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On the of the of

By

Frank LOFFLER* and Werner TIMMERMANN**

§ 1. Introduction

In this paper we continue the investigation of the structure of the state
space of J^+(<3)) begun in [16]. The paper is organized as follows. Section 2
contains the necessary definitions, notations and auxiliary results. In Section
3 we prove the main results about the pure state space and the vector state
space of X+(3)). These two sets of states coincide. Moreover there is given a
representation theorem for the pure (and vector) state space analogous to the
bounded case.

Furthermore Section 3 contains several results concerning sequences of
states. It appears that there are some differences to the bounded case.

In Section 4 we investigate the state space of general Op*-algebras.
Among other things it is proved that the state space is the w*-closed convex
hull of the vector states. If the Op*-algebra is selfadjoint and topologically
irreducible (cf. Definition 4.3) then the state space is the w*-closed convex
hull of pure states.

§ 2o Preliminaries

For a dense linear manifold 3) in a separable Hilbert space M the set
~C+(£)) = iA: A3)C.3)9 A*£)c:£)} is a *-algebra with respect to the usual
operations and the involution A->A+=A*\£D. An Qp*-algebra <Jl(2}) is a
*-subalgebra of ~C+(<D) containing the identity operator /. The graph topology

tj, on 3) induced by Jfl(S)) is given by the family of seminorms
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for all A&JL(3J). Denote tj*+^ simply by t. An Op*-algebra JL(3J) Is
called:
closed if 3)== fl 3)(A) or equivalently if 3)[t] is complete;

A<=JL
selfadjointif3)=3)x = fl

Among the many possible topologies on Op*-algebras (cf. e.g. [10], [11],
[12], [19], [20] and the references there) we mention only those needed here:
the uniform topology r ~ given by the family of seminorms

= sup

where ^U runs over all t j. -bounded subsets of 3)\ the topology r^ given by
the family of seminorms || ||~, as above Remark that T TC^ are also defined
on £(<D9 3)'\ hence on <B(M)9 too [12], [8]. Here 3)' means the strong dual
of .&[*].

In the remainder of this section and in Section 3 we always assume that
J2+(3)) is selfadjoint and 3)[t} is an (F)-space. To simplify notations let us
denote a bounded operator A^JH^(3J) and its closure A^J£(M) by the same
letter A. The following two-sided *-ideals of X(3J) play an important role
in the description of r and r [8], [11], [12], [16], [21], [22]:

= {T: TM^S), T*3ic.S)} = {T: AT, AT* bounded for all
AtE £+(£>)}

= {T: T*=S»(M)n&(£!)} = {T: AT, AT* &£„(&) for all

Here S^M) denotes the *-ideal of compact operators on M. Properties of
needed in our context were collected in [16]. The ideal <5oo(^) gives a

description of the relatively r-compact sets in 3) [22]. For completeness we
include a proof. It is based on the following fact which seems to be not
included in standard books on Hilbert spaces (the authors are grateful to
K.D. Kiirsten for suggesting a short proof):

Let M be a separable Hilbert space, then the family

( 1 ) {CM: C>0, C^SJ(M\ SL(C) dense in M} is a

fundamental system of relatively || || -compact sets in M.

2X The family {SJC: 5>0, $(=£,»(£)), 3i(S) t-dense in 3),
exists} is a fundamental system of relatively t-compact sets in 3).

Proof: It is easy to see that any set of the family is relatively /-compact.
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To prove the other direction we first of all remark that the proof of (1) (or some
other considerations) gives immediately: if JldM is relatively || || -compact
and |b||<a for all ̂ e32? then C can be chosen to satisfy a<||C||<2a. Now
let cildS) be relatively £-compact3 hence Abounded. By [8] there is a J5>05

with BJil^cU. Without restriction of generality let us assume that

p||<l. Let J? = W^and put Pn = dEK with Jn = (2~2}\ 2~2(n-^l n=l,
Jo J Jn

2,-,Mn=PnM^3). Then Pn^$(£>) and Bn = PnBPn = BPn e X+(D)
(evened)), I=J}@Pn.

Since ^U is relatively /-compact, €On=Pn/j,c:Mn Is relatively || ||-compact
and from BJC^V it follows that 5nJC=5JIc>CJI3)£Ujn where JCn is the unit ball

Consequently for all <p^^n It Is |bi|<||^||<2~2^+2
0 Applying (1) to

7,, Sin we get a compact S'n^3)(J(n) with SiJC^^n and

(2) 2-2n

Clearly, S'n can be considered as an element of &(M). Put Sn=2*/2°\\Sf
n\\

l/2»Sf
n.

Then |i5j|-||«||1/2o23/2 and Sn(2-^\\S/
n\\^J(.=S'nJ^n^

can.
The operator *S'=S©*S'» has the following properties:

I) S=S* Is compact because Sn=Sf and the series S©^ is norm-convergent
as can be seen from the estimation ||5'||<Sli^J|-23/2SII^I|1/2<235]l/2K<oo.

II) S JCzD'U. Indeed, let ̂ e^3 <p=!>l<pn3 ^e^. Then there exist ^e
(2-3/2||^||1/2)JC with SjlrH=<pn. Because ||^J|<2^ it follows that ^-=
has norm |HI^S2"II = 1, i.e. ̂ eJCand 5f^=9?e£U.
ill) Se^Soo^). Because S^S^M) it Is enough to show that
Let A(=J?+(£D) be arbitrary, then

The first factor Is bounded because B1/2^J$(1$), for the second factor remark
that

where C = sup \\B^Sn\\
2 = sup 22^

n n

Moreover, S~l exists, so S is the desired operator. The assertion about
£R.(S) can be proved as In the J2(,2))-case using If necessary a larger r-relatlvely
compact set 32 13 ,̂ q.e.d.

Next we consider linear functionals on Op*»algebras JL(SI). We restrict
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ourselves to r -continuous functionals. Let E(Jl) = {a)&<Jl(tD)[i: ]': cy>03

o)(I)=l} be the state space of JL(3)). Here, w>0 means o)(A)>0 for all

A^Jl(3J) with <9, A<py>0 for all <p^<3) (strongly positive functionals).

Further let oQ(JL)=o(JL' , JL) be the w*-topology in Jt(3))[r^\f. We need the

following subsets of E(JK) :

vector states: VQ(JL) = {o><=E(Jl)'. o>(A)=<<p, Ay> for some <?(=£), ||p|| = l} ;

vector state space: V(JL)=aQ(fJ)-dosurQ of V0(J[)i

pure states : P0(Jl) = {o}^ E(Jl) : col e JL ', e^ > 0, G^ < co

implies G)1=(^(y for some >le[0, 1]},

pure state space : P(JL) =oQ(Jl)-clos\iTQ of P^(Jt).

Clearly, co^P^Jl) if and only if a) cannot be represented as a convex

combination (non-trivial) of o>l5 a>2^E(Jl). The corresponding subsets of

X\SS)\c ^ are simply denoted by E, V0, V, P0? P respectively, and a0(£
+(<D))

we denote by aQ. To define normal and singular functionals on ~C+(3)) we

introduce the two-sided *-ideals in £+(£)) [13], [9], [14], [19]:

: AT, AT^^S^M) for all

C(SS) = r^-closure of 3(3)).

Here Si(M) stands for the *-ideal of nuclear operators on

Deinitloa 2820 A linear functional CD on J^+(3)) is said to be normal if

o)(A) = Tr AT for all A<EL £+(£)} and some T^S^W); singular ifco is T^-con-

tinuous and co(C)=Qfor all C &C(3)).

Let us remark that while normal functionals are automatically r ̂ -con-

tinuous (even r^-continuous [19]) we have included the r -continuity in the
definition of singular functionals. Further, the notion of singularity used

here is a direct generalization of that from the bounded case and has nothing
to do with that used by Inoue [6],

In [16] we described a procedure relating r^-continuous functionals on

X+(3)) and $(M) based on the r^-density of &(3)). Let a <=£+(£))[* ^'

(e^(c^)[r^]0, by restriction to &(3)) and extension to &(M) (to ̂ +(^))) one

gets a unique r -continuous functional on <B(JK) (on X+(<3))) which we

denote by &(£). Some properties of this procedure were collected in [16].

§ 3o The Vector State Space and the Pure State Space of

This section is devoted to the description of P and V. In [5] Glimm
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proved among other things the following result about V(3l(M)) and

3.1.
(1— A)o)23 ^<^<ly co^vector state, co2-singular state on

Our aim is to generalize this result to the unbounded case, namely to
~C+(£D). To do this we will use a theorem of Wils [23] which was generalized
by Anderson [2],

Theorem 3o20 There is a fixed sequence (^n)Cc#, ||^J|=1 so that any
can be represented by

<o(A) = lim^

with an appropriate ultrafilter ^U on N,

It is enough to take (-*/?„) to be || || -dense in the unit sphere of M, so we
suppose (VOc.2). Call such a sequence a Wils sequence.
In analogy to the bounded case we define

Z = {o)^E: o} = ^+(1— ty»2, 0<^<19 o^e FQ, o>2-singular} .

Theorem 3.3. Let (i/rn) be a fixed Wils sequence. For every o)^Z there
is a C<^.3$(Si) and an ultrafilter V on N so that

Proof. Let c/>eZ, o)=^o)1+([—^)o)29 o)1=<^(p,°<py5 1|^||=15 and o>2-singular.

Then o)9 co^ a>2 and the corresponding states S? o)1? o>2 on £B(M) can be
rb

estimated by some seminorm ||5-5||, ^>0? B^S(3)). Let B = \
Jo

From [16] we know that Ql=<((p9 °^)>5 Sg-singular, i.e. S=^

Z(&(M)). For n^N and fixed 0<a<l put P» = (* dE^
Ji/»

Then B~<&B=Bl-(&Pn, B~a^^(M). In [16] it was shown that &(B^*AB?*) is a
Cauchy sequence for all A^£B(M) and p(A)=limo}(B~&AB~06) defines a posi-

?Z->oa

tive linear functional on SB(M). Moreover

The same can be done for S)1 and 552 which leads to pl and p2 respectively.
Furthermore

= Mm 6X5-*") - ^ lim &i(B;»)+(l-X) Mm S2(^»*)
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Now let us distinguish some special cases. p(/)=0 and the Cauchy-
Schwarz inequality give p = 0, hence 5 = 0 (by (1)), which is a contradiction.
If p1(I)=0 or p2(/)=0, then 0^ = 0 or o>2=0. But this means that co is a sin-
gular state or a vector state on ~C+(<3)). Then we are done. For singular
states this representation theorem was given in [16]. For vector states the
representation is obtained in the following simple way. Take any B e 3$(Si) with
Btyk=<p for some k (having in mind that the vector state is generated by 9)
and the ultrafilter <U fixed at k.

So we may suppose that o>(B~2<*), &i(Bn2*) and &2(B~2<*) are larger than c
for n>JiQ and some c>0.

Now we define states on <B(M) by

p\A) = a>(B;«AB;«)lo>(B^") for n>n, .

These states belong to Z(3)(&)) as can be seen by the decomposition

P\A) = [^(B^AB

with ^=^(B-2a}/Q(B-2a) and pKA^&B^AB?)!® &;**), i = l, 2.
From the properties of & it follows that p* are vector states and pi are singular
states on ®(M\ hence pn<^Z($(M)).
Moreover

lim pn(A) = p(A)lp(I) = o(A) for all

so G^Z(S(M)) because this set is w*-closed. By Theorem 3.2 there is an
ultrafilter V so that

a(A) = lim^^, Airky for all

From (1) it is seen that

Q(A) = p(B«AB«) = p(I)o(B«AB«) = li

with C=B« • (p(/))1/2 e £(£!). The standard estimation (cf . [1 6]) for X e .£ +(^)) :

| -> 0 for ?z -> oo

leads to the desired result

co(X) = lim^C^ XC^,> . q.e.d.

Corollary 3e4. The following inclusions are valid:
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Especially, every pure state on £+(<$) has a representation

for some ultra/liter <U and C&<B(3)\ (^) as in Theorem 3.3.

Proof. The first inclusion follows from [16], where it was proved that
pure states are either vector states or pure singular states. The second in-
clusion is an immediate consequence of the representation theorem. The
proof is the same as that of Corollary 4.6 in [16]. q.e.d.

Lemma 3e50 The vector state space and the pure state space of X*(3)}
coincide, i.e. V=P.

Proof. Since any vector state is pure, FdP follows (cf, [16]). On the
other hand, let o>eP. For given Al9 • • - , An<=£+(<3)), e>0 there is a pure state
CD' so that \o)(Ai)— Q>'(Ai)\ <e/2 for all i. If ca' is a vector state we are done.
If not, o}f must be a singular state. But the singular states are contained in
F([16], Corollary 4.6), so there is a vector state o>" with \c»'(Ai)—<t>"(Ai)\<
e/2 for all i, i.e. \o)(Ai)—o}f/(Ai)\ <e. This means PC F, hence V=P. q.e.d.

Now we prove the main result of the paper.

Theorem 3B60 For J2+(3)} one has V=P=Z.

Proof. In view of Corollary 3.4 and Lemma 3.5 it remains to prove that
FCZ. The proof uses the idea of Glimm [5]. Let eye Fand <o=faH+(l — Z)a)s

the corresponding decomposition in normal and singular states ([16], Theorem
3.4). If X=o)n(I)=Q, then o)n=Q and we are done. So let ^=+=0. It remains
to prove that o>n is a vector state. By [19] o)n is r*L-continuous, i.e.

\<»n(d)\^\\CAC\\ for all A^£+(£)) and some C^S^SJ).

Let C= \ MEX and put Pn = \ dEK (without restriction of generality suppose
JO Jl/n

C>J). The Pn are finite dimensional and PnMdS). Since &>eF, there is a

net of unit vectors {<p^ ae/}c^) so that Q)=a0—lima)c& with <y«=<9*,e$O-
The first step in the proof is to construct a sequence (^Jc.® with

ii) Pkirk+1=irk.

The set {Ptfpa, &^J} is || || -bounded and contained in the finite dimen-
sional subspace P^MdS). So there is a subnet {py(*), ae/} and

with Ptfj^ - >iri=Piiri' Let us remark that {P&JM} is a ^-bounded set
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and P^ e <S»(j3)) c C(3J) for all ^ e ̂ +(^)). It Is

!) - a0-lim

To avoid complicated notations let us denote the subnets again by

{9^ a e/}. Let •fy^S) be chosen so that P^ - >^? then the same
considerations as above show that in view of the boundedness of {P*+i9 *} we

find a Vv^e.2) with Pk+i9a, - ^k+i- Moreover from PkPk+l=Pk we see that
PjfeVn*+i= P* (lim PA+I^I*) =Vv Thus the existence of the sequence (^) is estab-
lished.

The second step is to prove that fa - >^r^3)a Let k>!5 then in view

of P*ih=i

for k, /-> oo .

This means (^) is a ^-Cauchy sequence, so there is a ^^3) i^k - >i/r.
Moreover,

II^H2 - lim Ihf t l l 2 = Mm 0,^(7) = ^-lim o>n(Pk) = 1 .
A->~ *

Now it is easy to see that con=a)(p with 9=^/1 1^1 1- Indeed using

w^) for all A<^X+(£)) and ^ - *^ it follows that

)-a>n(PkAPk} \ + \

| + 1 (iM)<^? P^
which goes to zero for k—* oo . Thus con is a vector state and therefore

q.e.d.

In the second part of this section we add some results concerning a0-
sequentially completeness and closedness of some sets of functionals. Since
the d0-topology is not metrizable one has to work with nets to consider closed-
ness or completeness. In the bounded case it Is known that the set of normal
functional Is weakly sequentially complete [1], [3], [18]. This result Is not
valid for X+(3T) as we shall see. Let us start with a lemma which is a weaker
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variant of Theorem III.l of [1].

Lemma 3J* Let o)k=a)n
k+Q}s be a sequence of T -continuous functionals

on £*(SJ), so that o)n
k are normal and cos is fixed singular. Suppose a)k(A)->®

for all A e£+(3)). Then o>s = 0 and clearly con
k —^0.

Proof. It is enough to prove that o>*(P)=0 for all projections
Indeed, the linear space generated by these projections is r^-dense in
hence in X+(3)). Let P ^<B(<D)9 PM^M^S). Consider $(M^ as a ^sub-
algebra of £+(<3T) and denote the restrictions of the functionals above by
a>k, tin

k, a8. Then they fulfil the conditions of [1]5 Theorem III.L Therefore
o>s=0, especially a)s(IMi)=o)s(P)=Q. q.e.d.

This lemma can be used to prove a result which demonstrates in a nice
way the difference between the convergence of nets and sequences.

Lemma 3-8. The set V0 of vector states on X+(SJ) is G ̂ -sequentially com-
plete.

Proof. Let (&>,j,B)cF0 be a a0-Cauchy sequence. Then considering
o)^n(A

+A) it is seen that sup ||^4Vf>JI<00 for all A^J?+(£D)3 i.e. (frn) is t-

bounded. Again by [8] there is a B^J$(l3)) and a sequence (<p^)ClM, \\<pn\\<l
so that B<pn=^n. This leads to

\o>tn(A)\ =\<fa, Afay\ =\<B<pn, AB<pny\ <,\\BAB\\ for all A<=J?+(<D),

i.e. (&)$n) is an equicontinuous sequence. Because (&^n) is a weak Cauchy
sequence, by o)(A)=lim o}^ (A) there is defined a positive normed linear func-

n n

tional on X+(<D) which is r^-continuous in view of the equicontinuity
mentioned above. Therefore co^V = P = Z and o) =Xo)1+(l—l)o}2y o)1 e F0,
o>2-singular. The sequence con = o)—co^n = (X - o)1—o)^n) + (1 — /I) &>2 fulfils the
assumptions of Lemma 3.7. Hence (1— X)co2=Q and so Q)=COI=Q)^ for some
^G:j2), H'vHI = L q.e.d.

Let us add some simple remarks.

Remarks 3.9. i) The proof of Lemma 3.8 can be a little bit modified to
show that the set of all positive vector functionals i<v<P=<\<P,°<py, <p^3)} is
^-sequentially complete.

ii) It is trivial that ^n > i/r implies a)$n >&$. What about the converse?

Let H ^ f J I — I I V H I ^ j ^ty ~^^ as in Lemma 3.8. Then (fa) is ^-bounded. The
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weak compactness of the unit ball In M implies the existence of a subsequence
Ov^i*) which is weakly convergent, say to x^M, i.e.

<&*» <P> -* <*> <P> for all <p^M, hence ^ - > z .

This Implies 11*11 = 1. Moreover, put 9=V% then |OV V/H'-H

and at the same time |<^3 Vfl>l2=(a*ll (^)^®*(AO=lhHI2=l- This means
I = 1 and consequently x =ty with | ̂  | = 1 .

GQ

This can be Interpreted as follows: a)$n - >a)$ Implies that any || || -con-
vergent subsequence of (3 )̂ converges to the same element [^] In the projectlve
space [M] associated with M, i.e. [<9C\=MI~, where ~ is the equivalence
relation ty^x if and only If x=ty for some 2 with \A\ =1. This is quite
natural because <y^ on ~C+(3)) determines only [-fr] but not ^ uniquely.

Sold TA^ ^er o/ normal functionals on J?+(<D) is a ̂ sequentially
closed but not G ̂ sequentially complete.

a0

Proof. The first part follows from Lemma 3.7. Indeed, If o)n - >co and
Q)=Q)1-\-co2.> o>rnormal, c^-singular, then 0)^=0) ~o)n=(o)1—o)n)+a)2 fulfils the
conditions of Lemma 3.79 hence cy2=0 and o> is normal. To see the second
part, consider ^=)=0, ty^S), <p^3C\S). Then there is a sequence (

9n - >9- The vector functionals a)Vn^(A) =(<Pn, A^y are r^-continuous,
Q)^.*(^)->®^*(^)=<*, ^> for all A<= £+(£)).
Because <p&£D the functional co^^ Is not r^-continuous [16] and hence not
normal. q.e.d.

Remark 3.11. In the proof of Lemma 3.8 the equlcontinulty of the set
ia)$n} was Important. In the bounded case the equicontinuity Is automatically
fulfilled for w*-Cauchy sequences of normal functionals. This is not the
case for ~C+(<3J) as the sequence (o^^) above shows. Indeed, suppose

M5 A^y\ <\\BAB\\. This would Imply that (9n) is r-bounded since for

\<Vn,A+AP^J»\=\\^
But (<pn) Is || Unbounded, so \\B<?n\\<C because B^$(£)\ Thus

(<p n) Is Abounded and <pn - ><p which implies <pn - > <p by [14]. This is a con-
tradiction.

Now one could give several conditions which would Imply that <y0-Cauchy
sequences of normal functionals have a normal functional as limit. But we
will not push this further. Let us only give a corollary to Lemma 3.10 for
the case where J7+(^))[r^] is a bornological space. A large class of examples



ON THE STATE SPACE OF MAXIMAL OP*-ALGEBRAS 1073

of such (F)-domains S) was given in [20].

Corollary 3*12* Let J^+(^))[T^] be a bornological space. Then the set of
positive normal functional is G ̂ -sequentially complete. Especially the set of

normal states is o^-sequentially complete.

Proof. Under the assumptions above T^ coincides with the order topol-
ogy and every positive functional on X+(3)) is r^-continuous [20]. On the
other hand, if con(A)—>co(A) for all A^J2+(j3J) and a)B>0, normal, then o> is
positive, hence r^-continuous and the assertion follows from Lemma 3.10.

q.e.d.

We close this section with two results about singular functional. The
first one is analogously to [1], Theorem 111,5 for J^+(3J).

Lemma 38130 Let (o)k) be a sequence of singular functional on J?+(3)).
Then any weak limit point of (o)k) is singular.

Proof. Let o> be a weak limit point of (o)k) and let (coj be a subnet so

that Q)^ >o)=o)n+o)s. Again (cf. Lemma 3.7) it is enough to prove that
o)n(P)=Q for all projections P^3}(3)). Let 5), o>n, &s be the restrictions of the
functional above to ^(M^dJl^(3)}, Ml=PM^.3). Then these functional
fulfil the assumptions of [1], Theorem III.5, so of = 0, i.e. o)n(P)=Q. q.e.d.

Corollary 3014B The set of singular functional on ~C+(£D) is GQ-sequentiaUy

closed.

In this section we start the investigation of the state space of general Op*-
algebras.

Remember that in the C*-theory the fact that the unit ball in the dual
space is w*-compact allows to apply the Krein-Milman theorem. This leads

to the well-known result that the state space of a C*-algebra is the w*-closed
convex hull of pure states.

In contrast to this in the unbounded case the state space is not w*-compact,
even not w*-bounded if the Op*-algebra under consideration contains
unbounded operators. This can be seen by the following simple example. Let
A=AJr^Jl(3J) be unbounded. Then there is a sequence (^Jc£), ||^n||=l
with m^JI-^oo. By o)n=<^>n,'<pny we get a sequence of well-defined vector

states, but G)n(A
+A)=\\A<pn\\

2->oo. So (&>„) is not w*-bounded.
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Nevertheless there can be derived some results which correspond to those
in the bounded case. But one has to take into account some refinements.
On the one hand the topology r^ does not play an exceptional role in what
follows. On the other hand in the proofs it is essential that states are strongly
positive functional. For X+(3)) the positive and strongly positive r^-con-
tinuous functionals coincide [16]. But this is in general not the case for
arbitrary Op*-algebras or other topologies. So in what follows on £*(SJ) or
Jl(3J) there can be taken any locally convex topology r so that the vector states
are r-continuous and states are supposed to be strongly positive, normed and
r-continuous functionals.

The first proposition we are going to prove is Lemma 3.4.1. ii) of [4] for
Op*-algebras. E(JK) is now thought to be in the context of a topology r just
mentioned.

Proposition 4.1. Let Jl(<D) be an Op*-algebra, QdE(Jl) a subset with the
property: if A e <JL(£D)h (hermitean part) and co(A) > 0 for all o>&Q, then A>0.
Under these assumptions the w*-closed convex hull of Q coincides with E(<J[).

Proof. The proof is the same as in [4], Since E(JK) is convex and w*-
closed, the w*-closed convex hull Q1 of Q is contained in E(Jl). Now let Q°
be the polar of Q in JL(3))h. If A e JL(S))h9 then

A e 2° if and only if o>(A) < 1 for all w e g

if and only if o)(I—A)>0 for all we Q

if and only if /—A >0 if and only if o)(A)<l for

all co^E(Jl) if and only if A^E(J[f.

Hence ff=E(JL)Q=Qi. Then by the bipolar theorem:

e°° = E(JC») =Qf = co(Ql U {0}) = co(E(JL) U {0}) .

Since Ql and E(^JL) are convex and w*-closed this implies

co(Qi U {0}) = co(E(JL) U {0}), hence Ql = E(JL) .

To see the last implication suppose a>^E(Jl). Then using the convexity
of Q1 there are p&Ql9 ^^[0, 1] so that &== Kp+(l— ^)-0= lp. Since G>(/) =
p(/)=l it follows that ^ = 1 hence p=o)^Q1 q.e.d.

An example of such a set Q is VQ(Jl) the set of vector states. Therefore
we obtain as a conclusion:

Corollary 4.2. Let JL(S>) be an Qp*-algebra. Then E(JL) is the w*-closed
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convex hull of the set of vector states on <Jl(J3)).

In the C*-theory the following fact is well-known [4]. Let be a C*-
algebra, say with unit, which acts irreducible on M, then the vector states are
pure. In the C*-case the notion of irreducibility is unambiguous. In contrast
to this for general Op*-algebras many different notions of irreducibility can
be given. The weakest seems to be the triviality of the weak commutant [17]:

for all <

If Jl(SJ) is selfadjoint the weak commutant coincides with the strong
commutant JL(3J)r, = {T^S(Si\. ATy = TA<p for all <?<=£) and A^Jl(3))}.
Moreover, in this case both sets are von Neumann algebras (cf. e.g. [17].
Clearly, JL(3)y d£*(SJ). We will use here the following somewhat stronger
notion of irreducibility [15]:

4.3. An Op* -algebra Jl(3f) is said to be topologically irreducible
if the set 3)v — {A<p\ A^Jl(3J)} is t^-dense in S) for all non-zero <p^<3) (i.e.

any such <p is a strongly cyclic vector for <JL(<D)).

It is not our intention to analyse here the whole hierarchy of possible
irreducibility notions. Let us only remark that topological irreducibility
implies the triviality of the weak commutant for selfadjoint Op*-algebras.
This follows immediately from the fact that a non-trivial commutant contains
non-trivial projections P. But than the non-zero vectors from PS) can not
be strongly cyclic.

Proposition 44e Let Jl(3)) be a selfadjoint, topologically irreducible Op*-
algebra. Then every vector state on Jl(S)} is pure.

Proof. Suppose 0<o><^, that is w(X)<O, 1» for all X>0,
Jl(3)}. On 3)^3)v consider the sesquilinear form

(^, X) = o)(B+A) for T/T = B<p , x = A<p , A,

It is easy to check that ( , ) is correctly defined, positive and moreover

| fa ir) | = | co(B+B) \ < \ co^B+B) \=M\2.

This estimation can be continued onto MxM because 3)? is || ||-dense in M.
Thus there exists a positive operator T&3)(M) with

Or, x) = <^, Tz> for all
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Now let C^JL(3J). Then the two equalities

- <A<p, TCByy = (A<p9 CB<p) = a)(A+CB) and

(C+A<p, By) = a>(A+CB)

imply that

for all

From the ^-density of ^ we conclude that this last equality is valid for

all fa x^3). Hence T^JL(3)y f=JL(3))'s. The topological irreducibility im-

plies that T=U, and moreover 0<^<1. This leads to the desired result since

q.e.d.

Corollary 4850 i) Ler JL(3)) be a selfadjoint, topologically irreducible

Op*-algebm. Then E(JK) is the w*-closed convex hull of pure states.

ii) Let ^C+(3)) be selfadjoint, the E is the w* -closed convex hull of pure states.

Remark 4.6. By quite other methods Corollary 4.5.ii) was obtained in

[16] for the case that 3)[t] is an (F)-space and the topology under considera-

tion iS Tgj.

Let us further remark that the representation of positive functionals domi-
nated by vector functionals (cf. Proposition 4.4) is not new. It is well-known

in the bounded case and also used in the unbounded case in several versions

(for one possibility see [24]).

At the end let us summarize some of the structure properties of the state

space E of £+(£i) in the case that £+(3)} is selfadjoint, <D[t] is an (F)-space

and the topology on X+(9T) is r^.

Proposition 4070 i) E is the w*-closed convex hull of ¥Q. V0 is

w* -sequentially complete. If 3)\t\ is a Mont el space, then V0 is w*-closed,

ii) The normal states are w* -sequentially closed and at the same time w*-dense

in E.

Proof. The first two assertions of i) are already proved. The last asser-

tion follows from Theorems 3.3 and 3.6 and the fact that the Montel property

implies that there are no singular states on ~C+(<D).

The first part of ii) is the content of Lemma 3.10, while the second part

follows from i). q.e.d.
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