Publ. RIMS, Kyoto Univ.
22 (1986), 1079-1104

Decay Order of Eigenfunctions of Second-order
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By
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§0. Introduction

In this paper we shall study the asymptotic behavior as |x|—co of the
not identically vanishing solution u(x)E H},(R") of second-order elliptic
equation in an unbounded domain

e

=1 0X;

0
(6xj
H(q:(x)Fg(x)u(x) =0 for |x|>R,.

+v/ =1 bj(x))a;(x) +v/ =1 by(x)u(x)

Our main assumptions are the following: there exist some constants a <3
and a—1<r,<2 such that

curl b(x) = o(r~@+H12) |

q.(x) = o(r®~3"%) is a complex-valued function,

q,(x) is a real-valued function satisfying

lim sup {r*¢s, ACIPGID+Tor* (D} <oo .

(Note that we do not exclude the case lim g,(x)=co.) These conditions are
tadd

generalization of the preceding paper Uchiyama [2], which treats the case
a=1 of this paper and includes more strict conditions than ones imposed in
this paper. More detailed conditions are stated in §1. Then for any x>0
satisfying

lim sup {r*CE, AP g +7ror® 0,0} <47 #G—ef(ro—a+1),

we have by Theorem 1.1 in §1

* Communicated by S. Matsuura, November 21, 1985.
Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan.
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lim exp (2uRE*/2) g () |dx = oo .
B R<|x|<R+1

Bardos and Merigot [1, Theorem 2.2 (1), p. 329, which seems to need some
modifications of its statements] treats the case a;;(x)=0;;, bi(x}=0, gy(x)=0
and 0<a<1. Also [1, §3] treats the case g;;(x}=0;;, bi(x)=0, g,(x)=0 and
3})15 ¢:(x)=cc under the more strict conditions which include the assumptions

2
on %ql(x), and gives more detailed results than ours.
r

In §1 the assumptions and Theorems 1.1, 1.2 and 1.3 are explained. §2
and §3 cover the proof of Theorem 1.1. In §4 we prove Theorems 1.2 and
1.3. The tools of proofs are similar to Uchiyama [2]. In §5 we apply Theo-
rem 1.3 to the not identically vanishing solution u(x)E HZ (R") of the equa-
tion —d4u(x)-+(g,(x)+gy(x))u(x)=0. There we consider several examples as
follows:

§:(x)+g5(x) = er®+o(rf)—(4,-+i4,) (Examples 5.1~5.3),
01(x)+q(x) = r’e, xp+0(r’)—(A+i2,) (Example 5.4),
q(x)+q,(x) = ar’sin br"—(2;+i2,) (Example 5.5),
01(%)+qx(x) = V(x)+0(r)—(4,+i%) (Example 5.6),

where c, 0, o, 4, 4, a, b, o, 7 (ab=+0, v>>0) are real constants, e R" (e=£0)
is a constant vector, i=+/—1, the function represented by o(r") is a complex-
valued one, and V(x) is a real-valued function satisfying for some constant
702

lim sup [0, V(x)+r sV (x)]<0.
Especially we have the following. If
7:(X)+qy(x) = cr*+o(r)—2;, (>0, 4,>0)

(harmonic oscillator), we have for any é>0

lim exp ((1-+e)v/cR) S | u(x)|%dx = oo .

R<lsi<R+1
If

@1(X)+q,(x) = er*Ho(r V) —2, (c=+0, 2,<0)
(hydrogen atom), or

¢:(%)+q(x) = ar'sin br—2, (ab=0, 2,<0)
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(adiabatic oscillator), or

() +q(x) = — 3 Z|xD |7 3 Z; | xO—xD |7
1<i< NV

I<iKiKN
+o(r -2, (3,<0),
where Z; and Z;; are real constants, x? € R?, and x=(x®, .-, x")€ R (an
atom with N electrons), we have for any ¢>0

lim exp (2(1+¢)/—Z R) § |u(x) | %dx = oo .
Bre R<|z]<E+1

If
(%) +4,(x) = e, x)+0(r"*) =2, (—o0 <2< o0)

(constant electric field), we have for any ¢>0

lim exp <§(1+e)\/1—e|R3ﬂ) [ 1ueorx = oo

R|z|<B+1

§1. Notations and Main Results

At first, we shall list the notations which will be freely used in the sequel,
and are the same as given in Uchiyama [2].

Notations:
E py=Emy+ -+ +&7, for &, 7€C";
|€] =KE, ) for £€C”;
*=x/|x| and r=|x| for x=(x,, -==, x,) ER";
S()={x||x| =t} for >0;

B(s, t)={x|s<|x| <t} for t>s>0;

9;=0/0x; and 8,=0/0r;

D;=8;++/—1bj(x) and D=(Dy, ---, D,);

Vf=(8.f, ---, 8,f)  for a scalar valued function f(x);

divg=08,g+ --- 49,2 for a vector valued function g(x)=(g,(x), ---,
g:(x));

A=A4(x)=(a;}(x)) is an nXn matrix;

B=B(x)=curl b(x)=(9,;b;(x)—08;b;(x)) is an nXn matrix;

()+(x)=max {0, f(x)} >0 and (f)_(x)=max{0, —f(x)} >0 for a real-
valued function f(x);

supp[ f] denotes the closure of {x| f(x)=+0};

Ci(2) denotes the class of j-times continuously differentiable functions:

Ce(@)={f(x)| for any j=0, 1, 2, ---, f€C/(2) and supp[f] is a
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compact set in 2} ;
Q=1 [| f@lrdx<ea}  for p=1;

L{’oc(.Q)z{f(x)!l) for any compact set KC.Q,S | flx)|2dx<<co}  for
p>1; £

H"™(£2) denotes the class of L*-functions in £ such that all distribution
derivatives up to m belong to L%(2);

H:(2)={f(x)| for any compact set KC 2, f€ H"(K)};

Next we shall state the conditions required in the Theorems.

Assumptions:

(A1) each g;;(x)=C*®) is a real-valued function;
(A2) g;i(x)=a;(x);
(A3) a(x)—>3;; as |x]|—>co;
(A4) there exists some constant C;>1 such that for any x&£ and
any £ C" we have
CTE12<<A(X)E, ELC €)%
(AS) 9,a;(x)=0(r™) as |x|—>o0;
( B) each b;(x)eCY(®) is a real-valued function;
(C1) g4(x) is a real-valued function;
(C2) for any we H,(2) we have q,|w|*EL{,(2);
(C3) for any we H{,(2) we have |Fg,||w|?E L} (2);
(D1} gy(x) is a complex-~valued function;
(D2) for any we H;,(2) we have g,|w|?c L (2);
( E) there exists some constant R,>0 such that 2D {x||x|>R};
( F) there exist some constants «, J satisfying <3, 0<6<<27/(3—a)
and some real-valued function 7(x) & C'(£2) such that
(F1) a—140<r(x)<2—0 for |x|>Ry;
(F2)
M®={x>0|lim sup [r*C, A7 q,(x)>+r*"7(x)4:(x)

+Q2uB—a) e DE| g (x) |
+@2—0—7(x))7'r* 7| B(x)A4(x)x|?
—47 (3 —a)(r(x) —a+1)] <0}
S
where ¢ denotes the empty set;
(F3) 8,7(x)=0(r¢3) as |x|—>o0;
(F4) (7 —208,)7r(x)=0(r* "% as |x|—oo;
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(F5) 8,8,a;;(x)=0(r®~*") as |x|—=>co;
(F6) (7 —%0,)8,a;1(x)=0(r~+"") as |x|—>oco.

Remark 1.1. The above assumptions applied to the case =1 are weaker
than ones given in Uchiyama [2].

So as to state the results we shall require the following:

Definition 1.1. For a constant 7 satisfying 0<#<& where 0 is given in
(F), let
M® = {x>0[lim sup [r*CX, AW q,(x)D>+1"""r(x)q:(x)
rro

+Qu(3—a)) @2 g(x) |?
+Q—7—rx)"r" | B(x)A(x)x |?
— 4723 —a)(r(x) —a-+1)]<0} ,
2™ = inf M™ (>0),
uE = 11}13101 £ (=0).

Remark 1.2. Well-definedness of Definition 1.1 will be shown in Lemma
2.1.

Remark 1.3. The above definition is independent of (C3), and depends
essentially on (F1) and (F2). So Theorems 1.1 and 1.2 use the above defini-
tion. On the other hand, since we weaken the condition (F) in Theorem 1.3,
we use the another definition of #*, which can be considered as the one ob-
tained in the case that g;;(x)=9d;; and b;(x)=0 under the condition (F).

Now we have the
Theorem 1.1. Let u(x) satisfy
—<D, ADu>+(q,+q)u =0 in 2,
(*): {uEH(2),
supp[u] is not a compact set in 2 (closure of £2) .

Let conditions (A), (B), (C), (D), (E) and (F) hold. Then
(1) for any u> u* we have
lim exp (2uR®%) [ [|<ADw, 5[+ {1+(g)_} |u| S = oo .
S(R)
(2) Moreover we assume
(G ) there exist some constants a, b, v*, C, satisfying 0<<a<1, 0<b,
v¥>0, C,>0 such that for any weH(Q) having a compact
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support in 2 we have

(@t Reta)_1wirax<al 17w+, fexpra-om i,
2 2 2

g(ql)_ |w|2dx< bS |Pw]|2dx+ CZSexp(u*r@“”/z) |w|%dx ,
2 2 2
where a <3 is given in (F). Then we have for any p>u*-++271v*

lim exp (2uRE-"72) S |u|2dx = oo .
By B(R,R+1)

Now we shall consider the more special case under the weaker conditions.

Theorem 1.2. Let u(x) satisfy

~<{D, Dup+(q1+4q)u =0 in 2,
(**): { uEH(2),
supp[u] is not a compact set in 2 .

We assume conditions (B), (C), (D), (E) and (F) with a; (x;=0;; except for (C3).
Instead of (C3) we assume

(C3)’ for any we H},(2) we have (8,q) |w|*EL.(2). Then all the asser-
tions (1) and (2) in Theorem 1.1 with a;j(x)=0;; also hold.

Lastly we shall consider the most special case under the weakest condi-

tions.
Theorem 1.3. Let u(x) satisfy

—du+(q,+g)u =0 in 2,
(*%): { uEHio(2),
supp [u] is not a compact set in 2 ,

where 4 is a Laplacian in R". Let (C1), (C2), (C3)’, (D1), (D2) and (E) hold.

Instead of (F), we assume
(F)" there exist some constant &, & satisfying a<<3, 0<<d0<<3—a and some

real-valued function r(x) € CY(2) such that
F)' a—1+0<r(x)<2 for |x|>Ry;
F2)’
M= {u>0lim sup [0,4,()+7*"7(9)q,(x)
+Qu(3—a)) 7 O gy(x) |*~47 4 (3 —a)(r (x) —a+1)] <0}
*9¢;
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(F3) 8,r(x)=0(r®*"") as |x|—>o0;
(F4)' there exists some nonnegative function p(x) satisfying
p(x) = o(r®="") as |x|—>o0,
|7 —20,)r(x)| <C—7(x))?p(x) for |x|>R,.
Let p*=inf M (=0). Then all the assertions (1) and (2) of Theorem 1.1 with
a; (x)=20;; and by(x)=0 also hold.

Remark 1.4. Let 2={x||x|>R,} and
g(x) = [x@]7,

where o is a real constant, x¥ € B® and x=(x®, .-, X)) R*" (N >2). Then
we have for xe 2

[7gyx)| = |o| [x®]°,
18,0:(x)| = |o||x®|r <R3 o] |x@]|°.

So if 6> —1, g,(x) satisfies (C3). And if 0> —2, g,(x) satisfies (C3)".

§2. Proof of Theorem 1.1 (1)

In this section all the conditions (A)~(F) are assumed. (Also see Re-
mark 1.3.) At first we study on #™, which is given in Definition 1.1.

Lemma 2.1, We have the followings.
(1) Forany 0<9<8, M™M=£¢ and (1™, o) M™.
(2) For any 0<7,<7,<0, we have 0< p"2 < u"9, Then p* =lim 4™ exists.

730

3) If | B)Ax)x| =0 *7?) gs | x|—> oo, we have u*=p.

Proof. Let 0<7<#é. It is obvious that ¢x+=MOPCM™. We can
easily see (4™, c0)C MM, if 4™ e M™. Now we assume inf MM =u™ & M™,
For any pge(u™, o) there exists u' satisfying 0< ™M <p’'<wand p'€M™,
Noting 2z(3—a))'<Qe’'BG—a))™ and —p2<—u", we have u& M ™, which
means (£#™, coXC M ™, The assertion (1) is thus proved. The assertion (2}
is obvious. Lastly we shall show (3). By (2) we have x*>u®, For any
e>0, pO4ecM®D®. Since |BAx|#*'=0(1) as r—>oo, there exists some
0<7%,<0 such that u#@tecM™, which means u#"d<u®le. Then we
have p*<u®. O

In the same way as Uchiyama [2], we give the following definition.

Definition 2.1. Let u(x) satisfy (*) given in Theorem 1.1. For real-
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valued functions p=p(r) € C¥(R,, ), f=f(r)& C(R,, «0) and g=g(x)=CY(£2),
let

W(x) = exp(o(r)u(x)

k() = —{o’ (N}<A()x, £>,

ky(x) = 0"(r) A%, >+ (r)div{A(x)%} ,

Ft; 0,1, 8) = | LA 21<k ADW[P—<3, 42> KDy, ADY)

8

+ (@1 k) | v} +g(x) Re[<x, ADv»]ldS
where Re[w] means the real part of w.

Lemma 2.2. For t> R, we have

F(; 0,1, 8) = expQo(t) | L/0)421<8, 4D |*—<%, 42> <Du, ADud}
8D

+{207f<%, AR>+gyRe[<k, ADwul-+{AR, 35{2f 0%, A%>
—fa,+go’} |u]?as .

Proof. We can easily obtain the above relation by direct calculation. []

Lemma 2.3. For t>s> R, we have

E(t; 0,1, 8)—F(s; 0, f, 8)
= | peortr—rp1caDy, 217+ g

B(S,t)

—fdiv(4R)—<&, AX> ") {ADv, Dvy>+2r "' f(| ADv|?
—<{ADv, Dv))+2fRe[{%, ({ADv, 7>A)Dv)]
—f{(K#, A7>A)Dv, Dvy+-2Re[(f(gy+ko)+-go'+278,8)<%, ADV)Y]
—2fIm[{BA%, ADv>v]+Re[{(F —%8,)g, ADv>V]
+{(g11ky) (g—f div(AX) —f<%, 4xD)—f<X, AV(q1+k))
+g(Re[g,]+kp)} [v]%dx ,

where Im[w] means the imaginary part of w.

Proof. See Lemma 2.1 of Uchiyama [2]. O

Lemma 2.4, Let (0<) 27'(3—a—08)<I<27Y(3—a). Then for any constant
u>u* there exists some R,> R, such that for any t>s>R, and any constant
m>1, we have

F(t; ur® 2 mr’, 1, div(4%)—r 7 (x))
>F(s; ur® 2 me!, 1, div(4%)—rr(x)) .
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Proof. Let u>p*=Ilim ™. By Lemma 2.1 there exists some 0<<7,<<d
ny0

such that #> . Then there exists some &,>0 such that (1+¢)‘ues M.

So
lim sup[r“C%, AV g+ g+ QuB—a) H(1+e)r @2 g, |?
+2—7y—7)"r* | BAx|*—47 2B —a)(r —a+1)]
<lim sup[r*(#, APqO+7r* g+ Qu(3—a) 1+ egr® V2| g |
@) BAX|P 41 ) 3 — a7 —a )
<0.
Let

B = (3—a)2 (>0), o(r) = urP+mr!, f(r) =1,
g(x) = div(A(X)%)—r"'r(x), 0<7,<7,<0 ,

where m>1 and A—27'0<</<<f are constants. Let each e¢(r) (i=1, 2,
be a positive function for r> R, which tends to 0 as r—>co. Noting

[<A%, 3> —1] 41 |<K, A4, D) <ey(r),
div(4x) = O(r™") as r—oo,
g=00™ as r—oo ,
8,8 = o(r@=3"M) as r—oo,

(F—%08,)g = o(r~™%2) as r—oo,

we have, by direct calculation, the following estimates to the right hand side

terms appeared in Lemma 2.3.

220 f+f —r 1 f)|I<4Dv, £>|*
> {4uprf= L mi(4—e,(r))r'-} |<ADv, £>|?,
2r b g—f div(A%)—<&, A%>f'}<ADv, Dv>
= Q2—7r(x))rK4Dv, Dv),
2r " (| ADV |2—<{ADv, Dv))> —e(r)r K 4Dv, Dv)> ,
2f Re[{%, (CADv, V>A)DVY]|> —e,(r)r'{ADv, Dv),
—fL(K&, AP>A)Dv, Dv>> —es(r)r{4Dv, Dv),
2Re[{f(g,+k;)+go'+27'0,8} <%, ADV)V]
> —(AuprPtmir'~Y) |<{x, ADv>|?
—r 7 {(1+27) (4up) ™' V2 g, |*Feg(r)} | v|?
—mler)rP*1=3|v|? (, where we use 8—2<(1—3a)/4),
—2fTm[<BAX, ADV)v]> —(2—7,—7(x))r "{4Dv, Dv>
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—Q—m—7r(x)7r (1 +-ey(r)) | BAx|?| v |2,
Re[{(F —%9,)g, AE>V]2 —e&y(r)r~{4Dv, 17">_‘510(")r-w [v]?,
{(qi+k0) (g—f div(AR)—f <X, AZD)—f <%, AV (q,+k)D} [v]?
>r* {473 —a)(r(x) —a+1)—r'CE, APgp—rr®"'q—en(n)} |v|?
4 uBmlQ2I-2r —a—1—eu(r))rP+i=3|v|?
DRl —2—ey(r))r® 2 v |2,
g(Re[gol4-ky) | v 2= —r~* {27 e (4uf) ' E* D2 gy | 4-e1(r)} | v |2
—mle(r)rP+i=3|v|2.

Then by Lemma 2.3, we have
F(t; prPmr’, 1, div(AX)—rr ™) —F(s; prf+mr’, 1, div(4A%)—rr™)
> | (G —egr)r' <4y, I

BCS,t
( '|)‘(771—516(r))" “iKADy, Dvy+-r=* {47 23 —a)(r —a+1)
— (™K, AV qo+7r* g+ Q2 —n—1r)7r* 7| BAx|?
+(@uB) (1 4-er® D2 gy | 24-ei5(r))} | v|?
+Q—71o—1) 21 —1) H(o—71)—Q—n0—7)es(r)} r 7} | BAx|?| v|?
AmlupQRI+-2r —a—1—ey(r)rP+-3|v|?
+(mD?QI+-7—2—e(r)r¥=3|v|2dx .
Noting
2l4r—2>2]4a—3+0>0,
2142r —a—1>0B—a—0)+2(a—1+0)—1—a = 6>0,

there exists some R,>R, such that for any >R, and any m>1 we have

3—eg(r)=0,

m—eg(r)=0,

47 G —a)(r —a+1)—{r*<x, AVq>+rr* g +Q—n—7)"'r* | BAx|?
+(@up)(1+er &0 g, | >4 e(r)} 20,

(Bo—71)—(2—ny—1)&(r) =0,

2]4-2r —a—1—e,4(r) =0,

2+7r—2—e(r)=>0.

Therefore we have the assertion. O

Proof of Theorem 1.1 (1). We have only to show that for any u>u*>0
we have
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lim inf exp (22RO-72) g [[<ADu, £>|%+{14(q))_} |u|1dS>0 .
R-»o s
We shall prove the above inequality by contradiction. If we assume that
this is not true, then there exists some #,> «* such that
lim inf exp (2u,RE-72) S [1<ADu, £+ {1+(g))_} |u|3dS = 0.
R>oo
S(R)
We choose constants # and / to satisfy #,> x> p* and 0<(3—a—0)/2<</<(3—a)
/2. By Lemma 2.2 for any m>1 there exists some constant C,;>0 such that
for any t > R, we have

F(t; prP+mr', 1, div(4%)—7rr™)
< Cyexp Quot®) | 11<ADU, £ 17+ {1+(0) -} |u]2ds

8@
where #=(3—a)/2>/. Then we have
lim inf F(t; prP+mr’, 1, div(4AX)—rr)<0.
t->co
So letting t—co along suitable sequence in Lemma 2.4, we have for any s> R,
and any m>1

F(s; urf+mr', 1, div(4%)—rr 1 <0.

On the other hand, since supp[u] is not a compact set in £, there exists some
R,> R, such that

S <&, A%>|2|u|%dS>0.
SCRy)

By Lemma 2.2
exp(—2uRE I —2mRyOF(R,; pr@ 2 4mr!, 1, div(4RX)—7rr~Y)
is a quadratic in m of which coefficient of m? is

2R3~ S 1<}, A%>|2|u|%dS>0.
SCRy

So there exists some m,>1 such that
F(Ry; pr® 2 Lmyr!, 1, div(AX)—rr >0,

which leads to the contradiction. [

§3. Proof of Theorem 1.1 (2)

In this section we assume all the conditions (A)~(G).
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Lemma 3.1. Let a real-valued function {(t)& C5(—oo, o) satisfy supp[<]
1

(0, 1), and S C¥(t)dt>0, and let {x(t)=C(t—R) for R>R, Let u(x) satisfy
0

(*), which is given in Theorem 1.1. Then there exist some constants C>0
and R;> R, such that for any R> R; we have

a1 11 Dul {1+ 2

o)

<C, S exp(v*r@="2)|y|%dx .

B(R,R+1)

Proof. We follow the similar arguments which have been given to prove
Lemma 3.1 and Lemma 3.2 of Uchiyama [2]. Let u,(x)={|u(x)|*+7%}"?
for >0. Then u,€H,.(2) and |Fu,|<|Du|, because of u,Fu,=Re[alu]
=Re[#Du] and |u|<|u,|. Noting (u,eH (L) for R>R,, for any >0
we have by (G)

[ea1xD) @i+ Relgad- | 7ax

0

< aS |7 (& gty | *dx+ CZSexp(u*r(s”“)’z) | ety | 2dx
2 2
<1+ e)agci» | Du |*dx-+Cs S exp(v*r@®=%)|u, |%dx ,
Q B(R,R+1)

where Cs=max{C,|[{(¢)|*+(1+eHa|L'()|?}. Letting 7| 0 we have
0<I<1

2@+ Relgd |ulax

2
g(1+e)a§c§; | Du|2dx+Cs S exp(V¥ré=®7) |y |%x .
2 B(R,R+1)
We choose ¢>0 to satisfy 1>e+4(14¢)a. By (Al), (A2) and (A3) there exists
some R,> R, such that for any r>R; and any é&C" we have {A(x)¢, E>>
(1—e)|&]% Since u(x) satisfies (*), we have for any R> R,

0 = Re[ ¢4 {—<D, ADu>+(gy+gupa dx

2

— [ca1caDu, D>+ g+ Relg)). —(a-+ Relg]) |l Yo
Q

—[teacrdiveasy+cuery<as, £} (ulax

[}

> {1-a-(1+e)a}gc§ | Du|?dx—C, g exp(*r @) || dx |

Qo B(R,R+1)
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where C,=Cs+C, max {|div(4%)| +<{4%, 2>} and C,=max{|{{(){' )|+
>Ry o
(€X' (1) |}. Then we have

SC%|Dulzdx£{l—e—(l+e)a}'1C6 g exp(v¥r@=72y |y |2dx

0 B(R,R r1,

By the same arguments as given above, we have

SC%((IJ- ] Zd.\‘gaSC% | Du|*dx+Cq g exp(v*r €% [u|%dx

Q 0 B(R,Ri1)

where Cy=max {C,|{(¢)|*+2b|'()]|%}. So we have the assertion. ]
0<. <1

Proof of Theorem 1.1 (2). Let p>p*+27* We choose g, to satisfy
u—2"*>p>p* By Lemma 3.1, we have for any R> R,

feaxD 01 Dul4 {1+ () 1ulax

2
<C, S exp(v*r@=®2yly | 2y |
BCR R 1)

By Theorem 1.1 (1), for any L>0 there exists some constant R,> R, such
that for any 1> R,

L exp(—2u 0 < [ [[<ADw, 5124+ {1+(g) } 1wl

8

Then there exists some Cy,>0 such that for any R> R, we have

L{ S:Cz(t)dt}exp(—z,uo(R_{_ 1)8-9)12)

IA

R+1

S Crexp(—2u,t ¢~ dt
R

2

< c11<ADu, £ 1+ {1+(0)-} |70

IA

C, S exp(v*r@=72) |y | %dx

B(R,R+1)

< Cy exp(*(R+1)0-212) S || %dx
B(R,R41)

Then for any R> R, we have

exp(2uRE="12) S |u|2dx

B(R,R -1)

1
>Cy'L{ S C¥(1)dt} exp({2n—Qug+v*) (14 R™HE-0/2} RO-212)
0
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which leads the assertion. 1

§4. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. Under our weak condition (C3)’, Lemma 2.3
is also true, if we replace a;;(x) with 9;;. (See Lemma 4.1 of Uchiyama [2].)
Then Lemma 2.4 and the proof of Theorem 1.1 are also true by replacing a;;(x)
with d;;. O

Proof of Theorem 1.3. Lemma 2.3 is also true with @;;(x)=0;; and b;(x)
=0. In the proof of Lemma 2.4 we have

{2r 7 fhg—f div(4%) —f <%, AXD}SADv, Dvy = Q—r(x)r | Pv|?,

2r*f(| ADv|*—<{ADv, Dv)) =0,

2f Re[<%, (CADv, P>A)Dv)] =0,

—f<(*, AP>A)Dv, Dv> =0,

—2fIm[{BA%, ADv>¥] =0,

Re[<(7 —%9,)g, ADV)¥]> —r ' \/2—7(x)p(x) | 7| | V]|

>—QR—p)r v —eur)r|v|®.

Then Lemma 2.4 is also true in this case. Therefore the proof of Theorem
1.1 is also true. O

§5. Examples

In the examples, except for Example 5.6, treated in this section, our g,(x)
and g,(x) satisfy the followings:
(1) gy(x) is a real-valued function;
(2) g,(x) is a complex-valued function;
(3) there exists some R,>0 such that for any compact set KC {x||x]|
> Ro} =48, q.(x), 8,9,(x) and g,(x) are bounded in K;
(4) there exists some constant @ <<3 such that

M = {u>0]lim sup[r®d,q,+2r*q,
+(2/4(3 —a))—lr @2-1)/2 l q, I 2] <4—]ﬂ2(3 _a)a}
Fé;

(5) for any v*>0 and any @<3 there exists some constant Cy;,>0 such
that for any x& 2 we have
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(q)-(x)+(Refg,]) - (x) < C exp(vr =12y |

Then all the conditions in Theorem 1.3 are satisfied by r(x)=2. Now we
can apply Theorem 1.3 to u(x) satisfying

— 8u(x) gD+ I ux) =0 in @,
(***){ ue HL(9),
supplu] is not a compact set in 2 .
So we have by Theorem 1.3
lim exp(24RP) S |u|2dx — oo,
Bore R<Ix|<R+1
where f=(3—a)/2, and p>u*=inf M (>0) is arbitrary, since the condition
(G) holds for any »*>0. In order to have a better estimate, we aim to choose
B>0 as small as possible, namely to choose a as large as possible under the

conditions that M is not an empty set and a<<3. After the determination of
a we calculate #*.

Example 5.1. Let us consider
q:(x) = cr’+V(x)—2,
gx) = o(rf)—il,,

where ¢>0, 030, 4, 4, and p are real constants, i=+/—1, g,(x) is a complex-
valued function and V(x) is a real-valued function satisfying

V(x) = o(r®) and 9,V(x) = o(r®!) as r— oo.

Then we have

r*8,q,+2r*"'q,+ {2033 —a)} T'r@* V2| g, |2
= 240+ fo(r+o-1) 22!
+{2u(3—a)} "G D2 o(r*)—i2, |2 .
Noting that @46 —1>0 for some @ <3 implies 2+ 6>0, we have the followings.
Case I. 2,=2,=0.
In this case we must examine the order relaticns between 3, 1—6 and
(1—40)/3.
(1) If max{0, o} <—2, then #>0 is arbitrary and #*=0, since min{l —6,
(1—40)/3} =3.
(i) If 6> —2 and 360>4p+2, then f=(2+0)/2 and u*=2+/c(2+6)7,
since 3>1—0 and (1 —4p)/3>1—6.
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(i) If p> —2 and 4p0+42>>30, then f=(4-+20)/3 and x*=0, since min{3,

1—0}>(1—4p)/3.

Case II. 2,>0 and 2,=0.

Note that @ —1>(4p+3a—1)/2 is equivalent to a<<—1—4p. So if <0,
then we must examine the order relations between 3, —1—4p and (1—40)/3.
And if >0, we must examine the order relations between 3,1—6 and
(1—40)/3.

(i) If 6<0 and p< —1, then >0 is arbitrary and «#*=0, since —1—4p

>3.

(i) If 6<0 and —1<<p<—1/2, then #=2+2p (<1) and u*=0, since

3> —1—40>(1—4p)/3.

(iii) If <0 and o> —1/2, then B=(4+42p)/3 and p*=0, since 3>(1—40)

/3> —1—4p.

(iv) If 6>0 and 36>4p+2, then #=(2+06)/2 and u*=2+/c(2+6)7,

since 3>1—0 and (1—4p)/3>1—6.

(v) If 4p+2>36>0, then f=(4+20)/3 and w#*=0, since 3>1—6>

(1—40)/3.

Case III. 2,<<0 and 2,=0.

In this case we must examine the order relations between 1, 1—@ and
(1—40)/3.

(i) If 6>0 and 30>4p+2, then f=(2+0)/2 and u*=2+/c(2+0)7,

since (1—40)/3>1—0 and 1>1—46.

Gii) If o>—1/2 and 4p+2>36, then B=(4-+2p)/3 and u*=0, since

min {1, 1 —6}>(1—40)/3.

(i) If 0<0 and p<—1/2, then f=1 and u*=+/—12,, since 1—6>1

and (1—4p)/3>1.

Case IV. 2,#0 and 1, R is arbitrary.

Noting that @—1>@a—1)/2 is equivalent to a<<—1(<1/3), we must
examine the order relations between 1/3, 1 —6 and (1—40)/3.

(i) If 6>2/3 and 30>4p-+2, then f=(2+46)/2 and u*=2+/c(2+6)7},

since 1/3>1—60 and (1—4p)/3>1—4.

(i) If p>0 and 4p0+2>36, then f=(4+20)/3 and u*=0, since min{1/3,

1—0}>(1—4p)/3.

(iii) If 0<2/3 and p<0, then A=4/3 and u*=2"143%3|2,|% since

(1—4p)/3>1/3 and 1—6>1/3.

(iv) If 6=2/3 and p<0, then £=4/3 and ¢* is the unique positive solu-

tion of the equation u#*—27'3%cu—2713%|2,|2=0, since (1—4p)/3>
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1/3=1—6.
Remark 5.1. Let us consider the harmonic oscillator case

q(x) = er?—2, (¢>0 is a constant),
g,(x) =0.
If
2 = QI+
for some integer />0, then (***) is satisfied by
u,(x) =ka‘_‘:,’ dH, (c¥ix,) -+ Hy (c¥x,) exp(—27/cr?),

where k=(k,, -+, k,), | k| =k;+---+k,, k; is a non-negative integer (i=1, ---,
n), d, is a constant and H,(¢) is the Hermite polynomial of degree j. Then for
any >0 there exists some C,>0 and R;>0 such that for any |x|>R; we
have

[u,(x) |? < C; exp(—(1—e)v/er?) .

On the other hand we have, from the results given in Case II, for any solution

u(x) of (***) with q,(x)=cr?—2/+n)y/ ¢ and ¢,(x)=0 and for any e>0

;%LIE exp((1+e)\/cR?) S | 2dx = oo .
R x| <R+1
If />>1, then for any R>0 there exists some x& R” satisfying |x|> R and u,(x)
=0. So we cannot expect to have a pointwise estimate such as: for any solu-
tion u(x) of (***) with g,(x)=cr?—2, (3,;>0) and g,(x)=0, and for any >0
we have

lim exp((1+e)v/ ¢ | x|H)|u(x)|? = oo .
12>
Example 5.2. Let us consider
0:(x) = —cr®+V(x)—4,,
ga(x) = o(r*)—i,,

where ¢>0, 040, p, 2, and 2, are real constants, g,(x) is a complex-valued
function, and V(x) is a real-valued function satisfying

V(x) = o(r®) and 8,V(x) = o(r®™!) as |x|— oo .
Then we have

r*9,q,+2r* g+ {203 —a)} TIr® V2 g, |2
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= —c(2+0)r*+e1—22,r" 1 H-0(r***Y)
+{22(@—a)} "D\ o(r*)—ily |2 .

Noting that @46 —1>0 for some a <3 implies 2+6>0, we have the following.

Case I. 2,=2,=0.

Noting that a-+60—1>(40+3a—1)/2 is equivalent to a<<260—4p0—1, we
must examine the order relations between 3, 20 —4p—1 and (1—40)/3.

i) If 6=2(1+p) or p<—2, then >0 is arbitrary and #*=0, since
max {20 —4p—1, (1—4p)/3} =3.

(i) If 2(1+0)>60>2+40)/3, then f=2+2p—06 and u*=0, since

3>20—4p—1>(1—40)/3.

(iii) If p>—2 and 2+4+4p>30, then f=(4+2p)/3 and x*=0, since

3>(1—4p)/3>26—40—1.

Case II. 2,>>0 and 2,=0.

If 6<0, we must examine the order relations between 3, —1—4p and
(1—4p)/3. And if 6>0, we must examine the order relations between 3,
20—4p—1 and (1—4p)/3.

(i) If 6<0 and o< —1, then >0 is arbitrary and #*=0, since

—1—4p>3.

(i) If 6<0 and —1<p<—1/2, then f=2+42p and x*=0, since

3> —1—40>(1—40)/3.

(iii) If 6<0 and p> —1/2, then #=(4-+2p)/3 and x*=0, since

3>(1—40)/3> —1—4o0.

(iv) If 6>0 and 6>2(1+p), then F>0 is arbitrary and u*=0, since

20—4p—1>3.

v) If 6>0 and 2(1+p0)>0>(2+4p)/3, then f=2+20—0 and u*=0,

since 3>26 —4p—1>(1—40)/3.

(vi) If 2+40>36>0, then B=(4+2p)/3 and u«*=0, since

3>(1—4p)/3>20—4p—1.

Case I1I. 2,<0 and 2,=0.

If 6<0, we must examine the order relations between 1 and (1—40)/3.
If 6>0, we must examine the order relations between 3, 26 —40—1 and (1 —4p0)
/3.

(i) If 0<0 and p<—1/2, then f=1 and p*=+/—2,, since

(1—40)/3>1.

(iiy If 6<0 and p>—1/2, then f=(4-+2p)/3 and u*=0, since

1>(1—40)/3.



(i)
(iv)

™
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If 6>0 and 6>2(14p), then >0 is arbitrary and x*=O0, since
20—4p—1>3.

If >0 and 2(1+p)>60>(2+40)/3, then f=2-+2p—0 and up*=0,
since 3>20—4p0—1>(1—4p)/3.

If 2-+40>36>0, then f=(4+20)/3 and u*=0, since 3>(1—40)/3
>20—4p—1.

Case IV. 2,%0 and 2, R is arbitrary.
Note that a+60—1>max{(3a+4p—1)/2, (3a—1)/2} is equivalent to
a<min{20 —4o0—1,20—1}, and that «a—1>(3a¢—1)/2 is equivalent to a<<—1

(<1/3).
and 1/3

So if <0, we must examine the order relations between 3, 26 —1
(£(1—4p)/3). And if p>0, we must examine the order relations

between 3, 20 —40—1 and (1—40)/3 (L1/3).

)
(i)

(iii)
(iv)
)

(vi)

If p<0 and 6>2, then >0 is arbitrary and g*=0, since 260 —1>3.
If p<0 and 2/3<6<2, then f=2—0 and p*=47'c¢"Y(4—6%7|1,|%
since 3>20—1>1/3.

If 0<0 and 6=2/3, then p=4/3 and x* is the unique positive solu-
tion of the equation #*-+2743%cp—27"3%| ,|2=0, since 3>20—1=1/3.
If p<0 and 6<2/3, then f=4/3 and wu*=271/3%3|2,|%3, since
1/3>20—1.

If o>0 and 6>2(1+p), then F>0 is arbitrary and #*=0, since
20—4p—12>3.

If p>0 and 2(14p0)>60>(2-+40)/3, then f=2+42p—0 and p*=0,
since 3>20—4p—1>(1—40)/3.

(vii) If o>0 and 2-+40>36, then A=(4-+20)/3 and u*=0, since

3>(1—40)/3>20—4p—1.

Example 5.3. Let us consider

ql(x) = V(x) _ll s
g(x) = o(r)—iz,,

where 1,, 2, and e are real constants, g,(x) is a complex-valued function, and
V(x) is a real-valued function satisfying

Then

V(x) =o(1) and 8,V(x) =o(r™) as |x|— oo.

r®0,q,+2r* g+ {2u(3 —a)} Tir@*THE| g, |2
= =227 o(r® )+ {2u(3 —a)} @2 o(rP) —ily |2 .
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Case I. 2,=2,=0.

We must examine the order relations between 1 and (1 —40)/3.

(i If p<—1/2, then f=1 and u*=0, since (1 —40)/3>1.

(i) If o> —1/2, then f=(4+20)/3 and u*=0, since 1>(1—4p)/3.

Case II. 2,>0 and 2,=0.

We must examine the order relations between 3, —1—4p0 and (1 —4p0)/3

(i) If p<—1, then >0 is arbitrary and x*=0, since —1—4p>3.

(i) If —1<p<L—1/2, then f=2+2p and u*=0, since 3> —1—4p>
(1—40)/3.

(iii) If p>—1/2, then F=(4+4+2p)/3 and u*=0, since 3>(1—4p)/3>
—1—4p.

Case III. 2,<0 and 2,=0.

We must examine the order relations between 1 and (1—4p)/3.

(@) If p<—1/2, then f=1 and u*=+/—2,, since (1 —40)/3>1.

(i) If p>—1/2, then f=(4+2p)/3 and x«*=0, since 1>(1—40)/3.

Case IV. 2,7%+0 and 1, € R is arbitrary.

Noting that @—1>(3a—1)/2 is equivalent to a<<—1 (<1/3), we must

examine the order relations between 1/3 and (1 —40)/3.
(i) If p<0, then #=4/3 and u*=27""13%3|2,|%, since (1—4p)/3>1/3.
(i) If p>0, then f=(4-+20)/3 and u*=0, since 1/3>(1—4p)/3.

Example 5.4. Let us consider
7,(x) = r¥e, >+V(x)—4,,
9a(x) = o(r)—i,,

where 6, p, 2, and 4, are real constants, e R" (¢==0) is a constant vector, g,(x)
is a complex-valued function, and V(x) is a real-valued function satisfying

V(x) = o(r®) and 9,V(x) = o(r®"!) as |x|—oo.
Then

10,4142, Q=) R g |
= (2+0) <e, RDro+é=1po(r@ o) —22,r!
+{20(3—a)} DR o(r?) —id, |? .

Under the symbol of lim sup, <e, X> behaves as like as je|. So if 640, we
r>00

have the same results as ones given in Example 5.1 by replacing ¢ with |e|.
If 6=0, we have the following.
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Case I. 2,=2,=0 and 6=0.

(i) If p<—1/2, then =1 and u*=+/e[, since (1 —4p)/3>1.

(i) If o>—1/2, then f=(4+42p)/3 and p*=0, since 1>(1—4p)/3.

Case Il. 2,>0, 2,=0 and 0=0.

(i) If p<—1 and 2> |e|, then A>0 is arbitrary and #*=0, since
—1—4p>3.

(i) If —1<p<—1/2 and 2;>le|, then f=2+2p and u*=0, since
3> —1—4p=>(1—4p)/3.

(iiiy If p>—1/2 and 2> |e|, then f=(4+2p)/3 and x*=0, since
3>(1—4p)/3> —1—4p.

(iv) If p<—2 and 2,=|e|, then B>0 is arbitrary and x*=0, since
(1—40)/3=3.

(v) If p>—2 and 2;=|e|, then #=(4+2p)/3 and «*=0, since
3>(1—40)/3.

(i) If p<—1/2 and 0<2;<|e|, then A=1 and u*=+/|e|—2,, since
(1—4p)/3=1.

(vii) If p>—1/2 and 9<<2;<|e|, then B=(4-+2p)/3 and x*=O0, since
1>(1—40)/3.

Case I1I. 2,<0, 2,=0 and 6=0.

(i) If p<—1/2, then f=1 and u*=+/|e| —2,, since (1 —4p)/3>1.

(i) I p>—1/2, then f=(4+2p)/3 and p*=0, since 1>(1—40)/3.

Case IV. 2,70, A, € R is arbitrary and 6=0.

(i) If p<0, then B=4/3 and u*=2"1/3343|2,| %3, since (1 —40)/3>1/3.

(i) If p>0, then p=(442p)/3 and u*=0, since 1/3>(1—40)/3.

Example 5.5. Let us consider

9:(xX)+qx(x) = ar® sin br'+V(x)— (A4 +ily) ,

where a, b, o, 7, 4, and 4, are real constants satisfying ab=+0 and >0, and
V(x) is a real-valued function satisfying

V(x) =o(r°) and 9,V(x) = o(r°*™Y) as |x|—oo.

For this example we should consider the following both cases:

q:(x) = ar® sin br"+V(x)—2,,
g(x) = —iky,

@i(x) = —4,,
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q:(x) = ar® sin br"+V(x)—il, .
In the first case we have

r0,q,+2r" g+ {283 —a)} ¢ V| g, |?
= aqbrr®T " Tcos br'+o(r* ) —24,r% !

+{2u(3—a)} 7| 3|00
In the second case we have

r*8,q,+2r""'q,+ {263 —a)} Tr®U DA g, |2
= =20 '+ {2u(3—a)} | ar’sin br"+o(r’)—ii,|? .

Comparing two results which are obtained from these both cases, we choose the
better values of #>0 and #*>0. Then we have the following.

Case I. 2,=2,=0.

(i) If o< —2, then >0 is arbitrary and a*=0.

(i) If —2<o<3r—2, then f=(4-+20)/3 and u*=2""7343|q|23(2+0)*:,

(ili) If 0=37—2 and 0<r<27!|a|"?|b| %2, then f=2r and u*=
47 ab |,

(iv) If 0=3r—2 and v>27!|a|¥?|b| %2, then =27 and u*=
2=T/3 43 la| 23

(v) If 0>3c—2, then f=(2+0+7)/2 and u*=2|abr|*2+o+71)"%

Case II. 2,>0 and 4,=0.

(i) If 6+7>0 and ¢>37r—2, then f=(Q+0+7)/2 and u#*=
2|abz |Y3(2+-041) 732,

(i) If —1/2<o<3r—2, then A=(4-+20)/3 and u*=27"R33|q|P(2+
o)™,

(iii) If o+7>0and —1<<o<<—1/2, then #=2+20 and u*=0.

(iv) If o+7<0 or 6<—1, then >0 is arbitrary and x*=0.

(v) If o=—1/2 and v>1/2, then =1 and #* is the unique positive solu-
tion of the equation #3-+2,2—871a?=0.

(vi) If 6=3r—2 and >1/2, then f=2r and #* is some positive con-
stant, which is classified into several cases.

(vii) If o+7=0 and —1<0<0, then the determinations of F and u*
are classified into several cases.

Case III. 2,<0 and 4,=0.

(i) If 6+7>0 and 0>3r—2, then f=Q-+0+7)/2 and u*=
2| abr | Y (2+a+41)%2,
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() If —1/2<o<3r—2, then A=(4-+20)/3 and wu*=27"3|q|%32+
o)™,

(i) If o+7<0 or c<<—1/2, then A=1 and u#*=+/—12,.

(iv) If 6=—1/2 and t>1/2, then f=1 and u* is the unique positive
solution of the equation #%-+2,4—8 1a?=0.

(v) If o4+7=0 and —1/2<0<0, then f=1 and u*=2"12/|abr|—21,.

(vi) If 0=37—2 and v>1/2, then #=2r and u* is some positive con-
stant, which is classified into several cases.

Case IV. 2,740 and 1, R is arbitrary.

(i) If 6+v>2/3 and ¢>37r—2, then f=Q2-+0+7)/2 and x*=
2| abr |22 +041)732,

(i) If 0<o<3r—2, then A#=(4-+20)/3 and u*=2""7343|q|%3(2-+0)™45,

(iii) If o-+7<2/3 or 0<0, then f=4/3 and u*=2713343|2,|25,

(iv) If 0=0 and r>>2/3, then p=4/3 and u*=2"133"3{|g|21|2,|%}'~.

(v) If o+7v=2/3 and 0<<o<2/3, then #=4/3 and «* is the unique posi-
tive solution of the equation #°—2773%|gbr | u—2"13%|2,|2=0.

(vi) If 6=3r—2 and r>2/3, then f=2r and #* is some positive con-

stant, which is classified into several cases.

Remark 5.2. Let t<<0 in Example 5.5. Then we have

ar’sin br” = abr’t"+Vy(x),
Vi(x) = abret"{(br™) 'sin br'—1} ,

where V(x) satisfies
Vi(x) = o(r°*") and 9,Vy(x) = o(r°*"!) as |x|—oo .

So if V(x) in Example 5.5 satisfies a more strict condition than former one
V(x) = o(r°*") and 8,V (x) = o(r°*""!) as |x|—oco,

the problem is reduced to Example 5.1 or Example 5.2 by replacing o+ with
0.

Example 5.6. Let us consider

7:(x) = Vi(x)+Vy(x) =4y,
qo(x) = o(r’)—ily,

where o, 4, and 4, are real constants, g,(x) is a complex-valued function, and
Vy(x) is a real-valued function satisfying
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V(x> = o(r®) and 8,V,(x) = o(r®™?) as |x|—>oo

for some real constant 8. For a real-valued function ¥;(x) we assume:
(6) for any we Hi,o(2) (, where 2={x||x|>Ry},) we have V,|wl|’c
Lio(2) and (8,V,)|w|*E Lio(2);
(7) there exists some constant 7,< 2 such that for any & <r,+1

linl sup [r*8, Vy(x)+7re* 1V (x)]<0;

(8) for any v*>0 and any a<r,+1 there exist some constants 0<<b<1l
and C,>0 such that for any we H'(£) having a compact support in £

S(V‘)' lw]zdxgbg |7 w|2dx+ CZSexp(u*r“““”z) |w]|2dx .
2 Q Q2
Noting that we have (f/4g)_(x)<(f)_(x)+(g)_(x) for any real-valued functions

f(x) and g(x), g,(x) and ¢,(x) given above satisfy (G). Let for a<<r,+1
M = {x>0|lim sup [r*8,q,+ro"'q,+(Q2u(3—a))~'ré* V2| g,|7]
<4 G —af(ryt1—a)}
M = {¢>0]|lim sup [o(r*+0™1) —r,r®!
+QuB—a) D o(rf) —ik,] 7]
<4WG—af(ro1-a)} ,
u* =inf M and p** =inf M .

Then (F)" in Theorem 1.3 is satisfied by the above g,(x), g,(x) and r(x)=r,.
By Theorem 1.3 we have for any u(x) satisfving (***)

zlei—glo exp(2u4R?) S |u|2dx = oo,
R<|x|<R+1
where f=(3—a)/2>(2—r,)/2=>0 by a<r,+1<3, and x> u* is arbitrary. Now
we choose £ as small as possible under the conditions that A7 is not an empty
set and a<<ry+1(<3). After the determination of @ we calculate u** (= u*
>0).
Case I. 7,,=2,=0.
We must examine the order relations between 7,+1, 1—6 and (1 —4p0)/3.
(i) If 0<—y, and 40<—(37,+2), then B>(2—r,)/2 is arbitrary and
#** =0, since min{l —0, (1—40)/3} >7r,—+1.
(i) If 6> —7; and 360>4p+2, then f=(2+6)/2 and u**=0, since r,+
1>1—0 and (1—4p)/3>1—6.
(iii) If 40>—(3r,+2) and 30 <4p+2, then f=(4--2p)/3 and u**=0,
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since min{r,-+1, 1—0}>(1—4p)/3.

Case II. 7,<<0, 2,0 and 1,=0.
Since lim r®*~'=0{for any a <7,+1 (<1), we have the same results as Case 1.

>0

Case III. 7,>0, 2,>0 and 2,=0.

If 6>0, we must examine the order relations between (ro+1>1>) 1—6
and (1—4p)/3. And if <0, we must examine the order relations between
7o+1 (>1), —1—4p and (1—40)/3.

(i)

(i)

(iif)

@iv)

)

If 0>0 and 360>4p-+2, then #=(2-+0)/2 and ¢** =0, since (1 —40)/3
>1-40.

If 40+2>360>0, then f=(4+20)/3 and p**=0, since 1 —6>
(1—40)/3.

If 6<0and 40< —(7,+2), then f>(2—7r)/2 is arbitrary and u**=0,
since —1—4p>7,+1.

If <0 and —(7p-+2)<<do<—2, then B=2p+2 and u**=0, since
ro+1>—1—4p>(1—4p)/3.

If <0 and p>—1/2, then f=(4-+2p)/3 and #**=0, since 7,+1
>(1—4p)/3> —1—4p.

Case IV. >0, 2,;<<0 and 2,=0.
We must examine the order relations between 1 (<<7y,+1), 1—6 and

(1—40)/3.

@

(i)

(iii)

If 6>0 and 30 >40-2, then f=(2-+6)/2 and x**=0, since (1—40)/3
>1—6 and 1>1—6.

If p>—1/2 and 4p+2>36, then f=(4420)/3 and x**=0, since
min{l, 1—0}>(1—40)/3.

If <0 and o< —1/2, then f=I1 and a**=+/—2,, since

min{(1 —4p)/3, 1 —6} >1.

Case V. —2/3<7,<2, 2,%0 and 1, € R is arbitrary.
Noting that a—1>(3a¢—1)/2 is equivalent to a<<—1 (<1/3<r,+1), we
must examine the order relations between 1/2, 1 —0 and (1 —40)/3.

)
(ii)

(i)

If 6>2/3 and 30>4p-+2, then A=(2+40)/2 and x**=0, since 1/3
>1—6 and (1—4p)/3>1—0.

If p>0 and 4042> 30, then f=(4-+2p}/3 and p**=0, since min{1/3,
1—0}>(1—4p)/3.

If 6<2/3 and p<0, then f=4/3 and wu**=2"83343(3;+-2)713|2,| %3,
since min{(1 —40)/3, 1 -6} >1/3.

Case VI.  7,<—2/3, 2,7=0 and 2, R is arbitrary.
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Since lim r®~'=lim r@®*~Y2=0 for any a@<yr,+1<1/3, we have the same

7> 7>

results as Case I.

Remark 5.3. If Vy(x) is a homogeneous function of degree —r, then
we have 8,V,(x)+ror 1Vi(x)=0. Let

Vix) = 33 Z x93 Z | x®O—xD |7,
1<is N 1Si<jSN

where Z; and Z;; are real constants, xX?€R?, and x=(x®, ---, xXM)eR¥.
This Vi(x) is a homogeneous function of degree —1. Then Vy(x) satisfies
(6), (7) and (8) with ry=1.
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