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A Theory for the

By

Shoji KANEMAKI*, Wiesfew KROLIKOWSKI** and Osamu SUZUKI***

A Lagrangian formalism of scalar fields is considered and a new concept of "connec-
tion" is introduced. By this a gauge-theoretic understanding of the Sato theory on the K.-P.
system is obtained. Our gauge group G_ is the group consisting of pseudo-differential oper-
ators of non-positive orders with certain growth conditions. Then it can be concluded that
the space R* of elements of <5_ giving solutions of the K.-P. system defines aflat 7?*-connec-
tion which we call the K.-P. connection. This connection can be regarded as a special gauge
field.

It is well known that various soliton equations can be obtained by using
the theory of isospectral deformations of linear differential operators. A
remarkable unification of soliton equations has been established by M. and
Y. Sato [5] in terms of isospectral deformations of D=d/dx in the category
of pseudo-differential operators. This unified system of equations is called
the Kadomtsev-Petviashvili system (=K.-P. system). They discovered the
surprising fact: The space of solutions of the K.-P. system makes the Grass-
mann manifold of infinite dimension and moreover, any solution of the K.-P.
system can be reduced to that of a system of certain linear equations. Several
attempts of understandings on the Sato theory and its generalizations have
been presented. Some of them are the method of Riemann-Hilbert trans-
forms [10], the method of group-decompositions [4], [7] and the field-theoretic
method [1]. The co-adjoint orbit method for the K.-P. system is given by
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using groups of pseudo-differential operators [11]. Out attempt which we
present here is a new one, which we call a gauge-theoretic understanding.
Although the method in [11] is based on the notion of Hamiltonians rather
than connections, the result obtained there is in close relation to our discussion.

In this paper, we see that the K.-P. system can be understood in the view
point of Uchiyama's gauge theory [9]. We note that our gauge group is an
infinite dimensional Lie group. Hence our gauge theory for soliton equations
is contrasted with that of Yang-Mills equations and nonlinear Heisenberg
equation in dimensions of their gauge groups [3]. First, we consider the
Lagrangian action:

X = \ -fiD^dx (D = d/dx)

for scalar fields ^, T/T, i.e., wave functions on the real line R. We analyse the
symmetry of X and obtain as the gauge group of the first kind a group con-
sisting of invertible pseudo-differential operators with constant coefficients
of the form:

Secondly, we apply the Uchiyama's gauge theory to our Lagrangian formalism.
In this case, the gauge group of the second kind becomes a group consisting
of invertible pseudo-differential operators with function coefficients of the form :

•••+II,(*)i/+..-+M1M^

Then in order to obtain a new Lagrangian action which is invariant under
this group, a connection, i.e., gauge field, necessarily arises in our considera-
tion. It has a worth mentioning that pseudo-differential operators with nega-
tive orders, extended from usual differential operators, may be introduced
as elements of the gauge group of the first or the second kind.

In Section 1, from a gauge group of pseudo-differential operators we
introduce a new concept of "connection". Here we have to pay attention
to the fact that our connection has been defined not only for a subgroup but
also for a special subset R of the gauge group, although R does not admit
a structure of subgroup. We prove that the decomposition law of pseudo-
differential operators into the parts of non-negative and negative orders gives
rise to the fiat connection (Theorem 1). This is our first step to a gauge-
theoretic understanding en the K.-P. system. In Section 2, we shall treat the
Lagrangian action of scalar fields ^3 ty with infinitely many parameters
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For this Lagrangian action we consider the gauge groups <?0, G of the first

and the second kind, and then (/-connections. Then we can conclude that

the space R* of elements of G giving solutions of the K.-P. system defines the

flat ^'-connection which we call the K.-P. connection (Theorem 2).
Our discussions show that the space of solutions of soliton equations

determines a special gauge field. Hence, we may expect to extend our dis-

cussions to the Yang-Mills equation and nonlinear Heisenberg equation by

a gauge-theoretic version of the Sato theory on the Minkowski space-time [3].

The authors would like to express their hearty thanks to Profs. I. Furuoya,

J. Lawrynowicz, S. Sakai, L. Wojtczak, and J. Yamashita for their valuable
discussions.

§ 1. A Lagrangian Formalism R-connections

We consider complex valued functions defined on the real line and a col-

lection of pseudo-differential operators. A pseudo-differential operator is

called an operator simply. Let -^ and ^ denote two functions. Here \js may
not be the complex conjugate of T/T.

First, we deal with a Lagrangian action for ^ and -y> given by

(1.1) \^£hfrdx9 D = d/dx,

For a function ^ and an operator & (=^« 1), identified with the function

i?, we act an operator W on the pair as

Under this action the function *\jsty is invariant. We are interested in a set of

invertible operators W which makes a group G0 and preserves T/rDi/r invariant,

equivalently satisfies WD=DW. Choices of such groups are not unique.

One of possible groups can be obtained by

(1.3) G0 = {W| W = S«=i" cnD
tt with constant coefficients}.

For an invertible operator W we put

(1.4)
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Proposition (1.5)0 The Lagmngian action

(1.6) X
JR

is invariant under the action of the group G0.

Proof. We choose arbitrary elements W and W of G0 and set 0 by
W=<f> W9 namely, 0 - WW'~\ Since

(1.7) ^=0^,, ^=^/0'1,

we obtain ^w D^w=^w/ <j>-lD<j>^wf = <fiw'D^W'.

The group G0 is called the gauge group of the first kind. Next we proceed
to a group

(1.8) G = {W | W = 2":-~ un(*)Dn with function coefficients} .

We call an element of G a formal pseudo-differential operator [5], G is called
the gauge group of the second kind. In order to obtain exact mathematical
meanings, we have to restrict our considerations to special groups. For exam-
ple, we may choose a group G consisting of elements W with the following
condition: Every un(x) is analytic function and there exists an integer 7?0

such that ord un(x)^n—nQ for any sufficiently large n ([4], [7], [8]). For a com-
plex valued analytic function u with the Taylor expansion

u = cnx
n+cn+lx"+1+°<> (<Vf=0),

the order of u is defined by ord u=n. We have to pay attention to the fact
that the Lagrangian action J?0 is not invariant under G, because the commutator
[D, W]=DW—WD does not vanish identically. Hence we note that the
following equalities hold:

(1 .9) [D, W] = S (Dun(x))D* for W = S un(x)Dn

and

(1.10) WDW~l = -[D, W]W~l+D for W<=G .

The Uchiyama gauge theory [9] says that in order to get a new Lagrangian
action which is invariant under the group of the second kind, a connection,
i.e., a gauge field, has to be introduced. Then we can make the following
definition:

Definition (1.11). Let G be a group of operators described in (1.8) and
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let R be a subset of G. A collection {Q(W)\ W^R} of operators is called an
R-connection if (1) there exists a pair ((j1? p) constituted with an injective set-
map p: Gl->G of a group Gl to G such that R=p(G^ and (2) LQ(W} = D— Q(W)
satisfies

(1.12) LQ(W)=^LQ(W')^1 for W.W'^R where W =

In particular, we call it a G-connection if in addition p is a group-isomorphism,

The following are examples of G-connections :

Examples (1) Q(W)=D. (2) Q(W)=[D9 W]W~\ in this case

(1.13) L(W) = LQ(W} = WDW'1 .

(3) Let G' be a subgroup of G and t: G'-^G be the natural inclusion map-
ping. If Q(W) (W^G) is a G-connection, then Q(W)(W^G') becomes a
(/'-connection.

Immediately from (1.12) we see that if Q^W) and Q2(W) are ^connec-
tions, then the relation

(1.14) ^(W)-^2(W) = #(^1(^
/)-^2(^

/))#"1

holds for W, W'&R where W=<I>W'. This fact and Example (2) show thai
operators Q(W) given by

(1.15) Q(W) = W~l([D, W]W-*-Q(W))W for W^R

satisfy the condition @(W)=@(W) for any pair of W and W of R, namely
Q(W) does not depend on a choice of W^R. Therefore, we may write as
Q=Q(W}. We call Q the connection form determined by Q(W). An R-
connection is called to be flat if its connection form vanishes identically, name-
ly Q(W)=[D, W]W~\

By an application of Uchiyama theory to the Lagrangian action (1.6),
we obtain

Proposition (1.16). Let &(W) be a G-connection. The Lagrangian ad ion

(1.17) £=

is invariant under the group G.

Proof, For arbitrary elements W and W where W=-<t>W in G we have
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which implies the invariance of X under G.

The following group is important for a study on the K.-P. system. We
put

(1.18) <?_ = {23 vn(x)D-"SEG | v&c) = 1} .
B = 0

Further we make the following definition:

Definition (1.19).

9={ S «.(*)£"} ,
(1.20)

8+ = { S «,(*)J>"} and g_ = { S u..(x)D-} .

Then the following decomposition holds:

(1-21) 9

which implies that any element S of g has the decomposition: S=(S)++(S)_

for (S)+eg+ and (£)_ eg_. Then we can prove

Theorem 1. co(W) (W ̂ GL) w the flat G ̂ -connection if and only if

(1.22) Q>(FF) - -(L(W))_ for W<^G_.

Proof. For W, JFeGL, where W=<t>W, it holds that

= (-[A 0]0"1+^)-+0W^))-0"1 (by (1.10))

which implies D—co(Wr)=(f)(D—o)(Wf)}^~1. Hence co(W) is a GL -connection.
Comparing the non-positive orders of the both sides of (1.10), we obtain

= -(L(W))-=[D, W]W~\ i.e., o)(W) is flat. Conversely, if o>(W)
.) is the flat G_ -connection, then <o(W) reduces to o)(W)=[D, W]W~l

§ 28 A Gauge Theory for the IL-P. System

We consider a Lagrangian formalism for scalar fields, ^=^/r(x9 t) and
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fi=>fi(x, t) defined on the real line (x^)R with infinitely many parameters

t=(tl9t2, • • • ) ,

and for some collections of operators including D=d/dx and Dn=d/dtn. The

total differential operator with respect to the parameters is denoted by

The Lagrangian action which we treat here is given by

(2.2) X(t) = { &(x, t)di/r(x, t)dx
JR

for functions ^ and ^. We proceed to our discussions analogous to the

one done in the previous section. We are interested in invertible operators

W= W(x9 t), considering together with the action law for ̂  and ^:

Hence, the function fi^r is invariant under this action.

First, we consider a group

(2.4) G0 - { W | W = S;;=-~ cn(x)Dn} .

In this case, we observe that coefficients cn(x) are constant with respect to t.

Immediately, from Wd=dW we have

Proposition (2.5). The Lagrangian

(2.6) X, =
JM

possesses the symmetry of the group GQ.

Following the Uchiyama theory, next we deal with a group

(2.7) G={W\W = S^il^ un(x, t)Dn with the property (*)}

(*) un(x, 0 (n=Q, ±1, ±2, ••-) are analytic functions of x and t satisfying

the following growth condition: There exists an integer n0 such that

ord un(x, t)"^n—n0 for any sufficiently large n

(see [4], [7], [8]). The Lagrangian action (2.6) gives rise to a gauge group GQ

of the first kind and a gauge group G of the second kind respectively. J?Q is
not invariant under G, since commutators
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[Dm, JF] = S (Dmun(x, t))Dn (m = 1, 2, -.-)

for W=^un(x, t)Dn, do not vanish identically, i.e., [rf, FF]=(=0. Hence we
have to make

Definition (2eB)0 Let R be a subset of the group G described in (2.7). A

set {Q(W)\W^Ffy of operators is called an R-multiconnection (or, simply R-
connection) if Q(W) has the form Q(W)=^nQn(W)dtn whose @n(W) is a con-

nection with a range R with respect to Dn :

for W and W'<=R, where W=$W (0eG). &n(W) is called the partial con-
nection of

We note that an ^-multiconnection Q(W) implies

d-Q(W) =

for W,W'^R with W=4>W.
By use of Uchiyama's theory, we obtain

Proposition (209)e Let Q(W) be a G -connection. The Lagrangian

-C= I $w(d-Q(W)ypwdx for

is invariant under the group G.

We set

(2.10) G+

Corresponding to G9 G+ and GL, we consider the spaces of operators
Q==ilLln~-~ unD

n}, and its complementary subspaces

(2.11) g+ = {s;:r un(x, t)Dn} , g_ = {s;:r u-n(x, t)D~«} ,

that is the direct sum g =§++§_. Hence, any element Zeg is written as
X=(X)++(X)_ for (X)+^Q+ and (X)_GEg_.

Here we recall the K.-P. system. The operator L=WDW~l for J^eG_
derived from the flat connection implies that Ln = WDnWl and its decomposi-
tion Ln=(Ln)++(Ln)_. In this case, (Ln)+ is the n-th order differential operator.
The K.-P. system is a system of equations defined by

(2.12) dL/dtn = [(Z,")+, L] (/i = l, 2, ..-) .
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When W (eG_) is an element described in the solution L=WDW~l of the
K.-P. system, we shall say that W gives a solution of the K.-P. system. It
is known ([1]9 [5], [6]) that an element W of (5_ gives a solution of the K.-P.
system if and only if W satisfies

(2.13) 8Wjdtn+(Ln(W)).W = 0 (n = 1, 23 .-) .

The following theorem is our main result :

Theorem 2. Let R* be the space of all elements of GL each of which gives
a solution of the K.-P. system. Then the set {QK.P(W) \ W^R*} defined by

(2.14) ®K

becomes the flat R* -connection (say, the K.-P. connection).

Remark, (1) The K.-P. connection is a direct generalization of the
connection given in Theorem 1, when we identify ^ with x and set fn=®
(n=2, 3, •••). (2) The flatness of the K.-P. connection is well known as the
Zakharov-Shabat equation.

For the proof of this theorem we need the following two lemmas :

Lemma 1 (Melase9§ decomposition theorem [4])9 The group G described in
(2.7) can be decomposed into

in a sense that any element g^G determines the unique pair of elements
L andg2^G+ such that g=gl°g2.

Lemma 2 ([4]9 [6])» There exists a one-to-one correspondence between the
space R* and the space Q of solutions U of the initial value problem :

(2.15) dU/dt. = [Dn, U], U i ,_ = £70eG_ ,

where G_ is given in (1.18). The exact correspondence is described in the fol-
lowing manner'. A solution U of (2.15) determines an element W of G_ by the

decomposition U=W~1V in Lemma 1. Then L(W) = WDW~1 gives a solution
of (2.12). Conversely, for a solution W of (2.12), we can find a unique element
V ofG+ such that V \ t=Q=identity and U=W~1V gives a solution of (2.15).

The proof of Theorem 2. Let U0 be any element of G_. UQ determines
a unique solution U (£iG_) of (2.15) by Lemma 2. U can be decomposed
uniquely as U=W~1Vv/ith W^G_ and V^G+ by Lemma 1. This gives rise
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to a mapping p: GL-*>(j_ which maps UQ to W. This mapping p is injective
([4], [6]). Then we see that R*=p(G.). Next we show that QKmP(W) becomes
an R* -connection. Let W and W be elements of R* and set 0 (0eG_) by
W=<I> W. It follows from

dw/dtn =
and from (2. 13) that

-(Ln(W))_W =

Hence

o>n(W) =

holds, which implies that con(W) (W^R*) is a partial J?* -connection. There-
fore, QKmP(W) (W^R*) is an ^-connection. The flatness of the connection
follows from (2. 13):

0 = ^n(9W/dtn+(L\Wy)_W)dtn = ^n(dW/dtn-a>n(WW)dtn

= [d9 W]-QK.P(W)W.
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