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On the Structure of the State Space of
Maximal Op*-algebras

By

Frank LOFrFLER* and Werner TIMMERMANN**

§1. Intreduction

In this paper we continue the investigation of the structure of the state
space of _L7(D) begun in [16]. The paper is organized as follows. Section 2
contains the necessary definitions, notations and auxiliary results. In Section
3 we prove the main results about the pure state space and the vector state
space of L(d). These two sets of states coincide. Moreover there is given a
representation theorem for the pure (and vector) state space analogous to the
bounded case.

Furthermore Section 3 contains several results concerning sequences of
states. It appears that there are some differences to the bounded case.

In Section 4 we investigate the state space of general Op*-algebras.
Among other things it is proved that the state space is the w*-closed convex
hull of the vector states. If the Op*-algebra is selfadjoint and topologically
irreducible (cf. Definition 4.3) then the state space is the w*-closed convex
hull of pure states.

§ 2. Preliminaries

For a dense linear manifold &) in a separable Hilbert space .H the set
LY D)y={4: ADC D, A*D D} is a *-algebra with respect to the usual
operations and the involution A—A"=A4*|4). An Op*-algebra A(D) is a
x-subalgebra of _L+(9)) containing the identity operator I. The graph topology
t ; on 9 induced by A(D) is given by the family of seminorms D= e—||4¢||

Communicated by H. Araki, November 21, 1985. Revised April 21, 1986.
* Sektion Mathematik, Karl-Marx-Universitdt, DDR-7010 Leipzig Karl-Marx-Platz, German
Democratic Republic.
** Laboratory of Theoretical Physcics, JINR, P.O. Box 79, Moscow, USSR.



1064 F. LOFFLER AND W. TIMMERMANN

for all 4€J(D). Denote t p. g simply by t. An Op*-algebra A(D) is
called:
closedif D= N  9(A) or equivalently if P[] is complete;

Aed

selfadjoint if D=D,= N D(4*).
Aed
Among the many possible topologies on Op*-algebras (cf. e.g. [10], [11],

[12], [19], [20] and the references there) we mention only those needed here:
the uniform topology t 9 given by the family of seminorms

AD)2 A4 ||Ally = sup <o, 4¥|

eYyeU

where U runs over all ¢ J-bounded subsets of 9); the topology rfq) given by
the family of seminorms || Hq] as above Remark that 7 g, v, are also defined
on L(D, 9), hence on B(H), too [12], [8]. Here 4’ means the strong dual
of 9z].

In the remainder of this section and in Section 3 we always assume that
L1(9D) is selfadjoint and D[t] is an (F)-space. To simplify notations let us
denote a bounded operator A= _L£*(J) and its closure 4€ B(IL) by the same
letter A. The following two-sided #-ideals of _£(9) play an important role
in the description of z ) and ' 181, [11], [12], [16], [21], [22]:

BD)=A{T:THCD, T*HC D}y ={T: AT, AT* bounded for all
Ae LY D)y

Su(@D) = {T: TESA(IH)NDBD)} = {T: AT, AT*=S..(H) for all
Ae LT D)}.

Here S..(-H) denotes the *-ideal of compact operators on K. Properties of
B(D) needed in our context were collected in [16]. The ideal S.(9D) gives a
description of the relatively z-compact sets in &) [22]. For completeness we
include a proof. It is based on the following fact which seems to be not
included in standard books on Hilbert spaces (the authors are grateful to
K.D. Kiirsten for suggesting a short proof):

Let 4 be a separable Hilbert space, then the family
(1) {CH: C>0, C=8.(H), R(C) dense in K} is a
fundamental system of relatively || ||-compact sets in 4.

Proposition 2.1. The family {SK: $>0, SES.(D), R(S) t-dense in 9,
S exists} is a fundamental system of relatively t-compact sets in 9.

Proof: 1t is easy to see that any set of the family is relatively z-compact.
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To prove the other direction we first of all remark that the proof of (1) (or some
other considerations) gives immediately: if JIC 4 is relatively || ||-compact
and ||¢||<a for all 9= J1, then C can be chosen to satisfy a<||C||<2a. Now
let U D be relatively i-compact, hence z-bounded. By [8] there is a B>0,
Be B(D) with BADU. Without restriction of generality let us assume that
IBI<1. Let B={ 25 and put P,= dE, with J, =@, 2%, n—1,

n

2, v, H,=P,HCD. Then P, $(I) and B,=P,BP,=BP,=_L7(D)
(evene B(9D)), I=>1PP,.

Since U is relatively -compact, U,=P,uC 4, is relatively || [|-compact
and from BA DY it follows that B, K=B,XK,DU,, where K, is the unit ball
in 4,.

Consequently for all pU, it is |le||<||B,l| <272 Applying (1) to
U,, Y, we get a compact S, B(H,) with S K,DU, and

(2) 2—2n+ZS”S;:”S2"2_Z”+2=

Clearly, S, can be considered as an element of B{H). Put S,=2%2-||5:||"2-S}.
Then |[S,[|=|[S%|[?-2%* and S,(27% ||Si[") K =87 K, D U,.

The operator S=>1P S, has the following properties:
i) S=S8* is compact because S,=S¥ and the series > P S, is norm-convergent
as can be seen from the estimation ||S]|<33(|S,||=2%231|S5]|"2 < 22331/2" < oo,
i) S HADU. Indeed, let U, o=3"9,, 9, =U,. Then there exist ,E
(27%|S:| V) K with S, =e,. Because ||v,||<27" it follows that Y=,
has norm |[¥||<>327%=1, i.e. yEK and Syr=p=U.
i) S€8.(9). Because SES.(H) it is enough to show that S&.B(D).
Let A=.L1(D) be arbitrary, then

l4Se||=||AB"B2Se|| <|| 48| |

B25g)] .

The first factor is bounded because B2 & B(D), for the second factor remark
that

[B~2Sg| = 33 ||B 28,0, < 2 | Bi 28,1 [P« lo,|P<
= Cl||p|[? where C = sup || B;*25,||? = sup 22 272+?||S1]| < 16..

Moreover, S7! exists, so S is the desired operator. The assertion about
R(S) can be proved as in the B(D)-case using if necessary a larger z-relatively
compact set T1DOU. g.ed.

Next we consider linear functionals on Op*-algebras A(J)). ‘We restrict
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ourselves to g -continuous functionals. Let E(A)={wE D) gt @20,
o(I)=1} be the state space of A(J). Here, >0 means o(4)=>0 for all
Ae A9D) with <o, Ap>>0 for all p = 9 (strongly positive functionals).
Further let oo(A)=0(A’, A) be the w*-topology in A(D)[r I~ We need the
following subsets of E(.A):
vector states: Vi(A)={wc E(A): o(4)=<¢p, Ap> for some p= 9, ||p||=1};
vector state space: V(A)=oy(A)-closure of Vy(A);
pure states: P A)={w€E(A): o, A, ©,20, o,<w

implies @, =2w for some 2]0, 1]},
pure state space: P(A)=oy(A)-closure of Py(A).

Clearly, wePy(A) if and only if ® cannot be represented as a convex
combination (non-trivial) of ®,, w,€E(]). The corresponding subsets of
LH( D)z )" are simply denoted by E, Vy, V, Py, P respectively, and oi(L(D))
we denote by o, To define normal and singular functionals on -L*(9) we
introduce the two-sided #-ideals in _L7(9D) [13], [9], [14], [19]:

S(D) = {TeLH(D): AT, AT*ES(H) for all A€ _LH(D)}
F(D) ={FeL"(D): dim FD< oo}
(D) = 7 y-closure of F(D).

Here S,(H) stands for the #-ideal of nuclear operators on 4.

Definition 2.2. A linear functional o on L7(9D) is said to be normal if
o(A)=Tr AT for all A€ L*(D) and some T ES(D); singular if @ is 7 y-con-
tinuous and o(C)=0 for all C €C(9D).

Let us remark that while normal functionals are automatically = gcon-
tinuous (even rf@-continuous [19]) we have included the = _@-continuity in the
definition of singular functionals. Further, the notion of singularity used
here is a direct generalization of that from the bounded case and has nothing
to do with that used by Inoue [6].

In [16] we described a procedure relating = _@-continuous functionals on
LT(D) and B(I) based on the grdensity of B(9). Let o€ LDz I’
(E B[z 5], by restriction to B(D) and extension to B(H) (to L7(D)) one
gets a unique 7 -continuous functional on B(A) (on L7(D)) which we
denote by @(@). Some properties of this procedure were collected in [16].

8§3. The Vector State Space and the Pure State Space of _L7(9)

This section is devoted to the description of P and V. In [5] Glimm



ON THE STATE SPACE OF MAXIMAL OP*-ALGEBRAS 1067

proved among other things the following result about ¥(B(H)) and P(B(H)).

Theorem 3.1. P(B(H))=V(B(H))=Z(B(H))={o € E(B(H)): o=2w,+
(1 —2Nw,, 0<A< 1, w-vector state, w,-singular state on B(IH)} .

Our aim is to generalize this result to the unbounded case, namely to
LH(9D). To do this we will use a theorem of Wils [23] which was generalized
by Anderson [2].

Theorem 3.2. There is a fixed sequence (Vr,)CH, ||v.||=1 so that any
o & P(B(I))=Z(B(I)) can be represented by
with an appropriate ultrafilter U on N.

It is enough to take (yr,) to be || ||-dense in the unit sphere of 4, so we

suppose (y,)C 9. Call such a sequence a Wils sequence.
In analogy to the bounded case we define

Z ={w€E: o = lo,+(1—-)w, 0<1<1, v, EV,, w,~singular}.

Theorem 3.3. Let (V) be a fixed Wils sequence. For every o EZ there
is a C€ B(D) and an ulirafilter U on N so that
o(d) = limg <C, ACY,>

Proof. LetwEZ, o=20;+(l —2)w,, @,=<{p,-¢), ||¢||=1, and w,-singular.

Then o, w,, @, and the corresponding states &, &,, @, on B(H) can be
estimated by some seminorm ||B-B||, B>0, B€B(D). Let BngldE,\.
From [16] we know that &,=<g, -¢)>, @,-singular, i.e. @=21&,+(1 —/Io)a")ze
Z(B(H)). For neN and fixed 0<a<1 put P”:§j,ndE*’ B ng A""dE,.

1/n

Then B;*B=B'""P,, B;°= B(H). In[16] it was shown that &(B;*4B;")is a
Cauchy sequence for all A€ B(H) and o(4)=lim &(B;*AB;”) defines a posi-
tive linear functional on B(H). Moreover

(1) p(B*AB%) — &(4) .

The same can be done for &, and &, which leads to o, and p, respectively.
Furthermore

o) = Iini &(B; %) = 2 lim &,(B;*)+(1—2) lim &,(B;%")
= 2oy(1)+(1—D)py]) .
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Now let us distinguish some special cases. o(I)=0 and the Cauchy-

~

Schwarz inequality give p=0, hence @=0 (by (1)), which is a contradiction.
If 0,(I)=0 or p,(I)=0, then & =0 or &,=0. But this means that o is a sin-
gular state or a vector state on _L*(9). Then we are done. For singular
states this representation theorem was given in [16]. For vector states the
representation is obtained in the following simple way. Take any B B(9) with
Bvyr,=¢ for some k (having in mind that the vector state is generated by ¢)
and the ultrafilter U fixed at k.

So we may suppose that @(B;2%), &,(B;?*) and @,(B,?") are larger than ¢
for n>n, and some ¢>0.

Now we define states on B(H) by

0"(A) = &(B;*AB;*)|&(B;*)  for n>n,.
These states belong to Z(BH(H)) as can be seen by the decomposition
P (4) = [28(B; " AB;*)+(1—2)@,(B; " AB; ")) /&(B;*)
= #,01(4)+(1—1,)03(4)

with x,=28,(B;*)/&(B;*") and p%(4)=a;(B, " AB;")|@(B;*), i=1, 2.
From the properties of @ it follows that o} are vector states and o3 are singular
states on B(H), hence o" € Z(B(HK)).
Moreover
,}fg 0"(A) = o(4)/o(I)=0(A) for all A€ B(H),

so cEZ(PB(H)) because this set is w*-closed. By Theorem 3.2 there is an
ultrafilter U so that
o(4) = limg <y, AV forall AeB(4H).
From (1) it is seen that
&(A) = o(B*AB") = o(I)o(B*AB®) = limCU<C¢k, ACY,>
with C=B"-(o(I))*€ B(D). The standard estimation (cf. [16]) for X €_L*(D):
| &(X)—lim, {C¥r, XCyr>| < | o(X)—(P,XP,)| + | 5(P,XP,)
—h'mCU<ka, XCyr>|— 0 for n— oo
leads to the desired result
oX) = limLZ](ka, XCorp> . g.e.d.
Corollary 3.4. The following inclusions are valid:

P,CZCV.
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Especially, every pure state on L(9) has a representation
Sor some ultrafilter U and C € B(D), (¥,) as in Theorem 3.3.

Proof. The first inclusion follows from [16], where it was proved that
pure states are either vector states or pure singular states. The second in-
clusion is an immediate consequence of the representation theorem. The
proof is the same as that of Corollary 4.6 in [16]. g.e.d.

Lemma 3.5, The vector state space and the pure state space of L*(D)
coincide, i.e. V=P.

Proof. Since any vector state is pure, ¥ CP follows (cf. [16]). On the
other hand, let we P. For given 4, ---, 4,€_L1(D), e=>0 there is a pure state
®’ so that |w(4;)—w'(4;)] <e/2 for all i. If o’ is a vector state we are done.
If not, " must be a singular state. But the singular states are contained in
V ([16], Corollary 4.6), so there is a vector state o’ with |0'(4;)—o”(4;))]| <
/2 for all i, i.e. |w(4;)—o”(4;)| <e. This means PCV, hence V=P. q.e.d.

Now we prove the main result of the paper.
Theorem 3.6. For L7(9D) one has V=P=Z.

Proof. 1In view of Corollary 3.4 and Lemma 3.5 it remains to prove that
V'cZ. The proof uses the idea of Glimm [5]. Let w &€V and o =2w,+(1 -2
the corresponding decomposition in normal and singular states ([16], Theorem
34). If A=w,(I)=0, then ®,=0 and we are done. So let 2#0. It remains

to prove that w, is a vector state. By [19] w, is ri@-continuous, ie.

o, (4)| <||CAC]| forall Ae.L7(9) and some CES.(9).

Let C =S AdE, and put P”:S y dE, (without restriction of generality suppose
0 1/n

C>=1I). The P, are finite dimensional and P, #C 9. Since wEV, there is a
net of unit vectors {g,, a=J} C 9D so that w=0,—lim o, with ©,=<{@,, @,
The first step in the proof is to construct a sequence (y,)C 49 with
1) @y, =10,(P;P))
i P Wrr1=Yp

The set {P,p,, a=J} is || ||-bounded and contained in the finite dimen-

sional subspace P, A C9). So there is a subnet {p;,), e€J} and v,€9D
I

with Pi@;, ——>yn=Py,. Let us remark that {P,p;.)} is a #-bounded set
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and P AP,€ S(D)CC(D) for all A= L(D). 1t is
@(P;+ P)) = 20,(P,- P))+(1—2)w (P, P))
= 2@,(P,+ P,) = op—lim a’j(u)(Pl"Pl)
=0y lim<P1¢j(m)s"P1¢j<m)> =Yy,

To avoid complicated notations let us denote the subnets again by

Il

{0, ¢ EJT}. Let ¢,&9 be chosen so that P,p,— v, then the same
considerations as above show that in view of the boundedness of {P,,,¢,} we

find a v, €9 with P, ,¢,—>V,s,. Moreover from P,P,,,=P, we see that
Pofryy=P,(lim Py 0,)=v,. Thus the existence of the sequence () is estab-
lished.
t
The second step is to prove that i,——>v&9). Let k>1, then in view
of Pyyry=rs, Pry="y, PP =Py:
AW —¥)I? = || APy —P )l = "-’sb,,((Pk—PI)A+A(Pk—Pl))
= 2w, (Py((P,—P)ATA(P,—P))P})) = 2,((P,—P)A*A(P,—P))
< A||C(P,—PYATA(P,—P)C|| <22+ ||C(P,—P)|-||ATAC|| = 0
for k,l— .

t
This means (y) is a #-Cauchy sequence, so there is a v€9D v,— .
Moreover,

I = Lim [yl|* = lim @y, (7) = 2-lim @,(Py) = 2.
Now it is easy tosee that o,=w, with ¢=v/||v|]. Indeed using
t
®, (P, AP)—w,(A4) for all A= L*(9D) and v,—— it follows that

I wn(A)_Q)fﬁ(A)l < | Q)n(A)—'wn(PkAPk)l + [ wn(PkAPk)_(l/x)<¢n A¢>I
= |0 (D) — @ (PeAPy) | + | (14, PrAP > —<yr, AY)]

which goes to zero for k—o0. Thus w, is a vector state and therefore 0 & Z.
g.ed.

In the second part of this section we add some results concerning og-
sequentially completeness and closedness of some sets of functionals. Since
the o,-topology is not metrizable one has to work with nets to consider closed-
ness or completeness. In the bounded case it is known that the set of normal
functionals is weakly sequentially complete [1], [3], [18]. This result is not
valid for .L*(9D) as we shall see. Let us start with a lemma which is a weaker
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variant of Theorem III.1 of [1].

Lemma 3.7. Let w,=w}-+o° be a sequence of t g-continuous Sfunctionals
on L(D), so that o} are normal and »° is fixed singular. Suppose @, (4)—0

0,
for all A€ _L*(D). Then o*=0 and clearly o} —0.

Proof. It is enough to prove that «°(P)=0 for all projections P & B(D).
Indeed, the linear space generated by these projections is 7 g-dense in B(D)
hence in L7(D). Let PEBD), PH=H,C 9. Consider B(I,) as a *-sub-
algebra of .L7(9) and denote the restrictions of the functionals above by
@,, @}, @°. Then they fulfil the conditions of [1], Theorem III.1. Therefore
&°=0, especially &°([ ﬂl)zco‘(P)=0. g.e.d.

This lemma can be used to prove a result which demonstrates in a nice
way the difference between the convergence of nets and sequences.

Lemma 3.8. The set V, of vector states on L*(D) is o,-sequentially com-
plete.

Proof. Let (wy,)CV, be a o,iCauchy sequence. Then -considering
wy (A*A) it is seen that sup||dy,||<co for all A€ L*(D), ie. (¥,) is -

bounded. Again by [8] there is a B€ B(D) and a sequence (9,)CH, ||o,/|<1
so that Bg,=vr,. This leads to

[@y, (D] =<y, AY,>| =|<{Bp,, 4Bp,>|<||BAB||  forall A€.L%(D),

ie. (wy,) is an equicontinuous sequence. Because (wy,) is a weak Cauchy
sequence, by o(4)=lim wy (4) there is defined a positive normed linear func-

tional on L*(&) which is zg-continuous in view of the equicontinuity
mentioned above. Therefore wEeV=P=2Z and o =21o;,+(1-w,, 0, EV,,
wy-singular. The sequence o, =o0—wy, =@ 0,—wy )+ (1—2) o, fulfis the
assumptions of Lemma 3.7. Hence (1 —2)w,=0 and so w=w,=wy for some

ved, ||lv|=1. g.e.d.

Let us add some simple remarks.

Remarks 3.9. 1) The proof of Lemma 3.8 can be a little bit modified to
show that the set of all positive vector functionals {w,=<{p,-¢>, o= D} is
gy-sequentially complete.

t
if) It is trivial that v»,—— ¢ implies co‘;,”ﬂ—)»co‘p. What about the converse?
Let ||[y,||=|l¥l||=1, wy,—wy as in Lemma 3.8. Then (y,) is -bounded. The
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weak compactness of the unit ball in 4 implies the existence of a subsequence
(¥,,) which is weakly convergent, say to zE4, i.e.

Py 20— <2, 2> for all ¢&4, hence ¢, __->“ I z.

This implies ||x||=1. Moreover, put ¢ =v, then |[{yr, , ¥>|*—|<{z, v>|?
and at the same time [<{y,, ‘t,b‘>I2=Q).p”k(Plp)'—>Q)‘p(P\p)=”“ﬁ'“2=1. This means
|<xz,¥>| =1 and consequently » =4y with |2] =1.

This can be interpreted as follows: w‘,,”—‘io—»wl,, implies that any || ||-con-
vergent subsequence of (y,) converges to the same element [y] in the projective
space [ 4] associated with 4, ie. [H]=H|~, where ~ is the equivalence
relation Y~y if and only if x=2y for some 2 with |2|=1. This is quite
natural because wy on _L¥(9) determines only [y] but not v+ uniquely.

Lemma 3.10. The set of normal functionals on .L*(4D) is oy-sequentially
closed but not oy-sequentially complete.

[
Proof. The first part follows from Lemma 3.7. Indeed, if w,,-—o—m) and
®w=0,+,, w,-normal, w,-singular, then o;,=0—,=(0,—,)+ o, fulfils the
conditions of Lemma 3.7, hence w,=0 and ® is normal. To see the second

part, consider =0, w9, o= H\9D. Then there is a sequence (¢,)C 9.
Il

¢,—>®. The vector functionals w,, 4(4) =<@,, A4¥) are t g-continuous,
@y, W(A)—>w, y(A)={s, Ayr) for all A€ _LH(D).

Because ¢&9 the functional @,y is not ¢ g-continuous [16] and hence not
normal. g.e.d.

Remark 3.11. In the proof of Lemma 3.8 the equicontinuity of the set
{wy,} was important. In the bounded case the equicontinuity is automatically
fulfilled for w*-Cauchy sequences of normal functionals. This is not the
case for L*(9Q) as the sequence (@,,y) above shows. Indeed, suppose
|<p,, AY>| <||BAB||. This would imply that (¢,) is #-bounded since for
Py, ELHD): <@y AT APy o 0> | ||l e, |P<||BA* APy, BI<||BA*A|-
[|1Be,l|-llv¥ll. But (,)is || ||-bounded, so [|Bo,||<C because BE H(D). Thus

(¢,) is t-bounded and gv,,”—”»go which implies go,,—t> ¢ by[14]. Thisis a con-
tradiction.

Now one could give several conditions which would imply that ¢,-Cauchy
sequences of normal functionals have a normal functional as limit. But we
will not push this further. Let us only give a corollary to Lemma 3.10 for
the case where .L7(9D)[r ] is a bornological space. A large class of examples
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of such (F)-domains &) was given in [20].

Corollary 3.12. Let .L*(D)[z 5] be a bornological space. Then the set of
positive normal functionals is og-sequentially complete. Especially the set of
normal states is oy-sequentially complete.

Proof. Under the assumptions above 74 coincides with the order topol-
ogy and every positive functional on _L*(9) is 7 g-continuous [20]. On the
other hand, if w,(4)—w»(4) for all A= L7(9) and ©,>0, normal, then o is
positive, hence  g-continuous and the assertion follows from Lemma 3.10.

qg.e.d.

We close this section with two results about singular functionals. The
first one is analogously to [1], Theorem III,5 for .L*(D).

Lemma 3.13. Let (®,) be a sequence of singular functionals on L*(D).
Then any weak limit point of (@,) is singular.

Proof. Let w be a weak limit point of (w,) and let (w,) be a subnet so

that com—a—o» o=w0"+’. Again (cf. Lemma 3.7) it is enough to prove that
@"(P)=0 for all projections PEB(D). Let &, ", & be the restrictions of the
functionals above to B(H,)CLT(D), H,=PIH C4D. Then these functionals
fulfil the assumptions of [1], Theorem IIL5, so &"=0, i.e. o"(P)=0. q.e.d.

Corollary 3.14. The set of singular functionals on L*(9D) is oy-sequentially
closed.

§4. The State Space of Op*-algebras

In this section we start the investigation of the state space of general Op*-
algebras.

Remember that in the C*-theory the fact that the unit ball in the dual
space is w¥-compact allows to apply the Krein-Milman theorem. This leads
to the well-known result that the state space of a C*-algebra is the w*-closed
convex hull of pure states.

In contrast to this in the unbounded case the state space is not w*-compact,

even not w*-bounded if the Op*-algebra under consideration contains

unbounded operators. This can be seen by the following simple example. Let
A=AT€J(D) be unbounded. Then there is a sequence (¢,)C 9D, ||lp,l]|=1
with ||4g,||—>c. By w,=<¢,,-¢,> we get a sequence of well-defined vector
states, but @,(474)=||4¢,||*>. So (»,) is not w*-bounded.
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Nevertheless there can be derived some results which correspond to those
in the bounded case. But one has to take into account some refinements.
On the one hand the topology r g4 does not play an exceptional role in what
follows. On the other hand in the proofs it is essential that states are strongly
positive functionals. For .L*(4) the positive and strongly positive 7 g-con-
tinuous functionals coincide [16]. But this is in general not the case for
arbitrary Op*-algebras or other topologies. So in what follows on .L*(9) or
A(D) there can be taken any locally convex topology = so that the vector states
are r-continuous and states are supposed to be strongly positive, normed and
r-continuous functionals.

The first proposition we are going to prove is Lemma 3.4.1. ii) of [4] for
Op*-algebras. E(A) is now thought to be in the context of a topology r just
mentioned.

Proposition 4.1. Let A(D) be an Op*-aigebra, Q C E(A) a subset with the
property: if A€ A(D), (hermitean part) and o(A4)>0 for all o = Q, then A>0.
Under these assumptions the w*-closed convex hull of Q coincides with E(A).

Proof. The proof is the same as in [4]. Since E(A) is convex and w*-
closed, the w*-closed convex hull Q, of Q is contained in E(4). Now let Q°
be the polar of Q in A(D),. If A€ A(D),, then

A= Q" if and only if @(4)<1 for all = Q
if and only if @(I—A4)>0 for all = Q
if and only if /—A4>0 if and only if w(4)<1 for
all we E(A) if and only if 4= E(A)".
Hence Q°=E(A)°=0Q}. Then by the bipolar theorem:

0% = E(A") =0F° = co(Q, U {0}) = co(E(A U {0}) .

Since Q, and E({) are convex and w*-closed this implies
co(Q, U {0}) = co(E(A)U {0}), hence Q; = E(A) .

To see the last implication suppose @& E(4). Then using the convexity
of Q, there are p=Q,, A€]0, 1] so that w=21p-+(1—2)-0=20. Since w(l)=
o()=1 it follows that 2z=1 hence p=0& Q, q.ed.

An example of such a set Q is V(1) the set of vector states. Therefore
we obtain as a conclusion:

Corollary 4.2. Let A(YD) be an Op*-algebra. Then E(A) is the w*-closed
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convex hull of the set of vector states on A(D).

In the C#*-theory the following fact is well-known [4]. Let be a C*-
algebra, say with unit, which acts irreducible on 4, then the vector states are
pure. In the C*-case the notion of irreducibility is unambiguous. In contrast
to this for general Op*-algebras many different notions of irreducibility can
be given. The weakest seems to be the triviality of the weak commutant [17]:

AD) = {T€B(A): p, TAy) =A%, Ty
for all o, v 9, A= AD)}.

If A(9D) is selfadjoint the weak commutant coincides with the strong
commutant AD),={T € B(H): ATe=TAp for all oD and A= A(D)}.
Moreover, in this case both sets are von Neumann algebras (cf. e.g. [17].
Clearly, A(9D)' c.L(D). We will use here the following somewhat stronger
notion of irreducibility [15]:

Definition 4.3. An Op*-algebra A(D) is said to be topologically irreducible
if the set D,={Ap: A€ A(D)} is t_j-dense in 9 for all non-zero €D (i.e.
any such ¢ is a strongly cyclic vector for JA(D)).

It is not our intention to analyse here the whole hierarchy of possible
irreducibility notions. Let us only remark that topological irreducibility
implies the triviality of the weak commutant for selfadjoint Op*-algebras.
This follows immediately from the fact that a non-trivial commutant contains
non-trivial projections P. But than the non-zero vectors from P4 can not
be strongly cyclic.

Propesition 4.4, Let A(D) be a selfadjoint, topologically irreducible Op*-
algebra. Then every vector state on A(D) is pure.

Proof. Suppose 0<w<w,, that is o(X)<<p, X¢) for all X>0, X
JAD). On 9,x 9D, consider the sesquilinear form

(¥, x) =w(B*4) for ¢ =Bp, y =Ap, 4, BE (D).
It is easy to check that ( , ) is correctly defined, positive and moreover
|, )| = 0(B*B)| <|0(B*B)| =yl

This estimation can be continued onto 4 X H because 9, is || ||-dense in .
Thus there exists a positive operator T & B(H) with

(W, 1) =Ly, Txy  forall v, x4
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Now let C € A(D). Then the two equalities

<x, TCy> = <{A9p, TCBp) = (Ap, CBp) = w(4*CB) and
{C*x, Ty> =<C*Ap, TBpy = (C*Ap, Bp) = w(4*CB)

imply that
L, TCy¥> =<{C%x, Ty> forall v, xC9,.

From the ¢ ;-density of 9), we conclude that this last equality is valid for
ally, x€9. Hence Te (D) =A(D);. The topological irreducibility im-
plies that 7=21, and moreover 0<<A<{1. This leads to the desired result since
o(X)=(p, X9)=<o, TX0o>=Xo, Xp>=lo,(X), VX< A(D). g.e.d.

Corollary 4.5. i) Let A(D) be a selfadjoint, topologically irreducible
Op*-algebra. Then E(J) is the w*-closed convex hull of pure states.
i) Let L(9D) be selfadjoint, the E is the w*-closed convex hull of pure states.

Remark 4.6. By quite other methods Corollary 4.5.ii)) was obtained in
[16] for the case that 9[t] is an (F)-space and the topology under considera-
tion is 7 g).

Let us further remark that the representation of positive functionals domi-
nated by vector functionals (cf. Proposition 4.4) is not new. It is well-known
in the bounded case and also used in the unbounded case in several versions
(for one possibility see [24]).

At the end let us summarize some of the structure properties of the state
space E of L*(4D) in the case that .L*(D) is selfadjoint, D[] is an (F)-space
and the topology on L*(9D) is 7 .

Propesition 4.7. 1) E is the w*-closed convex hull of V, V, is
w¥-sequentially complete. If D[t] is a Montel space, then V, is w*-closed.
ii) The normal states are w*-sequentially closed and at the same time w*-dense
in E.

Proof. The first two assertions of i) are already proved. The last asser-
tion follows from Theorems 3.3 and 3.6 and the fact that the Montel property
implies that there are no singular states on L (D).

The first part of ii) is the content of Lemma 3.10, while the second part
follows from i). g.ed.
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