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§0o Introduction

In this paper we shall study the asymptotic behavior as ,Y ->oo of the

not identically vanishing solution u(x)^Hfoc(M
n) of second-order elliptic

equation in an unbounded domain

n Q Q

Jr(qi(x)Jrq2(xJ)u(x) = 0 for \x\>R0.

Our main assumptions are the following: there exist some constants a<3

and a —I <r0<2 such that

curl u(x) = o\r ) ?

q2(x) = o(r(1"3Q})/4) is a complex-valued function,

q^x) is a real-valued function satisfying

lim sup {r*(x, A(x)prq1(x)y-}-Torc6~lql(x)} <oo .

(Note that we do not exclude the case limgjfXJ^oo.) These conditions are
r->oa

generalization of the preceding paper Uchiyama [2], which treats the case

a = l of this paper and includes more strict conditions than ones imposed in

this paper. More detailed conditions are stated in §1. Then for any

satisfying

lim sup {r%t, A(x)j7q1(x)y+r0r
a-1q1(x)}<4-1^\3-a)\r0-

,->00

we have by Theorem 1.1 in § 1
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lim exp (2A-R(3~")/2) | u(x) \ 2dx =

Bardos and Merigot [1, Theorem 2.2 (1), p. 329, which seems to need some
modifications of its statements] treats the case ctij(x)=dij9 bi(x)=Q, q2(x)=Q
and 0<a<l. Also [1, §3] treats the case aij(x}=dij, bi(x)=0, q2(x)=0 and
lim ^(^ = 00 under the more strict conditions which include the assumptions

Q2
on qi(x), and gives more detailed results than ours.

dr
In §1 the assumptions and Theorems 1.1, 1.2 and 1.3 are explained. §2

and §3 cover the proof of Theorem 1.1. In §4 we prove Theorems 1.2 and
1.3. The tools of proofs are similar to Uchiyama [2]. In §5 we apply Theo-
rem 1.3 to the not identically vanishing solution u(x)^Hfoc(R

n) of the equa-
tion —du(x)+(ql(x)+q2(x))u(x)=Q. There we consider several examples as
follows:

qi(x)-\-qz(x) = cre+o(rp)—(^1-\-i^2) (Examples 5.1^5.3),

&(*)+&(*) = r°<e, *>+0(O-0*i+^2) (Example 5.4),
q1(x)+q2(x) = ar°sm brr~(^1+i^2) (Example 5.5),

(Example 5.6),

where c, 6, p, A19 X2, a, b, a, r (ab^Q, r>0) are real constants, e^R*

is a constant vector, i=\/ — l, the function represented by o(rp) is a complex-
valued one, and V(x) is a real-valued function satisfying for some constant

r0<2

lim sup [r^+l

Especially we have the following. If

?i(*)+fe(*) = cr2+o(r)-^ (00,

(harmonic oscillator), we have for any e>0

lim exp ((1 + 0 vQ?2)
B-^«»

JE2

If

(hydrogen atom), or
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(adlabatic oscillator)., or

c) = - 23

where Z(- and Z,-y are real constants, x^e^3, and x=(xm, •••,xm)^M3N (an
atom with N electrons), we have for any e>0

lim exp (2(1 + e) v^i *) ( I u(x) \ 2dx = oo .
JB-3-«> J

Z2<|*|<K + 1

If

0i(*)+&(*) = <^ X>+0(r1/4)-^ (-00 <21<oo)

(constant electric field), we have for any e>0

lim exp (— (1 + eW\e\P?P) { \ u(x) \ 2dx = oo .
Z2-J>oo 3 J

§10 Notatioms Main

At first, we shall list the notations which will be freely used in the seque!9

and are the same as given in Uchiyama [2].

£nijn for f,

\t\=«?jy)1/2 for
x=x/\x\ and r— |x| for x=(xl9 ""^xn)
S(t)={x\ \x\=t} for
B(s,t) = {x\s<\x\<t} for

dr=d/dr;
and />=(/>ls .-,

j?f =($!/, » • • , ^ /̂) for a scalar valued function/^);
div£=$!#+ °e° +^«g for a vector valued function g(x)=(gl(x)9 °°%

g.W);
^4 =^4(^:)=(a^-(^:)) is an w x n matrix;
B=B(x) =curl b(x)^dib^xj—djb^xj) is annxn matrix;
(f)+(x)=max{QJ(x)}>0 and (/)_(*)-max{09 -f(x)}>0 for a real^

valued function/^);
supp[/] denotes the closure of {x \ /(^)4=0};
Cj(@) denotes the class of /-times continuously differentiable functions:
C«(Q}={f(x}\ for any j=0, 1, 2, ...,/eC>(0) and supp[/] is a
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compact set in &} ;

for/>>l;
Q c

= {/(*) I for any compact set KaQ\\f(x)\pdx<<x>} for

Hm(£) denotes the class of L2-functions in & such that all distribution
derivatives up to m belong to L\&);

Hfoc(®} = {/(*) | for any compact set K c £, / e Hm(K)} ;

Next we shall state the conditions required in the Theorems.

Assumptions :
(Al) each a^(x) e C2(<0) is a real-valued function;
(A2) ai^x)=aji(x)'9
(A3) ai£x)-+dij as |*|->oo;
(A4) there exists some constant CX>1 such that for any x^@ and

any f eCw we have

(A5) 8ialVW=o(r-1) as |x|->oo;
( B ) each Z>f-(jt) e C1(J2) is a real- valued function;
(Cl) ^(x) is a real-valued function;
(C2) for any w^H}oc(£) we have
(C3) for any we^LW we have |F?1| |
(Dl) ^2W is a complex- valued function;
(D2) for any w^H^G) we have q2 \ w \ 2

( E) there exists some constant ^R0>0 such that
( F ) there exist some constants a, d satisfying oj<3, 0<^<2~1(3— a)

and some real-valued function r(x)^C\Q) such that
(Fl) a-l+d<r(x)<2-d for
(F2)

lim sup

-4-

where <l> denotes the empty set;
(F3) drr(x)=o(r<5-3"W) as |x|->oo;

(F4) (F-A8r)r(x)=o(r<1-')a) as |^|
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(F5) 9A^/*)=oO'(1~*')/4) as |x|-*oo;
(F6) (¥-xdr)diaij(x)=o(r-(l+^/2) as |x|->oo.

Remark 1.1. The above assumptions applied to the case a = l are weaker

than ones given in Uchiyama [2].

So as to state the results we shall require the following:

Definition 1.1. For a constant rj satisfying 0<7]<d where d is given in

(F), let
- {/00|lim sup [r\x,

+(2-n -rOOrV"-1 1 B(x)A(x)x \

/£<*> = inf Af<*> (>0)5

A* = lim/*(1?) (>0).

Remark 1.2. Well-definedness of Definition 1.1 will be shown in Lemma

2.1.

Remark 1.3. The above definition is independent of (C3), and depends
essentially on (Fl) and (F2). So Theorems 1.1 and 1.2 use the above defini-
tion. On the other hand? since we weaken the condition (F) in Theorem 1.3,
we use the another definition of /e*9 which can be considered as the one ob-
tained in the case that a,-/A;)=5f-y and bi(x)=Q under the condition (F).

Now we have the

Theorem 1.1. Let u(x) satisfy

-<D3 ADuy+(q1+q2)u = 0 in Q ,

(*): - u<=Hloc(@),

supp[n] is not a compact set in & (closure o,

Let conditions (A), (B), (C), (D), (E) and (F) hold. Then
(1) for any &>&* we have

Mm exp (2t*RW*) { [\<ADu, *>|2+{l+(fc)_} \u\*\dS =
K-^oo J

(2) Moreover we assume

(G) there exist some constants a5 b, v*9 C2 satisfying 0<a<l,

, C2>0 such that for any w^H1!^) having a compact
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support in Q we have

), | w [ 2dx<a\ \ Fw | 2dx+ C2 f expO*r<3-^/2) \ w \ 2dx ,
Q Q

6 J | Fw | 2^c+ C2 (exp(i; V3-*>/2) | w 1 2dx ,
Q Q Q

where a<3 is given in (F), Then we have for any ju,>ju,*+2~1v*

lim *)*) { \ u \ 2dx = oo .
J

Now we shall consider the more special case under the weaker conditions.

Theorem 1.2. Let u(x) satisfy

( -</>, Duy+(q1+q2)u = 0 in Q ,

. supp [u] is not a compact set in Q .

We assume conditions (B), (C), (D), (E) and (F) with a,-/*)^,-/ except for (C3).
Instead 0/(C3) we assume

(C3)'/0r any w^Hloc(@) we have (drq^ \w\2^Lioc(,Q). Then all the asser-
tions (1) and (2) /« Theorem 1.1 wzYA aij(x)=dij also hold,

Lastly we shall consider the most special case under the weakest condi-
tions.

Theorem 1.3. Let u(x) satisfy

f —Au+(ql+q2)u = 0 in Q ,

(***): I weJyL^),

( supp [w] w no^ a compact set in Q ,

w/zere J w a Laplacian in Rn, Let (Cl), (C2), (C3)', (Dl), (D2) W (E) Ao/rf.
Instead of (F), we assume

(F)' £/zere e :̂/̂  ̂ ome constant a, 8 satisfying a<3, 0<5<3—a #«£/ ̂ ome
real-valued function r(x)^C\S) such

(F2)'
M=-
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(F3) drr(x)=o(r*-W*) as |x|-*oo;
(F4)' there exists some nonnegative function p(x) satisfying

p(x) = o(r(l-«V2) as \x |-»oo ,

| (P-A0r)r(x) I <(2-r(x)}l/2p(x) far\x\ >RQ .

Let jM*=inf M(>0). Then all the assertions (I) and (2) of Theorem 1.1 with
aij(x)=dij and bi(x)=Q also hold.

Remark I A. Let £ = {x \ \ x \ > RQ} and

where a is a real constant, x(i)(=M3 and *=(>;(1)
3 — , xm)<=B3N (N>2), Then

we have for

\rqi(x>\ = \o\\x«>\-*
I^iWI = \o\\x<fi\*r

So if a> — 1, (̂%) satisj&es (C3). And if o> —2, qfc) satisfies (C3)'.

§2o Proof of Theorem 1.1 (1)

In this section all the conditions (A)^(F) are assumed. (Also see Re-

mark 1.3.) At first we study on #(17)
3 which is given in Definition 1.1.

Lemma 29L We have the fallowings.

(1) For any 0<?<<5, Mw^0 and (^\ oo)cM(77)
0

(2) For any 0 < ??2 < ^ < d, we have 0 < ^2^ < #& 3) . Then ju,* = Mm ̂  exists.
i?^o

(3) If \B(x)A(x)x\ =0(rV-*»2) as |*|->oo, we have /i*=p<®.

Proof. Let 0<7?<<5. It is obvious that <^M(S)cM(13). We can

easily see (/«<*>, oo)cM(?7)
? if ̂ ^M^. Now we assume inf M^=^^M^\

For any ^e(/«(17)
5 oo) there exists p! satisfying 0<^(77)</e;</« and jw'eM(1I).

Noting (2/e(3— a))"1<(2A'(3— a))"1 and —ju,2<—juf\ we have /*eM(17)
3 which

means (^(13)
3 cx3)cM(77)

0 The assertion (1) is thus proved. The assertion (2)

is obvious. Lastly we shall show (3). By (2) we have /e*>#(0)
0 For any

M(0). Since \BAx\2ra~1=O(l) as r->oo3 there exists some

such that #(0) + £eAf(V3 which means /4(V</e(0)+e. Then we

In the same way as Uchiyama [2], we give the following definition.

2olo Let u(x) satisfy (*) given in Theorem 1.1. For real-
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valued functions p=p(r)eC2(R0, oo), f=f(r)(=C\R0, oo) and g=g(x)<=C\Q),
let

vO) = expGo(r))t/(x),

SCO

where Re[w] means the real part of w.

Lemma 2o2. For t>R0we have

F(f, P,f, g) = exp (2p(f)) J [/(r){2 1 <x, ADu> \2-<x, Ax> <Du,
SO)

+ {2fl'f<x, ^A

Proof. We can easily obtain the above relation by direct calculation.

Lemma 2.3. For t>s>R0 we have

F(t;p,f,g)-F(s;p,f,g)

= J [2(2py+/'-r-1/)|<^v,*>i2+(2r-1/+g
BC'.O _

-/div (Ax) -<x, Axyf') (ADv, ^>+2f-7( 1 ADv \ 2

, AT>A)Dv, Dv^y+2RQ[(f(q2+k2)+gp'+2-1drgKx, ADv>v]

-2fIm[<BAx, ADvyv]+Re[<(P-xdr)g, ADv>v]

(g-fdiv(Ax)-f'<x, Axy)-f<x,

where Im[w] means the imaginary part ofw.

Proof, See Lemma 2.1 of Uchiyama [2]. D

Lemma 2A Le/ (0<) l"^— a— ̂ )</<2"1(3— a). Then for any constant
fjO/jL* there exists some R{>R^ such that for any t>s>R1 and any constant
m>l, we have

F(t; ^3-

>F(s;
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Proof. Let ju>jLt.*=lim /JL(^. By Lemma 2.1 there exists some
•>HO

such that /*>A(V. Then there exists some e0>0 such that
So

lim

im sup[r"<A,

Let

y9 = (3-a)/2 (>0), p(r) = fir'+mr'.flr) = 1 ,

where m>l and /?— 2~15</</9 are constants. Let each e,-(r) (z = l, 2, •••)
be a positive function for r>jR0 which tends to 0 as r-»oo. Noting

, x>-l | +r |<A,

O(r~l) as r^>o

= O(r~l) as r— >o

as r->c>

as

we have, by direct calculation, the following estimates to the right hand side
terms appeared in Lemma 2.3.

l(4-e2(r)y-1} \<ADv, Jc>|2

)-<fc, A£

(2-r(x))r-\ADv,

2r~lf(\ADv\2-<ADv,

2/Re[<i,

— mle7(r)r?+l-3\ v\2 (, where we use ft— 2<(1— 3a)/4) ,
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(r)) | BAx \ 2 1 v | 2 ,

1 v | 2 ,

Then by Lemma 2.3, we have

F(t; fj.

'

-1 1 BAx \

+mlfip(2l+2r-a-l -fi16(0>P+'"3 1 v 1 2

+(m/)2(2/+r -2-,16(r)>
2'-3 1 v ]

Noting

2/+r— 2>2/+a-3+<5>0 ,

there exists some R^Ro such that for any r>J?! and any m>l we have

2+£K(r)} >0 ,

O ,
2/+2r-a-l-e16(r)>0,

Therefore we have the assertion. D

Proof of Theorem 1.1 (1). We have only to show that for any /j.>t>* >0
we have
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lira inf exp(2A£(3-")/2) ( [ 1 <ADu, x> \ 2+ {1 +(?0-} I « I *]dS>0 .
72->°° J

SCR)

We shall prove the above inequality by contradiction. If we assume that
this is not true, then there exists some /*0>/e* such that

liminf exp(2^3-*>/2) ( [\<ADu, i>i2+{l+(^)_} | u\*\dS = 0 .
R-*<*> J

SCR)

We choose constants ju, and / to satisfy #0>#>/** and 0<(3— a— d)/2<l<(3— a)
/2. By Lemma 2.2 for any m>\ there exists some constant C3>0 such that

for any t >RQ we have

F(t\ w*+mrl, 1, div(Ax)-rr'1)

< C3 exp (2^) J [ ! <ADu, A> 1 2

8V)

where yff =(3 — a)/2> /. Then we have

lim inf F(r; ̂ +mrl, 1, div(^J
/->00

So letting ^—»oo along suitable sequence in Lemma 2.4, we have for any
and any m>l

F(s; jur^+mr1, 1, div(^(jc)— rr'^^O .

On the other hand, since suppfw] is not a compact set in 5, there exists some
i such that

By Lemma 2.2

exp(-

is a quadratic in m of which coefficient of m2 is

So there exists some w0>l such that

which leads to the contradiction. D

§3o Proof of Theorem 1.1 (2)

In this section we assume all the conditions (A)~(G).
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Lemma 3.1. Let a real-valued function £(t)&Co(—oo, oo) satisfy supp[C]

C(0, 1), and \ £2(t)dt>0, and let CR(t)=C(t—R) for R>RQ. Let u(x) satisfy
Jo

(*), which is given in Theorem 1.1. Then there exist some constants C4>0
and R3>RQ such that for any R>R3 we have

<C4

B

Proof. We follow the similar arguments which have been given to prove
Lemma 3.1 and Lemma 3.2 of Uchiyama [2]. Let uy](x) = {\u(x)\2-\-rf}l/2

for ?>0. Then u^H\oc(Q) and FK, <\Du\, because of
=Re[wZ>w] and | w | < K | . Noting ^Ru^H\Q) for ^>J?0, for any
we have by (G)

Q .BCR.B + l)

where C5-max{C2 1 C(0 1 2+(l + ^ "> | C'(0 1 2> • Letting ^ \ 0 we have

We choose ^>0 to satisfy !>£+(! +e)a. By (Al), (A2) and (A3) there exists
some R3>R0 such that for any r>^3 and any £^Cn we have
(1 — e) | f | 2. Since w(x) satisfies (*), we have for any R>R3

0 =
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where C6 = C5+C7 max {\div(Ax)\ +(Ax, Jc» and C7=max { j£(0£ ' (OI +
M>B3 0<'<1

| (£(*)£ '(0)' 1 1 • Then we have

O B<iR,R rl

By the same arguments as given above, we have

where C8= max {C2 1 CO) 1 2+26 1 C'(0 1 2} • So we have the assertion.

Proof of Theorem 1.1 (2). Let /^>A*+2~1v*. We choose ^0 to satisfy
ju—2~1v*>jUQ>/-i*. By Lemma 3.1, we have for any R>R3

<C4 (

By Theorem 1.1 (1), for any L>0 there exists some constant /?4>J?3 such
that for any t>R^

-SCO

Then there exists some C9>0 such that for any R>R4 we have

S
tf

«

c

<C9 j expO/V3-1"2)!!/
.BCR.R + i)

< C9 exp(v*(^+ 1 )^-fl5)/2) f i/ 1 2^v .
J5CZ?,??^ i)

Then for any R>R4 we have

>C9-
1L{

o
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which leads the assertion. D

§4. Proofs of Theorem 1.2 and Theorem 13

Proof of Theorem 1.2. Under our weak condition (C3)', Lemma 2.3
is also true, if we replace 0lV(*) with dti. (See Lemma 4.1 of Uchiyama [2].)
Then Lemma 2.4 and the proof of Theorem 1.1 are also true by replacing 0f-/*)
with dijm D

Proof of Theorem 1.3. Lemma 2.3 is also true with aij(x)=dij and b{(x)
=0. In the proof of Lemma 2.4 we have

{2r-lf+g-fdiv(Ax)-f<x, Ax>}<ADv, ̂ > = (2-r(x))r~l\Fv\

2r~lf(\ADv\2-<ADv, £v» - 0 ,

2/Re[<i, «ADv, F>^)^>] - 0 ,

-/<«*, A7>A)Dv, D^y = 0 ,

4Jc, ADv>v] = 0 ,

, ADv>v}> -r-1 ^2-r(x)p(x) \7v

Then Lemma 2.4 is also true in this case. Therefore the proof of Theorem
1.1 is also true. D

§5. Examples

In the examples, except for Example 5.6, treated in this section, our q^x)
and qz(x) satisfy the followings :

(1) q^x) is a real-valued function;
(2) q2(x) is a complex- valued function;
(3) there exists some ^0>0 such that for any compact set Kd{x\ \x\

>R0} =£, qi(x), dr#i(x) and q2(x) are bounded in K;
(4) there exists some constant a<3 such that

M =
r->oo

+(2^(3 _a))-V c-1)'4 1 ft |
 2] <4- V(3 -a)3}

**;

(5) for any v*>Q and any a<3 there exists some constant C10>0 such
that for any xeJ2 we have
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Then all the conditions in Theorem 1.3 are satisfied by r(x)=2. Now we
can apply Theorem 1.3 to u(x) satisfying

f -Au(x)+iqi(x)+q2(x)}u(x) = 0 in ® ,

(***) i/eJ9?oc(0),

[ supp[w] is not a compact set in ,2 .

So we have by Theorem 1.3

lim exp(2jteJR
p) \ | w 1 2Jx — oo ,

R-*"*> J

where fi=(3—a)/2, and #>#*=inf M (>0) is arbitrary, since the condition
(G) holds for any y*>0. In order to have a better estimate, we aim to choose
/?>0 as small as possible, namely to choose a as large as possible under the
conditions that M is not an empty set and a<3. After the determination of
a we calculate jce*.

Example 5.1. Let us consider

q2(x) = o(rp)-i*2,

where c>03 6=£Q, A19 A2 and p are real constants, /=v /--Tj ^(x) is a complex-
valued function and V(x) is a real-valued function satisfying

V(x) = o(rQ) and 5>rF(x) = o(rQ~l) as r -> oo .

Then we have

«)} ~V ̂ -^2 1 q2 \
 2

+ {2X3 -a)} -V (3Qi-1^2 1 o(rp)-//l> | 2 .

Noting that a+6 — 1>0 for some a<3 implies 2+6>09 we have the followings.

Case I. ^=^=0.
In this case we must examine the order relations between 3, 1— 6 and

(l-4p)/3.
(i) If max{0, p} < —2, then ^>0 is arbitrary and ju*=Q, since min{l — 0,

(ii) If 0>-2 and 3^>4p+2, then j9=(2^6)/2 and ju*=2v
/~c(2+&)~\

since 3> 1 -6 and (1 -4p)/3> 1 -6.
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(iii) If p> -2 and 4p+2>30, then fi=(4+2p)/3 and /**=0, since min{3,
l-0}> (1-4/0/3.

Case II. ^> 0 and 12 =0.
Note that a — l>(4p+3a — 1)/2 is equivalent to a< — 1— 4p. So if 0<0?

then we must examine the order relations between 3, — 1—4/5 and (1—4/0/3.
And if 0>0, we must examine the order relations between 33 1—6 and
(1-4/0/3.

(i) If 0<0 and p< — 1, then £>0 is arbitrary and #*=0? since — 1— 4p
>3.

(ii) If 6<0 and -l<p<-l/2, then p=2+2p (<1) and /**-=05 since
3>-l-4p> (1-4/0/3.

(iii) If 0 <0 and p> -1/2, then J3=(4+2p)/3 and A* =0, since 3>(1 — 4p)

(iv) If /9>0 and 30>4p+2, then /3=(2+6)/2 and ^*-
since 3> 1 — ̂  and (1 -4p)/3> 1 —5.

(v) If 4p+2>30>05 then ^-(4+2p)/3 and jM*=0, since 3>1—

/. ^! <0 and ^2 =0.
In this case we must examine the order relations between 1, 1—6 and

(1-4/0/3.
(i) If 0>0 and 30>4/o+2, then j3=(2+6)/2 and /a*-2v

/^(2-r^)-1
?

since (1 — 4/0/3 > 1 — ̂  and 1> 1 -6.
(ii) If /?>— 1/2 and 4p+2>3^? then ft=(4+2p)/3 and /4*-05 since

min {1, l-0}> (1-4/0/3.
(iii) If ^<0 and p<— 1/2, then ft = l and ,a*-v/:=:^? since 1-^>1

and(l-4p)/3>l.

Case IV. ^^0 an-d A^R is arbitrary.
Noting that a — l>(3a — 1)/2 is equivalent to a< — I (<l/3), we must

examine the order relations between 1/3, 1 —6 and (1 —4/0/3.
(i) If 0>2/3 and 30>4p-p2, then /3=(2+6)/2 and ^*-2V^(2+^)-1

J

since l/3> 1 — ̂  and (1 — 4/0/3 > 1 — ̂ .
(ii) If p>0 and 4p+2>3^3 then £=(4+2/0/3 and ̂ -O, since min{l/3?

1-0}>(1 -4/0/3.
(iii) If ^<2/3 and p<03 then £-4/3 and A*-2-11/334/3M2|

2/3, since
(1 -4/0/3 > 1/3 and l-^>l/3.

(iv) If 0=2/3 and p<0, then ft =4/3 and /** is the unique positive solu-
tion of the equation ^3-2-432^-2-1134|^2|

2=0, since (l-4p)/3>
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1/3=1-5.

Remark 5.1. Let us consider the harmonic oscillator case

q-fjx) = cr2— ̂  (c>0 is a constant),

q2(x) = 0 .

If

for some integer />0, then (***) is satisfied by

«/(*) = 23 dkHk^Xl) - H^x.) exp(-2-Vcr?) ,
!*!=/

where k=(kl9 • • • , &B), | fc | ^^H ----- h^M? £,- is a non-negative integer (/=!, • • • ,
/?), dk is a constant and Hj(t) is the Hermite polynomial of degree j. Then for

any e>0 there exists some Cg>0 and ^5>0 such that for any |jc|>J?5 we

have

On the other hand we have, from the results given in Case II, for any solution

i/(jt) of (***) with q1(x)=cr2-(2l^-n)\/~c and g2(x)=0 and for any e>0

lim exp((l + e)^/cR2) \ u 1 2dx =

If /> 1, then for any R>0 there exists some x^R" satisfying | x | >R and ut(x)

=0. So we cannot expect to have a pointwise estimate such as: for any solu-

tion u(x) of (***) with ql(x)=cr2—Xl (^>0) and q2(x)=Q, and for any

we have

lim exp((l + e) v/ c" j x
!*!•*«»

Example 502. Let us consider

q2(x) = o(r?)-iX2 ,

where c>0, ^=t=05 p, ^j and /12 are real constants, q2(x) is a complex-valued
function, and V(x) is a real-valued function satisfying

V(x) = o(r°) and drV(x) = o(rQ~l) as |x|-> oo .

Then we have

a)} -V<3-1^ | ft |
 2
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-a)} -1r^-1^2 \ o(r*)-U2 \ 2 .

Noting that a+0 — 1 >0 for some a<3 implies 2+0>0, we have the following.

Case I. ^—^O.
Noting that a+0 — l>(4p+3a— 1)/2 is equivalent to a<20— 4p — 1, we

must examine the order relations between 3, 20— 4p~ 1 and (1— 4p)/3.
(i) If 0 > 2(1+ p) or p<— 2, then /?>0 is arbitrary and #*=(), since

max {20-4^-1, (l-4p)/3}>3.
(ii) If 2(l+p)>0>(2+4p)/3, then fi = 2+2p—0 and #* = (), since

3>20-4p-l>(l-4p)/3.
(iii) If p>-2 and 2+4p>30, then /?=(4+2p)/3 and ju* = Q, since

3>(l-4p)/3>20-4p-l.

Case II. ^!>0 and /!2=0.
If 0<0, we must examine the order relations between 33 — 1— 4p and

(1— 4p)/3. And if 0>0, we must examine the order relations between 3,
20_4p-l and(l-4p)/3.

(i) If 0<0 and p<— 1, then ^>0 is arbitrary and ju*=Q, since
-l-4p>3.

(ii) If 6<Q and -l<p<-l/2, then fi=2+2p and /4*=03 since
3>-l-4p>(l-4p)/3.

(iii) If 0<0 and p> -1/2, then /?=(4+2p)/3 and v*=Q, since
3>(l-4p)/3>-l-4p.

(iv) If 0>0 and 0>2(l+p), then /?>0 is arbitrary and y.*=Q, since

(v) If 0>0 and 2(l+p)>0>(2+4p)/3? then ]3=2+2p-6 and ,a*=05

since 3>2/9-4p-l>(l-4p)/3.
(vi) If 2+4p>30>0, then ^=(4+2p)/3 and /**=0, since

3>(l-4p)/3>2^-4p-l.

Ca^ ///. ^ <0 and ̂ 2 =0.
If 0<0, we must examine the order relations between 1 and (1— 4p)/3.

If 0>0, we must examine the order relations between 3, 26— 4p — I and (1 — 4p)

(i) If 0<0 and p<-l/2, then p=l and ju.*=\/'^ri, since
(l-4^)/3>l.

(ii) If 0<0 and p>-l/2, then /?=(4+2p)/3 and A*=0, since
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(iii) If 0>0 and 0>2(l+p)9 then £>0 is arbitrary and fi*=09 since
26-4p-l>3.

(iv) If 0>0 and 2(l+p)>0>(2+4p)/3, then p=2+2p-6 and v*=0,

since 3>20-4p-l>(l-4p)/3.
(v) If 2+4p>30>0, then £=(4+2p)/3 and /£*=0, since 3>(l-4p)/3

/F. ^2 4=0 and ̂ e R is arbitrary.
Note that a+0 — l>max{(3a+4p— 1)/2, (3a — 1)/2} is equivalent to

a<min{20— 4p — 1, 26 — 1}, and that a — l>(3a — 1)/2 is equivalent to a< — I
(<l/3). So if p<0, we must examine the order relations between 3, 20 — 1
and 1/3 (<(1— 4p)/3). And if p>0, we must examine the order relations
between 3, 26-4p-l and (l-4p)/3 (<l/3).

(i) If p<0 and 0>25 then /?>0 is arbitrary and /4*-0, since 20-l>3.
(ii) If p<0 and 2/3<0<2, then ft =2-0 and ^=4-1c~1(4-62)-1\^\\

since 3>26 — l>l/3.
(iii) If p<Q and 6=2/3, then ]3=4/3 and ^* is the unique positive solu-

tion of the equation ^3+2-432c^-2-n34|/y 2=0, since 3>20-l=l/3.
(iv) If p<Q and ^<2/3, then £=4/3 and ^*-2-11/334/3M2)

2/3
? since

(v) If p>0 and 6>2(l+p)9 then /?>0 is arbitrary and ju*=Q, since

(vi) If p>0 and 2(l+p)>6>(2+4p)/3, then fi=2+2p-6 and /**=09

since 3>20-4p-l>(l-4p)/3.
(vii) If p>0 and 2+4p>3^, then £=(4+2p)/3 and ju*=®, since

Example 53. Let us consider

where ^15 ^2 and p are real constants, q2(x) is a complex-valued function, and
V(x) is a real-valued function satisfying

V(x) = o(l) and 6>yF(x) - ^r'1) as |x|-* oo .

Then

-1^1+ {2X3 -a)} "V (3"-1)/2 1 ft | 2
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Case I. ^=^=0.
We must examine the order relations between 1 and (1— 4p)/3.
(i) If P < — 1/2, then fl = I and #* =0, since (1 -4p)/3 > 1 .
(ii) If p> -1/2, then ft=(4+2p)/3 and /«*=0, since 1>(1 -4p)/3.

Case II. ^>0 and ̂ 2=0.
We must examine the order relations between 3, — 1 — 4p and (1 — 4p)/3
(i) If P<— 1, then £>0 is arbitrary and /**=(), since — 1— 4p>3.
(ii) If -l<p<-l/2, then fi=2+2p and /«*=0, since 3>-l-4p>

(iii) If p>-l/2, then ft=(4+2p)/3 and ^*=0, since 3>(l-4p)/3>
-l-4p.

Case III. *! <0 and *2 =0.
We must examine the order relations between 1 and (1— 4p)/3.
(i) If P < - 1 /2, then ft = 1 and y,* = v7^, since (1 -4p)/3 > 1 .
(ii) If p> - 1/2, then p =(4+2p)/3 and ̂ * =0, since 1 > (1 -4p)/3.

Case IV. 12 ̂  0 and ̂  e J? is arbitrary.
Noting that a — l>(3a — 1)/2 is equivalent to a< — 1 (<l/3), we must

examine the order relations between 1/3 and (1— 4p)/3.
(i) If p<0, then £=4/3 and ^*-2-n/334/3U2|

2/3
? since (l-4p)/3>l/3.

(ii) If p>0, then ft=(4+2/o)/3 and ̂ *-0, since 1/3>(1 -4p)/3.

Example 5.4. Let us consider

q2(x) =o(rp)-i*2,

where 6, p, ^ and ^2 are real constants, e^. Rn (e=£Q) is a constant vector,
is a complex-valued function, and V(x) is a real-valued function satisfying

V(x) = o(r&) and drV(x) = o^'1) as |x|->oo .

Then

-a)} -^"'^ \q2
2

= (2+0) O, Jc>aJ+

-a)} -V

Under the symbol of lim sup, <g, x> behaves as like as e| . So if 6 =(=0, we
r-><x>

have the same results as ones given in Example 5.1 by replacing c with \e\.
If 0=0, we have the following.
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Case I. ^=^=0 and 0=0.
(i) If P<-l/2, then ft = l and »* = \f[e\9 since (l-4p)/3>L
(ii) If p> -1/2, then ft=(4+2p)/3 and ja*=Q, since l>(l-4p)/3.

Care //. ^>0, ^2=0 and 0=0.
(i) If P< — 1 and ^ i> |^ | 5 then ft>0 is arbitrary and #*=0, since

-l-4p>3.
(ii) If — l<p< — 1/2 and ^ > ! e l > then ft=2+2p and #*=0, since

3>-l-4p>(l-4p)/3.
(iii) If p>-l/2 and ^> \e\, then ^-(4+2p)/3 and ju*=Q, since

(iv) If p<—2 and ^=1^1, then /?>0 is arbitrary and A* = 05 since
(l-4p)/3>3.

(v) If p>-2 and ^=|e|, then /9=(4+2p)/3 and ju*=0, since
3>(l-4p)/3.

(vi) If p<-l/2 and 0<^<|e|, then /9 = 1 and jjt* = \/\e\-*l9 since
(l-4p)/3>l.

(vii) If p>-l/2 and 0<^<\e\9 then 0=(4-\-2p)/3 and ^=0, since

Case III. ^<0, ̂ 2=0 and 0=0.

(i) If P<-l/2, then /3 = l and A*-\/k|-^ l5 since (l-4p)/3>l.
(il) If p> -1/2, then /?-(4+2p)/3 and j«*=0, since l>(l-4p)/3.

Cose 7F. ^2 4=0, ^eJZ is arbitrary and 0=0.
(i) If P<0, then ft =4/3 and ^*-2-11/334/3M2|

2/3
5 since (l-4p)/3>l/3.

(ii) If p>0, then ft=(4+2p)/3 and ^*-0? since l/3>(l-4p)/3.

Example 5.5. Let us consider

) = or9 sin brr+ Vx-

where a, b, o, T, ^ and ^2 are real constants satisfying aZ?4=0 and r>0, and
F(x) is a real-valued function satisfying

V(x)=o(r<T) and 0rK(x) = oCr0^'1) as |jc|->oo .

For this example we should consider the following both cases :

= ar sn

and
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q2(x) = ar* sin brr+ V(x)-rtz .

In the first case we have

-a)} - V3*-1"2 \q2\
2

In the second case we have

7 12
A2I •

Comparing two results which are obtained from these both cases, we choose the
better values of ft>0 and #*>0. Then we have the following.

Case I. ^=^2=0.
(i) If o < —2, then ft> 0 is arbitrary and v* =0.
(ii) If -2<a <3r-25 then £=(4+2a)/3 and v* =2~7/334/3 \ a \ 2/3(2+o)^\
(Hi) If a=3r-2 and 0<r<2-1|a|1/2|6|-3/2, then p=2r and &* =

4-l\ab\ll2r-\
(iv) If a=3r-2 and T>2~1\a\1/2\b\ ~3/2, then ft =2* and /** =

(v) If t7>3r-2, then /9-(2+cr+r)/2 and /i*=

Case II. ^>0and^2=0.
(i) If a+r>0 and tr>3r— 2, then /S"— (2+a+r)/2 and v* =

(ii) If -l/2<a<3r-2, then ^-(4+2cj)/3 and ju* = 2~7/33«3\a\2/3(2+

(iii) If <7+r>0 and -l<cr<— 1/2, then ^=2+2a and ^*=0.
(iv) If a+r<0 or a< — 1, then /9>0 is arbitrary and #*=0.
(v) If o = — l/2 and r> 1/2, then J3 = l and ,«* is the unique positive solu-

tion of the equation fjp+X^tJL— 8~1fl2=0.
(vi) If cr— 3r— 2 and r>l/2, then /?— 2r and A* is some positive con-

stant, which is classified into several cases.
(vii) If a+T=Q and — l<a<0, then the determinations of ft and /t*

are classified into several cases.

Case III. A! <0 and *2 =0.
(i) If (7+r>0 and a>3r-2, then /9=(2+ff+r)/2 and ^* =
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(ii) If -l/2«r<3r-2, then ft=(4+2a)/3 and /** = 2-?/334/3|a!2/3(2+

(iii) If o+T<0 or a< —1/2, then ft = l and ti*=\/~ri.
(iv) If G = — 1/2 and r>l/2, then ft = l and /** is the unique positive

solution of the equation ju.3-\-A1ju—$~1a2=®.

(v) If a+r=0 and —l/2<ff<0, then ft = l and ju*=2~
(vi) If (j=3r— 2 and r>l/2, then ft=2r and #* is some positive con-

stant, which is classified into several cases.

Case IV. ^^0 and X^R is arbitrary.
(i) If a+r>2/3 and a>3r-2, then ]3=(2+a+T)/2 and /«* =

(ii) If 0<a<3r-2, then ^=(4+2a)/3 and ^*-2-7/334/3|a]2/3(2+a)-4/3.
(iii) If a+r<2/3 or a<0? then ft =4/3 and ^*-2-11/334/3M2|

2/3.
(iv) If cj=0 and r>2/3, then £=4/3 and ^*=2-11/334/3{M2+ M2|

2}1/3.
(v) If o+T=2/3 and 0<a<2/3, then j3=4/3 and /e* is the unique posi-

tive solution of the equation y?— 2~733 1 abr \ /JL— 2"U34 1 ^2 1
 2=-0.

(vi) If o=3r— 2 and r>2/3, then /9=2r and j«* is some positive con-
stant, which is classified into several cases.

Remark 5.2. Let r<0 in Example 5.5. Then we have

ar°sin brr = a6r<r+T+ ^(jc) ,

Vj(x) = abr«+T{(brT)-lsm brr-l} ,

where K^x) satisfies

Kj(x) = 0(r°"+T) and ̂ ^(jc) - ^(r0"^-1) as \x\-*<*> .

So if V(x) in Example 5.5 satisfies a more strict condition than former one

V(x) = o(r'+r) and drV(x) = o(rv+lf-1) as |.x|-»oo ,

the problem is reduced to Example 5.1 or Example 5.2 by replacing a+r with
6.

Example 5.6. Let us consider

where p, ^ and ^2 are real constants, q2(x) is a complex-valued function, and

V2(
x) i§ a real-valued function satisfying
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V2(x] = 0(r
e) and drV2(x) = o(rQ~l) as

for some real constant 6. For a real- valued function V^x) we assume:
(6) for any wSEHl

loc(®) (5 where Q = {x\ \x\ >*<,},) we have F

(7) there exists some constant ro<2 such that for any a<r0+l

lim sup nv

(8) for any y*>0 and any a<r0-fl there exist some constants
and C2>0 such that for any w^H\@) having a compact support in

Q Q Q

Noting that we have (f+g)-(x)<(f)-(x)+(g)-(x) for any real-valued functions
f(x) and g(x), q-^x) and q2(x) given above satisfy (G). Let for a<r04-l

M = {^>0|lim sup [rfl5^1+
>->-00

<4-V(3-«)2(ro+ !-«)
M = {^>0|lim sup [o(ra+<>-l

/e* = inf M and ^** = inf M .

Then (F)' in Theorem 1.3 is satisfied by the above #!(#), q2(x) and rW=ro-
By Theorem 1.3 we have for any u(x) satisfying (***)

\U\2dx= oo,

B<|*|<B + 1

where ft =(3— a)/2>(2—r0)/2>0 by a<r0-r 1 <3, and A> A* is arbitrary. Now
we choose /? as small as possible under the conditions that M is not an empty
set and oj<r0+l (<3). After the determination of J3 we calculate ^** (>A*

Case I. r0^1=^2=0'
We must examine the order relations between ro+l, 1— 6 and (1— 4p)/3,
(i) If 6<-n and 4p<-(3r0+2)5 then j3>(2~r0)/2 is arbitrary and

jM**=0, since min{l-^, (1—4p)/3}>r0+l-
(ii) If &>-TQ and 3^>4p+23 then y0=(2+0)/2 and /«**=0, since ro+

1> 1 -^ and (1 -4p)l3> I -6.
If 4p> -(3ro+2) and 30<4p+25 then ft=(4+2p)/3 and ^**-05
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since min{r0+l, l-0}>(l-4p)/3.

Case II. r0<0, ^i=*=0 and ;i2=0.
Since lim r*'1 =0 for any a <TO+ 1 ( <1), we have the same results as Case I.

?-»<*>
Case III. r0>0, ^>0 and Z2=Q.
If 0>0, we must examine the order relations between (r0+l>l>) 1—0

and (1— 4p)/3. And if 0<0, we must examine the order relations between
>1), -l-4p and (l-4p)/3.

(i) If 0>0 and 30>4p+2, then fl=(2+6)/2 and jH**=0, since (l-4p)/3
>l-0.

(ii) If 4p+2>30>0, then ft=(4+2p)/3 and /***=(), since 1— 0>

(iii) If 0 < 0 and 4p < -(r0+2), then ^> (2-TQ)/2 is arbitrary and /*** =0,

since — 1— 4p>r0+l-
(iv) If 0<0 and -(r0+2)<4p< -2, then ^=2p+2 and ̂ **=0, since

(v) If 0<0 and p>-l/2, then fi=(4+2p)/3 and /e**=0? since r0+l

Case IV. r0>05 ^i<0 and ̂ 2=0.
We must examine the order relations between 1 (<ro~i~l)j 1~~^ an(i

(i) If 0>Q and 3^>4p+2, then ]3=(2+6)/2 and ^**=0? since (1 -4p)/3
> 1-0 and \>\-0.

(ii) If p>-l/2 and 4p+2>30, then ^=(4+2p)/3 and #**=09 since
min{l5 !-0}>(l-4p)/3.

(iii) If 0<0 and p< — 1/2, then £ = 1 and /r^^v7"11!^ since
min{(l-4p)/3, 1-0}>1.

Ca5e V. — 2/3 < r0 < 2, ^2=l=0 and ^eJB is arbitrary.
Noting that a — 1>(3<* — 1)/2 is equivalent to &< — I (<!/3<r0+l)3 we

must examine the order relations between 1/3, 1—0 and (1— 4p)/3.

(i) If 0>2/3 and 30>4p+2, then /3=(2+6)/2 and ^**=0? since 1/3
> 1 -0 and (1 -4p)/3 > 1 -0.

(ii) If p>0 and 4p+2>3<95 then p=(4+2p}/3 and /e**-05 since min{l/3,
l-0}>0-4p)/3.

(iii) If 0 < 2/3 and p < 0, then p =4/3 and /«** -2-8/334/3(3ro+2)~1/3 1 ^2 1
 2/3

?

since min{(l -4p)/3, 1 -0} > 1/3.

Case VI. TQ< —2/3, ^24=0 and ^e JB is arbitrary.
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Since limra~1= limr(3as"1)/2=0 for any a< ro+l<l/3, we have the same
7->oa r-><»

results as Case I.

Remark 5.3. If Vi(x) is a homogeneous function of degree — r05 then
we have Br V^x)+rQr~1 V^x) =0. Let

y (Y\ ~_ V1 Z I rW I-14- V Z I Y ^ — v ^ l " 1
K J^AJ — 2j A11 * I i 2j ^tj I A A | ,

l^i^-ZV l-£i<j<,JV

where Zf- and Zo- are real constants, jc^efi3, and x=(x(l\ ~>,xm)^R3N.
This Fj(x) is a homogeneous function of degree —1. Then V^x) satisfies

(6),(7)and(8)withr0-l=

References

[1 ] Bardos C. and Merigot M., Asymptotic decay of the solution of a second-order el-
liptic equation in an unbounded domain. Applications to the spectral properties of
a Hamiltonian, Proc. Roy. Soc. Edinburgh 76A (1977), 323-344.

[2] Uchiyama J., Lower bounds of decay order of eigenfunctions of second-order elliptic
operators, Publ. RIMS. Kyoto Univ. 21 (1985), 1281-1297.


