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Criteria for Hypoellipticity
of Differential Operators

By

Yoshinori MORIMOTO*

Introduction and Main Results

In the previous paper [12] (see also [10]), the author has given a sufficient
condition for the hypoellipticity of differential operators of second order.
It was also proved there that the sufficient condition is necessary for a special
class of differential operators. The result about the necessity was extended
to operators of higher order. The main purpose of the present paper is to
extend the sufficient condition given in [12] to be applicable for differential
operators of higher order.

Let P=p(x, D,) be a differential operator of order m=1 with coefficients
in B=(R"). Here B(R") denotes the set of C*(&")-functions whose derivatives
of any order are all bounded in B". Let 4 and log 4 denote pseudodifferential
operators with symbols <¢> and log <&, respectively, where <&>=(1-+|&|?¥2.
Set ||u|l,=||4°ul| for real s and ue C5(R"), where ||-|| denotes the L? norm.
We write p{g)(x, £)=0¢D5p(x, €) for multi-indices @ and A. About the other
notations used in the present paper we refer to Kumano-go [5].

Theorem 1. Assume that for any ¢>0 and any compact set K of R" there
exists a constant C, x such that

(1) ltog A"ull+,_ 33 _ IIog 4/ PEul-
<ellPull+Coxlill . uECTE),

where m is the order of P and P=p{§)(x, D,). Then P is hypoelliptic in R".
Furthermore we have
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(2) WFPy =WFv  for v€e9D'(R").
As a corollary to our main theorem, we have Theorem 1 of [12].
Corollary 2. Let P be a differential operator of second order, that is,
P = % a,-,,(x)D,—Dk—[—; ib,(x)D_,—i—c(x) 5 Di = _ia-fj .
We assume that

™

{ aj, and b; are real valued,
D au(x)€;6,=0  forany (x, §)ER™.

If for any €0 and any compact set K of R" the estimate
(3) ll(log A)ul|<¢||Pull+Cecllull,  uECT(K)
holds with a constant C, y then we have (2).

Theorem 1 seems to be applicable to a large class of hypoelliptic operators
with finite degeneracy because for such operators we generally have the sub-
elliptic estimate

il 3 1P@ulleinSCxllPull+llul) . weCH(K)

for some £>0. (cf. [2], [13]). Theorem 1 also applies to a class of elliptic
operators with infinite degeneracy. In fact, as discussed in [12] and [11], Theo-
rem 1 (Corollary 2) is applicable to show the hypoellipticity of a second order
differential operator

L, = Di +D,+exp(—1/|x,|®) D}, 0<o<l.
Now we have:
Proposition 3. Let L be a differential operator
D 4Dy 4exp(—1/|x|%)DY  in RP,
where >0 and I=1, 2, ---. Then L is hypoelliptic in R® if (and only if)
(4) o<l.

Remark 1. The proposition for the case /=1 was first proved by
Kusuoka-Strook [6] (see Theorem 8.41 of [6]), by using the Malliavin calculus.
About the Malliavin calculus we refer to Malliavin [7] and Ikeda-Watanabe [4].

Remark 2. The necessity of (4) follows from Theorem 3 of [9]. For
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the proof of the necessity of (4) we can also employ Theorem 3 of [12] and
Theorem 2 of Hoshiro [3].

Remark 3. 1t should be noted that a differential operator leD,Z,i +

exp(—1/|x,|®)D?% is hypoelliptic in &? for any §>0 (see Theorem 1.1 of [8],
cf. Fedii [1]).

Unfortunately, we can not apply Theorem 1 directly to the proof of Pro-
position 3, because it is quite hard to check the hypothesis (1) for L, more
precisely, to show for the case / =2

lllog D% ull<ellLull+ Coxllull,  uECFTK).

So, we need the following amelioration of Theorem 1 under an additional
assumption.

Theorem 4. Assume that the principal symbol p,(x, €) of P satisfies
(5) Dulx, €)=%0 Jor x'=0, where x = (x’, x) .

Then the conclusion (2) of Theorem 1 still holds when for any €>0 and any com-
pact set K of R" the estimate

(6) Idog 4"ull+,_ 3 _ llGog 4)"** Pgul|-ia
@=(0,a/")
§5|,Pu||+ca,1{”u” s ueCy(K)

holds with a constant Cg .

The hypoelliptic operator 4 with 6=1 in Remark 3 is not covered by
Theorem 4, because the estimate (6) does not holds for some small >0 (see
[9] and Remark 3.1 of [12]). To cover this exceptional example we give an-
other criterion of hypoellipticity.

Theorem 5. Assume that the principal symbol p,(x, &) of P satisfies (5).
If for any compact set K of R" there exist a £,>>0 and a constant Cy such that

7 ()
(7) Hu||+0<|w%l§m”1’(ﬁ) U |11

a=(0,a’")

éCK(“Pu”—i_”u”-—l) 9 uECBO(K) 9
then we have (2).

This paper consists of three sections. In Section 1 we prove Theorem 1
and Corollary 2. Section 2 is devoted to proofs of Theorems 4 and 5. In
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Section 3 we give the proof of Proposition 3 and show that the condition (7)
is satisfied for 4 given in Remark 3.

§ 1. Proofs of Theorem 1 and Corollary 2

First we shall prove Corollary 2, admitting Theorem 1. By Theorem 1
it suffices to show that ||(log 4)P ®u|| (|a|=1) and [|(log A)Pu||-, (|8]|=1)
are estimated above by the right hand side of (1). As proved in [13], it follows
from the assumption (*) that for any compact set K we have

S NIPOuF<ChRe (Pu, wt|ull),  uECT(K).

Indeed, this estimate follows from (2.6.6) and (2.6.9) of [13]. For ueCg7(K),
take ¢, v €CF(R") such that ¢ =1 in a neighborhood of K and ¢CCy
(, that is, v»=1 in a neighborhood of supp ¢). Replace u in the above esti-
mate by y(log A)puec C7(K,), where Ky=supp . Then we have

Pt ®(log Au|]’= Cx(Re (P(log A, (log A)yu)
+ldog DulP+|ulf),  weCT(K),

because (1—y)(log 4)¢ belongs to $~= (see Chapter 2 of [5]). Since the prin-
cipal symbol of [P, log 4] is purely imaginary we have

Re([P, log 4Ju, (log Nu)=<C(||(log APull+|lulP),  ueCFK).

Above two estimates, together with Schwartz’s inequality, show that the esti-
mate

[oqz=:1 [|(log AP u|P< C¥(Re(Pu, (log A)u)+ ||(log AY2u|[>+||ul[®)
< #l|Pul*+Cpu x(|(log APulP+1[ull’),  uECFK)
holds for any small #>0. Set e=(#/2C ,f)"* in (3). Then we obtain
2 lIdog HP Oul P2 PullP+Clgllull®,  uECFEK) .
Since it follows from (2.6.14) of [13] that we have
A7 P ulP S O Re(A7D, Pu, A7Dou)+1lulf),  ueCF(K),

the similar discussion as above shows that |[(log 4)Pyul|-, (| 4] =1) is esti-
mated above by the right hand side of (1). We have completed the proof of
Corollary 2.
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From now on we shall prove Theorem 1. Let 4(x) be a Cg-function such
that A=1 on |x|=1/5 and supp hC {| x| <7/24}. Write

p(x, &) = 33 pux. ),

where p, is positively homogeneous in & of degree k. For r=(x,, &) ER" x §"!
we consider a microlocalized pseudodifferential operator of P as follows:

(LD Py=piy, D3 D) = 33 pilrot-2y, g+ AD,JA(AD, D27

where 2 is a positive small parameter (see Hormander [2] and Section 1 of
[12]). It is clear that the symbol of Py, py(y, 7; X) (=0(Py)) satisfies for any
a and B

1.2 |03 D5py(y, n; )| SCppd2mHi®+el
where C,g is a constant independent of 2. From the estimate (1) we have:

Lemma 1.1. For any e>0 and any r=(x,, E)ER" XS there exists a
constant C(e, 1) such that

(13 Qog 2 lmil+ 3 a+Piog )+ ap,
=e¢||HoPyv||4-C(e, r)(o<iw§,<,,,'zwwlllHon&gMH‘HV”) ,

ves,, if 0<i<1,

where H =h(AD,)h(2y) and Hy=HhQ2D,[2)h(2y[2). Here P\ are pseudo-
differential operators with symbols o(Pyg)=045D5py(y, n: 2).

Proof. Note that {h(2%—&;); 0<2=<1} is a bounded set in S},, as a
pseudodifferential operator in R, because 22<(4/3)|£|™' on supp (2% —E,).
Replace u in (1) by A(x—x)i(22D,—E)w(=h(x—x)h(A2D,—EYh((2*D,—&)[3)w),
weS,. Then, by means of the symbolic calculus of pseudodifferential opera-
tors we have

(14)  ||(log A)"h(AD,—EYh(x—xwl|
> || 47Pilog 4)*PIH(ED, —EYh(x —x) PGH@D, —E) 3wl

0<ld-Bl<m
=< &|lh((22D,—E )/ 2)h(x —x0)[2) Ph((A2D,—&))/3)w]
+C( 3 | ATPIR(2D,—Eo)/Dh(x—x0)[ )P )

<j@w+BI<m

@D, —E)Bwll+-Iwl),  weS,,

because (log A/ 471 8%, for j=1, -, m and A(x/2)=1 on supp A(x). Set
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w(x)=(exp (i %+ E(A 7 (x —xy)) for W(y)ES,. Then we have
(1.5)  exp(—i 27 2x-E)p(x, DYI((A2D,—E)/3)w(x) = (Py)(A~H(x—Xo))
by noting the change of variables.

X—Xg=Ay, E—27%,=2"7.
Similarly we have for any real s
(1.6) exp (—id 2x-E) A (22D, —E)w(x)

= 272(q(D,; ’h(AD )2~ (x —x,)) »
where g(7; 2) =%+ |29+&)|DY2. It is clear that q(n; A)°h(An) = (2/3)°h(A7)
and {g(7; 2)°h(A7/2); 0<A=<1} is a bounded set in S7, as a pseudodifferential
operator in R;. Furthermore we have
) exp(—id 2x-Ey)(log AYh(2D, —E)w(x)

= ((log A™*+r(D,; )Y h(AD)V)(A™H(x—X) ,

where r(7; )=log q(7; 2). Since {r(n; AYh(An/2); 0<AZ1} (j=1, -+, m) are
bounded sets in 7 , we have

(1.8) llr(Dy; AYh@AD, || <m™*"(log A7V [|WAD V]|, vES,,

if 0<2=2, for a sufficiently small 2, In view of (1.5)-(1.8), it follows from
(1.4) that

19 Gogd M+ 3 #P(og 1) P HPE)
<mel | HPpl|+CU(_ 3} PPIHPEwIII)

vedsd,, if 0<i=2,,

where (P{g)y is defined by the same formula as (1.1) with p(x, £) replaced
by p{E)(x, £). Note that

o(PyR)=03D5py(y, 75 2) = AT HPIa(P@R),)  if  |An] =<3/5.

Since supp £(27) and supp h(27/2) are contained in {z; |iz| =£3/5}, the
symbolic calculus of pseudodifferential operators shows that (1.3) follows from
(1.9) if 0<A=2,. The estimate (1.3) for 3,<<A=<1 is trivial. Q.E.D.

For a real £>0 and an integer k>0 we denote by 4, , a pseudodifferential
operator with a symbol (1+#{£>)~*, It is easy to check that for any « the
estimate
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(1.10) [08((1+£<ED) ™M S CLET(1+aKE) 7
holds with a constant C, independent of . Set
(1.11) £ 2) = (1+x<A2E0+27"0) *h(a) .

Then it follows from (1.10) that for any « the estimate
(1.12) |074:(n; D = C A%k (n; 2, 2| =1/5
holds with another constant C/ independent of « and 2.

Set hs(x)=h(x/8) for a small 0<<6<1/10. Fix an integer N>m. Take
a sequence {hf} "' C C5(R:) such that
(1.13) hy = BiCCHhACC - CCThy ™ = hyy
and for any « the estimate
(1.14) | DFRi(x)| S CYN™,
holds with a constant C// independent of N and j (C¢’=1).

Lemma 1.2. Write
(1.15) I{(AD,)e((D 3 Dhi(2y)h§™(AD )i+ (Ay)

= h{(AD,)(D,; DA y)+r(y, Dy; 2) .

Then for any integer >0 there exists a constant C, independent of 2, £ and N
such that

(1.16) [Ir(y, Dy,; DVI|< C 2% N2z |y ves,.

Proof. Note (1.12) and (1.14). Then (1.16) follows from the symbolic
calculus of pseudodifferential operators and the Carderon-Vaillancourt theo-
rem (See Chapter 7 of [5]). Q.E.D.

As in [12] we state the following simple proposition:

Proposition 1.3. Let N be a fixed positive integer and let 2 satisfy 0<<2
=<1. For any finite sequence of positive numbers {C;}'., there exists a con-
stant C1 such that

(1.17) CANEZ1+CHN I .

!
=1

J

Proof is omitted. (See [12]).

Lemma 1.4. Set Hi{—=hj(AD)4(D,; Dh(y) for j=1,++, N—m~+1. Then
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for any s>0 and any r=(x,, E)ER" X S""! there exists a constant C(s, r) in-
dependent of 2, k, j and N such that
(1.18)  (log 2™"||HPVll+ >3 (log =) +#1 2% +81]| Py Hv|

0

<l@+Bl<m
<[Py H}v||+C(s, 7)2° NoHtom |y,
veES,, if 0<A=2(s, 1),

where (s, 1) is a sufficiently small positive number.

Proof. Note that ||v||<||Hv||+||/(1—H)v|| and that there exists a small
2y(¢, 7) (=£1/3) such that

(1.19) (log A)=Cle, )2 if 0<A=2fe, 7),

where C(e, r) is the same constant as in (1.3). If 0<2=<2(e, ) we have the
estimate (1.3) with &, C(¢, 7) and ||v|| in the right hand side replaced by 2e,
2C(e, 7) and ||(1—H)v||, respectively. Substitute H}v into this modified esti-
mate. Then, in view of (1.19) we obtain (1.18) by setting e=s""/2. Indeed,
as in the proof of Lemma 1.2, it is easy to see that for any real s>0 there exists
a C, such that

(A —ED)H vl +-11(1—H) Pyfg) Hi vl |+-11(1 — Ho) Py H vl

HIA—H)P,H{y|| S C 2 Nt H3m|y]|, veES, .
Q.E.D.
Lemma 1.5. For any s>0 there exists a constant M independent of s, ,

2 and N such that for j=1, -+, N—m
(1.20) |PyH§v|| < M || Hys Pyv|| -+ MN(log 2797 | Py H |
+CSZSNS+Z”+3'”“VH , VESJ, ,
if log2*=MN and 0<2=Z2y(s, 7),

where C, is a constant independent of 2, £ and N, and 2(s, ) is the same as in
Lemma 1.4. Here Hys=h,(AD,)by(D,; Dhys(2).

Proof. 1t follows that
(1.21) 1Py Bvl| < HiPyl|+|I[Py, HiDVIl -

Noting Zj(x)=hi(x)h,s(x) and considering the expansion formula of the
simplified symbol of H{, we have
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|| Py vl| = Hihys(2 ) Pyl
<48 CUN 3D, MR Pys -+ C, 2 N353 ]|
for some constants C; and C,. Using Proposition 1.3 we have
| H{ Pyy|| S 2| Hyy Pyvl| -+ C, 2542 Hm ]|

Here and in what follows we denote by the same notation C; different con-
stant independent of 2, £ and N (, depending on s). We shall estimate the
second term of the right hand side of (1.21). In view of Lemma 1.2 it suffices
to estimate ||[Py, H{JH}v||, where H{*'=h{*'(AD )hi*'(2y). Write

Note that the expansion formula

[P')’s hg(lDy)én] = Z (—l)lﬂl(hg(lDy)éx)(p)P‘Y(ﬂ)//g!+R(y7 Dy; l) s

0<IBI=[s/21+m

where R is an operator negligible, in the sense of
[|RV| < C aN**2043m [y .

In view of (1.2), (1.12) and (1.14), we see that there exists a constant M, in-
dependent of s, £, 2 and N such that

(1.22) I[Py, Hi(AD,)4JHiA ) H i+ ]|

= 2 (MyN) P21 4| Py (A 0) H |
<IBI<m

s/2 X .
Ny S Cy N bR HE|

+ CSXSNHZ”HM | IV“

holds with some constants C;’. Consider the expansion formula of the sim-
plified symbol of 4h{(2y) and use Proposition 1.3. Then the second term
of the right hand side of (1.22) is estimated above by

(1.23) AMNY I HEF ||+ C 2 Nov2e3m] |y

Together with Proposition 1.3, the symbolic calculus shows that for any A
(0<<| B| <m) the estimate
(1.24) VP bPyphiAHWIS 3 AR, N )&

o<l@+Bl<m—18!

X 1P EAH |+ N Y P 4-C, 0 N sorssm= By
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holds with a constant M, independent of s, #, 2 and N. Note (1.22)—(1.24)
and use (1.18) with j=j-+1. Then, taking a suitable M larger than M, and
M,, we see that ||[Py, h{(AD,)4)hi(Ay)H ||| is estimated above by the right
hand side of (1.20) because (MN) <(log A™*y)MN(log 2™, j=1, -, m if
log A7*=MN. Noting ||4h}(AD,)?||<||bhys(2D,)7|| for 7€S8,, we can also
estimate ||£.A4(AD,)[Py, h{(2y)]H{**v|| by means of (1.18). We have estimated
the second term of the right hand side of (1.21). So we obtain the desired
estimate (1.20). Q.E.D.

By Lemmas 1.4 and 1.5 we have

Lemma 1.6. For any real s>>0, £>0 and any integer N>m there exists
a constant M independent of s, «, 2 and N such that

(125)  (log 2™)"|| || < (log 2~*)"|| Hos Pyl +2(MN)¥ 272" v
FONINSmL yeS,, if 0<ASs, 7),

where C, is a constant independent of , £ and N. Here Hj =hy(AD,)k(Dy; 2) X
hg(2y) and (s, 7) is the same as in Lemma 1.4.

Proof. In view of Hy=H} it follows from (1.18) that
(log 2=9)V| | Hpv|| < (log 2~5)¥ (|| PyH 3 ||+ C, N>+ +3m[y]]) .
Applying (1.20) to the first term of the right hand side. Then we have

(log 2=)¥|| Hyv|| < M(log 275)¥ || Hys Pyv|| -+ MN (log =)V =Y [Py H 3|
12C,(Iog A=YV 2 N omllyl| if log A= MN.

Use (1.20) for the second term of the right hand side and moreover use (1.20)
repeatedly (N—m—2) times. Then we obtain

(1.26) (log 2~5)M||Hyv||
<M "3} (log 47"~ *(MNY| By
QNP
+log )Y (1+ 35 (log A7) HMNY)C,2* N3],
if log /{:ngN.

Since Ay "*'=h,, and {A*"o(PyHY "*'); 0<A=<1} is a bounded set in S§,,
we have

1Py HY vl < M2~ ],
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by taking another large M if necessary. If logA™*=MN it follows from (1.26)
that
(log 2= || Hyv|| < (log 27N "+ H,s Py ||
+(MN)N(Z'2"‘—l—l)llle—Cs(log )\_s)N—mHXSNHZ"H"’HV” .

When log 2"*< M N this estimate still holds because of the second term of the
right hand side. Noting

(log 2775)¥ 2*=(log 2~°)N exp (—log A™5)=<N!, we obtain (1.25).
Q.E.D.

By means of (1.18) with j=1 we see that there exists a constant M’ in-
dependent of s, £ and 2 such that for any N=0, 1, -+, m
(log 2~)N|| Hyv|| < M 272 ||| 4-CoNs+2+3m] o]

Therefore, by taking another large M if necessary, we may assume that (1.25)
holds for any N=0, 1, ---. Let = be a small parameter chosen later on. Mul-
tiply =¥/N! by both sides of (1.25) and sum up with respect to N=0, 1, ---.
Then we obtain

A7 Hgy| | S 27| Hoypg Pyv||--(22 '2”'%}0 (MN=)N/N+C; NE=01N NstEnEdmy||y)|

because >)(r log 7)Y /N!=2""". Choose 7 such that Mer<1 and O0<zr<I.
Then, by means of the stirling formula N¥/N!<e" we have

(1.27) AT H | S 27 Ho Pyl [+ CLA7 DL, vES

5
for another constant C;. Note that r is independent of s because M is so.
Hence we can replace st in (1.27) by 2s’+2s”-2m for any real s’, s”>0.
Multiply 22”+2» by (1.27) with st replaced by 2s'+2s”-+2m. Then we see
that there exists a constant C,=Cy(s’, s”/, r) independent of # and 2 such that

(1.28) 27| Hy | S 27| Hys Pyvll+Co2* VI,
ve S, if 2 is sufficiently small.
Taking another large C, if necessary, we may assume that (1.28) holds for
0<i=1.
Note that for any £,&5"7*, any 0<d’<1 and any real § the estimate
(1.29) C by @D,V <lg(Dy; 2) hy(RD |
=Cllhy@D,W||, vES,

holds for some constant C=C(§, 6") because
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C'<q(n; ¥ <SC  on supp hy(in).
Substitute v(y)=h(AD,)7(y) into (1.28) for ¥(y)=exp(—id 2x-EW(X)| orytxo)
we&S,. Then in view of (1.5), (1.6) and (1.11) we see that there exists a con-
stant C§ such that

(1.30) | |hs(A2D, —Eo) As’Au,khs(x——xo)w] §
S Cilhys(R2D,—E) A" A,y hy(x—x0)P(x, DIw][?
+|1h(A2D, —E) A" w| [P+ 2] Wl [2s) ,
weS, if 0<2<Z1.

Here we used the fact that

{272y (12D,—E Yhy(x —x,)(1 —h(22D, —Ep)); 0<A=1}
{37 ooy (2D, —E hag(x—x0) P(x, D) (1—h((*D,—E))[3)); 0<1=1}

are contained in a bounded set of $7§".
To complete the proof of Theorem 1 we define the following:

Definition 1.7. For >0 and £,&S"! we say that a function y¥(£)E
C=(R") belongs to ¥, z, if v satisfies

0=y=1, @ =1 for [&/|6]-&|=<0/12 and |£]|Z=1/2,
P(E) =0  for |&/|&]—&|=0/10 or |£]<1/3,
Y(t€) = y(€) for t=1 and é=S".

Devide both sides of (1.30) by 2 and integrate with respect to 2 from 0
to 1. Then, we see that for any r=(x,, o)) ER" X S*, any real s’, s”>0, any
integer k>0 and any £>0 there exists a constant C”’=C"(r, s’, s”, k) inde-
pendent of £ such that

(1.31) [[yrs(D2) Ay ho(x —x0)w] [
§C”(”EZS(D::)AK,khza(x"xo)P(xs Dz)w”§’+”W”2—s” >
wes,,

if o) E¥sz, and V() E¥ 57, (See Proposition 1.7 of [12]).

We shall prove (2). Let (x,, &) €T*R"\0 and let ues I'(R"). Set
E,=&,/|&]. Suppose that (x,, &)&EWF Pu. Then there exists a 6>0 such
that y(Ds(x—xp)Puc H, for any real s'>0 if Vy(£)E ¥z, Since
hy(x—xuEe&’ we have hy(x—x)usH_y» for some s/>0. Choose k>0 in
(1.31) such that k>s'+s”+m. Then, by taking a sequence {w;}7.,CS, such
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that
w; = hy(x—xo)u in H_g,
from (1.31) we see that
(1.32) | A, (D o(x —Xo)ul |3
= C7(|Igrs(D Yhag(x—x0) Pul 34| g x —xo)ul |2 677)

if Y5(E)E¥ sz, and Vry(§)E¥ 455, Here we used the fact that || 4. w]| <||w|
for wel? |Letting ¢ tend to 0 in (1.32), we have rs(D,)hs(x—xo)us Hy.
Since s’ is arbitrary, we have (x,, £)&EWF u. Now the proof of Theorem 1
has been completed.

§ 2. Proofs of Theorems 4 and 5

Throughout this section, P satisfies the assumption (5). It is clear that
for (xo, £)ET*R™\0 and uc P'(R")

2.1) (%0, E)EEWF Pu=> (xy, £E)EWF u

if x,#=(0, x¢’). So, we shall consider the case x,=(0, x¢’). Since our consider-
ation is local near x, we may assume that for any #>0 there exists a constant
¢x>0 such that

2.2 | Pu(x, E)|=cu  forall (x, &)eR"x S

if |[x'|=x.

Let A(x)EC7(R") be the same as in Section 1. Noting v/ 2 /5<7/24, we may
assume that A(x) is written as

23) h(x) = hy(x"Yhy(x")
for Cy-functions 4, and 4, satisfying

{hl(x’) =1 on |x'|=1/5
h(x")=1 on |x"|=Z1/5.

First we shall prove Theorem 4. We prepare four lemmas. If Py=
py(y, D,; 2) is the same as in Section 1, from (6) we have:

Lemma 2.1.  For any ¢>0 and any r=(x,, E)ER" X S"* with x,=(0, x}")
there exists a constant C(e, r) such that
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24 (og A" Hv||+ 33" 2*+Pi(log 271)+PI|| HP,(E v]]
< el|AAD,/2)Pyv||+-C(e, 1) 2P |W(AD,/2)Py@ VI +1IvI])
veS,, if 0<a<1,
where H=h(AD,)h(2y). Here 3)' means the summation which is taken over
all a=(a’, &), p satisfying 0<|a+g| <m and a'=0.

Proof. Set ¢°(x, &)=(1—m(2x"))/p(x, &). Then it follows from (2.2) and
the symbolic calculus that for Q°=q"(x, D,) we have

O°P = 1—h(2x")—R, R&ST}.
Setting Q=324 R'Q" we have
QP = 1—:'_2: Rih(2x")—R"
= 1+R+R,, RES.
For 0= |a+ 8| <m, note

(2.5)  [P@, h(x—x9)] = [PH, h(x"h(x" —xt")+h(xNPE, h(x"—x3)],
and
{ [P, h(xNQ, [P, h(xR,ESTH

@ [P®, h(xR,ES™™

because supp 4,(2x’) N supp D% hy(x')=@ for @’=#0. It follows from (2.6) that
the estimate

@7 P, mCx)wlI=C(UIPwll-1+IIwll-)
SellPwl[+Cliwll,  weS,

holds for any >0 and some C,. As in the proof of Lemma 1.1, replace u
in (6) by A(x—x)h(22D,—EJw(=h(x —xo)h(A2D,—E&;) h(2D,—E)/3)w), wE S.,.
Then, using (2.5) and (2.7) together with symbolic calculus, we obtain

(2.8)  |l(log A)"A(XD,—EYh(x—xowl|
+33'||471P1 (log A4)'“+P1h(22D, —EYh(x —x0) P G(A2D, —E)/3)wl|
< e||(A°D, —€)/2) Ph((A*D, —E)[3)w]]
+C( | 47 PIR(22D,—E)/2) P GA(22D, —Ep)/3)wl |+ Iwll) ,
wes,;.

Set w(x)=(exp iA %+ E)W(A~ (x—xo)) for W(y)ES,. From (2.8) together with
(1.5)—(1.8) we obtain (2.4), similarly as in the proof of Lemma 1.1 Q.E.D.
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For h(x)=hy(x")hy(x"") and a small 0<6=<1/10 set hs(x)=h(x/d) (, hy s(x")=
hy(x'/8) and hy§(x") =h,(x"'[6)). Fix an integer N>m. Take a sequence
{hi(x)=hi s(x ’)hﬁ_s(x”)} N" 1 Cy(R") such that

0<hi <1,
(2.9) { =ThA=

hys=hi s C Chi ;C CCCTh ™" =hyos, k=1,2
and for any @’ and a” estimates

(2.10) | DY 5(x) | SCYUN'Y, | DI o(x")| SC G N
hold with constants CZ); and C.% independent of N and j.

Lemma 2.2. Set H{=h{(AD,)4(D,; Dhi(2y) for j=1, -, N—m~+1. Then
for any s>0 and any r=(x, E)ER" XS with x,=(0, xt’) there exists a
constant C(s, r) independent of 2, &, j and N such that

2.11) (log 27" || H V|4 33" (log A7) +#1 1= +#1 || Py H { v
<|IPyHPI+CGs, DANHmy]|, veS
if 0<A=2(s, 7)),

y>

where 2(s, 7) is a sufficiently small positive number. Here > means the same
summation as in Lemma 2.1.

Proof. The estimate (2.11) follows from (2.4), by the quite same way
as in the proof of Lemma 1.4. Q.E.D.

Lemma 2.3. Set hy(x")=1—h,(2x'/8) for 0<6=<1/10. Then for any s>0
and any 8 =(x4, E)ER" xS"* with x;=(0, x}’) there exist a constant C'(s, 1)
such that

(2.12) 272 | ka2 y YAD V| Z C'(s, PPyl +2°|I0]D)
veS,, 0<a<1.

Proof. Set qy(y, 15 )=(1—h(32y'[0)h(2n/2)/px(, 7; 2). Then
{2~q3(y, 73 2); 0<A<1} is a bounded set in S§,. The symbolic calculus
shows that, if 09=¢3(y, D,; 2), we have

QyPy = (1—h\(32y'[0)h(AD,/2) —R

for R=r(y, D,; 2) such that {27%r(y, 7; 2); 0<A=<1} is a bounded set in S} .
Take an integer / satisfying 2/=s-+2m for a fixed s>0. Set Qy=>'/Zt R'Q;.
Then we obtain
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-1 .
(2.13) 0Py = 143 RI((1 —h(34y'[8)h(2D,[2)—1)—R'

j=0

= 14+R;+R,.

Note that {27%06(R,); 0<A=1} is a bounded set in S§, and that, for any
5'>0, {2~*'o(hy(Ay")H(AD,)R,); 0<A =<1} is a bounded set in S§, because
(1—hy(3x"/8))h(E/2)—1=0 on supp hy(x")A(€). From (2.13) we obtain (2.12)
because {272"a(hs(2 y)h(D,)Q); 0<2<1} is a bounded set in S ,. Q.E.D.

Lemma 2.4. For any s>0 there exists a constant M independent of s, r,
and N such that for j=1, ---, N—m

(2.14) ([PyH{v|| < M||H,ysPyv||+MN(og 27%)7Y|| PyH ||
'I_Cs lst+Z”+3m”VH , ve'sy ,
if log A™*=MN and 0<A=2(s, 7},

where C, is a constant independent of 2, & and N, and (s, 1) is a positive number
smaller than (s, v) in Lemma 2.2. Here Hyy=hy(AD,)4.(D,; Nhx(Xy) and
r=(xp, E)ER" X S** with x,=(0, x{’).

Proof. 1t follows that
(2.15) 1Py H V| SN HE Pyvl| I[Py, Hip|

The estimation of the first term of the right hand side of (2.15) is the quite
same as in the proof of Lemma 1.5. We shall estimate the second term. In
view of Lemma 1.2 it suffices to estimate ||[Py, H{]H{*'v||, where H{*'=
kit (AD,)h{**(2y). Note
(2.16) I[Py, H{JH{ ||

=<|I[Py, H(AD AR y)H * vl| 4|1l Hi(AD,)[ Py, H{(AY)IH ]| .

We shall consider the first term of the right hand side of (2.16). As in the
proof of Lemma 1.5 we have (1.22). The estimation of the second term of
the right hand side of (1.22) is the quite same as there. About the first term,
instead of (1.24), we see that for any g (0< | £| <m) the estimate
@17) AP|bPym HANHIDIS 3wk
0<(@+ Bi<m~ 1Bl
. - 5 a=(0,a"") 5
X (MpN) | PSR oy H ] | +-(M N)™ B | H {19
3 PNy ) B4 C LNy
<e<m—|B]

holds with a constant M, independent of s, £, 2 and N, where Zy(x’) is the
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same as in Lemma 2.3. In fact, the estimate (2.17) follows from the symbolic
calculus if we note

(2.18) [Pyays BEAY)]
= [Pygy, 1 oAy N oAy )+h] sy NPy, hh, (Y]

and %y(x)=1 on supp D% {s(x") for @’=0. It follows from (2.11) with
j=j-+1 that the first and the second terms of the right hand side of (2.17) mul-
tiplied by (M;N)'?! are estimated above by the right hand side of (2.14). We
shall estimate the third term of the right hand side of (2.17) multiplied by
(MN)®, that is,

J= 3 uPimemir(Af N )R Ry H T,

0<g<m=|Bl
where M;=max(M,, M,). In view of H{"'=hn(D,)H{", it follows from
(2.12) that
JSC'(s,7) 3 2PN PIF(|| Py H P v+ 4D -

0<g<m—1B]

Take 1y(s, 7) small enough so that
2 max(C'(s, 7), 1)=(log 2™ if 0<A=Z2(s, 7).

Then J is estimated above by the right hand side of (2.14) when 0<<A=<12(s, 7)
and log A= MN with a suitable M > M, We have estimated the first term
of the right hand side of (2.16). Noting (2.18) with =0, by means of (2.11)
and (2.12) we can also estimate the second term of the right hand side of (2.16).
The estimation of the right hand side of (2.15) is completed. So we obtain
(2.14). Q.E.D.

From (2.11) and (2.14), we obtain (1.25) in Lemma 1.6. In fact, in the
proof of Lemma 1.6 we did not use the fact that the second term of the left
hand side of (1.18) is estimated above by its right hand side. By mean of
(1.25) we can also prove (2.1) for (x,, &) ET*R"\0 with x,=(0, x{’), by the
same way as the one after Lemma 1.6. The proof of Theorem 4 is completed.

In the rest of this section we shall prove Theorem 5. We state three lem-
mas. By the same way as in the proof of Lemma 2.1, from (7) we have:

Lemma 2.5. For any r=(xy, E)ER"XS** with x,=(0, x}’) there exist
a 0<ky<<1 and a constant Cy such that
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(2.19)  |[HY||[+X7 a7+ | HPG) |

=< Cy(|A(AD,/2)Pyv||+ 33" 2+ [W(AD,|2) P53, vl -+ ZlIv]]) ,

ves,, if 0<isl,
where H=h(AD,)h(y). Here X" means the summation which is taken over
all a=(a’, &), satisfying 0<|a+ | <m and a’=0.
Proof. We also have (2.5)-(2.7) for 0<|a+ 8| <m. By means of (2.5)
and the first inequality of (2.7), it follows from (7) that
[|(22D, —& h(x—xo)w/|
+ 307 || 4%~ P R(22D , —E Yh(x—xo) PG h(X*D—E0)[3)wl|
< C(IM((A*D,—E0)/2) PH(A*D,—Ep)/3)w]
+ 33 | A7 PIn(A*D,~£)/2) P B h(X°D,—E)3)wll+1]47'wl]) ,
wes,.

In view of (1.5)-(1.8), the estimate (2.19) immediately follows from the above
estimate. Q.E.D.

Let N be a sufficiently large integer chosen later on. If {hj(x)}¥="*! is
the same as the one in the proof of Theorem 4, from (2.19) we have

Lemma 2.6. Set H{=hj(AD,)%(D,; Dhi(Ay) for j=1, -+, N—m~+1. Then
for any s>0 and any r=(x, &)ER" XS with xo—(O, x(,’) there exists a
constant C"'(s, r) independent of 2 and & such that

(2.20) [VEDI+3" 270 1 PG, H V|| < C"(s, )1 PH V21D
ves,, if 0<aza(r), j=1,,N—m+1,

where 2(r) is a sufficiently small positive number. Here xy and >\ are the
same as in Lemma 2.5.

Proof. Take a small 2,(7) such that
1223%Cy,  if 0<AZA(r),

where C, is the same constant as in (2.19). Then we have (2.20) from (2.19),
by the similar way as in the proof of Lemma 1.4. Q.E.D.

The above lemma together with Lemma 2.3 leads us to the following:

Lemma 2.7. For any s>0 there exists a constant C, independent of £ and
A such that for j=1, «-, N—m
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(2.21) [Py H{v|| < C (1| Has Pyvl| 220 | PyH |21
veS,, if 0<a=4(),
where r=(xo, Eo) ER" X 8" with xy=(0, x{’).

Proof. As in the proof of Lemma 2.4, it suffices to estimate
[Py, H{1H{*'v|]|. We shall consider the first term of the right hand side of
(2.16). Noting the expansion formula of [Py, hé(lDy)éK], we can also have

222 [Py, KD, )AJH (V) H i+ |
SC( 3 AP PyghiRy)H{ |

o<IBl=m

+2 3 2| ehi@y)HT XD .

oI<m+[s/2]
In the proof of the lemma we denote by the same notation C different con-
stants independent of 2 and « (and j). The second term of the right hand side
is estimated above by a constant times of A2||H{*'v||4+2%||v||. So, we can
estimate it by the right hand side of (2.21) by means of (2.20) with j=j+1.
About the first term of the right hand side of (2.22), we have
223) P Py HONHISC( 3 285F PG 5 H{|

o<|@+ Bl<m-iBI
&=00,%")

2 B ]|+ 222 Ay H {2

where 7y(x’) is the same as in Lemma 2.3. It follows again from (2.20) with
Jj=j-+1 that the first and the second terms of the right hand side of (2.23) are
estimated above by a constant times of the right hand side of (2.21). Note
that Lemma 2.3 still holds because it was obtained only under the hypothesis
of (5) ((2.2)). By means of (2.12) we can also estimate the third term of the
right hand side of (2.23). Now, the first term of the right hand side of (2.16)
has been estimated. The estimation of its second term is similarly performed
by using (2.20) and (2.12). So we obtain (2.21). Q.E.D.

For any s>0 take an integer N such that
(2.24) N—m-+1>>sx,.
Then, by means of (2.20) and the repeated use of (2.21) we easily see that for
any s> 0 there exists a constant C} independent of 2 and « such that
(2.25) [ HsvI| < CL(| Hys Pyvl|+2]10]]) ves
if 0<2=1,

y

where 7=(x,, §) ER" X S*! with x,=(0, x§’). Setting s =2s"+2s" for real
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s, §”>0 we have the similar estimate as (1.28). So we can prove (2.1) for
(0, E)E T*R"\0 with x,=(0, x§’). Proof of Theorem 5 is completed.

Remark. The assumption (5) in Theorems 4 and 5 can be weakened to
Hormander’s condition in the region {x=(x’, x”); x'#0} as follows: For
any x>0 estimates

| p(x, )| =cw>0,
| P (x, E)/p(x, €)] S Cop uEY™"IFOFL (0=<0<1/2<p<1),
if |x'|=x and |€| large enough,

(2.26) {

hold with constants ¢, and C,g x. In fact, under this assumption we have
NP, (MWl = CUIPWlls-pt]IWlls—p),  wES,
and

AR By PSR V| S CUPHIH-2IDID . veS,,
(6 = min(1—20, 2p—1))

instead of (2.7) and (2.12), respectively. Using these we can prove Theorems
4 and 5. The detail is omitted.

§3. Proof of Proposition 3

As stated in the introduction, the necessity of (4) was already proved in
[9] in a little more general form (, see Theorem 3 of [9]). We can also prove
the sufficiency of (4) in a slightly more general form.

Let P, be a differential operator of the form

@D Py = Dii+Di+g(x)D;’ in R,

where /=1, 2, --- and g(x,) is a B~-function such that g(x;)>0 (x,#0) and
g(0)=0. When /=2 we assume that for any integer j>0

(3.2) | g9(x) | = Cig(x)t 7 in a neighborhood of x; =0,
where g?=D], g and o is a number satisfying

3.3) 0<o<1/22.

It is clear that exp(—1/|x,;|%), 6>0, satisfies (3.2) for any small ¢>0.

Proposition 3.1. Let P, be the above operator. When [=2 we assume
(3.2) with o satisfying (3.3). If g(x)) satisfies
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34 lim |x,[ |log g(x)| = 0.
e >
then Py, is hypoelliptic in R®.

When 0<6<1, exp(—1/|x,|?) satisfies (3.4). So the sufficiency of (4)
follows from this proposition. Proposition 3.1 for the case /=1 is included
in Theorem 1.1 of [11] (, where (3.2) is not assumed). We shall prove Pro-
position 3.1 when /=2. Without loss of generality, we may assume that for
any #>0 there exists a constant c,>0 such that g(x))=cu for |x;|=u. We
prepare the following:

Lemma 3.2. 1) It follows that
(3.5) ID%, ull |Poull, uES.

ii) For any >0 there exists a constant C, such that
(3.6) lllog A ul|<el|Poul|+Cellull,  uES.

i) Let & be (1—0y)/(I+1), where 8,=21%c. There exists a constant C,
such that

X)) | 8CeDullps-rae = Colll Poul | +-[Mull),  uES,
and moreover for any j=1, +--, 2l
(3.8) lg9C) ullyr- e S ColllPordll+ldl),  wES.
Remark. 1t follows from (3.3) that d,<<1 and hence 0<e<<1/(/4+1).

Admitting this lemma for a while, we shall apply Theorem 4 to the proof
of Proposition 3.1. We shall check the assumption (6). Set e=¢? in (3.6)
for a small e’>0. Then we have

(3.9) l((og A)/e'V ul| <||Poull+Collull, uES.
From (3.5) and (3.9) we have
(3.10)  ||((log A)/e"Y D%~ u|| <2||Pyul| +(Co+Dllul|,  uES

for j=1, «--,2]—1. It follows from (3.7) and (3.8) that for any >0
@G.11) ll(log AY**gD(x) D} *ul|_ ;< el|Por||[+Clllull,  uES
O<j+k<2i)

holds with a constant C/, because the left hand side of (3.11) is estimated
above by
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(e/CONl gD Cep)ullas - e+ Collull -

Summing up (3.6), (3.10) and (3.11) we have (6) for P,, By means of Theo-
rem 4 we have the hypoellipticity of P,.

For the proof of Proposition 3.1 it remains to prove Lemma 3.2. Note
that

(3.12) ||D%, ulP-+1Dz, ul P+ |18 (x)) 2D ul* = (Pou, u) ues.
Replacing u by D;,u, we have

|| D% ulP< (PyD;,u, Di,u) = (Pyu, D, u)
S(|1PoulP+|IDZLulP)2,  uES,

so that we have (3.5). Let f(£, ) be a symbol in S?, such that

{f=1 on {l&I=|7l}n{lél+Inl=1},
suppfC{lé]=2[n|N{l€]+|7[=1/2}.

Since P, is microlocally elliptic on {|&|=|#|} it is easy to see

(3.13) QA= yulles+ I[P, [l = CU|Poul | +M[ul]),  uES.

Hence, it suffices to show (3.6)-(3.8) with u replaced by fu. Since {|&| =2|7|}
on supp f, instead of (3.6) it suffices to show

(3.14) llog KDY ul| <el|Poul |+ Cellull,  uES.

If fi(¢, %) is a symbol in S9 ¢ such that fi=1 on supp f and supp f,C {|¢| <
3|%|}, we have

H(D;, D)gP(x)f(D,, D,)=g"(x)f(Ds, D,) mod. $7= .

Since |€]<3|»| on supp f;, instead of (3.7) and (3.8), it also suffices to show

(3.15) [18Ge)XD 1 ul| < C(|| Pordl|[H-[lul]),  uES
and
(3.16) PP~ ul| S C(||Poul|[+-lull),  uES

for 0<<j =2/, respectively. We shall prove (3.14)—(3.16), by using the similar
method as in Section 5 of [8].
Let ¢, (¢) (k=0, 1, 2, 3) be C7-functions in R' such that
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supp ,C {|#| <1}, d=1 on [t]Z1/2,
supp ¢, C {|7| <2}, ¢, =1 on |[t|=1,
supp ¢,C {|¢| <1}, ¢, =1 on |[t]=2,
supp ¢;C {|#| <3}, ¢;=1 on |[t|=2
and ¢,+¢,=1 in B'. Let (¢, ) denote the dual variables of (x, y) and set

A&, n)=(] |2V 4-9241)120+D_ Then A(€, 7) satisfies (1.1) of Chapter 7 of [5],
so it is a basic weight function.

Lemma 3.3. Set K€, n)=X&, )" and set x,(x,, €, 7)=d,(g(x)h(E, 7))
(k=0, 1, 2). Then

01(%1, Dy Dy)+25(xy, Dy, D)) =1
and xy(x,, D,, D,) (k=0, 1, 2) belongs to 52.1,50, that is, for any o and j
(3.17) |(8:0,)° D%, 2%y, & 1)| S Cy j3(E, 1) 1*1400
where 8,=2l%0 <1

Proof. By means of (3.2) we have (3.17) by the quite same way as in
the proof of Proposition 5.1 of [8], if we set t=1/([4+1) there. The detail
is omitted. Q.E.D.

Set vy=x4(x;, D,, Du (k=1, 2) for u€S. Let ¥(x, 7) be the Fourier
transform of vy(x, y) with respect to y. Setting x3(x;, 7)=3(g(x)h(0, 7)),
we have %,(x, 7)=2x5(x, 7)%(x, 7) because x;=1 on supp z,(x;, &, 7). It follows
from (3.12) that

(3.18) llgGe)< D, 1+ w2

= |IgGe) >~ x5(x1, )gCe) ' Hl P

= 3(Povy, v)+Cl Il

= C'(I1PowlP+1m]1%)
because & =(1—08y)/(I+1) and g(x)<{7D*/¢+*V<3 on supp x;. By means of
(3.2), for 0<<j=<2I we have furthermore

(3.19) g Ge)<D =7+ |
= Cll gle)) 2= T mp! 7+ 3(xr, M) > |
= C(1Povy[ |+ milD) -

It follows from the hypothesis (3.3) of Proposition 3.1 that for any >0
there exists a constant ¢,>0 such that



1152 Y. MoRIMOTO

(3.20) [x,| Ze(log<z>)™"  on supp x3(x;, 7)
if <p=c,,

because (x,, 7)Esupp x; implies g(x,)<{7>?**¢*?<3. By means of Poincaré’s
inequality it follows from (3.20) that for a constant C,independent of ¢ we
have

(3.21) [|(log <77>)Iﬁ1”22(1e§) = Cofﬂl ID:’:, V1”22(R§)
if <=c.,

because x;%, =7, and so supp ¥(x, 7)N {#p>= ¢} is contained in {|x,|=
e(log<{n>)"}. Integrating (3.21) with respect to # we have

(3.22) ll(log <D, P <ellD; wlP+Cl v,
by taking another small ¢>0. Estimates (3.22) and (3.12) with u replaced
by v, give

[l(log <D,D) vi|P= e(Pyvy, v)+CelInil* -
Replace v, by (log <D,>)'v,. Then, for any 0<<e<1/2 we have
(323) lI(log <D, DY wi|F=el| Povil[*+C{lIwl[?
because for some C/ we have

Cill(log <D,>) vIP = (1/4)l(log KDY vyl P+ (C/2)] [ .

To obtain estimates for v,=x,(x;, D,, D,)u we consider an operator
Py=py(x,, D,, D,) which is obtained by modifying P, in “a neighborhood of
x,=0"" as follows: Set

Po(xy, €, 1) = EY +-E5 +(g(xDh(E, m)+ xo(x1, €, MIE, 7)™ 7 .

Then we have

Lemma 3.4. p(x,, &, 7) belongs to S}'{'s" and satisfies Hormander’s con-

dition as follows: 1) There exists a constant c¢,>0 such that

(3.24) |Bo(x1, €, M| Zcod(€, 0)” for large  |&]+|n].

il) For any & and B there exists a constant C,g such that

(3.25) | BSy(x1 €, MBo(x1, & 1) | < Cap A€, 7)%P171*!
for large |&|+ 7],

where 0,=2[%0 <1.
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The proof is similar as the one of Proposition 5.3 of [8]. The detail is
omitted.

In the consequence of this lemma, we have a parametrix Q& S5 21’,80 such
that

(3.26) I=0P+K, Ke$,
furthermore

(3.27) { 0 =00, QOES;,ZII.SO Q1ESR,1,50

0(Qy) = Po(xy, &, 1) forlarge [&]+]|7].

Note that A#/¢WQe 8 and Pyx, =Pz, mod. $™=. Recall v, =25(x;, D;,
D,yufor ueS. Tt follows from (3.26) that

(3.28) ”"2H21/(1+1)§C(”P0 vol | +-1lual]) .

In view of (3.27) and (3.25) it is easy to see g(j)(xl)Dﬁl‘jQESgs_oljé;f_ Noting
A(D,, D,) e ST0{HR, we have

(3.29) lgPGe) D3 7 vyl = CI Py vl |+l

for 0<j=<2/. Note that, for k=1, 2, [P,, 2,]J0E 87}, and
[Py, 2=[Po, 2 JOPy=[P,, ,J0P,  mod. $™>.

Then we have

(3.30) TPy, zJull = C([Poul[+lul) kK =1,2).

Since x,+x,=I, from (3.23), (3.28) and (3.30) we have (3.14). Furthermore,
(3.15) follows from (3.18) and (3.29) together with (3.30), and we obtain (3.16)
from (3.19), (3.29) and (3.30). Now, we have proved Lemma 3.2. So the
proof of Proposition 3.1 for the case / =2 is completed.

We remark that the proof of Proposition 3.1 for the case /=1 also follows
from the above discussion. It follows from the nonnegativeness of g(x;)
that (3.2) holds with 6=1/2. Lemmas 3.3 and 3.4 still hold with d,=1/2 if
we set A(&, 7)=(|&|°+2*+1)/¢ and h(&, 7)=2A(¢, 7). We have (3.22) by the
same way as in the case /=2. We also have (3.28) with 2//(/+1) replaced by
2/3 and (3.30) with « replaced by 1/3 because A(D,, D,)™" belongs to S 774%.
Hence we have (3.6) with /=1, which is nothing but (3) of Corollary 2. By
Corollary 2 we see that Proposition 3.1 also holds when /=1.

We finally remark that the condition (7) is satisfied for
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A = D! +exp(—1/|x|5D}' , >0, in RZ?.

Indeed, we have (3.7) and (3.8) with P, replaced by ./ because we did not use
the assumption (3.4) in the derivation of (3.18), (3.19) and (3.28)-(3.30). So,
we have (7) if we show

(3.31) llull=ClAull+lull-p), uES.
It follows from Poincaré’s inequality that

(3.32) llulP<I1D;, ull
= (Au, W) (| AulP+|[u]?)/2

if ue & and if supp uC {|x;| <¢} for a sufficiently small ¢>0. The estimate
(3.31) easily follows from (3.32) and the elliptic estimate in the region {x;==0}.
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