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§1. Imtroduction

This is a continuation of our previous work [9] on the exterior preblem
for the Boltzmann equation describing a gas flow past an obstacle. In [9],
we established the existence of stationary solutions, and the subject of this
paper is their stability.

The paper [9] will be referred to as Part I and any formulae number of
Part 1 will be preceded by the symbol I, when quoted in this paper. Thus,
(I.1.1a) means Equation (1.1a) of Part I, and so on.

Our problem is the initial boundary value problem (I.1.1):

fo = =€ /+QIf 1], t, x, )ER XQAXR",

(L1) T f=Mr'f, ¢ x, ) ER,. XS,
‘ =88 (|x|—00), (t, H)ER. XR",
f|t=o :fo’ (x, E)EQXRn.

For the notations, we refer the readers to Part I. The stationary problem
induced from (1.1) is (I.1.10). Let u=u(c) be the solution obtained in Theo-
rem 1.9.3 to (I1.1.12). Then,

fi= go‘l‘gi/zu(c)
is a (unique) solution to (I.1.10). The aim of the present paper is to show
that £, is asymptotically stable in 7. In other words, we shall show that when-

ever the initial f° in (1.1) is close to f;, a unique solution f=f{(z) exists to (1.1)
in the large in ¢ and approaches f, as t—co.
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In order to prove this, we seek a solution f of the form

f=1t) =ftg w(t) = gytg/*ulc)+w()) .

Substract (I.1.10) from (1.1) and recall the definition (I.1.11) of L,, I'y and M.
Then, w=w(t) should solve,

wy = —&F w+ L w2 [u(c), wi+T'j[w, w],
12) Mw =0,
. w0 (x| o),

W]imo =W .

Obviously, the desired stability of f; follows if for each small w,, (1.2) has a
unique solution in the large in ¢ tending to 0 as f—co.

This has been shown in [1] for the special case ¢=0 in which %(0)=0 (see
Theorem 1.9.3 (i)). The method employed there is based on the contraction
mapping principle supplemented by nice decay estimates of the semigroup
for the linearized equation of (1.2). This method is the only possible method,
at least up to the present, which makes accessible the nonlinear Boltzmann
equation in the large in ¢, see [2, 4-8].

To apply it to (1.2) for the case ¢ =0, recall the operator B, of (I.1.13).
It is the linear operator

(1.3) B, =&V, +L,, (x,6)c2xR",

associated with the boundary condition #yw=0 on S~ and w—0 (|x|—>o0).
It was shown in §I.7 that B, generates a semigroup in L2 xR"). Denote
the semigroup by E(¢);

E(t) =exp(tB,) .

Then, (1.2) is reduced to the integral equation,

149 w(t) = E@wek | Ba—9) QI Ju0), wl+Twis), w(lhds.

In § 5, we will solve (1.4) in the large in ¢ by the help of the contraction
mapping principle. Then, a decay estimate of E,(¢) is needed, and will be
discussed in § 4 by a perturbation argument based on the explicit expression
of the resolvent of B, found in §L.7. The unperturbed operator is By of
§ 1.6, ie., (1.3) defived for (x, £)eR"xR". We shall discuss the semigroup
Ey(¢) generated by B in §3. §2 is a preliminary and § 6 gives the proof of
Proposition 4.5 which is a key to §4. As announced in Part I, the proof of
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Proposition 1.7.4 which plays an essential role in § 6 as well as § 1.7 will be
given in § 7.

Observe that the linear operator associated to (1.2) is not B, but B,+2I,
[u(c), -1, and that if the semigroup for the latter is used, then the linear term
on the right hand side of (1.4) is absent. However, cur perturbation tech-
nique no longer works to get any decay estimates for the latter semigroup,
so, only E(t) is available. On the other hand, the extra linear term on the
right hand side of (1.4) can be handled only by the decay estimate of E/(t)
sharper than required when the linear term is absent; we need the estimate
E(t)=0 (t7"), a>1 for (1.4) while a>1/2 suffices if the linear term is absent.
Also, to handle the linear term, we are required that u(c) is small, namely,
¢ is small.

§2. Preliminaries

Given a Banach space X, we define the Banach space X,, e € R, of func-
tions f(¢) of ¢ > 0 with values in X by

@1 Jyex, o1+ I L([0, o0); X).

When X is any one of the spaces L§%(Q), Y%, etc. of Part I, we write L5:4(Q),
Y§:2%, ete. for X,

Let Y be another Banach space and B(X, Y) denote the space of all
bounded linear operators from X to Y. Then B, (X, ¥) will be defined by
(2.1) with B(X, Y) substituted for X, If A(r)eB, (X, Y), it induces the
multiplication operator 4,

(AQu)(t) = A(t)u, ue X,

and the convolution operator A,

xf)e) = | Aa—s)ferds

The following two lemmas will be useful in the sequel.

Lemma 2.1. Let A@)eB (X, Y).

() 4eBX, Y,).

(i) Suppose a>0. For each r>0, put u=min(e, r, a+r—1).
If a==1 or r=£1, then

AxEB(Xy, V).
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If a>1 and r €[0, al, then p=r.

Proof. (i) is obvious and (ii) is a consequence of
t
g (1+-1—5)=2(1+5)"ds<C(1+1)"*, >0,
0

which can be shown splitting the integral over (0, #/2) and (2/2, ¢).
Lemma 2.2. Suppose A(t)L>(e, oo); B(X, Y)) for all €0 and satisfy
Al pxn<Ct~%e™, >0,
with some constants C >0, 6<<1 and v>0. Then for all a>0,
AxeBX,, Y,).

Proof. This is immediate from
3
2.2) S (t—s)"3 e~ =)(145)2ds < CA Y1 +v-*)(14+1)®,  £>0.
0

For a function f(t)X of ¢ >0, the Laplace transform f =_[,f is defined
by

f@) = (L@ =" e .

If e f(r}= X, with some @, =R, then f(A)EX exists for all 2&C,(0) and
is analytic in 2. If £i(¢), f(¢) are two such functions, then

2.3) (LS DD = FLDFR)

holds for all 2&C (o).
For a function g(2) € X of A&, (o), the inverse Laplace transform g=_L;g
is defined by

N+ie
2.4) é(t)zs—lim—LS Mgd2, >0,

a> Q] Ju+tia

the topology of the convergence being that of X. The following simple suffi-
cient condition for g(2) to be a Laplace transform will be used later.

Lemma 2.3. Let g(A)E X be defined and analytic in A& C,(s). Suppose
sup ||g(2-+17)llx = 0 (7> o) ,
sup [[gr+iD)llx<CQA+|=D)7*,  rER
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with some constants C >0 and 6>1. Then there exists a unique g(t) such that
e~ "lg(t)e B0, ); X), and for all A& C (o), there holds

g = (L:9A) .

Obviously, the above result remains valid if X is replaced by B(X, Y).

§3. Asymptotic Behaviors of E7 (%)

Recall the Definition (I.6.1) of the operator BY. As shown there, it gener-
ates a strongly continuous semigroup in the space LAQ"), 0*=R; X R:. De-
note this semigroup as EJ(¢). According to the convention stated in §I1.2,
E7(t) will also express its realizations in other spaces.

Let L§7(Q™), etc., be the spaces defined in § I.2. In this section we write

Lyt = L1590, Lbi=Lp40™,
z'—Li*nLge, 74— ILi2nLel.

The constants C >0 and operator norms appearing in the followings are all
locally bounded in ¢c&R" and possibly independent of .

Let P, be the projection of Lemma 1.3.8 and let A3=y,(£)*x. The main
result of this section is as follows.

Theorem 3.1. Let 1<q<2<p<eo, pER, m=0,1 and put a=
nfl 1 ) m
LS BN O
2 < qg p 2

(i) There is a constant C >0 such that

IEe+(I—Po)"ull g« < Cllullgp ot llullz2) -

(i) Let r>0 and 6<1, and put p=min(e, r, a+7r—1). Then there is a
constant C >0 such that if v 1,

B =P 421175 = <O gy 7).

This theorem for the case ¢=0 has been established essentially in [4] and
[6]. Since the case ¢=+0 can be dealt with in the same way, only the outline
of the proof will be presented.

Let us begin by recalling from the theory of semigroups [3] that a semi-
group e'4 is an inverse Laplace transform of the resolvent of the generator 4,
or more precisely,
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. 1 otig
3.1 ey = s—lim — § eMA—A)ud
a> 2mf Jo—-ia

holds for u& D(A4) and t >0 if o € R is large enough.
Write (3.1) for By in LAQ™) and substitute in it the decomposition (1.6.11)
of A—By)™! to deduce

(3.2 B0 = 310, ),

where U ;=_L7'U; are given as follows. Let éc(k) be that of (I.6.4), which also
generates a semigroup in LA(R?), denoted as Ev'c(t, k). Write (3.1) at this time
for B,(k). Then by (1.6.11),
(33) U, o) = FPE DAk > e+ 2(1 k] <Ok, )} .,
where Q(k, c)=I—Z=P(k, c), while. since L;(A—u) " =e",
G4 Uit, o) = Gt y(|k| <u)Pilk, OF,, 1<j<m.

Proposition 3.2. Let 0,>0 be the constant of (1.6.7). There exists a
constant C >0 and

U Ollauzeen<Ce ™',  1=0.
Proof. Let A(k) be defined by (1.6.2). It generates a semigroup in

LXR?), denoted as ﬁc(t, k}. By (3.1) for BA’t(k) and 4,(k), and by the second
resolvent equation of the form (1.6.14) for them,

3.5) Et, K = 3 (o, k, 0+t &, ©)
h=
H, = {(F(+, DK #E(, K} (@)
D, = _L7D,, Dk, c) = G'Q—Bk)™,
G =Q—40)K,.
Write B=B(L(R})). Obviously ﬁc(t, k)={exp(—ié-k—v, ()t} X, so in view
of (1.3.4),
”Hh(ts k5 c)“xl’fS Cthe—vot 5

uniformly for k€ R". Next, combine Lemma 1.6.12 (i) with (ii) restricted for
|k|>#, and choose £=(1-+|7]|)™*D to obtain

(3.6) ”GA(U'HT; k, olla<C(1+]7 |)‘72/(7+1) ,

uniformly for k€R" and for 0> —yy-+0, 6>0 being fixed. Then, by Pro-
position 1.6.3 and (1.6.19) (i). Dy(4, k, ¢) with the choice I>r % r+1) satisfies
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the condition of Lemma 2.3 of g(2) uniformly for |k|>£, while so does
IA),(X, k, ¢)Q(k, c¢) uniformly for |k| <#,, both with c=—0,. Hence

Sup ”Dl(ts k’ C)HB 9

e 1 <Ce™"0'.
sup ||Dy(z, k, ©)Qk, o)l )

1E1<icg

Substitution of these estimates into (3.5) and then into (3.3) yields the
proposition by the aid of Parseval.
Proposition 3.3. Under the same situation of Theorem 3.1
Ut, JI—PY"€BL82 [5~), 1<j<m<n+2.

Proof. Using (3.4) and proceeding exactly in the same way as in (1.6.12),
we get

Uy, C)(I—Pc)’"ullzg,méCl(t)HuIIZg,z,
with
1/r

1(r) = (S |e“i(k’f>‘lk|’”|’dk> , L1 1

12 <wg r q p
Since Reu;(k, c)=Rea;(|k]) by Theorem 1.6.2 (i), and by (1.6.6), I(z)<
C(1+412)"® for all ¢t >0, which proves the proposition.

To establish Theorem 3.1, we still need the following lemma on the semi-
group Fg(¢) defined by (I.5.5). Put for he N,

Gyx = (F7K*)",
3.7
Hy(t) = (GxF7)(t).
Lemma 34. (i) Vp€E[l,], VecR, VAER, YVhEN,,
GxeB(LEy), H,eBLE~, L53).
(i) VpE2, ], VAER, IEN,, VecR,
GreBLS:, Lty .
(iii) Vpegll, o), VeeR, VFER, Vo<1,
Fr A+ BIED).
Proof. Lemma 1.5.1 implies that F7(¢) satisfies the condition for A(¢)
of Lemma 2.2 with 6=0 and v=vy,, X=L{~. Then (i) follows readily by
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the aid of Proposition 1.3.5. Similarly (ii) follows by a repeated use of Lemma

1.5.1 (ii) (cf. the proof of Lemma 1.5.4). And (iii) is a direct consequence of
(2.2) for 6=0 and v=y(£). Note that the constant C >0 of (2.2) is indepen-
dent of ».

Proof of Theorem 3.1. Similarly to (3.5), we get
I-1
Ex(0) = 3 Hy()+(GHEDD),

where G, and H, are of course those of (3.7). In view of Lemmas 3.4 (i) and
(iii), it suffices to show that G;*E(¢t) enjoys Theorem 3.1. Choose /N, of
Lemma 3.4 (ii). Then Proposition 3.2 and Lemma 2.1 show that G (}0(-, 1=
B(L}?, L§:3) for all @>0, while due to Proposition 3.3 and Lemma 3.4 (i),
G,*(},-(-, o), 1<j<l, eB(L§? L&) with the a specified in Theorem 3.1.
Now the proof is completed by (3.2).

Let 7* be the trace operators given by Theorem 1.4.1. According to the
theory of semigroups [3], E7(¢)ucs D(B7) whenever ucD(B7). In virtue of
Proposition 1.4.4 and (L5.1), therefore, r*E7(t)EB(W:~(Q), Y**). We
shall use this operator in L*-space. Note that

||
(338) Irullgpe sl
Combine this and Theorem 3.1 and put p=oco in both. Then we obtain

Proposition 3.5. Let g=[1.2] and FER.

(i) Put a=zl. There is a constant C >0 and
q

8

17 =EZul| §o, = < C(lful| o110l | 29) -
o Ly

™

1

() Let m=0,1, @>0, 0<1. Pura— i+m) and p=min(ae, 7, ¢+

q
r—1). There is a constant C >0 and if r 1,

I+ B4 P 42|y e <CUI Sl .+ 11425 11 5.

§4. Asymptotic Behaviers of E,(t)

E/(t) is the semigroup on the space L*Q), QO =2, xR}, generated by
the operator B, defined by (1.3) or more precisely by (1.7.10), and will also
denote its realizations in other spaces.
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In this and following sections we use the spaces

Iy = 1240, Ly = L4yQ),
Xh=Lg"nNLEzy,, Xho=L5oNLES .,
z'=1I22nLg?, zs=L§ANLg:

Let ¢,>0 be the constant of Proposition 1.7.5 and write
Ble)) = {cER"| |c| <ci}.

In contrast to E7(¢), asymptotic behaviors of E,(¢) can be established only for
cE Bl¢,).

Theorem 4.1. Let n>3, 1<q<2<p<L oo, f>(n+1)/2 and 0 <[0, 1). Put

1(1 1)
a = { —— a, =
Y a2\g p/>

() Put ea=min(a,, @,). There is a constant C=>0 and for all c< Bl¢y,

%(n—1+0), (n, 0dd),

—;—(n—l) , (n, even) .

IE.ullgp < Clel=(lullp+Hlull, o)

i(1—%)) Let v>0 and put p=min(e,

2
r, a+r—1). There is a constant C=>0, and for all, cEBl¢,| and if r=+1,

(i) Put a:min(al—i—%, a,,

EAT—~PY 4.1 ]y <Clel™(fllgs H4SlI )

The proof is based on the expression of the resolvent of B, obtained in
Theorem 1.7.7, namely,
4.1) (A—B) ' = r(2—B2)te+S()DA)MyA—By) e,
where
S,(A) = R(D)+r(A—B7) ek .R(2),
Dn(l\ = (I_ Tc(x)y‘l »
Tc(z\ = Mo(l —B:e)_l eKcRc(l) .
Suppose S,=_L7'S, and D,=_L7'D, exist. Then (4.1) implies, with the aid
of (2.3), that
4.2 E () = rE7(t)e+(S,xDxMyETe)(t) .
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First of all, we shall establish the existence of ]éc=.£' 'R,

Proposition 4.2. Ii* exists for all cER" and has the following properties.
Let p,refl, col,r>=pand a, fER.
O RreBOGD L) o 0>+

() KRx€B(Yi:, i) i 6>%+—1——1.
r

All the operator norms are locally bounded in c.
Proof. Let h(t, x, &) Y" 7.~ and define v=1(z, x, &) by
4.3) v =g V@ ED p(r—1(x, £), x—1t"(x, £)¢, &)

for (x,8)e Q™ and t>¢"(x, £), and v=0 otherwise, where O~ was defined in
the course of the proof of Theorem I.4.1 and ¢7(X, &) in that of Proposition
1.7.1. Put w=|v|? in ([.4.2)_ and use (1.7.3) to obtain

t
i, - Olliray = | [ 1700 0(s, X, )| x 0(X, E)da,ds,

which, together with (I.3.4) and (2.2), gives
@4 =¥z, <Clllgr,-.
for all 6> —y, and e R. Hence $#(2)=(.L,;)(2) exists for A C, (—y,). Com-

pare (1.7.4) with (4.3) to see that #(2)=R,(A)h(2), and recall (2.3). Thus (4.3)
gives an explicit expression of Ivt * and (4.4) implies

RxcB(¥yn-, L

Now (i) follows since Yz, C i/'gfs,,, is a continuous embedding, and then (ii)
by Proposition 1.3.5.

Remark 4.3. (4.3) indicates that Iic(t) itself exists only in the distribu-
tion sense in ¢.
By virtue of the above proposition, S, exists and is given as

4.5) éc* = ]éc* +rE Z"e*KcIv{c* .
Lemma 4.4. Let pE[2, o], f>n/2, r >0 and put
n 1 . .
&y = —<l—““> y M= mln(a.'ia 7, a3—,—r—1) .
2 p

Then for all cER”,
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StEB(Ti5m 14D ,
the norm being locally bounded in c.

Proof. In Theorem 3.1 (ii), put g=1, m=0=0 and substitute eK, R *f
for f. Use Proposition 4.2 (ii) thrice with r=oco, with p=r=2, #=0 and with
p=1,r=2, 3=0. Then

rEvexK.Rx€B(Y5y, L) .
Combine this and Proposition 4.2 (i) in (4.5) to conclude the lemma.

As for bc(t), we have the

Proposition 4.5. ﬁc* exists for all cE Ble,] and the following holds. Let
n>3, f>nf2, r>0 and 60, 1). Let a,>0 be as in Theorem 4.1 and put
sa=min(e,, r, a,+r—1). There is a constant ¢=>0 and for all c< B[¢)] and
ifr=l,

1D #]] <Cle|™.

BU 5 Y5
We relegate the lengthy proof of § 6 and proceed to the
Proof of Theorem 4.1. In view of the assumption [M], (iii) and Remark
1.1 of § 1.1, M,E;(t) also enjoys Proposition 3.5. Combine this with Lemma

4.4 and Proposition 4.5 and choose r=a, in the last two. Add the results
for p=co and p=p, and note that «,>1 for »>3. It then follows that

g‘c*lv)c*MOEZ"(t) enjoys Theorem 4.1 (i) with a:min<a2, a,, 2%) and Theorem

4.1 (i) with a=min(a2, o, —é—(%—\—l)). This and Theorem 3.1, substituted
in (4.2), complete the proof.

Finally we shall discuss the continuity in ¢ of E,(¢).

Proposition 4.6. E.(t) is a strongly continuous semigroup on IL?(Q),
2< p<oo.

Proof. The case p=2 was already proven. Therefore, the proposition
follows if

(4.6) NE) mezoon < Ce™

holds for all p&[2, c0]. The constant C >0 and ¢ R may depend on p.
Indeed, let u L™ N L? and put v=(E,(t+h)—E/t))u, where L*=L?(Q). Then
by (4.6) for p=oo, we get for each fixed ¢,
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IVl <IPIZEZIVIZ < CIPIZ,

so that v—0 (A—0) in L? if p&[2, o). Again by (4.6) and since L= L?is
dense in L?, this results in the proposition. It remains to prove (4.6). Clearly
this is the case for p=2, because E,(¢) is strongly continuous, [3]. Let 4, be
the operator of §1.7. According to Theorem 7.6 (i), it generates a contrac-
tion semigroup in L% denoted as F,(¢), and according to Theorem 1.7.6 (iii),

F(t) = rF3(t)e+(RAMFTe)t)

should hold. Evaluate this right side in B(L*) using Lemma 1.5.1 (i), (3.8),
(4.3) and [M], (iii). Then F,¢) enjoys (4.6) for p=co and hence so does
E,(t) as seen from the equation E,=F,+F K E, and by Gronwall’s inequality.
Now the interpolation yields (4.6) for p&(2, o).

As a property of the convolution operator, we have

Corollary 4.7. E* maps L=([0, o0); L#(Q)) into E° ([0, o); L*(Q)), 2<
p<oco.

§5. Stability of Stationary Solutions

Define the nonlinear map H by writing the right side of (1.4) as H[wl(z),
that is,

H[W] = Ecwo+2Ec*F0[u(C)’ W(')]+EC*P0[W(°): W(')] .

We shall find fixed points of H. The spaces used in this section are all the
same of the previous section.

In Theorem 1.9.3, we change the notations of the parameters p, 6 and
a to p,, 0, and «a, respectively, and fix them as well as @ in the region

.1) 8,E[0, 2/7), P [2.41N ((1—n jﬂo)'l, n),
e (0,,(1 +%), 1—()0(2—;1]—)), g>ntl.

Here the restriction on p, is somewhat stringent compared with (1.9.1) for
a technical reason which will be revealed below.

In what follows, ¢=¢&(6,, py, %, B) will denote the constant ¢ of Theorem
1.9.3 with values of the parameters specified by (5.1). Then the stationary
solution #=u(c) exists for each ¢ & B[¢] with
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(5.2) Hu(c)HXgoéClclwo.

The space in which the fixed point of H is sought is X%, and the space
from which the initials w, should be taken is X4N Z*?. For n>4, we can choose
p=p, but not for n=3. More specifically, we should make the following
choice.

(53)  pel2,4n ((1—%>—1> ("l‘_i)—l) ’

qett, 2An[1 (1+1)7),

1 . (n(1 1 1/n 1/n
re(n rmmn(3(3-1) 4z 1)
27y e 2\q p/ 2\p, 2\p
A>n+1.
Under this choice of parameters, we write

IEIT=11 g o W= Tt llze -

The complicated choice of parameters in the above is necessary in order for
H to be a contraction, which follows from the

Lemma 5.1. Let n>3 and suppose (5.1) and (5.3) be fulfilled. Then for
each a0, ay), there are constants C,, C,>0 such that for all. c < Ble],

W Wl < Collwol [ C( e [+ IwlIDIwIT
AW —HTw < L e[+l W IIDHTw—wl]] -

Proof. By Theorem 4.1 (i) with 6=0,
(54 [ Ewol[| < ColIwoll
holds if 1<q<2<p<oco, 0<r< min (al, %(n—l)). Next, put f()=
A7 Ju(c), w(@)]. (1.9.3) readily gives
(55) 17 gy 11471 75 <CIML g, Wl .

if f>n+1 and L+—;-=%. With this p, ¢ and f and with 0 =¢,—«c,
Po

Theorem 4.1 (ii) yields

(5.6) NE T [u(c), willl < Cile|*%o|u(e)l] o, llIWllI -

Xgo”
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Indeed, oq—!—é—=~é—(—”—+l)>l since p,<n due to (5.1), a,>1 since 6>0
Do

and %(1—%>>1 by (5.3), so that Theorem 4.1 (ii) applies with u=

min (e, r)=r for any 7 subject to (5.3). And it is at this point that p, should
satisfy the condition p,<<n besides (1.9.1). Thus (5.1) is required. Finally, if
S()=A47T[v(t), w(t)], then (1.9.3) and (1.9.4) give

57) 1 lLgy , 114175 <ClR el

Use again Theorem 4.1 (i) but at this time with g=p/2, §=0 and with 7 re-
placed by 2r. Since pE]2, 4], then g<[1, 2], and by (5.3),

@ = %(n—1)>a1 2‘21—<'Z—+1)270_>_T>—; P

so that g=min(e, 27)>7. In view of Lemma 1.3.9 (i), therefore,
(5.8) I E#olv, wlll[ < IV -

Combine (5.2), (5.4), (5.6) and (5.8), and recall that I'; is bilinear symmetric.
This finishes the proof of the lemma.

Now we can prove the desired stability of u(c) as a simple corollary to
the

Theorem 5.2. Let n>3. Under the assumptions [O), [q] and [M] of §1.1,
and for each p, q, B, r satisfying (5.3) and for a (0, &), there exist positive
constants a, and ¢ such that for any initial, woa & X5NZ* with ||w,||<ay, (1.4)
possesses a unique solution

w = w(t)EX}yNE0, o0); L(Q))
in the large in time, if cE B[¢].

Proof. Let C,, C, be the constants of Lemma 5.1 and choose constants
a, and ¢ such that
0<c<e, c<Cr¥*,
0<a(1-Cc*Y/(AG,CY) ,
and put
# = {1 —=Cc"P—4CCat'?, ay = (1,—Ce")/(2C) .

Let ¥V be a ball
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V={weXsyl livlil<a}.

Endowed with the metric d(v, w) =||lv—wl]||, ¥ is a complete metric space.
Suppose ||w,||<q, and v, we V. Then by the previous lemma,

HHW]|| < C0a0~l—(C1(é‘”+a1)a1 =a,
NHD]—HW][| < C(ce®+2a)ll|[v—wll| = 4lllv—wl]| .

Since 2&(0, 1), this proves that H: V—V is a contraction. Hence a unique
fixed point w=H[w] exists in V and gives a solution to (1.4) in the large in
time. It is easy to check that this w is a unique fixed point also in X}, It
remains to show that

w(t)EEY0, o0); LX(Q)) .

Note that X3 L#(Q) is a continuous embedding if #>n/p. Hence w,E L*(Q),
and in view of (5.5) and (5.7),

Po[u(c)a W(t)] H TO[W(t)’ W(Z)]EL“‘([O, 00)9 LP(Q)) .

Then H[wl(2)eE(0, o); L*(Q)) by Proposition 4.6 and its corollary. This
completes the proof of the theorem.

Since we V, it follows that
W) yp <a(1+1)7"
8
whenever ||w,||<a,. Thus w(t)—>0 (1—>o0) in X4, which shows that the sta-

tionary solution u=u(c) is asymptotically stable as —oo.

§6. Preof of Proposition 4.5
Write D, (A)=(I—T/)'T(3)}, I€N,, and note the expansion
D = 3 T +D. ),
(see (4.1)). Referring to (2.3), we then get
6.1) D = S (Fay B, %,
provided Zv“cz.,[' 7T, and lv)c,lze.ft‘ch,, exist. Apparently, 1!@* is given as
T = I,EvexK,Rx .

Lemma 6.1. YcER", V5>n/2, IV"E*E./B’(Y‘;;;) with y=n/2. Here the
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operator norm is locally bounded in c.

Proof. In Proposition 3.5 (ii), put g=1, m=0=0 and r=n/2. Then
a=pu=r=nf2. Use thrice Proposition 4.2 (ii) as in the proof of Lemma 4.4.
Then

r—tE,e*Kcéc* eB(Ygy, Y5y).
Hence the lemma follows by the assumption [M], (iii) and Remark 1.1 of §L.1.

To prove the existence of lv)c,,(t), let 2(a,, o,) be the closed domain of
C given in Proposition 1.7.5. Owing toc Lemma 1.7.3 (i) and Proposition
1.7.5 (iii), D, ,(2) is analytic in A& 3(@,, 9,)\{0}, while, in view of Proposition
1.7.4,

6.2) 1D (DS CA+12])77,
both in B(Y?%~). Choose />1/r. Then Lemma 2.3 can be applied to X=
B(Y*") and g(2)=D, (2), so the integral
v O+
6.3) D) = ZLS D, (Ndr, >0,
Tl ioo

converges and D, ,=_,D,, holds, both in B(Y>~). Thus D, (1)eB(¥Y*")
exists for all tR. But since Propositions I.7.4 and 1.7.5 are valid also in
B(Yg™), f>n/2, then so is (6.2) with the same constant 7>0. Hence (6.3)
converges also in B(Yz'") and bc_,(t)EB(Y &)

To study asymptotic behaviors of Iv)c,,(t), we look again at Lemma I.7.3
and Proposition 1.7.5 to note that

D, (AN EB(2@, 50); B(Y>"NY57)).

Consequently it is possible by virtue of Cauchy’s theorem to shift the path
of integration in (6.3) to the boundary 0.2(a,, 5,) of 2(a,, d,), in the topology
of B(Y%>"). By (6.2), the integral on 83(a, d,) converges in B(Y%~) as well
as in B(Yg").
Put vy=(a,/,)"/? and decompose 8.5 (a,, 7,) into two parts
Ir®d = {2eC|Re 2 = —q,, |Im | >},
Ir®o = {2eC|Rei = —@,|Im 2|% |Im 2| <z},

according to which bc,,(t) is decomposed as
D, ,(t) = DO)+DN)

Do = i Sm) D, (Nd2,  j=1,2.
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In the rest of this section we write
B=BYg").
Lemma 6.2. Vg>n/2, 3C>0; V>0, VceB[¢y),
1D(2)||5< Ce~o" .
Proof. Write A=0-+ir. Then

Do) :—21;6—‘—’0’ gl D, (—aptit)de
T 'ro

In view of (6.2), the last integral converges and is uniformly bounded for
t R, in the topology of B, whence the lemma follows.

Similarly we can get for 1 >0,
(6.4) 15O < CS ity < O(1+1)-V2
0

This can be improved as follows. Let a,>0 be that of Theorem 4.1.
Lemma 6.3. V6&[0, 1), VA>n/2, 3C >0; Vi >0, YeeBlg),
DO < C || o(L+1)" .

Before proving this lemma, we note that Lemmas 6.1, 6.2, 6.3 prove Pro-
position 4.4. Therefore, the remaining part of this section is devoted to the
proof of Lemma 6.3.

Lemma 6.4. VkEN,, VeeR", VAER, IC>0; V2T (—w),
@) 1RO Dllgyz., 12y <CRe2+m)™,
(i) HK,Rﬁ’“’(l)IIB(Y;»—, gy =C(Re Aty Y, r>%+%.
Here R®(2)=d*R(2)/d2*, and the constant C is locally bounded in c.
Proof. Differentiate (I.7.4) with respect to 2. Then
RPN R = (—t~(x, &))re~ AV @Dh(x—t~(x, E)E, &)
for (x, £)Q~ and =0 otherwise. Note that sup the™*2 < oo and proceed as

in the proof of Lemma 1.7.2 to conclude the lemma.
Let =(ay, 0,) be that defined by (1.6.8).

Lemma 6.5. VkEN,, Y¢,>0, V>0, VO[O0, 1), 3C>0; Vie Z(ay, o),
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VYcEBlc,,
H(Z—~BZ°)‘kuHL;£C l CI“’Ifl‘“i““””)(lluHL;-FHullzl) ,

where r=n-+60—2k.

Proof. Set, as in the proof of Theorem 1.6.7,

R=@A—B)"', RR=(A—4)"', G=RK,.

As a property of the resolvent, we have
6.5( d*R[d2* = (—1)*R¥*

and similarly for R’. Hence differentiation of (1.6.14) yields

Ek—1
6.6) R =t 33 (71 )AaR
=i\h—1
where
Ay = (— 1} S} @GR da 1
h=0
A, = (—1y*d*G'ldar .

In view of (6.5) for R’, A,’s are expressed in linear combinations of products
of R" and K,. Therefore, similarly to Lemma 1.5.4 and (1.6.15), we see that
if />0 is choosen large enough,

A, €B(Ly), A,€B(Ly)NB(L% Lg

the norms being uniformly bounded for (2, ¢)E Z(ay, 0,) X Blc]. Recall that
the decomposition (1.6.11) is orthogonal. Hence

R =31 U@, o)
i=0
holds. Substitute this into the last sum in (6.6) to deduce
k @ ,
|[R"ull_,dgéC[HMHL;;;nth1 {1042, c)"ullLHjZ:‘.1 1U;@, <) ”“L,::}] .
Now the lemma readily follows from Propositions 1.6.4 and 1.6.6 for p=co,
q=1.
Lemma 6.6. YkEN,, YO0, 1), IC>0; Y2€TI'®, Yce B[z,
ITP@p<Clc| |z |m=ON
Here T®=d*T,/d2* and r =n-+-0 —2k—2.
Proof. In virtue of (6.5),
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T — 2( l)h( )MORh+IeKR(k n(2).
Since M, satisfies [M1,(iii}, we have only to evaluate 7*R*"'eK R*~M(2). And
this can be done by combining Lemmas 6.4 and 6.5 with (3.8) for p=co.
Lemma 6.7. D, (2) also enjoys the conclusion of Lemma 6.6.
Proof. For D()=(I—T,2)™", we have
dD,(2)]d2 = —D,()(dT(2)/d2)D2) .

Compute D ()=d*(D()T(2)")/d2* by this and Leibniz’ rule, and evaluate
the resulting sum by Proposition 1.7.5 and the above lemma to conclude the
lemma.

Proof of Lemma 6.3. By integration by parts,

67) 25, (1) = =3} (—O) DR+ (— 0| DA

<2

where A,=—5,+ir,. Put A=2, 1, in Lemma 6.7. Then the sum from A=1
to k of (6.7), denoted as I,(¢), satisfies

1L(2)pl|<Cle| Pt  t>1.

Denote the last integral in (6.7) as I(¢) and put £=min(0, n+60—2k—2). By
Lemma 6.7 it follows that if x> —1, then

To

1) g<Clec|® SO e it dr < Cle| T0(1 1)~

We should choose k as large as possible under the restriction 4> —1. There-
fore k=(n—1)/2 when n is odd and k=(n—2)/2 when n is even. Then
a,=k-+(14)/2 is identical with that of Theorem 4.1, and Lemma 6.3 follows
if (6.4) is taken into account.

§7. Proof of Proposition 1.7.4

In what follows, I3 will stand for either L3(Q>) or L5(Q) with B dropped
when £=0. No confusions will arise. For each ¢,>0 and 0>0, put

2 = @.(.(“Vo‘{"a) XB[CO] »
22 Z(ao, 0'0) XB[CO] B

where 2 (a,, o,) was defined by (1.6.8). All the conclusions in the below are
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valid for arbitrarily fixed positive ¢, and 8. Write G=(1—A47)"'K, as before.
Lemma 7.1. 3r>0; V>0, VpE[2, ], 3C >0; V(4 0} Z,,

.. - o
(ii) ”MOG”B(Lg, Yg,_)SC(l—]— [2])~7/eD,

Proof. By Proposition 1.3.5 and Lemma 1.5.2 (i),

(7.0 Gl g2 < CRe 24397,

B}
while by (3.6) and Parseval,
=7y2/(1+7)

which proves (i) for p=2 if 7%/(1+7) is rewritten as 7/2. Note that the proof
of Lemma 1.6.12, and subsequently that of (3.6), remain valid in L§ if g==0.
Now (i) for p>2 follows by the interpolation between the result for p=2 and
(7.1) for p=oo. In order to prove (ii), we first repeat the proofs of (I1.4.4),
and (I.4.6)_ with u replaced by |u|? noting that 8|u(XZ1t¢&, &)|%ot=
2 Re u(X—+1€, E)ou(X+1€, €)/8t. Then for us Wi(Q),

<y« <2lull 5 | A—AD)ull 5.
Replace u by Gu and substitute (i) to conclude
lr=Gll<CA+1aD™*  in B(L, Y§™).
Then (ii) for p=2 is verified by [M], (i). Note that

(7.2) lir*ull y s <llull -

Put Gu for u. Then M,GEB(Lg, Y5'~) by (7.1) and [M], (iii). Hence (ii)
for p>2 follows again by the interpolation.

Proof of Proposition 1.7.4. (i). What we shall prove is that
(7.3) ITAI<CA+[a))™en  in B(YED)

holds for all (1, c)=,. In view of Proposition 1.7.3, however, it is enough
for this to hold for |2| >r, with some r,>0. Rewrite T,(2) as

Tc(l) = MOGSc(A) ]

which follows with substitution of the second resolvent equation (I.6.14) for
/=1 into the definition of T,(2) (see (4.1)). Let R=(1—B)™! and evaluate



STEADY SOLUTIONS OF THE BoLTZMANN EQ. II 1055

the right hand side of (1.6.14) with sufficiently large / by the aid of Lemma
1.5.4. Then

lIRull s < C(Ilulng +lIRul|2)

for p>2. By Proposition 1.6.4, ||Ru||< C|lu|| in L* if |2| >r, with any ry>0,
the constant C >0 being dependent on r, but not on 2. Consequently by
Lemma 1.7.2,

(1.4) IS8l < CAMl g+ Wil )

1

for p>2, >0 and r><? )(n—l—l)——l. Now Lemma 7.1 (ii) proves (7.3)

_1
p
for (4, c)€2,, | 2| >r,, r,>>0 being arbitrary.

We proceed to the proof of Proposition 1.7.4 (ii). Similarly to the above,
it suffices to show that

(7.5) IT@l<CA+[2D™  in B(YF")
for (2, c)€2,, |2| >r, with some r,>0. To this end, we use
(7.6) T(2) = M,GeR,(X)+MG*S, (N =T,+T,,
which is obtained by (1.6.14) for /=2.

Lemma 7.2. (i) Vp€g[2, <], V£>0,3C>0; V(A )3,

ITlI<C  in BY%, Yi5).
G) Vpe(n, oo, v,e><%—i)(n+1)—1, 3C>0; 36>0; V4, )3,
D

ILI<C  in B, Y5i3).

Proof. (i) follows by Proposition 1.3.5, Lemmas 1.5.5 and 1.7.2. By
Lemma 1.5.4 and (7.2),

1Tl .- <CIUSDHly; .
if p>n and 0<1 —%. Then (7.4) proves (ii).
From (7.6) it follows that
T = T34T,
with T,=T,T,+T,T,-+T35. By the above lemma,
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ITl<C in BX45, Y5o)

with ag2<1—i>, p>n. Let p>n-+1be fixed. In view of (I7.6), (7.3) holds
p

even if B(Y%4 ") is replaced by B(Y5'~, Y§3) with 6>(n+1)/p. Therefore
T,T,(2) enjoys the same inequality of (7.5).

It remains to evaluate TZ, and it is at this stage that the type of boundary
operator M, turns to be crucial and that the assumptions [M], (iv) and [M],
(iv) are required. Estimates of different types are available as seen from the

Propositien 7.3. Let §>0.
() Suppose M, be given by (1.1.5) and fulfill [M],. Then for each pE
(n, oo}, there is a constant C >0 such that for any €¢>0 and (2, c)E 23,

1Tl <CCElhll g+l ) -
(i) Suppose M, fulfill [M], and let p, be that of [M], (iv). There is a
constant C >0 and for any pE[p,, o] and (2, c)E 2,
ITH<C in B(Y§:, Y57).
Before proving this, we complete the

Proof of Proposition 1.7.4 (ii). As stated already, it suffices to show that
T3T,2) enjoys (7.5). Recall that (7.3) holds with B(Y% ") replaced by B(Y5"~,
Y%3), 6<(n-+1)/p. Choose again p>n-+1. When M, is given by (I.1.5), put
T (M)A for h in Proposition 7.3 (i) and obtain

IIT?Tc(l)hIIY;,_SC(€+6'1(1+ |2 I)"’"”’)Ilhllyg,-.

Then the desired estimate follows with the choice e=(1-+|2])~"“», For the
case of [M],, it suffices to combine Proposition 7.3 (ii) with (7.3).

The rest of this section is to be devoted to the proof of Proposition 7.3.
Write R'=(2—A47)"! and define

V_=RMr R, W_=M,ReK,V_eK.R(2).
Lemma 7.4. Vp>n, V>0, V_eL~(Z,; B(Ly~, L?)).

Proof. (1.5.5) and (1.7.4) yield an explicit expression

oo

V) (x, &) — g O e, )t
t (z,
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for (x, £)eQ~ and =C otherwise. Then the lemma can be proven exactly
in the same way as Lemma 1.5.2 (ii).

In the above the space L cannot be replaced by L.

Corollary 7.5. Under the same situation of Lemma 7.4,
W_eL~(=; B(YSs, Yir)), 5<2<1—i) .
V4

Proof. By Proposition 1.3.5, K,&L*(5,; B(L§_s, LE>)) if p>n/2, 6<
1—1/p, so by Lemma L.7.2 (i), K,R(A)EL>(Z,; B(Y} ™, Lp™)). Similarly,
MyR'eK,€ L=(2,; B(Lg'?, Y§:5)) by the aid of Lemma 1.5.5 (i) and [M], (iii).
Combine these with Lemma 7.4.

We should also define
V. = RA)Mg+R', W. = M,ReK,V,eK,R(2).
Apparently T: =W, —W_.

Proof of Proposition 7.3 (ii). We have only to show that W, enjoys the
conclusion of Corollary 7.5. Similarly to (3.8), r*eB(L5*?, Y5*»*). Then
by Lemma 1.5.2 (ii) with p=oco, r*R'€L=(Z,; B(LE™, Lg*7)) if p>n. Now
we shall use [M], (iv), in which it may be assumed that p,>n (if not, take an
interpolation with [M], (iii)). Then My+tR' €L=(2,; B(Ljr=, Y5 7)), and by
Lemma 1.7.2 (), V.eL*(2,; B(LE>, Lg)). A slight modification of the
proof of Corollary 7.5 then leads to the desired result.

The proof of Proposition 7.3 (i) is far more complicated. Since M, is
given by (I.1.5) and by virtue of (I.5.5) (ii) and (1.7.4), ¥, can be written as

.7 Vo = g”e-w WX — 1, i)dt
0

for (x, £)e Q™ and =0 for (x, )= Q\Q~, where

(1) = A+v(E))t~(x, &)+ (A+v ()t
X=X & =x—1t"(x, §)¢,
m = m(x, &) = m(X(x, £), &),

m(x, ) being subject to [M};. Write E:E/!E}. The following homogeneity
properties come from [M]; (iv) and (1.7.3) (iv).
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t7(x, &) = t7(x, )€1,
(7.8) X(x, &) = X(x, &),
wix, €) = | € |m(x, £),

all for (x, )= Q™. Put
B(x) = {{€R"|(x,£)E07},

and define the map y=y(¢) by

E(X)DE—y = X(x, &)—m(x, &)ER",
where x & £ is arbitrarily fixed. Define for each #,, b, 6>0,

E(x) = {e€E@®) |t~ (x, ©)<t, 6< | €] <b, o(X(x, £), £)>0} .
Let y; denote Jacobi’s matrix (8 y;/0¢,).
Lemma 7.6. V>0, 37,>0; Im,>0; Vb>0, Vxe 8, Vée 5,(x),
|det yg| =m, .

Proof. The assumption [@] of § I.1 implies that 82 is represented locally
by the equation #(x)=0, ¢ being a piecewise smooth function. Then ¢=
t~(x, &) is a unique solution to ¢(x—t&)=0. Differentiate this and deduce

Pet™(x, £) = t~(x, O)p(X, £)7'n(X),

where n(X) is the vnit outward normal to 82 and p(X, &) =|n(X)-€&| at
X=X(x, é). Consequently Jacobi’s matrix X¢ is given as

Xe(x, &) = —t(x, &) BX(x, &), &),

(7.9) N N
B(X’ E) = In+p(Xs E)—I(Ejnk(X)) s

I, being a unit matrix of order n. The nxn matrix B(X, &) has, in view of
[©] and [M],; (i), piecewise smooth and uniformly bounded entries as far as
o(X, £)>0>0. By (7.8) and (7.9),

(1.10)  #ag(x, &) = myXgmg = —t~(x, Emy(X, O)B(X, &)+mg(X, )

is homogeneous of degree 0 with piecewise smooth and uniformly bounded
entries if o(X, 5)26, t~ (X, E~)£to. Then

(1.11)  yg = Xg—iing = —t(x, ) (l—lﬂlu—m,,(x, E)) x B(X, £)—mg(X, &).

Replace ¢~ (x, i;:) by ¢ in the last expression and denote its determinant by
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J(t)=J(t, X, &, |€]). Then J(r) is a polynomial of ¢ of order at most n, whose
coefficients are all piecewise smooth and uniformly bounded if o(X, 5)26
and |&€|>06. Therefore J(t)—J(0) as t—0 uniformly, and

| J0)| = |det me(X, £)| >m,

by [M], (iii), so |J(¢)| =my,/2 for 0<t<t, with some 7,>0. Since det y;=
J(@ (x, Z_,-:)), this proves the lemma.

Next, define Z,(x)=&,(x, t;, b, ) by
Efx) ={E€EMX)|t(x, E)>1, |E]|<b, o(X(x, ), E)>0}.

Lemma 7.7. 3Imy>0; V0>0, Vx& 2, Vi,>0, Vb>0, 354(x) C E)(x);
() mes F4(x)<mb"19,
(ii) |det ye| =my(t:—0/b)"™", £ € Bx)\F3(x).

Proof. Rewrite (7.11) as
(7.12) ye = —t(x, &)BX, &)—g(x, &) .
For each fixed X =0#, we may choose the coordinates such that n(X)=
(0,0, --+,0,1). Then for (X, £)S~ (see §1.4),
(7.13) o(X, &) = —¢,.

Let m’=—~t§n_”(4;1, é:z, ---,é:,,_l) be a column vector of order n—1. Then in
our choice of coordinates,

B(Xa E) = dp-1 o'

0 0

Write #g=(;), 1<j, k<n, and put m'=(;,), 1<j, k<n—1, (a matrix of
order n—1), m?*='(m,,, m,,, -*-, m,_;,) (a column vector of order n—1), m*=
(Mg, Miygy o+, My,_y) (@ law vector of order n—1) and m*=,,. Then in the
same coordinates,

det yg = (—t~(x, &) W(x, &, 1€,

(7.14)
Jo(x, &, 1) = i I,_,+tum* o +tum? {
\ ni m

where x#=1"(x, Z_,-:)“l. Obviously J, is a polynomial of ¢ of order at most n—1,
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and its coefficients are all piecewise smooth and uniformly bounded for xE £,
e &,(x). Noting (7.13), we see

Jo(x, €, 0) = mt—m* o’ = ENEFem,)(X, &) .

By (7.8), &-Vem,—0m,(X, | € |8)/8|&| =m,(X, &), and in our choice of coordi-
nates, &;'m, (X, £)=—o(X, £)'o(X, m). Hence by virtue of [M], (i) (iii), there
holds with some constant >0,

(7.15) | Jy(x, €, 0)| = | det me(X(x, &), &)| 1=>m,,

for all (x, Z—“)EQ‘. Obviously this result is free from the choice of coordinates.
As a consequence, the polynomial J; of ¢ does not vanish identically, and there-
by it has at most n—1 distinct real zeros t=t,(x, ), 1<j<j, where the

number j, of the zeros may of course vary with x and . Let us show that
Eyx) ={e€5,(0)| 16| —1)(x, O] <0, 1<j<ji}

is the desired subset stated in the lemma. Since ¢;’s are independent of |&],
(i) of the lemma is evident. Since ;40 by (7.15), we can write

(1.16) Ho & 1) = a0 T (1155 )"

i=1

k; being the multiplicity of ¢;. Let é€ &, (x)\&F5(x). It [¢;| <2b, then

i

J

=&l —t;1/12;1 =8/(2b)

while if |#;] >2b, then
il
L

This, together with (7.15) and (7.16), gives |J,| =>my(6/(2b))*™, whence (ii)
of the lemma follows in virtue of (7.14).

>1—|€]/(2b)=1)2.

Proposition 7.8. Vp>n, V>0, 3C >0; Ya>0, V>0,
2(1€1 <@Vl . p < CaCelll -+ 7 el g.0)

Proof. Recall (7.7), and put v(x)=||u(x, -)|| nd

L®y °
w(x, t, @) = ||X(| €] <a)w(x(x, &) —tin(x, E))HL;,(RE) .

The proof of the proposition will be carried out only fcr £=0 because the
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case #+0 can be dealt with exactly in the same way. Let (2, c)& 2, but in
the below we change the notation ¢ by 0, in the definition of X,. Since
Re y/(t)>0,t, (1.7) leads to

e %' w(x, t, a)dt .

12(1€] <@V sl gy <

Denote the last integral as I. Given en ¢>0, put a’'=|loge|/6, and split
the integral [ as

[= §f+5:'511+12.

a

Apparently sup w(x, ¢, a) < Ca™?||u||.~, independently of x, so
>0
L<Cea?||u]| -,

while since w(x, ¢, @) <t "?w(x, 1, at) by (7.8) and by the change of variables
t&é—¢, and since w is monotone increasing in g, then

L<Cw(x, 1, aa")
holds for p>n. In Lemmas 7.6 and 7.7, put
0=c¢?, b=uaa =allogel/d,, t, =1,
where 7, is the constant of Lemma 7.6. Define
54x) = {£€ 5N BB €] <0 or p(X(x, €), £)<5}.
Then B[p]={6= R"| |&| <b} can be expressed as the union of 5(x), j=1, 2, 3
and recalling the map y=y(&),

wer 1,8y = | enide=3 (=3,

ji=1 i=1

By Lemma 7.6,

I= |, bO)*1detysl "av<c

51 X R” I

v tdy = Cllull? ...
while by Lemma 7.7,

I, — S —I—S

27 e Jaonsys

< (mes E3)| lgm+c(5’?;)"—1;1v1[§g

< (e ful -t (ae™ Dyl )
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Finally, it is easily checked that mes &,(x)< C(6"+5b8"") holds uniformly for
xE £, so that

Iy < Cae”|[ul[4e .

Combining all the estimates so far obtained completes the proof of the proposi-
tion.

Proof of Proposition 7.3 (i). Owing to Corollary 7.5, it suffices to show
that W, enjoys Proposition 7.3 (i). Use Proposition 1.3.5 twice. Then the
above proposition yields

IK2(1€] <@V Kl < Ca(ellll .+l )

for r<2( 1 —L>, while since ||[V,||< C in B(Lg) as seen from [M], (iii),
p
Remark 1.1.1 and Lemmas 1.5.5 and 1.7.2, then by the use of (I1.3.7),
IK2(1€|>a)V,Kall o < CA+a) ull -
3 B-1

Choose a=&~¥/®+) and replace ¢¥®* by e. Then
1
1KV Kl <C(ellull g+l )

Now the desired estimate for W, {ollows readily from Lemmas I.5.5 and 1.7.2.
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