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This is a continuation of our previous work [9] on the exterior problem

for the Boltzmann equation describing a gas flow past an obstacle. In [9],

we established the existence of stationary solutions, and the subject of this

paper is their stability.

The paper [9] will be referred to as Part I and any formulae number of

Part I will be preceded by the symbol I, when quoted in this paper. Thus,,

(1. 1.1 a) means Equation (1.1 a) of Part I, and so on.
Our problem is the initial boundary value problem (1. 1.1):

r~f=Mr+f5 (t,

/-»&(*) (I *!-*<*>), (r, £)e=fi+ xtf",

For the notations, we refer the readers to Part I. The stationary problem

induced from (1.1) is (1. 1.10). Let u=u(c) be the solution obtained in Theo-
rem 1.9.3 to (1.1.12). Then,

fc = go+gl/2u(c)

is a (unique) solution to (1. 1.10). The aim of the present paper is to show

that fc is asymptotically stable in t. In other words, we shall show that when-

ever the initial/0 in (1.1) is close to fe, a unique solution f=f(t) exists to (1.1)
in the large in t and approaches fc as t-^oo,
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In order to prove this, we seek a solution /of the form

/ =/(0 =fc+gl

Substract (1. 1.10) from (1.1) and recall the definition (11.11) of Le, r0 and M0.
Then, w=w(t) should solve,

(1.2)

wt = -£°Fxw+Lcw+2F0[u(c)5 w]+F0[w, w] ,

MQw = 0 ,

Obviously9 the desired stability of fc follows if for each small w0, (1.2) has a
unique solution in the large in t tending to 0 as t->oo,

This has been shown in [1] for the special case c=0 in which w(0)=0 (see
Theorem 1.9.3 (i)). The method employed there is based on the contraction
mapping principle supplemented by nice decay estimates of the semigroup
for the linearized equation of (1.2). This method is the only possible method,
at least up to the present, which makes accessible the nonlinear Boltzmann
equation in the large in t, see [2, 4-8].

To apply it to (1.2) for the case c=£0, recall the operator Bc of (1.1.13).
It is the linear operator

(1.3) BC = e-rf+Le , (jc, £)e a xMn ,

associated with the boundary condition M"0w=0 on S~ and w->0 (|#|-»oo).
It was shown in §1.7 that Bc generates a semigroup in L2(@xMn), Denote
the semigroup by Ec(t)\

Then, (1.2) is reduced to the integral equation,

(1.4) w(0 = £#)wo+r Ec(t-s){irQ[u(c\ w

In § 55 we will solve (1.4) in the large in t by the help of the contraction
mapping principle. Then, a decay estimate of Ec(t) is needed, and will be
discussed in § 4 by a perturbation argument based on the explicit expression
of the resolvent of Bc found in § 1.7. The unperturbed operator is B™ of
§1.6, i.e., (1.3) defined for (x, £)<^RnxRn. We shall discuss the semigroup
£7(0 generated by B™ in § 3. § 2 is a preliminary and § 6 gives the proof of
Proposition 4.5 which is a key to § 4. As announced in Part I, the proof of
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Proposition 1.7.4 which plays an essential role in § 6 as well as § 1.7 will be
given in § 7,

Observe that the linear operator associated to (1.2) is not Bc but BC+2FQ

[u(c)9 «], and that if the semigroup for the latter is used, then the linear term
on the right hand side of (1.4) is absent. Hov/ever, our perturbation tech-
nique no longer works to get any decay estimates for the latter semigroup,
so, only Ee(t) is available. On the other hand, the extra linear term on the
right hand side of (1.4) can be handled only by the decay estimate of Ec(t)

sharper than required when the linear term is absent; we need the estimate
Ee(t)=Q (r*), a>\ for (1.4) while a>l/2 suffices if the linear term is absent.
Also, to handle the linear term, we are required that u(c) is small, namely3

c is small.

§20 Preliminaries

Given a Banach space X, we define the Banach space X^ aeJB, of func-
tions f(f) of t > 0 with values in X by

(2.1) /(Oe*,«(l + OV(OeL-([0, oo); X) .

When Xis any one of the spaces Lfcq(Q), Yfcq>±
9 etc. of Part I, we write L£;S(6),

rfcj-*, etc. for X..
Let Y be another Banach space and B(X9 Y) denote the space of all

bounded linear operators from X to F. Then BJ(X9 Y) will be defined by
(2.1) with B(X9 Y) substituted for X. If A(t)GiBJ(X, F), it induces the
multiplication operator A,

(Au)(t) =A(t)u9

and the convolution operator A*,

Jo

The following two lemmas will be useful in the sequel.

.2.1. Let A(i)^BJiX9 F).
(i)
(ii) Suppose a>®. For each r>0, put ju,=m.in(a, r, oj+r—1)=

or r= t= l , then
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Ifa>l andr^[Q, «]5 then JUI=T>

Proof, (i) is obvious and (ii) is a consequence of

o

which can be shown splitting the integral over (0, t/2) and (t/2, t)

Lemma 2.2. Suppose A(t)(=L°°([e, oo); jB(Z9 7)) /or a// e>0

//A some constants C >05 £<1 a«J ^>0. Then for all a>Q9

A*e

Proof. This is immediate from

(2.2)
For a function f(t)^X of t>0, the Laplace transform f=-Ctf is defined

by

o

If ^""/(rJeJ^ with some a,a<=M, then f(X)GX exists for all ^e£J+((r) and
is analytic in <l. If f^t), f2(t) are two such functions, then

(23) (^/^W^/iW/aW

holds for aineC7+(a).

For a function g(X) e X of ̂  e C7+(a)9 the inverse Laplace transform g =J?Tlg
is defined by

(2.4)
a-^oo 27ZT?

the topology of the convergence being that of X. The following simple suffi-
cient condition for g(l) to be a Laplace transform will be used later,

Lemma 2038 Let g(Z) e X be defined and analytic in 1 e C+(a). Suppose

sup ||g(?7+/r)||z -> 0 fe-> oo) ,
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with some constants C>0 and d>\. Then there exists a unique g(t) such that
, oo); X\ and for all X e C+(a), there holds

Obviously, the above result remains valid if X is replaced by B(X9 Y).

§30 Asymptotic Behaviors of JE"(t)

Recall the Definition (1.6.1) of the operator B~. As shown there, it gener-
ates a strongly continuous semigroup in the space L2(g°°), Q°°=Rn

xxRl. De-
note this semigroup as E™(t). According to the convention stated in § 1.2,
E7(t) will also express its realizations in other spaces.

Let Lfcq(Q°°), etc., be the spaces denned in § 1.2. In this section we write

_ f 2,2 n f < ? , 2 yq _ 72,2
— JLQ' [I IV 3 ZQ, — jL0, Q,

?, 2

The constants C>0 and operator norms appearing in the folio wings are all
locally bounded in c^Rn and possibly independent of t.

Let Pc be the projection of Lemma 1.3.8 and let A8
c=vc(£)8x. The main

result of this section is as follows.

Theorem 3.1. Let l<q<2<p<oo, ft e R, m=Q,I and put a =

T\Y~~/r/ T
(i) There is a constant C >0 such that

(ii) Lei r>0 and d<l, and put ju=mm(a, r, &+r — 1). Then there is a
constant C > 0 such that i

This theorem for the case c=Q has been established essentially in [4] and
[6]. Since the case c4=0 can be dealt with in the same way, only the outline
of the proof will be presented.

Let us begin by recalling from the theory of semigroups [3] that a semi-
group etA is an inverse Laplace transform of the resolvent of the generator A,
or more precisely,
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(3.1) etAu = s-lim^L f*'" ^(X-A
«-»°° 2ni Jff-&a

holds for u^D(A) and / >0 if o^Mh large enough.
Write (3.1) for ^° In L2(Q°°) and substitute In It the decomposition (1.6.11)

of (^-^r)"1 to deduce

(3.2) E7(t) = %Ufac)9

where U~X7lUj are given as follows. Let Bc(k) be that of (1.6.4), which also
V

generates a semigroup In L2(J5f), denoted as Efa k). Write (3.1) at this time
forBc(k). Then by (1.6.11),

(3.3) U£9 c) = &?E

where Q(k9 c)=7— SP/fc, c), while, since

(3.4) CT//, C) =ffrV

Proposition 3o2o Let aQ>Q be the constant of (1.6.7). There exists a
constant C>0 and

\\Ufa c)\\ML2(Q^<Ce-^ 5 t>Q.

Proof. Let Ac(k) be defined by (1.6.2). It generates a semigroup In
L\Rl\ denoted as Fc(t, k}. By (3.1) for Bc(k) and Ac(k), and by the second
resolvent equation of the form (1.6.14) for them,

(3.5) Efa k) = 2 Hfa k, c)+Dfa k, c)

D, = J771 ,D/5 D&, k, c) = G' (^ -

Write B=B(L\R'ff). Obviously Fc(t, /t) = {exp(-/f-A:-vc(f))?} x, so in view
of (1.3.4),

uniformly for k&R". Next, combine Lemma 1.6.12 (i) with (ii) restricted for
\k\>n, and choose K =(1 + | r | )Y/cv+i) to obtain

(3.6) ||G(ff+/r3 fc, c)|U<C(l+ | r |)-*/CW) ,

uniformly for k^Rn and for t r > — j/0+^ ^>0 being fixed. Then, by Pro-
position 1.6.3 and (1.6.19) (I), Dfa, k5 c) with the choice />r"2(r+l) satisfies
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the condition of Lemma 2.3 of g(X) uniformly for \k\>/cQ while so does
A

£>i(A, k, c}Q(k, c) uniformly for \k\ <KO, both with CT = — a0. Hence

sap \\D,(t, k, c)\\B ,

Substitution of these estimates into (3.5) and then Into (3.3) yields the
proposition by the aid of Parseval.

Proposition 3.3. Under the same situation of Theorem 3.1

Proof. Using (3.4) and proceeding exactly in the same way as in (1.6.12),
we get

with

7(0 =((
\J\ q p

Since Re^.(fe, c) = Re^.(|fc|) by Theorem 1.6.2 (i), and by (1.6.6), 1(0 <
C(l + 0~* f°r a^l t >0? which proves the proposition.

To establish Theorem 3.1, we still need the following lemma on the semi-
group 77(0 defined by (1.5.5). Put for h<=N+,

Hh(t)=(Gh*F~)(t).

3A (i)

(ii) V/7GE[23 oo],

(iii)

. Lemma 1.5.1 implies that 77(0 satisfies the condition for
of Lemma 2.2 with d=Q and v=v0, X=L^°°. Then (i) follows readily by
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the aid of Proposition J.3.5. Similarly (ii) follows by a repeated use of Lemma

1.5.1 (ii) (cf. the proof of Lemma 1.5.4). And (iii) is a direct consequence of
(2.2) for d=Q and v=ve(f). Note that the constant C>0 of (2.2) is indepen-
dent of v.

Proof of Theorem 3.1. Similarly to (3.5), we get

where Gt and Hh are of course those of (3.7). In view of Lemmas 3.4 (i) and
(iii), it suffices to show that G/*£r(0 enjoys Theorem 3.1. Choose l^N+ of
Lemma 3.4 (ii). Then Proposition 3.2 and Lemma 2.1 show that (?/*£/<,(•, c)e
B(L2

Q'2, Lfa) for all a>0, while due to Proposition 3.3 and Lemma 3.4 (i),
<?/*#/•, c), 1<J</, e^(Z<P, Zg£) with the a specified in Theorem 3.1.
Now the proof is completed by (3.2).

Let r± be the trace operators given by Theorem 1.4.1. According to the
theory of semigroups [3], E°?(t)u<=D(B~) whenever u<=D(B"). In virtue o<^
Proposition 1.4.4 and (1.5.1), therefore, r±E^(t)^B(Wl'e'(Qr\ F2-*). We
shall use this operator in L°°-space. Note that

(3.8) llr±v||^,00>±<||v|U
rp,o5 ''P + l/P.a

Combine this and Theorem 3.1 and put p = oo in both. Then we obtain

Proposition 3.5. Let q<=[l .2] an

(i) Put a=^L. There is a constant C>0 and
2q

(ii) Let m=Q, 1, «>0, d<l. Put a=±\—+m\ and v = min(a, r,
2 \ q

r — 1). There is a constant C > 0

§4. Asymptotic Behaviors of

Ec(t) is the semigroup on the space L2(g), 2 = ^,xJ2|, generated by
the operator ^c defined by (1.3) or more precisely by (1.7.10), and will also
denote its realizations in other spaces.
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In this and following sections we use the spaces

JrP.q _ Tp'q(O\ 7p'q _ T p ' q ( f T \JUp — L,$ \^j) , L,pt€t — L,pta\y,) ,
V/> _ F°°,oo r\ T P,°° vP _ T oo oo ,->. f p,ooAp — JLp [ 1 L,p_i/p ? A p>(& — L,pt0 [ 1 L,p_itpitt ,

Let c0>0 be the constant of Proposition 1.7.5 and write

In contrast to E™(t), asymptotic behaviors of Ec(t) can be established only for

Theorem 4.1. Let w>3, !<^<2<^<oo, p>(n+l)/2 and 6<=[Q, I). Put

-1-0-1+0), (n,odd),

— (n-l), (n,even).

(i) Pwf a=min(al9 a2)- ^/^^ w ^ constant C>0 and for all

\\Ecu\\XP <C\c\-«(\\u\\ p+\\u\\ ).AP,<* Av z

(ii) Pw? a=minf «!+—, a2, —f 1 j Y L^ r>0 a^J ;?w£ ^

«+r — 1). There is a constant C>0, and for all, c^B[cQ] and if r = t = l ,

The proof is based on the expression of the resolvent of Bc obtained in
Theorem 1.7.7, namely,

where

De(X) = (I-Te(X))-1,

Suppose 5'(.=_£>r15'c and DC=XT1DC exist. Then (4.1) implies, with the aid

of (2.3), that

(4.2) Ec(t) = r£r(
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First of all, we shall establish the existence of Rc=£jlRc.

Proposition 4«,28 Rc* exists for all c^R and has the following properties.
Letp, re[l, oo], r>p and a, ft ^R.

(i) Rc^B(Yl'-,L^8J if

(ii) KcRc*^B(Yl'-,Li''sJ if a>

All the operator norms are locally bounded in c,

Proof. Let h(t, x, f)e Yfa- and define v=v(t, x, f) by

(4.3) v - <rv««>'~<*'6> *(*-*"(*, f), *-*""(*, f)c, f)

for (x, <f)eQ~ and ^>r~(%3 f), and v=0 otherwise, where Q~ was defined in
the course of the proof of Theorem 1.4.1 and t~(X9 <?) in that of Proposition
1.7.1. Put w=\v\p in (I.4.2)_ and use (1.7.3) to obtain

i>w ^ f f
JoJ8S-(

s9 X,

which, together with (1.3.4) and (2.2), gives

(4.4) lk-^i

for all <j> —^o and a<=R. Hence *(^)=(J^v)(^) exists for *&€+(— v0\ Com-
pare (1.7.4) with (4.3) to see that ^(X)=Re(X)h(X)9 and recall (2.3). Thus (4.3)
gives an explicit expression of Rc* and (4.4) implies

Now (i) follows since 7^c7|i!s>OJ is a continuous embedding, and then (ii)
by Proposition 1.3.5.

V

Remark 4.3. (4.3) indicates that Rc(t) itself exists only in the distribu-
tion sense in t.

By virtue of the above proposition, Sc* exists and is given as

(4.5) 5C* - Rc*+rE~e*KcRc* .

Lemma 4.4. Let p^[2, oo], 0>n/2, r>0 and put
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the norm being locally bounded in c.

Proof. In Theorem 3.1 (ii), put q = l, m=d=Q and substitute eKcRc*f

for/. Use Proposition 4.2 (ii) thrice with r=oo5 with p=r=2, ft=0 and with

p = 1, r = 2, ]3=Q. Then

Combine this and Proposition 4.2 (i) in (4.5) to conclude the lemma.

As for Dc(t)9 we have the

Proposition 4.5. Dc* exists for all c^B[c0] and the following holds. Let

n>3, fi>n/2, r>0 and 6<=[Q, 1). Let a2>0 be as in Theorem 4.1 and put

ju=mm(a2, r, &2+r — l). There is a constant c>0 and for all c^B[cQ] and

' J p.fA )

We relegate the lengthy proof of § 6 and proceed to the

Proof of Theorem 4.1. In view of the assumption [M]2 (ill) and Remark

1.1 of § LI, M0E"(t) also enjoys Proposition 3.5. Combine this with Lemma

4.4 and Proposition 4.5 and choose r=®2
 m ^e last two. Add the results

for p = oo and p=p9 and note that &2>l for w>3. It then follows that
v v f n\iSc*Z)c*M0^r(0 enjoys Theorem 4.1 (i) with a=min a29 «35 _- ) and Theorem

\ 2q/

4.1 (ii) with a=min( a2, a^ — (—+1 Jj. This and Theorem 3.1, substituted

in (4.2), complete the proof.

Finally we shall discuss the continuity in t of Ec(t).

Proposition 4060 Ec(t) is a strongly continuous semigroup on LP(Q),
2<p<oo,

Proof. The case p=2 was already proven. Therefore,, the proposition

follows if

(4.6) \\Ec(t)\\B(L*(Q»<Ce«t

holds for all p^[2, oo]. The constant C>0 and a^R may depend on p,

Indeed, let weL00 RL2 and put v=(Ec(t+h)-Ec(tJ)u9 where L?=LP(Q). Then

by (4.6) for p = °°, we get for each fixed t,
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so that v-»0 (/z-»0) in Lf if p^[2, oo). Again by (4.6) and since L°°nL2is

dense in Lp, this results in the proposition. It remains to prove (4.6). Clearly

this is the case for p=2, because Ec(t) is strongly continuous, [3]. Let Ac be

the operator of § 1.7. According to Theorem 7.6 (i), it generates a contrac-

tion semigroup in L2, denoted as Fc(t), and according to Theorem 1.7.6 (iii),

Fc(t) = rF7(t)e+(Rc*MQF~e)(t)

should hold. Evaluate this right side in H(L°°) using Lemma 1.5.1 (i), (3.8),

(4.3) and [M]2 (iii). Then Fc(t) enjoys (4.6) for p=oo and hence so does

Ec(t) as seen from the equation EC=FC+FC*KCEC and by Gronwall's inequality.

Now the interpolation yields (4.6) for p^(2, oo).

As a property of the convolution operator, we have

Corollary 4,7. Ec* maps L~([0, oo); LP(Q}) into 6* ([0, oo); LP(QJ), 2<

§50 Stability of Stationary Solutions

Define the nonlinear map H by writing the right side of (1.4) as H[w](t),

that is,

H[w] = Ecw0+2Ec*rQ[u(c), w(0]+^*r0[w(0, w(0] .

We shall find fixed points of H. The spaces used in this section are all the

same of the previous section.

In Theorem 1.9.3, we change the notations of the parameters p, 6 and

a to pQ, OQ and «0 respectively, and fix them as well as ft in the region

(5.1) 00e[0, 2/7), />0e[2.4] n ((l—^-Y, «) ,
\\ n6/ /

Here the restriction on p0 is somewhat stringent compared with (1.9.1) for

a technical reason which will be revealed below.

In what follows, c=c(00, pQ, <z0? /?) will denote the constant c of Theorem

1.9.3 with values of the parameters specified by (5.1). Then the stationary

solution u=u(c) exists for each c^B[c] with
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(5.2) \\u(c)\\Xfr£C\c\'o.

The space in which the fixed point of H is sought is Xp$^ and the space
from which the initials w0 should be taken is X$ fl Zq. For n>4, we can choose
p=Po but not for n=3. More specifically, we should make the following
choice.

(5.3)

Under this choice of parameters, we write

The complicated choice of parameters in the above is necessary in order for
H to be a contraction, which follows from the

Lemma 5.1. Let n>3 and suppose (5.1) and (5.3) be fulfilled. Then for

each ae[0, a0), there are constants C0, Q>0 such that for all.

Proof. By Theorem 4.1 (i) with 0=0,

(5.4) I I I

holds if l<q^2<p<,oo, O^r^minU^ -1 (n-l)Y Next, put /(O =

^71r0[M(c), w(t)]. (1.9.3) readily gives

(5.5)

if #>/i+l and —+—=:—„ With this p, q and / and with 0=a0— a,
P* P 3

Theorem 4.1 (ii) yields

(5.6)
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Indeed, a^— =— (—+ l)>l since p0<n due to (5.1)5 a2>\ since 0>0
2 2\pQ J

and — (l — — )>1 bY (5-3)9
 so that Theorem 4.1 (ii) applies with M =

min(a, r)=r for any r subject to (5.3). And it is at this point that pQ should
satisfy the condition pQ<n besides (1.9.1). Thus (5.1) is required. Finally, if

= A7lr,[v(t\ w(t)]9 then (1.9.3) and (1.9.4) give

(5-7) I I /H , +IMc/IU<C|||v|| | | | |w|||.
Ap,2«t ^2-y

Use again Theorem 4.1 (11) but at this time with q=pl2, 6=0 and with r re-
placed by 2r. Since />e[2, 4], then ge[l, 2], and by (5.3),

so that /e=min(a, 2r)>r> In view of Lemma 1.3.9 (1), therefore,

(5.8) l l l

Combine (5.2), (5.4), (5.6) and (5.8), and recall that FQ is bilinear symmetric.
This finishes the proof of the lemma.

Now we can prove the desired stability of u(c) as a simple corollary to
the

Theorem 5020 Let n>3. Under the assumptions [(?], [q] and [M] of §1.1,
and for each p, q, f}9 r satisfying (5.3) and for ae(0, a0), there exist positive

constants aQ and c such that for any initial, w0eZ^nZ9 with ||wc||<a0, (1.4)
possesses a unique solution

W = w(OeX^n£°([0, oo);

in the large in time, ifc^B[c],

Proof. Let C0, Q be the constants of Lemma 5.1 and choose constants
a0 and c such that

0<a0(l-C1c
a5)2/(4C0C1)9

and put

/£ = !{(! -C1F)2-4C0C1a0} ̂  , a, = (^-C

Let V be a ball
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Endowed with the metric d(v, w) = |||v— w|||, V is a complete metric space.
Suppose I|w0||<a0 and v, w 6 V. Then by the previous lemma,

Since /*e(05 1), this proves that JI: F-»FIs a contraction. Hence a unique
fixed point w=H[w] exists in Fand gives a solution to (1.4) in the large in
time. It is easy to check that this w is a unique fixed point also in X^sT It
remains to show that

Note that XppC.l?(Q) is a continuous embedding if fi>n/p. Hence w0

and in view of (5.5) and (5,7),

i>(c), w(OJ , r0|XO, *<0]eL-([0, oo); z/(0) .

Then ^T[w](0e<?°([0, oo); Lf(Q)) by Proposition 4.6 and its corollary. This
completes the proof of the theorem.

Since we V, it follows that

whenever ||w0||<a0. Thus w(t)-*Q (t->oo) in X$, which shows that the sta-
tionary solution u=u(c) is asymptotically stable as t-^oo,

§60 Proof ©f PffoposMom 405

Write DCtl(X)=(I— Te(X^'lTc(X)l
9 1<=M+, and note the expansion

(see (4.1)). Referring to (2.3), we then get

(6.1) A* = 2 (£*)*+ A./*,
/i = 0

v v v

provided Tc=XtTc and DC)l=J^jlDCil exist. Apparently., Tc* is given as

Lemma 6.L Mc^Rn, Vj3>n/2, c*eJB(57;f) wifA r=»/2. ffere
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operator norm is locally bounded in c.

Proof. In Proposition 3.5 (ii), put q=l9 m=d=0 and r=n/2. Then
a=/j,=r=nj2. Use thrice Proposition 4.2 (ii) as in the proof of Lemma 4.4.
Then

Hence the lemma follows by the assumption [M]2 (in) and Remark 1.1 of § I.I.
V _

To prove the existence of Dcj(t), let 2(a0, OQ) be the closed domain of
C given in Proposition 1.7.5. Owing to Lemma 1.7.3 (ii) and Proposition
1.7.5 (iii), DCtl(X) is analytic in /Ie2'(a0? 50)\{0}, while, in view of Proposition
1.7.4,

both in B(Y2'~). Choose />l/r. Then Lemma 2.3 can be applied to X=

B(Y2'~) and g(X)=DCtl(X), so the integral

(6.3) DcJ(t) = - D^tytt , a>0 ,
2m Jo— »«>

converges and DCtl=£tbcJ holds, both in B(Y2-~). Thus Dc>l(t)<=B(Y2>-)
exists for all t^R. But since Propositions 1.7.4 and 1.7.5 are valid also in
B(Yfi-~), P>n/2, then so is (6.2) with the same constant r>0. Hence (6.3)
converges also in B(Yp'~) and bCml(t)GB(Y$--).

To study asymptotic behaviors of DcJ(t), we look again at Lemma 1.7.3
and Proposition 1.7.5 to note that

A./«ejS°G*fo, *0); B(Y*-- n r?'-)) .
Consequently it is possible by virtue of Cauchy's theorem to shift the path
of integration in (6.3) to the boundary d£(aQ, OQ) of ^(al3 <?0), in the topology
of B(Y2-"). By (6.2), the integral on d^(^>, %) converges in B(Y2>~) as well

as in JB(37--).
Put T0=(a0/oQ)l/2 and decompose 82(aQ, OQ) into two parts

according to which DCti(t) is decomposed as

=--
2m
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In the rest of this section we write

6.2. V£>ii/2, 300;

Proof, Write ^=c7+ir. Then

In view of (6.2), the last integral converges and is uniformly bounded for
t ^M9 in the topology of B, whence the lemma follows.

Similarly we can get for t >0,

(6.4)

This can be improved as follows. Let a2>0 be that of Theorem 4.1.

6.3. V0e[0, 1), V/3>n/2, 5C>0;

Before proving this Iemma3 we note that Lemmas 6.1, 6.2., 6.3 prove Pro-
position 4.4. Therefore, the remaining part of this section is devoted to the
proof of Lemma 6.3.

6o4e Vk^N+y Vc^Mn
5 VfiE^M, 3C>0;

(i)
(ii)

Here R(*\X)=dkRJ(X)ldlk
9 and the constant C is locally bounded in c.

Proof. Differentiate (1.7.4) with respect to /I Then

R<?\X)h = (-r(x, 5))ke-^<^-(*&h(x-r(x, f)f , f)

for (x, f)e6" an(i =0 otherwise. Note that sup tke~i/z<oo and proceed as
*sgo

in the proof of Lemma 1.7.2 to conclude the lemma.

Let 2(0b, (TO) be that defined by (1.6.8).

605e V/ce^T+5 Vc0>0, ¥^>0, V^e[0, 1), 3C>0;
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-where r=n+6—2k.

Proof. Set, as in the proof of Theorem 1.6.7,

As a property of the resolvent, we have

and similarly for jR'. Hence differentiation of (1.6.14) yields

(6.6) Rk =.

where

A ^ (-1)" S dk-\GhR')jdtf-1,
h=0

In view of (6.5) for R', Ah's are expressed in linear combinations of products
of R' and Kc, Therefore, similarly to Lemma 1.5.4 and (1.6.15), we see that
if />0 is choosen large enough,

the norms being uniformly bounded for (^, c)e^(a03 aQ)xB[c0]. Recall that
the decomposition (1.6.11) is orthogonal. Hence

Rk = ± Ufa c}k

y=o

holds. Substitute this into the last sum in (6.6) to deduce

II^H <C[||W|| +S {\\Ufa c)hu\y+± \\Ufa c)hu\\ }] .
•k/3 % /z=i y=i ^

Now the lemma readily follows from Propositions 1.6.4 and 1.6.6 for p =oo9

Lemma 6.6. Vk<=N+, V0e[0, 1), 3C>0;

Fere T^=dhTcldXk andr=n+6-2k-2.

Proof. In virtue of (6.5),
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= s (-D*(
&=o \

J
n

Since M0 satisfies [M]2(iii}? we have only to evaluate r±Rh+1eKcR
(
c
k-h\l). And

this can be done by combining Lemmas 6.4 and 6.5 with (3.8) for p = oo,

Lemma 6070 DCtl(X) also enjoys the conclusion of Lemma 6.6.

Proof, For De(X) =(/- Te(X))-\ we have

Compute D™!(fy=d\DJ(X)Te(X)l)ldt,k by this and Leibniz5 rule, and evaluate
the resulting sum by Proposition 1.7.5 and the above lemma to conclude the

lemma.

Proof of Lemma 6.3. By integration by parts,

(6.7)

where ^0=—oQ+iT0. Put ̂ =^ \ in Lemma 6.7. Then the sum from h = \

to k of (6.7), denoted as Il(t)9 satisfies

Denote the last integral in (6.7) as 72(f) and put ^=mln(0? n+6—2k—2). By

Lemma 6.7 it follows that if ju> —1, then

B<C\c\-

We should choose k as large as possible under the restriction ja> — L There-
fore k=(n—!)/2 when n is odd and k=(n—2)/2 when n is even. Then

a2=k+(l+ju)/2 is identical with that of Theorem 4.1, and Lemma 6.3 follows

If (6.4) is taken into account.

§7o Proof of Proposition L704

In what follows, Ij will stand for either Z|(g°°) or LjJ(0 with ft dropped
when ^=0. No confusions will arise. For each c0>0 and £>0, put

where ^(a0, tr0) was defined by (1.6.8). All the conclusions In the below are
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valid for arbitrarily fixed positive CQ and d. Write G=(A— A™)~1KC as before.

Lemma 7.1. 3r>0; V/?>05 Vp^[2, oo]9 3C>0;

a)
fii)

Proof. By Proposition 1.3.5 and Lemma 1.5.2 (i),

(7.1) \\

while by (3.6) and Parse val,

which proves (i) for p=2 if r2/(l+r) is rewritten as r/2. Note that the proof
of Lemma 1.6.12, and subsequently that of (3.6), remain valid in L| if ^=t=0.
Now (i) for p>2 follows by the interpolation between the result for p=2 and
(7.1) for p = oo. In order to prove (ii), we first repeat the proofs of (I.4.4)+

and (I.4.6)_ with u replaced by \u\\ noting that 9\u(X±t£9 £)\2/dt =
2 Re u(X±tS, £)du(X±te, S)/dt. Then for USE W^Q"),

Replace u by Gu and substitute (i) to conclude

'4 in

Then (ii) for p=2 is verified by [M]2 (i). Note that

(7.2) ||r^||roo,±<i|w||£00.IP ^p

Put Gw for u. Then MQG(EB(Lp, F^3'-) by (7.1) and [M]2 (iii). Hence (ii)
forp>2 follows again by the interpolation.

Proof of Proposition 1.7.4, (i). What we shall prove is that

(7.3)

holds for all (A, c)^S2. In view of Proposition 1.7.3, however9 it is enough
for this to hold for | X \ >r0 with some r0>0. Rewrite TC(X) as

which follows with substitution of the second resolvent equation (1.6.14) for
1=1 into the definition of Te(X) (see (4.1)). Let R= (-*— ̂ r)"1 and evaluate
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the right hand side of (1.6.14) with sufficiently large / by the aid of Lemma
1.5.4. Then

for p>2. By Proposition 1.6.4, pw||<C||w|| in L2 if |/l| >r0 with any r0>0,
the constant C>0 being dependent on r0 but not on ^. Consequently by
Lemma 1.7.2,

(7.4) \W)h\\Lp <C(\\h\\Yp,-+\\h\\ p,-) ,
L$ *$ JY

for p>2, /?>0 and r>(— — — )(/i+l)— 1. Now Lemma 7.1 (ii) proves (7.3)
\2 p /

for (/I, c)e2*2, m >r0, r0>0 being arbitrary.

We proceed to the proof of Proposition 1.7.4 (ii). Similarly to the above,
it suffices to show that

(7.5) l|rcW
3||<C(H-p|r in

for (/I, c) ̂ 2 2, m >r0 with some r0>0. To this end, we use

(7.6) rc(J) = M0GeRc(t)+M0G
2Sc

which is obtained by (1.6.14) for 1=2.

Lemma 7.2. (i) V/?<E[2, oo], V/9>0, 3C>0; V(^,

(ii) V/^e(/i, oo], v^>(4— — l)-l, 5C>0;
\ 2

||J2||<C

Proof, (i) follows by Proposition 1.3.5, Lemmas 1.5.5 and 1.7.2. By
Lemma 1.5.4 and (7.2),

ifp>n and d< 1 -- . Then (7.4) proves (ii).
P

From (7.6) it follows that

TcW
2 = Tl+T2

with T3=T1T2+T2T1+Tz. By the above lemma,
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||r3||<c in B(rfc, 37-")

with d<2( I — — Y p>n. Let p>n+l be fixed. In view of (1.7.6), (73) holds
v >'

even if JB(Y|--) is replaced by B(Y^"9 Yfa) with d>(n+l)/p. Therefore
T3TC(X) enjoys the same inequality of (7.5).

It remains to evaluate T\, and it is at this stage that the type of boundary

operator MQ turns to be crucial and that the assumptions [M\ (iv) and [M]2

(iv) are required. Estimates of different types are available as seen from the

Proposition! 7030 Let
(i) Suppose MQ be given by (1.1.5) and fulfill [M]^ Then for each

(n, oo]9 there is a constant C>0 such that for any e>0 and (^, c)^2l

lirfAllyy.-^CWIAII^...+-^11^11^..).

(ii) Suppose M0 fulfill [M]2 and let pQ be that of [M}2 (iv). There is a
constant C>0 and for any p^[pQ, oo] and(X, c)

Before proving this3 we complete the

Proof of Proposition 1.7.4 (ii). As stated already, it suffices to show that
T\TC(X) enjoys (7.5). Recall that (7.3) holds with B(Yfc~) replaced by B(Y^~9

Yfc~t)9 d<(n+l)/p. Choose again p>n+l. When MQ is given by (1.1.5), put
Te(X)h for h in Proposition 7.3 (i) and obtain

Then the desired estimate follows with the choice e=(l+ l^l)"^4^. For the
case of [M]2, it suffices to combine Proposition 7.3 (ii) with (7.3).

The rest of this section is to be devoted to the proof of Proposition 7.3.
Write R'=(X-A~yl and define

' , W_ = McR'eKcV..eKcRc(X) .

7.4. Vp>n, VJ3>®, V_ eL°°(2'1; B(L^9 L$>%

Proof. (1.5.5) and (1.7.4) yield an explicit expression

(V_u)(x, f) =
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for (x, £)^Q~ and =0 otherwise. Then the lemma can be proven exactly
in the same way as Lemma 1.5.2 (ii).

In the above the space L cannot be replaced by L.

Corollary 7050 Under the same situation of Lemma 7.4,

, y?--)), d<2( 1-—
V p

Proof. By Proposition 1.3.5, J^eL00^; B(LP$_8, L^00)) If p>n/2, d<

l — l / p , so by Lemma 1.7.2 (i), KCRC (X) e L00^ ; #(yj5»-, Ljg'00)). Similarly,
MoR'eK^L00^,; B(L$>P, Yfa)) by the aid of Lemma 1.5.5 (I) and [M]2 (HI).
Combine these with Lemma 7.4.

We should also define

V+ = Rc(Z)M0r
+R', W+ = M0R'eKcV+eKcRc(Z) .

Apparently T\ = W+~W_.

Proof of Proposition 7.3 (II). We have only to show that W+ enjoys the
conclusion of Corollary 7.5. Similarly to (3.8), r+^B(L$>p, Y£'p'+). Then
by Lemma 1.5.2 (ii) with p = °°y r+Rf^L00(^1; B(Lpp'~, Lp'p>+)) If p>n. Mow
we shall use [M]2 (iv), in which it may be assumed that^0>w (if not, take an
interpolation with [M]2 (iii)). Then M0r

+^/eL00(2'1; B(L^°°, Y^")\ and by
Lemma 1.7.2 (I), V+^LT(2l\ B(L^°°9 Lp)). A slight modification of the
proof of Corollary 7.5 then leads to the desired result.

The proof of Proposition 7.3 (I) is far more complicated. Since M0 is
given by (1.1.5) and by virtue of (1.5.5) (II) and (1.7.4), V+ can be written as

(7.7) V+u = e-^u(X-tfh, m)dt
Jo

for (x, £)eg~ and =0 for (x, <?)e2\6~3 where

X = X(x, f) - x-t'(x, f)f ,

m = fn(x, f ) = m(X(x, f ), f ) ,

m(x, f) being subject to [M]j. Write f= f / | f |. The following homogeneity
properties come from [M]: (iv) and (1.7.3) (iv).
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(7.8) X(x, £) = X(x9 f ) ,

w(x, f) = |£|tfi(*,

all for (jc, f)eQ~. Put

and define the map y=y(<£) by

5(x)=)f ->y= X(x, £)-m(*, £)€=«" ,

where xeJ2 is arbitrarily fixed. Define for each tQ, b, £>0,

S^x) = {£€=*(*) | r(jt, <?)<f0, 3< |f | <6, p(Z(%, f),

Let jg denote Jacobi's matrix (dyj/dfk).

Lemma 706. V5>0, 3f0>0; 3m0>0; VZ?>0,

. The assumption [O] of § LI implies that d£ is represented locally
by the equation <f>(x)=Q, 0 being a piecewise smooth function. Then t=
t~(x, <f) is a unique solution to $(x—t£)=0. Differentiate this and deduce

Ff r(jc, f) = r(x,

where /?(X) is the unit outward normal to d& and p(X, £} = \n(X)»£;\ at
Z=JT(x, f). Consequently Jacobi's matrix X$ is given as

^(^, f) =

(̂̂ , f) - 4
In being a unit matrix of order n. The nxn matrix B(X, f) has, in view of
[0] and [M\ (i), piecewise smooth and uniformly bounded entries as far as
p(Xj)>d>0. By (7.8) and (7.9),

(7.10) wK*, f) - mzXt+ms = -r(x,

is homogeneous of degree 0 with piecewise smooth and uniformly bounded
entries if p(X, f ) > d, r (X, f ) < r0. Then

(7.11) y$ = Xs-ms = -r(x, n s ,

Replace ^~(x, f) by r in the last expression and denote its determinant by
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J(t)=J(t, X,£9 | £ | ). Then J(t) is a polynomial of t of order at most ;?, whose
coefficients are all piecewise smooth and uniformly bounded if p(X, £)>d
and | f | >5. Therefore J(f )->/(0) as t-*0 uniformly, and

by [Afl (iii), so |/(OI>ra0/2 for 0<*<^0 with some f0>0. Since
J(t~(x, <?))? this proves the lemma.

Next, define 32(x)=32(x, tl9 b, d) by

32(x) = {es=B(

7.7. 3w0>0;
(i) mesS^Kwo^-

(ii) |det j;fi| ^/WoCfi

Proo/. Rewrite (7. 1 1) as

(7.12) y* = -r(x,

For each fixed X^dfi, we may choose the coordinates such that n(X) =
(0, 0, — , 0, 1). Then for (X, S)^S~ (see § 1.4),

(7.13) p(AT, £) = -*„ •

Let o/ = — f~u(fl5 f2, • • - , f M _j) be a column vector of order /? — 1. Then in
our choice of coordinates,

Write m$=(myft), 1<J? A:</i, and put ml=(fhjt^), 1<J5 k<n — l, (a matrix of
order « — 1), m2=\mln, m2n, -°,mn_ln) (a column vector of order w — 1), m3=

(mnl, mn2, °°',7nnn-i) (a law vector of order n—l) and m*=mttn. Then in the
same coordinates,

- (-r(.T, f))""1^, ^ If I) >
(7.14)

«/o(*> f> 0 =

m3 m4

where ju=t~(x, f)"1. Obviously /0 is a polynomial of ^ of order at most w — 1,
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and its coefficients are all piecewise smooth and uniformly bounded for
£ e 32(x). Noting (7. 1 3), we see

By (7.8), £*ytmn=dmn(X9 |£|f)/0|£| =/»„(!; <?), and in our choice of coordi-
nates, £-lmn(X9 £) = —p(X, f)"V(Jr, m). Hence by virtue of [M]j (i) (iii), there
holds with some constant m0>0,

(7.15) | J0(x, £ 0) | = | det mg(Jf(*5 £), f ) | ~l^m0 ,

for all (x, f)e2". Obviously this result is free from the choice of coordinates.
As a consequence, the polynomial /0 of t does not vanish identically, and there-

by it has at most n — \ distinct real zeros t=tj(x, <?), 1<./<J05 where the

number j0 of the zeros may of course vary with x and <f . Let us show that

is the desired subset stated in the lemma. Since t/s are independent of | £ | ,
(i) of the lemma is evident. Since fy=l=0 by (7.15), we can write

(7.16) /0(x, £, | £ |) = /„(*, f, 0) n (1 -7^

/cy being the multiplicity of ts. Let £^22(x)\5'2(x). It | ?y | <1b, then

while if \tj\>2b, then

This, together with (7.15) and (7.16), gives |/0| >m0(5/(2Z)))''-1, whence (ii)
of the lemma follows in virtue of (7.14).

Proposition 7.8. Vp>n, V/J>0, 3C >0; W>0, Ve>0,

. Recall (7.7), and put v(*)=!!«O,

W(X, t, d) = \\X(\t | <0)V(X(X, t)-t

The proof of the proposition will be carried out only fcr ]3=0 because the
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case /0=fc=0 can be dealt with exactly in the same way. Let (^, c)^2l9 but in
the below we change the notation d by dQ in the definition of 2lm Since

Re VKO>V, (7.7) leads to

VM<x, t, d)dt.

Denote the last integral as /. Given an e>0? put a'=\loge\/dQ and split
the integral / as

S fa'

,+ = /!+/,-
«' Jo

Apparently sup w(x, f, a)<Can/p\\u\\L<*>, independently of x, so
t>0

/^C^IML-,

while since w(xs t, a)<t~nfpw(x, 1, ar) by (7.8) and by the change of variables
t£-*£, and since w is monotone increasing in a, then

J2<Cw(x, I 9 a a ' )

holds for p>n. In Lemmas 7.6 and 7.7, put

where f0 is the constant of Lemma 7.6. Define

f | <^ or

Then B[b] = {£^R*\ \£\<b} can be expressed as the union of 3j(x\j=\,29 3
and recalling the map y=y(£),

^(X, l,b)> = \ | v(Xf )) I W = S ( = 23 /2y -
JBE*] y=i J ^ j ( ^ ) y=i

By Lemma 7.6,

4 =

while by Lemma 7.79
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Finally, it is easily checked that mes 33(x)<C(dn+b8n'1) holds uniformly for
, so that

Combining all the estimates so far obtained completes the proof of the proposi-
tion.

Proof of Proposition 7.3 (i). Owing to Corollary 7.5, it suffices to show
that W+ enjoys Proposition 7.3 (i). Use Proposition 1.3.5 twice. Then the
above proposition yields

\\Kcx(\t\<a}V+Kcu\\ LOQ<Can(e\\u\\ +— \\u\\ P
^j3 \ ^0-2 £ Lp

for r<2(l-— Y while since \\V+\\<C in B(L?) as seen from [M}2 (iii)?
\ pi

Remark 1.1.1 and Lemmas 1.5.5 and 1.7.2, then by the use of (1.3.7),

Choose a-£"1/(K+1) and replace e1/(*+1) by e. Then

\\KcV+Kcu\\ <cU\u\\ +~1-NU )•
^P \ ^0-1 £ Lp-1/

Now the desired estimate for W+ follows readily from Lemmas 1.5.5 and 1.7.2.
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