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A Gauge Theory for the Kadomtsev-
Petviashvili System
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Abstract

A Lagrangian formalism of scalar fields is considered and a new concept of ‘‘connec-
tion” is introduced. By this a gauge-theoretic understanding of the Sato theory on the K.-P.

system is obtained. Our gauge group G is the group consisting of pseudo-differential oper-
ators of non-positive orders with certain growth conditions. Then it can be concluded that
the space R* of elements of G_ giving solutions of the K.-P. system defines a flat R*-connec-
tion which we call the K.-P. connection. This connection can be regarded as a special gauge
field.

Imtroduction

It is well known that various soliton equations can be obtained by using
the theory of isospectral deformations of linear differential operators. A
remarkable unification of soliton equations has been established by M. and
Y. Sato [5] in terms of isospectral deformations of D=d/dx in the category
of pseudo-differential operators. This unified system of equations is called
the Kadomtsev-Petviashvili system (=K.-P. system). They discovered the
surprising fact: The space of solutions of the K.-P. system makes the Grass-
mann manifold of infinite dimension and moreover, any solution of the K.-P.
system can be reduced to that of a system of certain linear equations. Several
attempts of understandings on the Sato theory and its generalizations have
been presented. Some of them are the method of Riemann-Hilbert trans-
forms [10], the method of group-decompositions [4], [7] and the field-theoretic
method [1]. The co-adjoint orbit method for the K.-P. system is given by
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using groups of pseudo-differential operators [11]. Out attempt which we
present here is a new one, which we call a gauge-theoretic understanding.
Although the method in [11] is based on the notion of Hamiltonians rather
than connections, the result obtained there is in close relation to our discussion.

In this paper, we see that the K.-P. system can be understood in the view
point of Uchiyama’s gauge theory [9]. We note that our gauge group is an
infinite dimensional Lie group. Hence our gauge theory for soliton equations
is contrasted with that of Yang-Mills equations and nonlinear Heisenberg
equation in dimensions of their gauge groups [3]. First, we consider the
Lagrangian action:

- SR%Dwdx (D — dJdx)

for scalar fields v, ¥, i.e., wave functions on the real line £. We analyse the
symmetry of £ and obtain as the gauge group of the first kind a group con-
sisting of invertible pseudo-differential operators with constant coefficients
of the form:

eorde, D"+ Dt cgt oo Dol DT oo

Secondly, we apply the Uchiyama’s gauge theory to our Lagrangian formalism.
In this case, the gauge group of the second kind becomes a group consisting
of invertible pseudo-differential operators with function coefficients of the form:

o2, (D" - () D+ Up(X)+ (XD ooty (R) Do

Then in order to obtain a new Lagrangian action which is invariant under
this group, a connection, i.e., gauge field, necessarily arises in our considera-
tion. It has a worth mentioning that pseudo-differential operators with nega-
tive orders, extended from usual differential operators, may be introduced
as elements of the gauge group of the first or the second kind.

In Section 1, from a gauge group of pseudo-differential operators we
introduce a new concept of ‘“‘connection”. Here we have to pay attention
to the fact that our connection has been defined not only for a subgroup but
also for a special subset R of the gauge group, although R does not admit
a structure of subgroup. We prove that the decomposition law of pseudo-
differential operators into the parts of ncn-negative and negative orders gives
rise to the flat connection (Theorem 1). This is our first step to a gauge-
theoretic understanding cn the K.-P. system. In Section 2, we shall treat the
Lagrangian action of scalar fields v, ¢ with infinitely many parameters
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t:(Tl, Iy, "'):

L= Swa/fdx, d =3 /o1,

For this Lagrangian action we consider the gauge groups G,, G of the first
and the second kind, and then G-connections. Then we can conclude that
the space R* of elements of G giving solutions of the K.-P. system defines the
flat R*-connection which we call the K.-P. connection (Theorem 2).

Our discussions show that the space of solutions of soliton equations
determines a special gauge field. Hence, we may expect to extend our dis-
cussions to the Yang-Mills equation and nonlinear Heisenberg equation by
a gauge-theoretic version of the Sato theory on the Minkowski space-time [3].

The authors would like to express their hearty thanks to Profs. I. Furuoya,

J. £awrynowicz, S. Sakai, L. Wojtczak, and J. Yamashita for their valuable
discussions.

§1. A Lagrangian Formalism and R-connections

We consider complex valued functions defined on the real line and a col-
lection of pseudo-differential operators. A pseudo-differential operator is
called an operator simply. Let ¢ and v+ denote two functions. Here ¢+ may
not be the complex conjugate of .

First, we deal with a Lagrangian action for 4~ and v given by
(.1 S FDydx, D —dldx.
R

For a function v and an operator v (= -1), identified with the function
v, we act an operator W on the pair as

(12) Yoy = W, o =W

Under this action the function ¥y is invariant. We are interested in a set of
invertible operators W which makes a group G, and preserves +Dvr invariant,
equivalently satisfies WD=DW. Choices of such groups are not unique.
One of possible groups can be obtained by

(1.3) Gy ={W|W = 3=*= ¢, D" with constant coefficients} .
For an invertible operator W we put

(1.4) Yw =Wy, ¥7 =yW.
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Proposition (1.5). The Lagrangian action
(1.6) L= S ' Dyydx, WEG,
R

is invariant under the action of the group G,.

Proof. We choose arbitrary elements W and W’ of G, and set ¢ by
W=¢W’, namely, 6=WW'™". Since

(1.7) Vw =Yy, T =977,
we obtain ¥ Dyry =V 6" Dgryr = B Dfry.

The group G, is called the gauge group of the first kind. Next we proceed
to a group

(1.8) G = {W|W = 30z*% u,(x)D" with function coefficients} .

We call an element of G a formal pseudo-differential operator [5]. G is called
the gauge group of the second kind. In order to obtain exact mathematical
meanings, we have to restrict our considerations to special groups. For exam-
ple, we may choose a group G consisting of elements W with the following
condition: Every u,(x) is analytic function and there exists an integer
such that ord u,(x)=n—n, for any sufficiently large » ([4], [7], [8]). For a com-
plex valued analytic function u with the Taylor expansion

U= CpX"+Cpy X" een (c,£0),

the order of u is defined by ord u=n. We have to pay attention to the fact
that the Lagrangian action _[j is not invariant under G, because the commutator
[D, W]=DW—WD does not vanish identically. Hence we note that the
following equalities hold:

(1.9) [D, W] = 2 (Du,(x))D" for W =X u,(x)D"
and
(1.10) WDW ™! = —[D, WIW™*+D for wWea.

The Uchiyama gauge theory [9] says that in order to get a new Lagrangian
action which is invariant under the group of the second kind, a connection,
i.e., a gauge field, has to be introduced. Then we can make the following
definition:

Definition (1.11). Let G be a group of operators described in (1.8) and
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let R be a subset of G. A collection {2(W)| W &R} of operators is called an
R-connection if (1) there exists a pair (G,, p) constituted with an injective set-
map p: G—G of a group G, to G such that R=p(G,) and (2) Lo(W)=D—(W)
satisfies

(1.12)  Ly(W) = ¢Lo(W' g™ for W, W' &R where W =¢W'

In particular, we call it a G-connection if in addition p is a group-isomorphism.
The following are examples of G-connections:
Examples (1) 2(W)=D. (2} 2(W)=[D, WIW™, in this case

(1.13) LWY=Ly(W) = WDW™".

(3) Let G’ be a subgroup of G and ¢: G'—=G be the natural inclusion map-
ping. If (W) (We&G) is a G-connection, then 2(W) (W &G’) becomes a
G'-connection.

Immediately from (1.12) we see that if £,(W) and £,(W) are R-connec-
tions, then the relation

(1.14) L(W)—2(W) = ¢(£(W')— (W)™

holds for W, W'eR where W=¢W’. This fact and Example (2) show that
operators .é( W) given by
(1.15) Lé(W) = WD, WIW—2W)w for WeR

satisfy the condition J:?(W)zfl(W’) for any pair of W and W’ of R, namely
Aé( W) does not depend on a choice of We&R. Therefore, we may write as
f?:!g(W). We call @ the connection form determined by £2(W). An R-
connection is called to be flat if its connection form vanishes identically, name-
ly 2Q(W)=[D, W1Ww .

By an application of Uchiyama theory to the Lagrangian action (1.6),
we obtain

Proposition (1.16). Let 2(W) be a G-connection. The Lagrangian action
(L.17) L= S W (D—2(W)Wrydx wedag
R

is invariant under the group G.

Proof. For arbitrary elements W and W’ where W=¢ W’ in G we have
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TV LW Wy = 57 6 H LW Ve = 0 VLW Wy
which implies the invariance of . under G.

The following group is important for a study on the K.-P. system. We
put

(1.18) G_ = {3 v,()D"EG |n(x) = 1} .
n=0
Further we make the following definition:

Definition (1.19).

g = '{,‘-:E_w uﬂ(x)‘D”} H

(1.20) R -
g —{S @D} and g —{Su, @D}

Then the following decomposition holds:

1.2 g=g.+g_,

which implies that any element S of g has the decomposition: S=(S).+(S)-
for (). =g, and (S)_=g_. Then we can prove

Theorem 1. (W) (W &G.) is the flat G_-connection if and only if
(1.22) o(W) = —(L(W))- for Weda._.
Proof. For W, W &G_, where W=¢W’, it holds that

(L))~ = @@LV ™) = (SLV" )26 +B(LV"))_67")-
= (6D~ _+(L(W")) ™"

(—I[D, gl¢7'+D)_+o(L(W))_¢™"  (by (1.10)

= —D+¢De " +-d(L(W') 87",

which implies D—o(W)=¢(D—ao(W’')¢~ . Hence o(W) is a G_-connection.
Comparing the non-positive orders of the both sides of (1.10), we obtain
o(W)=—(L(W)).=[D, WIW™, ie., o(W) is flat. Conversely, if o(W)
(W e&G.) is the flat G_-connection, then o(W) reduces to o(W)=[D, W]W !
=—(L(W))_ by (1.10).

§2. A Gauge Theory for the K.-P. System

We consider a Lagrangian formalism for scalar fields, v=v(x, t) and
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¥ = (x, t) defined on the real line (x&)R with infinitely many parameters

t= (th f3, '”) 9
and for some collections of operators including D=d/dx and D,=3d/0¢t,. The

total differential operator with respect to the parameters is denoted by

2.1) d=3D,dt,.

n=1

The Lagrangian action which we treat here is given by

2.2) L) = Sﬂa(x, ) (x, 1)dx

for functions v+ and . We proceed to our discussions analogous to the
one done in the previous section. We are interested in invertible operators
W=WI(x, t), ccnsidering together with the action law for ¢ and v-:

23) Vo =W (=), T T =W (=P,

Hence, the function v is invariant under this action.
First, we consider a group

(2.4 Gy ={W|W = 30z*2 ¢ (x)D"} .

In this case, we observe that coefficients c,(x) are constant with respect to .
Immediately, from Wd=dW we have

Proposition (2.5). The Lagrangian
@6 L= dvyax, Wb,

possesses the symmetry of the group G,.
Following the Uchiyama theory, next we deal with a group
Q.7 G ={W|W = 30z 2 u,(x, t)D" with the property (*)}

™* u,(x,t) (n=0, 41, 42, --+) are analytic functions of x and ¢ satisfying
the following growth condition: There exists an integer n, such that
ord u,(x, t)=n—n, for any sufficiently large n

(see [4], [7], [8]). The Lagrangian action (2.6) gives rise to a gauge group G,
of the first kind and a gauge group G of the second kind respectively. .[, is
not invariant under G, since commutators
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[Ds W1 =3 (Dptty(x, 1)D" (m=1,2, )

for W=3Xu,(x, t)D", do not vanish identically, i.e., [d, W]==0. Hence we
have to make

Definition (2.8). Let R be a subset of the group G described in (2.7). A
set {2(W)|W &R} of operators is called an R-multiconnection (or, simply R-
connection) if (W) has the form 2(W)=>.,2,W)dt, whose 2,(W) is a con-
nection with a range R with respect to D,:

Dn—‘gn(W) = ¢(Dn_‘gn(W’))¢_1

for W and W'ER, where W=o¢W' ($EG). 2,(W) is called the partial con-
nection of 2(W).

We note that an R-multiconnection (W) implies

d—8(W) =33, 8(D,— 2, (W)™ = (d—2(W))p™

for W, W'€R with W=¢W".
By use of Uchiyama’s theory, we obtain

Proposition (2.9). Let 2(W) be a G-connection. The Lagrangian
L= 5 T A—2W)rydx  for WeEG
R

is invariant under the group G.
We set
(2.10) G, ={>0zt"u,D"€G|u,£0}, G_={30zi~u_,D"EG|u=1}.

Corresponding to G, G, and G_, we consider the spaces of operators
g={3=*>u,D"}, and its complementary subspaces
(2.11) g = {30020 uu(x, 1)D"}, §- ={28ZF u_(x, 1)D™"},
that is the direct sum §=g,+§_. Hence, any element X &g is writfen as
X=(X)++(X)_ for (X), €5, and (X).<g§..

Here we recall the K.-P. system. The operator L=WDW ™! for WeG_
derived from the flat connection implies that L"=WD"W ! and its decomposi-

tion L"=(L"),-+(L").. In this case, (L"), is the n-th order differential operator.
The K.-P. system is a system of equations defined by

(2.12) OLBt, =[(L"), L] (n=1, 2, -+).



A GAUGE THEORY FOR THE K.-P. SYSTEM 1127

When W (€G.) is an element described in the solution L=WDW ! of the
K.-P. system, we shall say that W gives a solution of the K.-P. system. It
is known ([1], [5], [6]) that an element W of G_ gives a solution of the K.-P.
system if and only if W satisfies

(2.13) dWot,+(L"(WH.W =0 (n=1,2,:).
The following theorem is our main result:

Theorem 2. Let R* be the space of all elements of G_ each of which gives
a solution of the K.-P. system. Then the set {2, (W)| W & R*} defined by

(2.14) Qe (W) =3, 2,W)dt,, £,W)=—(L"W))._
becomes the flat R*-connection (say, the K.-P. connection).

Remark. (1) The K.-P. connection is a direct generalization of the
connection given in Theorem 1, when we identify ¢ with x and set 7,=0
(n=2, 3,:-:). (2) The flatness of the K.-P. connection is well known as the
Zakharov-Shabat equation.

For the proof of this theorem we need the following two lemmas:

Lemma 1 (Mulase’s decomposition theorem [4]). The group G described in
(2.7) can be decomposed into

G=G_-G,,

in a sense that any element g& G determines the unique pair of elements
2.€6G_ and g,=G, such that g=g,+ g;.

Lemma 2 ([4], [6]). There exists a one-to-one correspondence between the
space R* and the space Q of solutions U of the initial value problem:

(2.15) aU/ot, = [D", Ul, Ul = U,EG.,

where G_ is given in (1.18). The exact correspondence is described in the fol-
lowing manner: A solution U of (2.15) determines an element W of G_ by the
decomposition U=W ™'V in Lemma 1. Then L(W)=WDW ™ gives a solution
of (2.12). Conversely, for a solution W of (2.12), we can find a unique element
V of G.. such that V | ,_,=identity and U=W =V gives a solution of (2.15).

The proof of Theorem 2. Let U, be any element of G_. U, determines
a unique solution U (€G_) of (2.15) by Lemma 2. U can be decomposed
uniquely as U=W 'V with We&G_ and V&G, by Lemma 1. This gives rise



1128 S. KANEMAKI, W. KROLIKOWSKI AND O. SUZUKI

to a mapping o: G_—>G_ which maps U, to W. This mapping o is injective
(4], [6]). Then we see that R¥=p(G_). Next we show that 2x (W) becomes
an R*-connection. Let W and W’ be elements of R* and set ¢ (4G _) by
W=¢W’. It follows from

ow|ot, = (0¢/ot,)W' (@ W'[dt,)
and from (2.13) that
—(L(W))-W = (08/0t, )W —¢(L"(W")-W' .
Hence
o, (W) = (89/0t,) ™' +dw, (W)™

holds, which implies that w,(W) (W & R¥) is a partial R*-connection. There-
fore, 25 (W) (W ER*) is an R*-connection. The flatness of the connection
follows from (2.13):

0 = 3, @W/dt, +(L'(W))-W)dt, = 2, (0 W[o1,—w (W)W,
= [d, W]— 2. (W)W .
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