2) A e2 A e3 = 0,

o>(0) A CL?(O) = e2 A e3 A e2 A e3 = 0,

whereas in terms of the coordinates (p, g, x, 3;) one can calculate these 2-forais as:

"(1) " " ""'""" ' ~~dy

.
dp dq

dx dy dy dx

therefore one obtains the equations

/i n \ i ,
<U3a) V-

=0.- - _ _
dp dq ox dy dy dx

Eq. (1.13a) ensures the existence of a function 0 that satisfies Eq. (1.12c), and

inserting this expression of u^_l and u2. 1 into Eq. (1.13b) one obtains Eq. (1.12b).

Thus what remains is to prove the existence of a left SL(2, C) gauge trans-

formation that connects the tetrad (e1,..., e4) with the following one:

e3 = dx - ©xydp - 0yydq, ^ = dp,

xdp+0xydq, e4 = dq.
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To check this, let us note the equations

e1 A e4 = co(2) = el A g4,

e3 Ae4 — el A e2 = co^ = e3 A e4 — e1 A e2,

which follow from Eqs. (1.10) and (1.13). It is then a simple excercise of linear

algebra to show from the last equations that there is certainly a left SL(2, C)

gauge transformation as such. This completes the proof of the proposition.

§ 20 Linear Scattering Problem for SeSf-Dua! Einstein Metrics

2oL Derivation of Linear Problem

In the preceding section we introduced the notion of w-potentials. We call

these new dependent variables "potentials" (or "quasi-potentials", according to

the terminology of Estabrook and Wahlquist [23]) because they are defined as

solutions of differential equations, i.e. (1.8) and (1.9), whose integrability con-

ditions coincide with the equations in question, i.e. Eqs. (1.4). Eqs. (1.8) and

(1.9) are however neither linear nor quasi-linear, thus the situation is seemingly

very different from various (quasi-) potentials (in particular, "wave functions"

in linear scattering problems) to be defined for nonlinear integrable systems

known until now [1-14]. Thus naturally occurs a question, whether or not

there is a linear problem which characterizes our w-potentials. The conclusion

we here derive is that such a linear problem certainly exists if one admits a

nonlinear constraint to be added to the relevant linear equations.

In order to give a precise statement, we intorudce the notion of dual (or

inverse) tetrad. The dual tetrad of a given tetrad (e1,..., e4) is by definition the

tangent frame (dl9..., d4) of vector fields to be determined by the equations

(2.1) (ea,dby = da
b for a, b = l,...,4,

where < , > denotes the natural inner product of 1-forms and vector fields, and

(5g the Kronecker delta. A basic property of the dual tetrad is that the following

formula holds for any function h = h(z):

(2.2) dh= S (dah)e°.
fl=l

The linear problem in question can be obtained by rewriting Eqs. (1.8) and
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(1.9) using the dual tetrad of the tetrad included therein. Actually it has two

equivalent representations, one of which takes the following form:

Proposition (2.3). Let (3l9...,34) denote the dual tetrad of the tetrad

(e1,..., e4). Then Eq. (1.8) is equivalent to the system of equations

I du1 \ I d^u1 — d2u
l

(2.3a) =
\ du2 I \ c3u

2 — o2u
2

Similarly, Eq. (1.9) is equivalent to the same equations in which u1 and u2

are replaced by u1 and u2.

Proof. It is obvious that Eq. (1.8) follows from Eqs. (2.3), so let us check

the converse. In view of (2.2) one can expand the 2-form du1 A du2 as:

du1 A du2 = 2 du1 A du2(da, db), where
(2.4) a<b

du1 A du2(da, db) = (dau
1)(dbu

2) — (dau
2)(dbu

1),

therefore equating the coefficients of ea A eb in Eq. (1.8) one obtains:

di

(2.5) di

di

The fourth equation in (2.5) is exactly Eq. (2.3b). This in particular implies:

3u
2 -d2u

2 1 \ du2

and calculating the right side further using Eqs. (2.5), one finds:

thus it turns out that Eq. (2.3a), too, follows from Eq. (1.8). The latter half of

the proposition can be checked the same way. This completes the proof of the

proposition.

We now give another representation of the linear problem :

Proposition (206)0 Let (dl,...9d4) denote the dual tetrad of the tetrad

(e1,..., e4). Then Eq. (1.8) is equivalent to the system of equations

(2.6a) (-^3 + 3011 = 0, (A32 + 54)« = 0 (u = u\ u2),

(2.6b) (d2
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Similarly, Eq. (1.9) is equivalent to the same equations in which ul and u2

are replaced by u1 and u2.

Proof. One may rewrite Eq. (2.3a) into the following form:

du = (Ad3u)e1+(d2u)e2 + (d3u)e3-(Ad2u)e4 (u = ul, u2).

On the other hand by virtue of (2.2) the 1-forai du may be in general written

du = (d^e1 + (d2u)e2 + (d3u)e3 + (d4u)e4 .

Therefore equating the coefficients of e1 and e4 one readily finds that Eqs. (2.6)

are equivalent to Eqs. (2.3) and, consequently, to Eq. (1.8). The latter half of

the proposition can be verified the same way. This completes the proof of the

proposition.

The last system of equations, (2.6), is what we have sought for. This system
indeed takes the form of a linear problem coupled with a nonlinear constraint, and

the w-potentials are characterized by this system.

2.2. Sympleetle Structure IE Linear Problem

We here show that a sort of symplectic structure is underlying linear

problem (2.6) and explains the meaning of nonlinear constraint (2.6b). This

symplectic structure manifests itself when, as Proposition (1.12) ensures, the

tetrad is cast into the second canonical form of Plebanski, (1.6). In order to

see this, we use the following lemmas which can be readily checked:

Lemma (2.7). Under a transformation of the tetrad as in (1.3) the corres-

ponding dual tetrad changes as:

-S2 84 -d2 d

Lemma (2.8). The dual tetrad of tetrad (1.6) is:

a a \ / 8 d .-, 8 . f-. d~ xx xy~
z % ^di V \-gj- -8j--0**-

We call transformations induced by / and /' as above, respectively, left and

right SL(2, C) gauge transformations of the dual tetrad. Note that Eqs. (2.6)

are form-invariant under left SL(2, C) gauge transformations.

Let us now reduce Eqs. (2.6) into a more explicit form by using the above
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lemmas. These lemmas, applied to the situation as shown in Proposition (1.12),

show that the dual tetrad (d lv.., 34) takes the following form:

In view of the in variance property of linear problem (2.6) mentioned above,

it finally turns out that the linear problem can always be set into the following

form :

/i in \ i . ^ . ^(2.10a) -A -3— + -~ - -^xx-^— + ̂ xv^—v \ 5% d/? x dj y dx

* d . d ^ d . ^ dA-=— + -=— -^ -^ -- h®yy-_
oy oq y dy yy dx

n I a^1, y2) du2 du1 du2

IZ'1
_ __

d ( x , y ) ~ dx dy dy dx "

where of course the following relations are assumed :

(2.11) (ulul9ub,u$) = ( p , q 9 x 9 y ) 9 u^ = 0y, u^=-0x.

It is now evident that the linear problem, written in the reduced form

(2.10), is in close connection with the symplectic structure to be defined in the

(x, j>)-space with symplectic form dx/^dy. Eq. (2.10b) implies that the two

dimensional map (x, y)-*(ul, u2) is a canonical transformation with parameters

(p, q, A); this clearly explains the meaning of the nonlinear constraint in the

linear problem. In addition, the linear part (2.10a) also reflects the structure of

this symplectic form; indeed, the vector fields in Eqs. (2.10a) take the form of

Hamiltonian vector fields. To be more precise, we introduce the following

notation :

Hh=^ir~^rJx~ (Hamiltonian vector field),

{hl9 h2}^Hhlh2= ~^^f- -^^(Poisson bracket).

Then Eqs. (2.10) can be written

(« = «!, M2),

(2.13b) {«1,u2} = l,

thus giving a representation of the linear problem in which the relation to the



960 KANEHISA TAKASAKI

above-mentioned symplectic structure is made fully manifest.

2.3. Comparison with Other Nonlinear Integrable Systems

We now consider the implications of the results we have thus far derived.

The motivation of out present discussion was the question of whether or not the

u -potentials can be characterized as solutions of some linear problem. As a

result we have found the system of equations (2.6) which is equivalent to Eq. (1.8)

and, therefore, whose integrability conditions agree exactly with Eqs. (1.4).

Does this system fulfill all requirements to be a linear "scattering" problem of

the self-dual Einstein equations?

One might feel this system of equations still insufficient as such a linear

problem, because it includes an essentially nonlinear equation, (2.6b); however

this is not correct. In fact, linear scattering problems for various nonlinear

integrable systems known by now are also frequently accompanied with similar

nonlinear constraints ; a main role of such constraints is to derive the equations

in question from more general ones as their reductions. Nonlinear constraints

used for that purpose usually take the form of the condition that the unknown

function (wave function) of the relevant linear problem takes values in a group.

Nonlinear constraint (2.6b) is evidently of the same nature; indeed, as we have

remarked above, this constraint means that a certain two-dimensional map

defined by the w-potentials takes values in the group (to be more precise, pseudo-

group; see §4) of canonical transformations.

In order to make this analogy more explicit, let us attempt to compare the

above linear problem for the self-dual Einstein equations with that of the self-dual

Yang-Mills equations. The self-dual Yang- Mills equations in flat space-time

have a "zero-curvature representation" [6-10] such as:

where (p, q, x, y) denote some complexified space-time coordinates and (Ap9 Aq,

Ax, Ay) Yang-Mills gauge potentials with values in a matrix Lie algebra g.

This equation gives a representation of the integrability conditions of the linear

problem

(2.15)
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where W= W(p, q, x, y, A) is a matrix-valued unknown function (wave function),

usually required to take values in the Lie group G of the Lie algebra g. The
last requirement, which ensures that the gauge potentials surely take values in g,

becomes in general a nonlinear constraint to the wave function; imagine, for

example, the case for G = SL(r, C). It would be now quite clear from these

observations that the linear problem for the self-dual Einstein equations has a

structure very similar to that of the self-dual Yang-Mills equations.

Also significant, however, is the difference of the structure of groups relevant

to the linear problems. Indeed in the case of the self-dual Yang-Mills equations,

as well as other nonlinear integrable systems, the wave function takes values in

a finite dimensional matrix group; whereas in the case of the self-dual Einstein

equations the same role is played by the (pseudo-)group of two dimensional

canonical transformations, an infinite dimensional object.

What we have viewed above is by no menas superficial In §4 we shall

once again examine this issue from a somewhat different point of view.

§ 3o Generalizations of Self-Dual Einstein Equations from

Point of View of IntegraMSIty

3.1. Example

As we have viewed, the self-dual Einstein equations (to be more precise,

the reduced form of Plebanski (1.4)) may be interpreted as the integrability

conditions of a certain linear problem. This is one of remarkable features

that the self-dual Einstein equations share with various nonlinear integrable

systems known until now. Bearing the above fact in mind, in this section we

seek for other examples with the same features, and attempt to find some general

aspects of this class of nonlinear equations.

One of the simplest ways to obtain such an example is to consider the

integrability conditions of the linear system

(3.1) (-A53 + d1)w = 0, (ld2 + d4)u=Q

without any constraint. Here "integrability" means, as one can imagine from

our previous arguments, that this linear system has a pair of functionally inde-

pendent solutions; a more precise formulation of this statement will be given

later in 3.2. As we shall see therein, the integrability conditions of the above
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linear problem in this sense take the form of a commutator relation such as :

(3.2) [-ASa + d!, Ad2 + d4]

where C0, Cl9 D0 and D1 are some functions independent of A to be determined

by the frame of vector fields (d l5..., <34).

From the above expression of the integrability conditions, however, the

relation to the self-dual Einstein equations is still less clear. To improve this,

let us recall that there are various equivalent formulations of Frobenius9 theorem

[22]. What we used above is one of them that employs vector fields. Another

one formulates the problem as the integrability of a PfafBan system. In the

present setting the Pfaffian system corresponding to linear system (3.1) can

be written

(3.3)

where e1,..., e4 denote the 1-forms satisfying duality relation (2.1), and A is

considered a parameter, i.e. dh = Q. The integrability conditions of this Pfaffian

system take the form of exterior differential equations such as :

(3.4) d(e3 + Ae1) A (e3 + le1) A ( - e2 4- A*4) = 0 ,

d(-e2 + te4)A(e3 + tel)A(-e2 + le4) = ® (AeC),

which therefore give another equivalent representation of Eq. (3.2). Once the

integrability conditions are written as in (3.4), it is quite easy to see the relation

to the self-dual Einstein equations. Indeed, Eqs. (1.4) imply Eqs. (3.4), but

the converse is not true in general; thus one obtains a generalization of the

self-dual Einstein equations in the sense mentioned at the beginning.

The above representation of the equations is also convenient to see their

geometric meaning. Indeed with the aid of arguments exploited in refs. [17,

20, 24], one can show easily that Eqs. (3.4) describe a class of conformally

self-dual metrics. This however does not exhaust all conformally self-dual

metrics. For the description of general conformally self-dual metrics some

modification of the present setting is required ; this issue will be discussed else-

where.

We finally note that the above equations, derived as a generalization of Eqs.

(1.4), also have a sort of gauge invariance. Namely, Eqs. (3.2) and (3.4) are

respectively form-invariant under transformations of the vector fields and

1-forms such as:
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-82 54 / ' " \ -<J2 c

where 2x2 matrices I = (l£(z)) (a, 0=1, 2) are simply assumed to be invertible;

in other words the relevant structure group is GL(2, C) unlike the SL(2, C) for

the case of Eqs. (1.4). We call the above transformations left GL(2, C) gauge

transformations. As we shall see later, the 1 -forms e1,...,^ and the vector

fields 3 !,..., 34 can be reduced to a canonical form by an appropriate left

GL(2, C) transformation.

3o2B Solutions of Linear Problem Application of FrobeaSes' Theorem

We now give a precise formulation of the integrability of linear problem

(3.1). If the presence of the parameter A may be ignored, this is just a simple

application of Frobenius' thorem in a well known form, but in fact one has to

take into consideration the presence of the parameter A, which requires a more

careful analysis. Bearing this in mind, we here prove:

Proposition (306)e Given a frame (dl9..., 54) of linealy independent vector

fields., linear problem (3.1) has two formal Laurent series solutions u" (a = l, 2)

with the expansion ^a = 2J=-oo wjA11, where w"'s are functions of space-time

coordinates alone with du\/\du\/\du^/\duQ^®, if and only if Eq. (3.2) is

satisfied for some functions C0, C1? D0, and D±.

We first consider the "if" part. Writing M = Xi=-c» unk
n and equating the

coefficients of powers of A one obtains the infinite system of equations

(3.7)2

(3.7)B -a3Mn_1 + ainn = 0, dzU^i + d+u^O (n = l ,0 , -1,. . .) ,

which gives an equivalent representation of linear problem (3.1). We now

solve these equations successively applying Frobenius9 theorem. It should

be noted that this argument is almost parallel to the construction of wave func-

tions for self-dual Yang-Mills fields due to Chau, Prasad and Sinha [9].

To start with, let us note that Eq. (3.2) splits into the three equations

(3.8a) [52,53] =-

(3.8b) [dl9 fl2]-[33

(3.8c) [51,a4]=c0

Since Eq. (3.8a) is satisfied, Frobenius9 theorem ensures the existence of two
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solutions, u\ and wf, of linear system (3.7)2 with du\

The construction of w* and u2 (n = 0, — 1, —2,...) can be achieved by

induction. Namely, we suppose that uj, u* + i,... and u2, u2
 + l9... are already

given as solutions of Eqs. (3.7)n+1, (3.7)B+2,.--> and then show that Eqs. (3.7)R

certainly have a solution for un = u* and u2, respectively. Eqs. (3.7)n may be

considered an inhomogeneous linear system with an unknown function w n _ 1 ?

and in view of Eq. (3.8a) Frobenius' theorem again ensures the existence of a

solution provided that the integrability condition

(3.9) (C^i + DA + 82di + fl3fl4)i*B = 0

is satisfied. One can actually check, using Eqs. (3.7)n + 1, (3.8b) and (3.8c), that

u\ and u2 certainly satisfy the above integrability condition. Thus the induction

process turns out to surely work, and yields a pair of solutions u1 and u2 of linear

problem (3.1) with du\ A dul^Q.

What remains is the check of the condition du{/\dul/\du^/\du^Q,

This is actually an immediate consequence of the condition du\/\du\^$ already

fulfilled and of the following equation to be derived from (3.7)x and (3.7)2:

(3.10) det (3X, fl.ii?, 5fluj, flflug)^fl^ = [det (dau{9 dau
2)a=l>4]

2.

Indeed, from the assumption dl and 54 are in particular linearly independent, so

that the right side of the above equation does not vanish because of the condition

that du\/\dul^Q; therefore the generalized Jacobian determinant on the

left side also does not vanish, and this implies du\ A du2 A du^ A diiQ^Q. This

completes the proof of the "if" part of the proposition.

We next consider the "only if" part. For this purpose one may as well

take («}, wf, ttj, M§) as new space-time coordinates; note that this is certainly

permitted because the condition du\/\du\^duQ/\du%^® is assumed. The

"only if" part then readily follows from the following fact.

Proposition (3.11). Suppose that linear problem (3.1) has a pair of

solutions u1 and u2 as shown in the statement of Proposition (3.6). Take

(p, q, x, y) = (u{9 ttf, wj, tig) as space-time coordinates and regard other u**s

as their functions. Then there is a GL(2, C)-valued function l = (l£(p, q, x, y))

(a, /?=!, 2) satisfying the equations

__
dy dy
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Gl ib ) -A d +A + awli a + ̂ ijL _A a + AI J* .11L»I /i —5 i ~ i 5 5 i 3 -35 ^ ~5 ' ^ox dp ox ox ox oy oy oq

dy dx dy d y J

Proof. Bqs. (3.7)2 imply that the vector fields d2 and d3 take the form of

linear combination of d/dx and d/dy, therefore for some functions Jj (a, /? = I, 2)

d3 = l{d/dx + lldldy and — $2 = /i^/Sx 4- l^ofdy. Then inserting these formulas

into Eqs. (3.7)! one obtains the equation

(3.12) det(/2) = det(3fli<J, 5flug)^2i3 = detail}, 5flii?)a=i,4,

whose right side does not vanish as we have remarked above. Now let us

check that the matrix l = (l^) indeed fulfills all the requirements in the proposition.

To this end? we define:

(113) \ -S2 dj- \ -52

from the construction, d3 = d/dx and —d2 = dldy. Furtehrmore, since Eqs.

(3.7) are also valid for d l3..., 543

In particular, from Eqs. (3.14)! it turns out that ^ tp=l, ^1^ = 0, S4p = Q and

S4q = i. This implies that 31 = d/dp + Ad/dx + Bdldy and 34 = d/dq + Cd/dx

+ Ddjdy for some functions ^4, 5, C and D. Inserting these formulas into Eqs.

(3.14)0 one finds:

A_ j p_ j /r_ l n_
' ' 5

thus one obtains Eq. (3.11a). Eq. (3. lib) follows from Eqs. (3.14)_ l after simple

calculations. This completes the proof of the proposition.

330 Further General!zatSoms

We now turn to the gerenal aspects of the present issue. As we have

illustrated for the most simplest case, a number of nonlinear equations that

generalize the self-dual Einstein equations from the point of view of integrability

can be obtained as the integrability conditions of linear problems of the following

type,

(3.15) DK(A)u = 0, a=l, . . . ,r ,
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with some constraints if necessary, where Da(A)'s are vector fields with prescribed

dependence on the parameter X and play the role of unknown functions. The
integrability of such a linear problem means, roughly speaking, that it has a

maximal number ( = space dimensions — r) of functionally independent solutions.

The integrability conditions in this sense takes the form of commutator relations

such as:

(3. 16) [Da(l), D,(A)] = C
y=l

with appropriate coefficients Ca/?(A) to be determined by Da(A)'s.

For instance, a series of higher dimensional generalizations including the

previous example (3.2) can be derived by setting

(3.17) Da(A)=-Ada + aa+,, a=l, . . . ,r ,

where dl9..., d2r are linearly independent vector fields in a 2r dimensional space.

The case of r = 2 agrees with the previous example, and the results obtained

therein can be extended to this series of equations just the same way. The

results for the present case can be summarized as follows :

i) The linear problem has a set of Laurent series solutions ua = Hi=_oo ufan

(a=l,..., r) satisfying the condition

(3.18) du\/\duls\--/\du\/\du^/\dul^-'/\dur
Q^Q,

if and only if the following equations are satisfied :

(3.19) [-A£a + aa+r, -A3, + 3,+r] = £ (C^o + C^X-A^ + a^),
y=l

where CJ^0 and C^}1 are some functions independent of A to be determined

by the vector fields dl9..., d2f.

ii) In terms of the 1-forms e1,...,e2r defined by the duality relation

(ea, d&> =(5g, Eqs. (3.19) are equivalent to the exterior differential equations

(3.20) d(e« + Aea+0 A (e1 + A^+1) A - • - A (ef + Ae20 = 0 (1 e C)

iii) The above two representations of the integrability conditions are

form-invariant under transformations of the vector fields and 1-forms such as:

fd l dr+1\ id, dr+1
(3.21) ; : — W | :

U 32r J \d, d2r J \e'

with / = (/2) (a, /? = !,..., r) a GL(r, C)-valued function. With an appropriate
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choice of such transformations the vector fields and the 1-forms in question can

be set into a canonical form similar to that one shown in Proposition (3.11).
Furthermore, there is a systematic way to generalize the nonlinear constraint

employed for the case of the self-dual Einstein equations. For example, for the

case of the above series of equations, we take a complex Lie subgroup G of

GL (r, C) and consider

Constraint (3,22): The r x r matrix (dpu
a) takes values in G.

This certainly gives a nonlinear constrain as mentioned above; if in particular

r = 2 and G = SL(2, C), this reproduces the self-dual Einstein equations. A

variety of reductions of the "master equations5' (3.19) and (3.20) can be derived

as such. It should be also remarked that (3.22) is, in fact, equivalent to

Constraint (3.23) = The r x r matrix (dua/dx^) takes values in G.

Here we have taken (p1,..., p1", x1,..., xr) = (u{,...9 MI, wj,... , wg) as new space
coordinates and regarded u" as functions of these coordinates and L The group-

theoretical meaning of the above constraint will be clarified in §4.

We now conclude this section with a few remarks:

i) It would be worth mentioning that Zakharov and Shabat [7] already

argued equations like (3.16). They pointed out that such equations may be

interpreted as the condition of the vanishing of "obstruction" for extending the

notion of "zero-curvature representations" from ordinary fiat spaces to curved

spaces. Eq. (3.2), for example, is connected in this sense with the zero-curvature

representation (2.14) of the self-dual Yang-Mills equations, and if Eq. (3.2) is

satisfied (namely "obstruction" vanishes), the curved space version of (2.14) as

shown by Zakharov and Shabat enables one to describe self-dual Yang-Mills

fields on such a curved space-time after a manner almost parallel to the case of

fiat space-time. This leads to essentially the same description of self-dual

Yang-Mills fields on conformally self-dual space-times as presented by Atiyah,

Hitchin and Singer [24], though the latter takes a more geometric formulation

and, in addition, conformally self-dual space-times to be characterized by

Eq. (3.2) are somewhat special ones. See also the work of Torres del Castillo

[25] for a related topic.

ii) Thus it would be quite natural to expect that other interesting examples

of Eqs, (3.16) can be likewise obtained in connection with various analogues of

the self-dual Yang-Mills equations. In fact, Eqs. (3.19) can be derived in the
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above-mentioned sense from the curved space version of the "A-series" in

higher dimensional integrable gauge-field equations introduced and classified

by Ward [11]. Furthermore Ward's classification includes, besides the

"A-series", three other classes too; the latter also yield examples of Eqs. (3.16)

in their curved space version. (The formulation of the examples derived from

the "C-series" and "D-type" in Ward's classification requires multidimensional

parameters (A l9..., Am) rather than a single A.)

iii) An important question would be whether there are interesting examples

of superspace-analogues of Eqs. (3.16). Perhaps some examples will be found

in connection with the curved superspace version of the supersymmetric Yang-

Mills (constraint) equations; this issue will be discussed elsewhere.

§ 4e Group-Theoretical Structures in Curved Twistor Construction

4L Curved Twistor Construction

The Riemann-Hilbert problem has become a powerful solution technique of

nonlinear integrable systems [26]. As Boyer and Plebanski stressed [17, 18],

the curved twistor construction has a structure very similar to the Riemann-

Hilbert problem. The analogy, however, seems to be still incomplete; indeed,

the Riemann-Hilbert problem can be formulated as a sort of decomposition

problem in a group whereas the curved twistor construction, in its original form,

does not take such a form. The purpose of this section is to present a reformu-

lation of the curved twistor construction as a decomposition problem in a

"group-like" structure, which consequently enables one to compare these two

solution techniques on an equal footing. We start with a brief review of the

curved twistor construction here.

This construction, due to Penrose [16], produces self-dual Einstein metrics

from a class of three dimensional complex manifolds called "curved twistor

spaces". Each curved twistor space &~ here is endowed with a fibration n\^~

-+P1 and a "twisted" 3-form that defines on each fiber of n a symplectic

structure. The role to space-time is played by the space of holomorphic sections

of n (i.e. holomorphic maps s: P1-^^" with n°s = identity map) satisfying an

additional condition, which ensures that this space has complex dimensions

four. Finding the explicit form of this space is the most difficult part of this

construction. Because of this difficulty, carrying out the construction to the
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final stage has been done for very limited cases; see [27-30].
To give a more detailed account of the space of holomorphic sections, we

here consider the case where & is covered with just two coordinate patches

taking the form of the inverse images n~1(D) and n~1(D). Here D and D are
appropriate discs centered at oo and 0, respectively., and covering the Riemann
sphere. This is exactly the situation frequently assumed in the literature [16-18,
21, 27-29], and corresponds to considering metrics in a small neighborhood of

a space-time point. For such a case one can take coordinates (w1, w2, w3) on
TT^D) and (w1, w2, w3) on n'^D) so that they are related on n~l(D n D) as:

(4.1) w1 = Fi(wi, w2, w3), w2 = F2(w1
? w

2, w3), w3 = w3,

where F1 and F2, usually called "patching functions", are holomorphic on an

open set in C2 x (D n D) corresponding to n~1(D n D) and satisfy:

(4.2) ^(w1, w2)

The last condition reflects the presence of the "twisted" 3-form mentioned above.
For our purpose, however, it is more convenient to modify the notion of

patching functions as follows. Namely, we write the coordinates on n~1(D) as

(x, y, A) rather than (w1, w2, w3) and "twist" the patiching functions as:

(4.3) /Hx, y, A) = AFi(*, y, A), /2(x, y, A) = AF2(x, y, A),

calling them also "patching functions". Evidently they satisfy:

(44) d(A/2)
( > S ( X , y ) -1 '

which means that the patching functions define a one-parameter family (with
parameter 1 e D n D) of two dimensional canonical transformations (x, y)

-K/1*/2) m tne (X5 3^)-space, where the (x, j;)-space is endowed with the same
symplectic structure as introduced in §2. Recognizing patching functions as

such is, as we shall see later, the most basic point of view of our group-theoretical

interpretation to the curved twistor construction.

If the curved twistor space in question is as such, then, as shown in the

references cited above, the problem of describing holomorphic sections of n

can be reduced to certain functional equations with additional conditions. We
formulate the latter problem as :

(4.5). Find four functions u« = u«(z3 1) and ^a = ila(z, A) (a=l, 2)
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of five variables (z, A) = (z1,....) z
4, A) satisfying the following conditions:

a) li~lu* and ux (a =1,2) are holomorphic functions in the domains
S x D and S x 1), respectively, where S is a domain in the z-space.

b) du\ A dw? A dw£ A du% 7^ 0, where d denotes the total differentiation with

respect to z, and w£ = w*(z) (n = l, 0, —1,.. . , a=l, 2) the Laurent coefficients of

««,i.e.ii« = 5;;=_00ii;A».

c) ti«(z, A)=/aOr(z, >!•), w2(*> <i), ^) for (*, A) e S x (D n fi) and a = 1, 2.

Geometrically, this is certainly equivalent to the problem of finding a four-

parameter family of holomorphic sections of n, the parameters z = (z1,...? z4)

then playing the role of space-time coordinates. The second condition (b) is

added to avoid singularities in the metric to be constructed. According to

Penrose [16], the above problem indeed has a solution as far as the curved twistor

space is sufficiently close to the flat twistor space F3\F1 (for which f1=x and

f2 = y)l however, finding its explicit form is by no means an easy task, as already

mentioned. We therefore assume that we have solved the above problem, and

turn to the construction of the metric.

To give an explicit representation of the metric, we now take (u{, u\, u^ u$)

as new independent variables, and regard u* and u01 as functions of these variables

and 1; this is indeed possible by virtue of the above condition (b). The con-

struction of the metric then can be achieved as follows.

Proposition (4.6),, Given a pair of patching functions satisfying Eq. (4.4),

suppose that there are four functions u" and u" (a=l, 2) that fulfill all the

requirements in Problem (4.5); furthermore., take (p, q, x, y) = (u{9 wf, u^ u$)

as new independent variables in place of z. Then for the tetrad

u" and u" satisfy Eqs. (1.8) and (1.9) respectively. In particular, metric (1.1)

is self-dual Einstein, and u* and u* give its u-potentials.

Proof. From (4.4) and (4.5c), u" and ti" turn out to satisfy:

(4.7) du^Adu

The right side, if expanded into a Laurent series of A, includes only nonnegative

powers of L Therefore
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(4.8) dulAdu2

where co(2), ft)<1} and co(0) denote the same 2-forms as In Eq. (1.10). From the

last equation, (/L2o)<2> + Aa>(1) + co(0)) A (A2a><2) + Aeo^ + co(0>) = 0; this in particular

implies that &>(1) A co(°) = 0 and co(0) A co<°> = 0, so one obtains Eqs. (1.13) just as

in the proof of Proposition (1.12). With the aid of Eqs. (1.13) one can calculate

the right side of Eq. (4.8) as:

- = dx- -i dp-
V dx ^ dy

This completes the proof of the proposition.

The curved twistor construction can further be extended to various nonlinear

equations as discussed in §3. We finally illustrate this for the case of Eqs. (3.4).

What one has to modify is just to remove the condition that patching functions

should satisfy Eq. (4.4).

Proposition! (4.10). Consider the same situation as assumed in Proposition

(4.6), except that the patching functions do not have to satisfy Eq. (4.4). Then

for the dual tetrad of the tetrad

^ i duL, -, duL,~ ~ ~

dx * dy ^9 ^9

ua and ua satisfy Eqs. (3.1). In particular, this tetrad gives a solution of

Eqs. (3.4).

Proof. It is not hard to derive from (4.5c) the following equation:

(411) |~^r~djT\ / " \ l~^x"~dy~\ I

^ii^i \du2 {ML™.} \du2

dx dy I \ / \ ox dy I \

Expanding the both sides into Laurent series of A and equating their coefficients

in view of conditions (4.5a) and (4.5b), one readily finds that

(4.12) [the both sides of (4.11)] =

Now following the argument employed in the proof of Proposition (2.6), one can
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rewrite Eqs. (4.12) into linear differential equations for u" and ux, which show

that u" and fa* all satisfy Eqs. (3.1). This completes the proof.

4o2o Pseudo-Groups and Loop Pseudo-Groups

Suppose that there are given two curved twistor spaces with patching

functions (f1, f2) and (J1, J2) respectively. Regarding them as two-dimensional

transformations in the (x, j)-space with a parameter A, one may compose them

as:

(4.13) (/i,/2)o(/if/2)

= ( f l ( f l ( x , y, A), /2(x, y, A), X)J*(f*(x, y, A), /2(x, y, A), A)),

which gives a new pair of patching functions. This operation is exactly the

"nonlinear superposition" of curved twistor spaces due to Boyer and Plebanski

[18]? who thus introduced to the set of curved twistor spaces of the above type a

"group" structure. This however contains a problem. Namely, what really

forms a group is, for example, the set of curved twistor spaces with patching

functions which are globally defined in C2 x (D n D) and give, for every A, auto-

morphisms of the whole (x, y)-space C2. On the other hand, metrics defined

only locally correspond to patching functions defined in smaller domains of C1

x (D n D), and the composition of such patching functions, (4.13), may become

meaningless depending on the configulation of the domains in which they are

respectively defined. We here discuss what kind of mathematical structures are

relevant to such a situation.

We first consider this issue ignoring the presence of the parameter A. Let us

call a bijective holomorphic map of an open subset of Cr into another one, for

simplicity, a local transformation in Cf (r>l). In terms of the standard

coordinates x = (x *,..., xr) on C¥ each local transformation can be represented by

an r-tuple of functions/=(/1,...,/r). Just because of the same situation as
occuring above, the set of such local transformations does not form a group in a

strict sense, though still has a very similar structure. In the mathematical liter-

ature such an object is called a "pseudo-group". (For the precise definition of

this notion, see [22, 31]; we omit the detail here). For the description of more

special classes of local transformations such as canonical transformations, we

take a complex Lie subgroup G of GL(r, C) and consider the following set of

local transformations:
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(4.14) FG = {local transformations/=(/1,...,/r); for each/the

Jacob! matrix (df*ldxp) takes values in G},

which evidently is invariant under composition, thus also forms a pseudo-group.

For r = 2 and G = SL(25 C) this is nothing but the pseudo-group of local canonical

transformations in C2.

We now take into consideration the dependence on the parameter A, and

regard such local transformations as forming a sort of "loop space". For this

purpose, take a circle C in the Riemann sphere with center at 0, and let Fg

denote the set of analytic maps of C into FG. In other words,

(4.15) Fg = {local transformations /(A) = ( f l ( x , X),...J'(x9 A)) with a

parameter A; for each/(A) the parameter A moves on C, the coordinate

components /a(x5 A) (a=l,..., r) depend on A analytically, and for
every A the Jacobi matrix (dfa(x, A)/dx^) takes values in G}.

If the circle C is taken so as to be included in the annular domain D n 6, patching

functions as used in the aforementioned curved twistor construction can be

regarded as elements of F£L(2,o (for the case of the self-dual Einstein equations)

or of FgL(2j(C) (for the case of Eqs. (3.4)). Just as in the case of FG the com-

position of elements of Fg, too, may become meaningless; thus Fg likewise forms

a pseudo-group, which we call a loop pseudo-group.

From the point of view of group theory FG and Fg both have thus fairly

incomplete features. Their infinitesimal counterparts however enjoy more

definite realizations as infinite dimensional Lie algebras of vector fields. For

FG, the Lie algebra is formed by vector fields £a=i v^xjd/dx* for which the
Jacobi matrix (dva(x)/dxp) take values in the Lie algebra g of G; let us write

this Lie algebra yG for the moment. Then the Lie algebra of Fg is the loop

algebra of JG with respect to C (i.e. the Lie algebra formed by analytic maps

of C into yG), which in particular includes the Lie algebra yG®C[A, A"1] of

yG~valued Laurent polynomials. In the case of G = SL(2, C) these notions are

exactly what Boyer and Plebanski [18] pointed out.

4.3. Decomposition Problem of Riemaim-HiSbert Type

Employing the above notions we now show a group-theoretical inter-

pretation of the curved twistor construction. To compare this with the Riemann-

Hilbert problem, let us first briefly explain how the Riemann-Hilbert problem

can be formulated in the language of group theory.
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Let G be a complex Lie subgroup of GL(r, C) and C a circle with center at

0 just as in 4.2. Furthermore, let Gc be the set of analytic maps of C into G.

Each element of Gc may thus be regarded as a G-valued analytic function g(X)

of A e C. By defining the product of two elements as pointwise multiplication of

values at each AeC, Gc forms a group which is usually called a loop group.

The Riemann-Hilbert problem (to be more precise, regular Riemann-Hilbert

problem) then can be formulated as a sort of decomposition problem in a loop

group, as follows.

Riemann-Hilbert problem (4.16). For a given element /(/I) of Gc, find two

elements #(A) and /i(A) of Gc that fulfill the following conditions :

a) #(A) and li(A) can be extended, as holomorphic maps into G, to some

neighborhoods of C U C_ and Cu C+, respectively, where C+ denote the two

connected components of Pl\C with 0 e C+ and oo e C_.

b) 0(oo) = l.

c) /(A) = ^(A)^)-1forAeC.

The second condition (b) ensures the uniqueness of g(A) and h(X) if they exist.

The above problem can be translated into a linear integral equation of Fredholm

type, and a unique solution certainly exists as far as /(A) is sufficiently close to

the unit matrix [26].

What we now argue is that the curved twistor construction can be interpreted

as a decomposition problem of the following type.

Decomposition problem (4.17). For a given element /(A) of Fg, find two

elements g(X) and h(X) of Fg that fulfill the following conditions :

a) g(X) and /z(A) can be extended, as holomorphic maps into FG, to some

neighborhoods of C U C_ and C U C+ respectively.

b) fif(oo) = identity transformation.

Let us rewrite Problem (4.5) into the form of such a decomposition problem. To

this end, take the coordinates (p, q, x, y) also here and, regarding u1, u2
9 ul

and H2 as functions of (p, q, x, y, A), define:

(4.18) gfaqiXjsW-pi.tf-qX),

h ( p , q ; X ) = (V,&),

which then give (as local transformations in the (x, y)-space) elements of
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the latter two elements depending also on the parameters (p, q), where

I) r = 2 and G = SL(2, C) for the self-dual Einstein equations3

ii) r = 2 and G = GL(2, C) for Eqs. (3.4).

Furthermore, by virtue of the condition (a) in (4.5) and of the above choice of

coordinates, the conditions (a) and (b) in (4.17) are also fulfilled. Finally, the

functional equation (c) in (4.5) can be rewritten as:

(4.19) T(-pA, -qX)°f(X) = g(p, q; A)ofc(p, q; A)"1,

where T( — j?/l, —qk) denotes the translation (x, y)-*(x — pk, y — qfy. Eq. (4.19)

evidently takes the form of a decomposition problem as exhibited above, thus

we obtain another formulation of the curved twistor construction in the language

of loop pseudo-groups. This interpertation can also be extended the same way

to the generalised setting discussed in §3.

Regretfully, the above group-theoretical interpretation yielsd no practical

reduction of the difficulty in the original curved twistor construction. Indeed

solving the above-mentioned decomposition problem is still a very hard task

because of its high nonlinearity. The Riemann-Hilbert problem is, roughly

speaking, a linear problem which can be reduced to a linear integral equation of

well known Fredholm type. The problem in Fg, on the other hand, is essentially

of nonlinear nature; it includes the notion of composition of maps, a typically

nonlinear operation. Thus some new technique is required here. This issue

is left to researches in the future.

Nevertheless, our group-theoretical point of view seems to indicate various

new possibilities of approach to the self-dual Einstein equations and to their

generalizations discussed in §3. As such an attempt, we shall present in the

next section a geometric description of these equations as dynamical motion in

an infinite dimensional Grassmann manifold, which gives an extension of the

work of Sato [32].

§ So Bymamicall Motion fin DSineEsSomail MamlfeSi

Sato [32] presented a geometric interpretation of various solution equations

as dynamical systems in an infinite dimensional Grassmann manifold. The

purpose of this section is to show a similar description of the self-dual Einstein
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equations and their generalizations discussed in §3. In order to avoid lengthy

and tedeous sequences of inequalities for the check of convergence, we here

consider just "formal solutions"; for the case of the self-dual Einstein equations

"formal solutions" mean solutions for which ej(z) e C[[z]], where C[[z]]

denotes the set of formal power series of space-time coordinates z = (z1,..., z4)

with complex coefficients. (Conditions for their convergence can also be

investigated if necessary, though we shall not discuss them here.)

The results presented in this section can be summarized as follows:

i) Formal analogues of loop pseudo-groups JTg, which we call formal loop

groups, are introduced. They indeed form groups and, besides, it turns out

that the counterpart of decomposition problem (4.17) for these groups always

has a unique solution. The notion of formal loop groups thus provides a

framework in which the ideas in the preceding section can be realized more

rigorously.

ii) Two faithful linear representations of the above groups are introduced.

With the aid of one of them the self-dual Einstein equations, as well as their

generalizations, can be translated, in their formal solution sector, into some

(multi-time) dynamical motion in an infinite dimensional Grassmann manifold.

Arguements developed to establish these resuts are, basically, of the same

nature as the cases of solution equations [32] and of integrable gauge-field equa-

tions [33-35], though become more complicated because of high nonlinearity

underlying the relevant group-theoretical structures (cf. § 4.3). The role to be

played by the above-mentioned linear representations is, roughly speaking, to

"linearize" that nonlinearity. Indeed the most essential part of the arguments

then can be reduced to linear algebra of infinite matrices, thus techniques

employed in [33] can be likewise applied to the present case with minimal modifi-

cations.

To make the description not too involved, in what follows we deal with just

two types of formal loop groups, namely those corresponding to FgL(rjC) and

^sL(r,c)> anc* illustrate the above results for these cases alone. Further, in
most part of the following arguments, since the complete proof will become too

long and mathematically too technical, we indicate just basic ideas of the proof

rather than its full detail.
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§92o Formal Loop Groups

Formal analogues of loop groups Gc were introduced in [33] also under the

name of "formal loop groups". The ideas employed there are also applicable
to the present issue to find formal analogues of loop pseudo-groups Fg. We
here illustrate this for the cases 6 = GL(r, C) and SL(r, C1).

Such a formal analogue should be formed by "formal transformations"
which can be represented by r-tuples /=(/1

9...?/
r) of formal power series of

x = (x1,..., *rX ̂  an(i ^~1 of the form

(5.1) /* =/*(*, A) = £ /
(J .OeZ

where JV={0, 1, 2,...} (nonnegative integers), Z={0? ±1, ±2,...} (all integers),

and x1 denotes, for each multi-index I = (il9...,ir)ENr
9 the monomial x1 =

(x1)il"-(xr)*r. The composition of such formal transformations, however, is

meaningless in general unless some "growth conditions" for the coefficients

fit are assumed. To give a precise formulation of such "growth conditions"
in the present setting, we take as in [33] a C-algebra (an algebra defined over the
complex number field) A with the following properties :

(5o2)e A is a commutative C-albegra with a unit element 1 and

a filtration •••^_ 2 = ̂ 4-i=-40
 = ^:::>^i=:>-^2:::>'" formed by complex vector

subspaces An (n e Z) satisfying the following conditions (a)-(d) :

a) nJLo4, = 0.
b) AmAncAm+n for any pair of integers m and n.

c) For any sequence an (n > 0) of elements of A with an e An, there is a
unique element a of A such that a — 2^=o aneAN+1 for every JV>0. In what

follows we write this element a as X£=o an\ this notation is consistent with the
ordinary notion of finite sum.

d) For any integer m and any sequence an (n > m) of elements of A with
aneAn, the infinite sum 2^=m an introduced above belongs to Am.

(5o3)0

A= C[[p, q\~\ = {formal power series Z£y=o Cyp^7' ; cfj- e C} ,

We now show the definition of formal analogues of Fg for G = GL(r, C) and

SL(r, C):
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Definition (5.4).

-, C) (a, 0 = 1,..., r)},

where l / l s i n + .-. + i, for / = (/!,..., ip)e^ and £,s(0,...,l,...,0).
(£)

The coditions imposed on the coefficients /f t in the above definition are

indeed appropriate ones, because under this definition we can obtain the following

basic result :

Theorem (5o5)0 /"o^r.c) forms a group with respect to the composition

fof of two elements f=(f*(x, A),..., f'(x, 1)) and f=(fl(x, *),..., f'(x, A))

defined as: f ° f = ( f 1 ( f , A),...?/
r(/3 A)). Furthermore F££^>c) forms a sub-

group of r#$rtCr

The proof of the above theorem can be reduced, with the aid of matrix

representations as introduced later (see 5.3), to the check of composability and

invertibility of corresponding infinite matrices. For the latter problem,

techniques as exploited in [33] are likewise applicable with slightest modifications.

We omit the detail.

It would be remarkable that unlike loop pseudo-groups Fg, their formal

analogues F^a> form groups in a strict sense; because of this fact we call them

"formal loop groups".

We now show the statement of our result on a formal loop group version of

decomposition problem (4.17). To this end, let us introduce the following

notion :

Definition (5«,6)0

Note that F£a>'+ and F^a>>~ both form subgroups of F^a>. The result on

the decomposition problem then may be formulated as follows.

Theorem (5.7). Any element fof F^a> can be uniquely decomposed as:

f=g°h~\ ger#».-, fceF^>>+.

The proof of this theorem will be indicated later (see 5.6) in connection with
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the notion of Grassmann manifolds. What seems particularly interesting here

is that the counterpart of decomposition problem (4.17) for formal loop groups
always has a unique solution. This seems to be a common advantage of the

notion of formal loop groups over the analytical ones; indeed it has been shown
in [33] that the same situation occurs for the case of formal analogues of loop

groups Gc, too.

We now introduce two linear representations of formal loop groups
The first one, which we write p, represents each elenent of F^a> as an infinite

matrix whose rows and columns respectively have (r+l)-fold multi-indices:

(5.8) p: r$<*>—>GUZ,A),

where Z is, as already mentioned, the set of multi-indices Nr x Z, and GL(Z, A)

denotes the set of invertible ZxZ matrices with matrix elements taken from A.

The matrix elements of p are written

(5.9) p(D = (p(fWj), /erg<»

(where the multi-indices (I, t) and (J, j) respectively indicate the rows and
columns), and defined as the coefficients of the power series expansion

(5.10) E z pVy/jx'i-J-*

where//=(/1)il»-(/r)ir for I = (il9...,ir)eNr.

i (5.11). The map p: F^a>-»GL(Z, A) thus defined gives a

faithful representation of the formal loop group

The second representation, which is to play more important roles later, is

the contragredient representation of p; we write it p* for brevity. This also
gives a faithful linear representation of

(5.12) p* : F£a> - > GL(Z? A) .

We write its matrix elements as :

(5.13) P*(/) = (

where (I, i) and ( J, j) are used, also here, to indicate the rows and columns

respectively. It is not hard to see that the matrix elements of p*(f) can be

reproduced as the coefficients of the power series expansion
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(5.14) £ p*(/)#*/A-<-i=/«A-'-i,
( I , i ) e Z

where we write the coordinate components of the in verse transformation/"1 as:

/-1=(/*V..,/*0

and define: /*/ = (/*Oyi"'(/*pyr for J = (j\,,..,jr)eNr.
Not only being an infinite-matrix representation as above, p* turns out to

have another more natural realization as a linear representation of Fjfa> in

a "formal function space" A(x, /i> defined as follows:

Definition (5.15).

A<x, A>m)n = {formal series <J= Z {/i*7^'"1; ̂ e^-,,,^ n 4,-ih

A<x, A).^^ U 4<x, A>m > n ,
meZ

A(x, A>s W A<x, !>„,,„.
m,ne^

Note that elements of ^4<x, A> are in one-to-one correspondence with infinite

column vectors of size Z as: £«-»u( £) = (£/*•) ((f» Oe^)- By using this corre-

spondence another realization of p* can be expressed as follows :

Proposition (5.16). For anyfeF£a>and any £ = <!;(x3 A)e>4<x ? A> one

1
5 A), /n of/ier wor{is p* can be identified with the action

We therefore from now on identify the infinite-matrix representation p* with

the above realization in the A -linear space (yl-module) A(x, A>? and use the

same sign p* to denote the latter one too, i.e.

(5.17) P*(f)t = &-\ /eT^>, £eA(x,iy.

The ^4-linear subspaces (^4-submodules) A(x, A>mjfJ (m, ne Z) form a

filtration in ^4<X A>. One may consider this filtration as defining a scale for

measuring, for example, the convergence of series or sequences in >4<x, A>9 just

the same way as in the case of the filtration An (n e Z) in A. In other words the

filtration defines, as a system of fundamental neighborhoods at the origin, the

structure of a topological ^4-linear space in A(x, A>. Since

(5.18) P*(/M<*, Zym,n = A(x, l>mjn (m, n E Z)
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for every /e F^fa>
? p*(f) becomes a continuous ^-linear automorphism of

A(x, A) with respect to this topological structure.

In the mathematical literature Grassmann manifolds in question are usually

finite dimensional; a typical example is the Grassmann manifold formed by

^-dimensional vector subspaces of a fixed N-dimensional vector space (n<N).

Infinite dimensional ones, however, are also investigated to some extent. Indeed

Sato [32] introduced an infinite dimensional Grassmann manifold GM = GMF

starting from an infinite dimensional complex vector space V. Here V is

endowed with a filtration • • • ID F_ i ID F0 ID Vl ID • • • formed by vector subspaces

Vn c V (n E Z), which defines the structure of a topological vector space in V by

taking Fn's as a system of fundamental neighborhoods at the origin. GMF is

then defined as:

(5.19) GMF = {closed vector subspaces 1/ciF; for each U the dimensions of

the kernel and co-kernel of the natural linear map l/-»F/F0 (induced by

the projection of Fonto the quotient vector space F/F0) are both finite

and coincide}.

We now apply the same construction to the following complex vector

space C<x5 A>.

(5e20)0

C<x, j>m>n = {formal series £= £ ^/i*7^"4"1; £i*e C for (I, i)eZ,

and £ji = 0 if |/| + i < m or

C<x, A> _ «, n = U C<x ? A> m w ,
tneZ

This is evidently a special case of ^4<x, A> in which the basic algebra A is set

equal to the complex number field C endowed with the trivial filtration: Cn = C

for n<0 and {0} for w>0. C<x, A) becomes a topological vector space with

C<x3 A>m?n (m, ne Z) a system of fundamental neighborhoods at the origin.

Furthermore the subspaces C<X A)-^, (neZ) give a filtration similar to

Fn (n e Z) in V. It would be therefore reasonable to introduce the following

analogue of Sato's Grassmann manifold GMF.
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Definition (5.21).
GMc<Xiiy = {closed vector subspaces C/c C<x, A>; for each U the dimensions of

the kernel and co-kernel of the natural linear map l/-»C<x, A>/C<x, A)-^ are

both finite and coincide} .

Remark. At present, it is not altogether confirmed whether this is really an

appropriate definition of a Grassmann manifold to be constructed from the

vector space C<x, A>, because the structure of this vector space is far more

complicated than that of V. We shall not go further into discussions on this

issue, and take the above definition as a "working hypothesis".

Actually, what is relevant to the description of formal solutions of the

nonlinear equations argued later is a subset of GMCOc>A> defined below, rather

than the whole GMc<XjA>.

(5022)0

GM^<JCjA> = {closed linear subspaces C/czC<x, A>; for each U the natural linear

map l/-»C<x, A>/C<x, A).^ 0 is an isomorphism} .

This subset is introduced as an analogue of the Schubert cell GMf- of GMF [32]

(where 0 denote the empty Young tableau) which for a finite dimensional case

corresponds to the open dense cell. A specific feature of this subset is that

for each 17 eGMg<JC>A> there is a basis {£JJ; (JJ)eNc} (Nc = NrxNc, Nc

= Z\N) of U as a vector space which satisfies the following condition :

(5.23) f-x'A-'-1 6 C<x, *>_„.„ for ( J , j ) e N < .

Such a basis is unique, and can be obtained as the inverse images of [x-7!"7"1],

( J , j ) E N c , by the linear isomorphism f7-»C<x, A>/C<x? A).^. Here the

sign [x-U"^"1] denotes the image of xJX~J~l by the projection of C<x, A>

ontoC<x, A>/C<x, A).^.

5o5o Variants

In actual applications (see 5.6 and 5.7) we need the following variants of

(5,24),

<x,A> = {closed ^.-linear subspaces U c A ® C<x, A> ; for each U the

natural ^-linear map [7->y4®C<x, A>/^4® C<x, A).^^ is an isomorphism} ,

where the tensor product ^4®C<x, A>=y4® c C<x, A> is endowed with the

structure of a topological A-linear space in which a system of fundamental
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neighborhoods at the origin is given by A® C<x, A>m?n (m, n E Z).

(§025)0

GM^,A> — {closed ^4-linear subspaces l/c^x, A>; for each U the natural

^4-linear map U-+A(x, A>/^4<x, A).^ is an isomorphism}.

Roughly speaking, the first variant GM^c<Xt^ represents a sort of "map

space55 with values in GMg<X)A>. For example, if A — C\_\_p, qj] (see Example

(5.3)), each element of this space may be interpreted as a "formal map" of the

(p, g)-space into GMg<JC)A>. Evidently one may take this geometric picture as

a formulation of (multi-time) dynamical motion in GMg<JC> A> .

The interpretation of the second variant GM^oc, A>, on the other hand, is

seemingly less clear from the definition. There is however a direct connection

with the first variant as follows, and from this fact we can see that these two

variants represent essentially the same object.

Proposition! (5o26)0 Regard ^4®C<x, A> as an A-linear subspace of

A(x, A> after a natural manner, and define for each l /eGMf< x > A > an A-

linear subspace c(U} of A®C(x, A> as: c(U) = U n A® €<x, A>. Then c(U)

eGMg^co^, and the map c: GM3<JCfA>->GM$(g)c<JCiA> thus defined is an

bijection.

Sketch of proof. The most crucial part of the proof is to show that U and

c(U) have a common basis { £ J j ; ( J, j) e Nc} such that

(5.27) £J '-xJA--''-1eA<g>C<x, A).^ for (JJ)eNc.

Once the existence of such a basis is ensured, it is not very hard to check the

statements in the proposition by employing that basis. So let us consider how

to obtain such a basis. Since the natural y4-linear map U->A(x, A)/^4<x, A) _ ^^

is an isomorphism, the inverse images of [xJArj~1~], (J, j)eIVc, where the sign

[xJA~-/~1] denotes the image of xjh~j~l by the projection of A^x, A> onto

^<x, A>/^<x, A).^^, form a basis {|J^'; (JJ)eNc} of 17 such that

(5.28) ^-x'A-^e^AX^o for (J , j )eJV c .

We now examine the ZxNc matrix M=(|f/) ((/, i) e Z, (J, j) e Nc) formed

by the column vectors u(ljj') = (l/0- Applying techniques developed in [33]

with appropriate modifications, one can show that the Nc x Nc part M(_} of M is

an invertible matrix and that the product MM^ also makes sense. We then

write the matrix elements of this product matrix as :



984 KANEHISA TAKASAKI

(5.29) ttttft = (#/) ((/, 0 6 Z, (J, j) e N<) ,

and define: £JJ = ̂  £f/x1/lr-/~1 for (J, j)eJVc. This yields a basis we have

sought for.

Remark. The fact that 17 and *(C7) have a common basis does not means

that they coincide. This is because the topological structure of ^4®C<x, A>

(see Definition (5.24)) is distinct from the one to be induced from that of A(x, /L>.

Indeed c(U) is in general not a closed subspace of A(x9 A>5 but its closure in

A(x, /i> agrees with 17. This, in particular, explains how the inverse of the

map c can be constructed.

5.6. Link between Formal Loop Groups and Grassmann Manifolds

The following theorem is the key to connect the notion of formal loop

groups with a Grassmann manifold.

Theorem (5.30). For every element f of F£a> the A-linear subspace

= P*(/MOU><-) of A<x,A>, where A<x, X>(-) = {t = X ^^r-1 e
, /l>; {jj = 0/0r z>0}, becomes an element o/

Sketch of proof. Since p*(/) is a continuous ,4-linear automorphism of

A<x, A> (see 5.3), the check of the closedness of y(f) can be reduced to that

of A(x, A> ( _ ) ? but the latter is not a hard task; we omit the detail. On the

other hand, in order to show that the natural ,4-linear map of y(f) into A(x, />/

^4<x, A)-^^ is an isomorphism, it is sufficient to find a basis of y(f) satisfying
condition (5.27) or (5.28). We can indeed construct such a basis, using basically

the same ideas as employed in the proof of Proposition (5.26), as follows. First

define: I* * = p*(f)xj )r j~l for (JJ)eNc. They evidently form a basis of

y(/), which however does not satisfy condition (5.27) nor (5.28). To find an
~ z .

appropriate basis, consider the ZxNc matrix Af=(£f[) ( ( J 9 j ) e Z , (I, i)eNc)

made up of the column vectors v(£JJ)=(£j{). Let M(_} denote its NcxNc

part; then just as in the case of the matrix M (see the proof of Proposition (5.26))

the product matrix MM^ turns out to make sense, and from its column vectors

we obtain a basis {£JJ; (J,j)eNc} of y(f) that satisfies condition (5.27). The

theorem can be proved along this line.

With the aid of the basis {£Jj; (J,j)eNc} constructed above, besides, we

can prove Theorem (5.7). Let us first consider the case of G = GL(r, C).

From the above basis, pick out the elements corresponding to (J, j) = (Ea9 -1)
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(cf. Definition (5.4)) and write them as: g*a, a=i,..., r. Evidently, g* =

(g*1,..., g*r) becomes an element of r£fy~c}. Furthermore:

Proposition (5.31). The inverse of g*, g=(g*)~1
9 gives the first factor of

the decomposition in the statement of Theorem (5.7).

Proof. Since g*" ey(f) = p*(f)A(x, A> ( _ ) 5 g**°f (oe=l,..., r) are elements

of A(x, A> (_} . This implies that the composition fc=/~1°<7 = (0~1°/)~1 is an

element of r£fy+c), thus gives the second factor of the decomposition. This

completes the proof of the proposition.

For the case of G = SL(r, C) we first decompose the given element / of

) as an element of r££frtC) as: f=g°h~l for some g e rgfy~C) and he

)- ^n ^act» ^ then turns out that g and h become elements of F^\r\c)

and .TsMrlc)* respectively. To see this, we use the following equation for

their Jacobi determinants :

(5.32) d(g)id(x) = 5(/)/5(x) U, d(h)/d(x) = 3(fc)/a(x) .

Let us note here that the right side includes just nonnegative powers of A, whereas

the left side takes a form such as: 1 + (linear combination of A, A2, A3,...). Thus

Remarks, i) The map y: F£a>-»GM3<JCj;i> defined above is invariant

under the right-multiplication of elements of Fjja>»+ (i.e. y(f°h) = y(f) for every

herg»-+) and the induced map [7]: r^a>/r^<A>-+->GM3<JCfA> is an

injection. Thus we obtain an embedding of the quotient space

into GMS<Xfjl>.

ii) Theorem (5.7) shows that the natural map r^'-^

induced by the projection of F^fa;> onto F^a>/r^a>'+ is an bijection. Its

composition with the map [y] agrees with the restriction of the map y onto

iii) The map 7, or equivalently the map [y], is not a surjection. It is not

hard to specify the structure of the image, though we omit the detail.

5«,70 Description of Formal

We now turn to the description of formal solutions of Eqs. (1.4) and (3.4).

It is quite straight forward to rewrite the setting in §4 into its formal counter-

part for formal loop groups. The relevant formal loop groups are:

i) ^stfe c"a> for the case of Eqs. (1.4) ,
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ii) ^GCLCfif ")a> for the case of Eqs. (3.4) ,
where the C-algebra of formal power series C[[JP, qj] is endowed with the

filtration exihbited in Example (5.3). The counterpart of the data /(/I)

representing a pair of patching functions is now taken from :

iii) rf£^§c) for the case of Eqs. (1.4),

iv) Fg^.c) for the case of Eqs. (3.4),

where Fga> (G = GL(2, C), SL(2, C)) denotes the special case of I^a> in

which A is set equal to the complex number field C endowed with the trivial

filtration : Cn = C for n < 0 and {0} for n > 0. If such an element /(A) is given,

the decomposition problem relevant to these equations can be written :

T(-M, -qX)*f(X) = g(p, q; A)ofc(p, q; A)'1 ,

g(p,q',X)ErSU''*™»--, h(p9q;X)er$iP.™<».+ .

By virtue of Theorem (5.7) such factors g(p, q; A) and h(p, q; A) do exist for

every /(A). From the coordinate components of g(p, q ; A) and h(p, q ; A)

we define w1, u2, u1 and u2 as in (4.18). Then tracing back the arguements in §4,

we readily find that the statements of Propositions (4.6) and (4.10) are also valid

in the present case.

The above solution process can be reinterpreted from a somewhat different

point of view. Let the sign [/] denote, for each element/ of r£a>, the image

of /by the projection of I^fa> onto r^a>//^a>'+. It then turns out that the
"dynamics" of [g(p, q\ A)] ergf^-««<A>^g[[j,,«]]<A>,+ is governed by a

very simple law. To see this, note first that from (5.33), by letting p, g-»0,

(5.34)

Inserting this relation into (5.33) and taking the projection onto the quotient

space of the formal loop groups, we obtain :

(5.35) |T(-pA, -qX)°g(0, 0; A)] = [0(p, q; A)] .

Thus the "time-evolution" [0(0, 0; Xf]-+\jg(p, q; A)], where p and q are regarded

as multi-time parameters, is realized here as the action (by left-multiplication)
of T(-pX, -qX) on rg«p.«"<A>//-g[[p.«]]a>,+. The above formula is of

course valid for any "initial data" g(Q, 0; A)eFga> and, in fact, it is not

hard to see that any formal solution of Eqs. (1.4) or (3.4) can be produced by

this process.

The above group-theoretical picture can be transferred, by the map y or /

= c°y, to (multi-time) dynamical motion in the Grassmann manifold
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(r = 2), where we write the variables (x l9 x2) as (x, y) after the notation in the

preceding sections. To be more precise, we consider the dynamics of the

"moving point" y(g(p, qi A)) or y'(g(p, q; A)). The dynamics of the former

takes a particularly simple form as follows.

Theorem (5.36). The "time-evolution" y(0(0, 0; A))-»y(0(j?, q\ A)) is

generated by the action of the linear differential operator exp (pldldx

9 0; A)).

Proof. From (5.35) and from the definition of the map y

y(g(p, q-, A)) = p*(T(-pA, -qXMg(Q, 0; A)).

On the other hand it is not hard to check that

p*(T( - pA, - qX)) = exp (p&d/dx + qXd/dy) .

This completes the proof.

It should be noted here that not just on the image of y, the differ-

ential operator Qxp(pXdldx-\-qXd/dy) induces also a map of GM^<Xtyi^ into

GMc[[p,g]Kjc,y,A>- (This can be proved just the way as the proof of Proposition

(5.26) and Theorem (5.30), using appropriate bases as employed therein.)

According to what we observed in 5.5, this map represents, in an abstract sense,

some dynamical motion in GM^/^ j ) ) jA> with "formal59 multi-time parameters

(p, q). The image of y forms an "Invariant subset59 of this dynamical motion,

and on this subset, as the above theorem shows, the induced dynamical motion

exactly describes how the point y(g(p, qi A)) "moves55 depending on the multi-

time parameters (p, q). This conclusion Is quite parallel to the cases of soliton

equations discussed by Sato [32] and of gauge-field equations by Suzuki,

Hamad, Jacques, and the author [33-35]. It Is also possible, as in [33-35], to

reformulate the present setting in terms of some Infinite matrices and differential

equations to describe the dynamics of these infinite matrices. The matrices M,

M, etc. (see 5.5 and 5.6), can be used for such a formulation.

We have investigated the self-dual Einstein equations and related equations

from the point of view of integrability. In particular the following three aspects
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have been discussed in detail: i) The existence of a linear scattering problem,

ii) A group-theoretical description of solutions with the aid of a decomposition

problem similar to the Riemann-Hilbert problem, iii) A geometric interpretation

as dynamical motion in an infinite dimensional Grassmann manifold. It would

be remarkable that the group-thoretical structures relevant to this case have

turned out to be somewhat different from those of classical examples of nonlinear

integrable systems. This implies that the self-dual Einstein equations may be

thought of as an essentially new type of nonlinear integrable system. We have

also shown a general framework to produce this type of nonlinear integrable

systems, which seems to include a broad class of new examples of such nonlinear

systems.

Some problems however remain open. For example, the process of how to

find the exact form of special solutions (like solitons for various solution

equations, instantons and monopoles for the self-dual Yang-Mills equations,

etc.) is still not very clear in our description of solutions. This issue is left to

reseaches in the future. Another issue to be explored is to make clear the relation

of our method with other ones that have not been mentioned in the text. In this

respect Sanchez's work [36] also dealing with some aspects of integrability

and Gindikin's work [37] borrowing ideas from integral geometry, will provide

particularly interesting material. Some new developments may be expected in

these directions.
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