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Introduction Mam Results

In the previous paper [12] (see also [10]), the author has given a sufficient

condition for the hypoellipticity of differential operators of second order.

It was also proved there that the sufficient condition is necessary for a special

class of differential operators. The result about the necessity was extended

to operators of higher order. The main purpose of the present paper is to

extend the sufficient condition given in [12] to be applicable for differential

operators of higher order.

Let P=p(x, Dx) be a differential operator of order m^l with coefficients

in <B~(Rn). Here <B°°(Rn) denotes the set of C°°(J2w)-functions whose derivatives

of any order are all bounded in Rn. Let A and log A denote pseudodifferential

operators with symbols <f> and log<<T>? respectively, where <f>=(l+ |f |2)1/2.

Set |MLHMS*'!1 for real s and u^Co(R*), where ] | ° | | denotes the L2 norm.
We write p$](x, £)=d*D%p(x, f) for multi-indices a and ft. About the other

notations used in the present paper we refer to Kumano-go [5].

Theorem 1. Assume that for any e>0 and any compact set K of Rn there

exists a constant CS>K such that

(1) \\Qog A)mu\\+ S

where m is the order of P and P(p]=p{p}(x, Dx). Then P is hypoettiptic in
Furthermore we have
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(2) WFPv^WFv for

As a corollary to our main theorem, we have Theorem 1 of [12].

Corollary 2. Let P be a differential operator of second order, that is,

P = ̂  ajk(x)DjDk+^ ibj(x)Dj+c(x) , Dj = -id,, .

We assume that

ajk and bj are real valued,

2«/*(*)fA^O for any (x,

If for any e>0 and any compact set K ofRn the estimate

(3) \\(logA)2u\\^e\\Pu\\ + CsiK\\u\\, u^

holds with a constant C?>K then we have (2).

Theorem 1 seems to be applicable to a large class of hypoelliptic operators
with finite degeneracy because for such operators we generally have the sub-
elliptic estimate

IML+ 2 \\P$u\\*-w£C^\\Pu\\+\\u\\) , i/ec?(A-)
0<|» + p|<«

for some /e>0. (cf. [2], [13]). Theorem 1 also applies to a class of elliptic
operators with infinite degeneracy. In fact, as discussed in [12] and [11], Theo-
rem 1 (Corollary 2) is applicable to show the hypoellipticity of a second order
differential operator

Now we have :

Proposition 3. Let L be a differential operator

where £>0 and 1=1 9 2, ••- . Then L is hypoelliptic in R3 if (and only if)

(4 )

Remark 1 . The proposition for the case 1=1 was first proved by
Kusuoka-Strook [6] (see Theorem 8.41 of [6]), by using the Malliavin calculus.
About the Malliavin calculus we refer to Malliavin [7] and Ikeda-Watanabe [4],

Remark 2. The necessity of (4) follows from Theorem 3 of [9]. For
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the proof of the necessity of (4) we can also employ Theorem 3 of [12] and

Theorem 2 of Hoshiro [3].

Remark 3. It should be noted that a differential operator JL=Dll
l+

exp(— l/l^l8)/)^ is hypoelliptic in R2 for any S>0 (see Theorem 1.1 of [8],
cf. Fedii [1]).

Unfortunately, we can not apply Theorem 1 directly to the proof of Pro-
position 3, because it is quite hard to check the hypothesis (1) for L, more
precisely, to show for the case 7^2

So, we need the following amelioration of Theorem 1 under an additional
assumption.

Theorem 4 Assume that the principal symbol pm(x, f) of P satisfies

( 5 ) pm(x, f) =t= 0 for x ' 4= 0, where x = (x'9 x") .

Then the conclusion (2) of Theorem I still holds when for any e> 0 and any com-
pact set K of Rn the estimate

(6) naog^)"wii+ 2
0<|« + 0|<w

05 = CO, 0/')

holds with a constant C8>Jf.

The hypoelliptic operator Jl with d^l in Remark 3 is not covered by
Theorem 4, because the estimate (6) does not holds for some small e>Q (see
[9] and Remark 3.1 of [12]). To cover this exceptional example we give an-
other criterion of hypoellipticity.

Theorem 5* Assume that the principal symbol pm(x, f ) of P satisfies (5).
If for any compact set K of Rn there exist a /e0>0 and a constant CK such that

(7) IHI+ s
0<i* + i3|^>

05 = CO, as")

then we have (2).

This paper consists of three sections. In Section 1 we prove Theorem 1
and Corollary 2. Section 2 is devoted to proofs of Theorems 4 and 5. In
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Section 3 we give the proof of Proposition 3 and show that the condition (7)

is satisfied for Jl given in Remark 3.

§ 1. Proofs of Theorem 1 and Corollary 2

First we shall prove Corollary 2, admitting Theorem 1. By Theorem 1

it suffices to show that ||(log A)P^u\\ (\a\ =1} and ||(log A)Pwu\\,1 ( \ f t \ =1)

are estimated above by the right hand side of (1). As proved in [13], it follows

from the assumption (*) that for any compact set K we have

2 ; u)+\[u\\2) ,

Indeed, this estimate follows from (2.6.6) and (2.6.9) of [13]. For

take 0, i/r^C%(Rn) such that 0 = 1 in a neighborhood of K and

( , that is, i/r=l in a neighborhood of supp 0). Replace u in the above esti-

mate by V0°g A)^U^C^(KQ), where ^T0=supp ty. Then we have

)u9 (log A)u)

+ \\(log A)u\\*+\\u\\2) ,

because (1— VOflog ^4)0 belongs to S~°° (see Chapter 2 of [5]). Since the prin-

cipal symbol of [P, log A] is purely imaginary we have

Re([P9 log A\u, (log ^»^C([|(log A)*u\\2+\\u\\2) , i/eCf(^) .

Above two estimates, together with Schwartz's inequality, show that the esti-

mate

23 ||(log A)pWu\\2£C'x'(Re(Pu9 (log
1*1=1

holds for any small ^>0. Set e =(A/2CiW)1/2 in (3). Then we obtain

1*1=1

Since it follows from (2.6.14) of [13] that we have

the similar discussion as above shows that ||(log A)P^u\\^1 (|^|=1) is esti-
mated above by the right hand side of (1). We have completed the proof of
Corollary 2.
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From now on we shall prove Theorem 1 . Let h(x) be a CJT-function such
that h=l on | x \ ̂  1/5 and supp h C { | x \ <7/24} . Write

P(x, f) = *Hbpk(x, £),
k=o

where pk is positively homogeneous in f of degree k. For r = (XQ, f 0) e J2K X 5fw~1

we consider a microlocalized pseudodifferential operator of P as follows :

(1.1) P, = j7,( y, D,\ X) = pk(x0+ty, tQ+Wy)h(Wy/3)l-2k

k=0

where /I is a positive small parameter (see Hormander [2] and Section 1 of
[12]). It is clear that the symbol of PY, p?(y, 77; X) (=a(PY)) satisfies for any
a and ft

(i .2)
where C^p is a constant independent of X. From the estimate (1) we have:

Lemma 1.1. For any e>0 and any T = (XO, f(J)e.RnX.Sf|l~1 there exists a
constant C(e, r) such that

(1.3) 2

if

= h(Wy)h(*y) and H0 = h(Wy/2)h(*y/2). Here P$] are pseudo-
differential operators with symbols o(

Proof. Note that {h(Z2£— 10); 0<^^1} is a bounded set in 5if0, as a
pseudodifferential operator in Rn

x, because ^2<(4/3)|f I"1 on supp h(l?S — f0).
Replace u in (1) by /<x-.T0)/z(^2I),-f0)w(-/z(A:-z0)/7^2i)^-eo)/7((a^
w£=.Sx. Then, by means of the symbolic calculus of pseudodifferential opera-
tors we have

(1.4) ||(log Arh(*2Dx-Qh(x-Xo)W\\

+ 23 I
0<|as-rp|<m

because (log AJ'A-^Sl^ foi j = l,—,m and h(x/2)=l on supp /<*). Set
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~1(^— x0J) for v(y)^<Sy. Then we have

(1.5) exp(-/ Z-2x*?Mx,

by noting the change of variables.

X—XQ = Ay , £ —

Similarly we have for any real s

(1 .6) exp (-U

where #(??; J)=0*4+ |^+f0!
2)1/2- It is clear that qfy', X)9h

and {#0?; ^)*A(^/2); 0<^1} is a bounded set in 5§>0, as a pseudodifferential
operator in R*. Furthermore we have

(1.7) exp(-M-2x.

= ((log *-*

where r(ni X)=logq(7ji X). Since {r(^; ;iy'A(^/2); 0<^^1} O'=l» ' " jW) are
bounded sets in ^S.o we have

(1.8) ||r(i>

if 0<^^^1 for a sufficiently small ^. In view of (1.5)-(1.8), it follows from
(1.4) that

(1.9)

,, if

where (P$Di is defined by the same formula as (1.1) with p(x, f) replaced

byp$(x,£)' Note that

o(P$fr = %I%pi(y9 r i ' X ) = t-W+^o((P$)J if |^| ^3/5 .

Since supp/t(^7?) and supp A(^/2) are contained in {77; |^^|^3/5}, the
symbolic calculus of pseudodifferential operators shows that (1.3) follows from
(1.9) if (XJ^i. The estimate (1.3) for ^<^ 1 is trivial. Q.E.D.

For a real /c>Q and an integer k>Q we denote by AK>k a pseudodifferential
operator with a symbol (!+£<<?)>)"*• It is easy to check that for any a the
estimate
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CLIO) i9?((i+*<or*)i ^
holds with a constant Crf independent of K. Set

(i.ii) 40?; J) - (i+^-^+r1

Then it follows from (1.10) that for any a the estimate

(1.12) | dfc(i;X

holds with another constant C£ independent of /c and ^.
Set hs(x)=h(x/d) for a small 0«5<n/10. Fix an integer A/>m. Take

a sequence {/7;
5}f=T+1cCST(^) such that

(1.13) h = A

and for any a the estimate

(1-14)

holds with a constant C" independent of N and j (Co' = l).

Lemma 1.2. H^r/te

(1.15) hi(W,K(D,iW((ly^

= hl(*D,&(D,'9 X)hi(W+r(y, D,i X) .

Then for any integer />0 f/7ere e^w^5 a constant Ct independent of Z, K and N

such that

(1.16) \\r(y, D,; ^vll^

Proof. Note (1.12) and (1.14). Then (1.16) follows from the symbolic
calculus of pseudodifferential operators and the Carderon-Vaillancourt theo-
rem (See Chapter 7 of [5]). Q.E.D.

As in [12] we state the following simple proposition:

Proposition 1.3. Let N be a fixed positive integer and let 1 satisfy 0<^
^1. For any finite sequence of positive numbers {C^J-.i there exists a con-
stant C\ such that

(1.17) 2 C£NXF^ + C'i(NXfl .
y=i

Proof is omitted. (See [12]).

Lemma 1.4. Set B{=h{(Wy)AK(Dy\ X)hi(*y)forj=l, — , N-m+l. Then
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for any s>Q and any r=(x0, £Q)^RnxSn~1 there exists a constant C(s, r) in-

dependent of A9 K,J and N such that

(i.is) (iogrril#|v||+ s

y, if 0<*£i£s, r) ,

w/zere ^0(5, r) w a sufficiently small positive number.

Proof. Note that ||v||^||jyv|| + ||(l— ff)v|| and that there exists a small
,y>, r)(^ 1/3) such that

(1.19) (togr1)^*, r)/2 if 0<^0(s, r) ,

where C(e, r) is the same constant as in (1.3). If 0<^^^0(e? r) we have the
estimate (1.3) with e, C(e, r) and ||v|| in the right hand side replaced by 2e,
2C(e, r) and ||(1— H)v\\9 respectively. Substitute H3

Bv into this modified esti-
mate. Then, in view of (1.19) we obtain (1.18) by setting e=s~m/2. Indeed.,
as in the proof of Lemma 1.2, it is easy to see that for any real s-X) there exists
a Cs such that

Q.E.D.

Lemma 1.5. For any ,s>0 there exists a constant M independent of s, /c,

A and N such that for j=l9
 e e o , N—m

(1.20) llP^

and 0<^^s9 r) ,

where Cs is a constant independent of A, K and N, and A0(s9 r) is the same as in
Lemma 1.4. Here S28=h2^(W y^k(D y\ fyht&y).

Proof. It follows that

(1.21) ll^^iv|I^II^J^v|| + l|[Py, JSTflvll -

Noting hJ
8(x)=hi(x)h28(x) and considering the expansion formula of the

simplified symbol of H{9 we have
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S
9 = 1

for some constants C( and C5. Using Proposition 1.3 we have

Here and in what follows we denote by the same notation Cs different con-
stant independent of ^, it and N (, depending on s). We shall estimate the
second term of the right hand side of (1.21). In view of Lemma 1.2 it suffices
to estimate | |[Py, HJ

s]Hj
s
+l v\ |, where Hj

s
+1 =hi+1(Wy)h

j
8
+1(Zy). Write

Note that the expansion formula

where R is an operator negligible, in the sense of

In view of (1.2), (1.12) and (1.14), we see that there exists a constant Ml in-
dependent of s, K, A and N such that

(1 .22) | |[PY,

holds with some constants C". Consider the expansion formula of the sim-
plified symbol of &KhJ

s(Ay) and use Proposition 1.3. Then the second term
of the right hand side of (1.22) is estimated above by

(1.23) 2(MlN)m \\Hl+1v\\ + Cs*
sNs+2n+3™\\v\\ .

Together with Proposition 1.3, the symbolic calculus shows that for any ft

(0< I ft I <nf) the estimate

(1.24)
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holds with a constant M2 independent of s, K, A and N. Note (1.22)-(1.24)
and use (1.18) with j=j+l. Then, taking a suitable M larger than Ml and
M2, we see that ||[P7, h{(W^hi(ly)H{+lv\\ is estimated above by the right
hand side of (1.20) because (MNy'^(logrsyMN(log^s)-\ j= 1, • • - , m if
logX'^MN. Noting \\^M(Wy)v\\^\\^hn(Wy}v\\ for ?e<5,, we can also
estimate \\£ji{(Wy)[P^ h{(ly)]H{+lv\\ by means of (1.18). We have estimated
the second term of the right hand side of (1.21). So we obtain the desired
estimate (1.20). Q.E.D.

By Lemmas 1.4 and 1.5 we have

Lemma 1.6. For any real s>Q, /c>0 and any integer N>m there exists
a constant M independent of s, K, A and N such that

(1.25)

+ CsN\Ns+2"+*m\\v\\, v^<Sy, if 0<J^«j, r),

where Cs is a constant independent of A, tc and N. Here H8=h8(ADy)&K(Dyi /I) X
h8(Ay) and AQ(s, r) is the same as in Lemma 1.4.

Proof. In view of Hs=Hl it follows from (1.18) that

(iogro"li#fiv||^(iogr^

Applying (1.20) to the first term of the right hand side. Then we have

"ll#av||^MOogro*-^
+2Cs(logrs)N-mtsNs+2n+3m\\v\\ if

Use (1.20) for the second term of the right hand side and moreover use (1.20)
repeatedly (N—m—2) times. Then we obtain

(1.26)

+(log ̂ "'^""

if

Since h^m+1=h2S and {Z2ma(PyH$-m+1); 0<^^1} is abounded set in
we have
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by taking another large M if necessary. If logZ~5^MN it follows from (1.26)

that

When log/Ts<^M/V this estimate still holds because of the second term of the

right hand side. Noting

(log rs)^s=0og ry exp (-log l-*)^N\ , we obtain (1.25).

Q.E.D.

By means of (1.18) with 7=! we see that there exists a constant M' in-

dependent of s, K and A such that for any N=Q, 1, ••• , m

Therefore, by taking another large M if necessary, we may assume that (1.25)

holds for any N=Q, 1, • • - . Let r be a small parameter chosen later on. Mul-

tiply rN/Nl by both sides of (1.25) and sum up with respect to N=Q, 1, • • • .

Then we obtain

m j (MNT)N/NI + CS ] T
JT=O jy=o

because S(r log X~s)N/Nl=X-sr. Choose r such that Mer<\ and 0<r<l.

Then, by means of the Stirling formula NN/Nl^eN we have

(1.27) l-tT\\Btv\\£*-"\\ffttP1v\\+Cf,rf\\v\\, v^Sy,

for another constant CJ. Note that r is independent of s because M is so.

Hence we can replace sr in (1.27) by 2,s''+2//+2w for any real s'9 s">Q.

Multiply ^2s//+2w by (1.27) with ST replaced by 2s'+2s"+2m. Then we see

that there exists a constant C0=C0(j', s", r) independent of K and ^ such that

(1.28)

vevSy if A is sufficiently small.

Taking another large C0 if necessary, we may assume that (1.28) holds for

Note that for any Z^S""1, any 0<8'<^l and any real s the estimate

(1.29) C

holds for some constant C=C(s9 df) because
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C -1 ̂  q(7] ; tf<^ C on supp

Substitute v(y)=h(Wy)v(y) into (1.28) for PQ;)=exp(— M
we^. Then in view of (1.5), (1.6) and (1.11) we see that there exists a con-
stant Co such that

(1.30)

-^^

w<=Sx if

Here we used the fact that

are contained in a bounded set of Sfo".

To complete the proof of Theorem 1 we define the following:

Definition 1.7, For S>0 and i^S11'1 we say that a function
C°°(Rn) belongs to rs>|o if ̂  satisfies

and

for |f/|f|-f0 |^a/10 or | f |^ l /3 f

for r^ 1 and £ e 5W -1 .

Devide both sides of (1.30) by ^ and integrate with respect to ^ from 0
to 1. Then, we see that for any r=(x09 ^eJ^xS*'1, any reals', s">0, any
integer fc>0 and any £>0 there exists a constant C//=C//(r, s', -s77, ̂ ) inde-
pendent of K such that

(1.31)

if V>(£) e y a.f o and ^«(f ) e r i4s,l0- (See Proposition 1 .7 of [12]).

We shall prove (2). Let (jc0, <?0) e r*(Jgw)\0 and let u e ^(/Z"). Set
fo^o/lfol . Suppose that (^0, f0)$WFPw. Then there exists a S>0 such
that ^(DJhzfa-xdPueHs for any real sf>0 if ^8(f)e F14Sj0. Since
h4S(x—xQ)u^Sf we have h48(x—xQ)u^H-s» for some 5X/>0. Choose &>0 in
(1.31) such that k>s'+s"+m. Then, by taking a sequence {w^^-iC^S, such
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that

w/ -* h4S(x—xQ)u in H.jf ,

from (1.31) we see that

(1.32) \\AtMDMx-xJu\\l'
£C'\\\fa(D,)h^x-xJto\\*^^

if ^6(e)ersjo and ^6(f)e^14S>|0. Here we used the fact that pMw||^|H|

for weL2. Letting K tend to 0 in (1.32), we have ^(Ds)h^x—x^u^H^.
Since s' is arbitrary, we have (x0, <f0)$WFw. Now the proof of Theorem 1
has been completed.

§ 2, Proofs of Theorems 4 and 5

Throughout this section, P satisfies the assumption (5). It is clear that
for (*0, e0)er*^w\0 and

(2.1) (jc0,

if x0=f=(0, x'o'). So, we shall consider the case xQ=(09 x"). Since our consider-
ation is local near XQ we may assume that for any #>0 there exists a constant

such that

(2.2) | pm(x, f ) l^^ for all (x,

if \x

Let h(x)^CQ(Rn) be the same as in Section 1. Noting \/T/5<7/243 we may
assume that h(x) is written as

(2.3) h(x) = /Wx'

for C^-functions Aj and h2 satisfying

l on

l on

First we shall prove Theorem 4. We prepare four lemmas. If PY=
Pv(y, Dy; X) is the same as in Section 1, from (6) we have:

Lemma 2.1. For arcy e>0 and any r=(x0, S0)^RnxSn~l with xQ=(Q, 40
there exists a constant C(e, r) such that
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(2.4)

H=h(Wy)h(^y). Here S' means the summation which is taken over
alla=(a', a"), ft satisfying 0< \a+0 \ <m and a'=Q.

Proof. Set q\x, ^}=(\-hl(2x'))lp(x, f). Then it follows from (2.2) and
the symbolic calculus that for Q?=q\x, D,) we have

Q°P = 1 -h,(2x')-R ,

Setting 6=S%J #6° we have

QP = l-

For 0^ \a-\-p\ <m, note

(2.5) [Pffl, h(x-x0)} = [P$, h^

and

because supp /z^x') n supp D^h^x')^ for a'=f=0. It follows from (2.6) that
the estimate

(2.7)

holds for any e>0 and some C8. As in the proof of Lemma 1.1, replace u
in (6) by h(x-x0)h(^Dx-Qw(=h(x-x0)h(^Dx-Q h((XzDx-5^}w),
Then, using (2.5) and (2.7) together with symbolic calculus, we obtain

(2.8) ||0og Af

'p-i3i Oog 4]°"
-f 0)/3)w| |

Set w(x)=(exp/-l~2x-f0)v(^~1(^— ̂ 0)) for v(y)^Sy. From (2.8) together with
(1.5)-(1.8) we obtain (2.4), similarly as in the proof of Lemma 1.1 Q.E.D.
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For h(x)=hl(x')h2(x
//) and a small 0<^1/10 set hs(x)=h(x/d) (, hliS(x') =

h^x'/d) and h2>8(x") = h2(x
/'/d)). Fix an integer N>m. Take a sequence

iz") such that

(29)
v > / 5* » i - - I ? — - —— N—m+1 L 7^ _ 1/c — I,

and for any a' and a" estimates

(2.10) | D«;hitS(x') \ ̂  CiW"' , I D^Ais(^) ] ^ C^^>^'

hold with constants C£'/ and C^/ independent of TV and j.

Lemma 2.2. &r Hi =h{(Wy)^(Dy ; ^)/?|(^ j) /or j = I , • • • , ^-
/or aftj 5(>0 aw6? awj r=(xQ, SQ)^RnxSn~1 with xQ=(09 x") there exists a
constant C(s, r) independent of A, K, j and N such that

(2.11)

0(^, r) is a sufficiently small positive number. Here S' means the same
summation as in Lemma 2.1.

Proof. The estimate (2.11) follows from (2.4), by the quite same way
as in the proof of Lemma 1.4. Q.E.D.

Lemma 2.3. Set Jt9(x
r) = l-h1(2x'ld)for 0«^1/10. Then for any

and any d=(xQ, QeJ^xS*'1 with xQ=(Q, xj') there exist a constant C(s, r)
such that

(2.12) ^21i

Set ??(^?7;^)Kl-Ai(3^//*))A(^2)//^^ Then
{A~2mqy(y, ri\ X); 0<^^1} is a bounded set in £0.0. The symbolic calculus
shows that, if Qy=qy(y, Dy; X), we have

for R= r(y, Dy; X) such that {X~2r(y, y; X); 0<^^1} is a bounded set in 58§0.
Take an integer / satisfying 2l^s+2m for a fixed ,s>0. Set e,=S}-o ̂ 'fi?-
Then we obtain
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(2.13)

Note that {^2lo(R^\ 0<^1} is a bounded set in So.o and that, for any
,s'>0, i*-s'o(h8(ty')h(Wy)R1):>Q<t^l} is a bounded set in 5§>0 because
(l-hj(3xr/dy)h(£l2)-l=Q on supp H8(x')h(£). From (2.13) we obtain (2.12)
because {^~2M^/W^)0; 0<^^1} is a bounded set in S°Q>Q. Q.E.D.

Lemma 2.4. For any s>Q there exists a constant M independent of s, A%
and N such that for j=l, ••• , TV— m

(2.14) llP^

if log *-*^MN and 0<^I0(*5 r} ,

where Cs w a constant independent of A, K and N, and IQ(s, r) is a positive number
smaller than ZQ(s, r) in Lemma 2.2. Here H2S=h2B(Wy)^K(Dyi Z)h2S(Zy) and
T=(xQ, ejGlfxS'-1 with xQ=(Q, xtf).

Proof. It foUows that

(2.15) \\PiBiv\\£\\BiPiV\\ + \\[Pi, Hi]v\\ .

The estimation of the first term of the right hand side of (2.15) is the quite
same as in the proof of Lemma 1.5. We shall estimate the second term. In
view of Lemma 1.2 it suffices to estimate ||[PY, ffi]Hi+1v\\9 where HJ

8
+l =

hi+\Wy)hi+1(*y). Note

(2.16)

We shall consider the first term of the right hand side of (2.16). As in the
proof of Lemma 1.5 we have (1.22). The estimation of the second term of
the right hand side of (1.22) is the quite same as there. About the first term,
instead of (1.24), we see that for any ft (0< | ft \ <m) the estimate

(2.17) #"\&PMhi(*yWlv\\£ S

holds with a constant M2 independent of s, K, /? and N, where Ji&(x'} is the
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same as in Lemma 2.3. In fact, the estimate (2.17) follows from the symbolic
calculus if we note

(2.18)

and £8(jc') = l on suppD?/z{fS(x') for a '= t=0. It follows from (2.11) with
7=/+l that the first and the second terms of the right hand side of (2.17) mul-
tiplied by (MiAO'01 are estimated above by the right hand side of (2.14). We
shall estimate the third term of the right hand side of (2.17) multiplied by

1, that is,

where M3=max(Af1, M2). In view of Hl+1=h(Wy)Hi+\ it follows from
(2.12) that

J£C(s, r) 2
0<9<**-\P\

Take I0(s, r) small enough so that

"fo r), l)^(log r^)'1 if 0<^J0fo r) .

Then / is estimated above by the right hand side of (2.14) when 0<A^%0(s, r)
and logA~s^>MN with a suitable M>M3. We have estimated the first term
of the right hand side of (2.16). Noting (2.18) with 0=0, by means of (2.11)
and (2.12) we can also estimate the second term of the right hand side of (2.16).
The estimation of the right hand side of (2.15) is completed. So we obtain
(2.14). Q.E.D.

From (2.11) and (2.14), we obtain (1.25) in Lemma 1.6. In fact, in the
proof of Lemma 1.6 we did not use the fact that the second term of the left
hand side of (1.18) is estimated above by its right hand side. By mean of
(1.25) we can also prove (2.1) for (*0, f0)er*J2w\0 with Jt0=(0, *£')> by the
same way as the one after Lemma 1.6. The proof of Theorem 4 is completed.

In the rest of this section we shall prove Theorem 5. We state three lem-
mas. By the same way as in the proof of Lemma 2.1, from (7) we have:

Lemma 2.5. For any r=(xQ, f0)eJ2"x*S<w"1 with x0=(®, x'Q') there exist
a 0</c0<l and a constant Q such that
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(2.19) \\

^ v\\+#\\v\\) ,
,, if

where H=h(Wy)h(Ay). Here 2" means the summation which is taken over
alla=(af, a"), satisfying 0< \a+ft\ ^m anda'=Q.

Proof. We also have (2.5)-(2.7) for 0<|a+£| <^m. By means of (2.5)
and the first inequality of (2.7), it follows from (7) that

e0)/3)w||
+2" IM"1' W/>,-fo^^

In view of (1.5)-(1.8)5 the estimate (2.19) immediately follows from the above
estimate. Q.E.D.

Let N be a sufficiently large integer chosen later on. If {hfoc)}*!***1 is
the same as the one in the proof of Theorem 4, from (2.19) we have

Lemma 2.6. Set HJ
8 =h((Wy)^(Dy ; X)h{(ly) forj=l,—9 N-m+ 1 . Then

for any £>() and any T=(XO, £0)&RnxSn~1 with x0=(05 XoO there exists a
constant C"(s, r) independent of X and K such that

(2.20) ||#

w a sufficiently small positive number. Here KQ and S7/ ore the
same as in Lemma 2.5.

Proof. Take a small ^(r) such that

Ct if

where Cy is the same constant as in (2.19). Then we have (2.20) from (2.19),
by the similar way as in the proof of Lemma 1.4. Q.E.D.

The above lemma together with Lemma 2.3 leads us to the following:

Lemma 2.7. For any s>0 there exists a constant Cs independent of K and

& such that for j=l, e e- , N— m
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(2.21) \\P,Hiv\\

if

where r=(*o, S^eR'xS"'1 with x0=(0, x'0').

Proof. As in the proof of Lemma 2.4, it suffices to estimate
1 1 IP,, ffi]Hi+1v\\. We shall consider the first term of the right hand side of
(2.16). Noting the expansion formula of [Pv, h{(W^k,\, we can also have

(2.22)

In the proof of the lemma we denote by the same notation C different con-
stants independent of 1 and /c (and 7). The second term of the right hand side
is estimated above by a constant times of ^2||l?8+1v||+^s||v]|. So3 we can
estimate it by the right hand side of (2.21) by means of (2.20) with j=j+ 1.
About the first term of the right hand side of (2.22)? we have

(2.23)

where h8(x
r) is the same as in Lemma 2.3. It follows again from (2.20) with

j=j+ 1 that the first and the second terms of the right hand side of (2.23) are
estimated above by a constant times of the right hand side of (2.21). Note
that Lemma 2.3 still holds because it was obtained only under the hypothesis
of (5) ((2.2)). By means of (2.12) we can also estimate the third term of the
right hand side of (2.23). Now, the first term of the right hand side of (2.16)
has been estimated. The estimation of its second term is similarly performed
by using (2.20) and (2.12). So we obtain (2.21). Q.E.D.

For any s>Q take an integer N such that

(2.24) N-m+l»sxQ.

Then, by means of (2.20) and the repeated use of (2.21) we easily see that for
any s>0 there exists a constant Cf

s independent of ^ and K such that

(2.25) ll^av||^C
if

where r=(x0, f0)eJB*x5"-1 with x0=(0, *oO- Setting s = 2s'+2st" for real
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s', s">Q we have the similar estimate as (1.28). So we can prove (2.1) for
(x0, <?0)e T*R"\Q with xQ=(Q, x'0'). Proof of Theorem 5 is completed.

Remark. The assumption (5) in Theorems 4 and 5 can be weakened to
Hormander's condition in the region \x=(x', x")\ %'=t=0} as follows: For
any #>0 estimates

(226) I lrt*>*)
U/$(*,

if | x' | ̂ v and | f | large enough,

hold with constants c^. and C^^. In fact, under this assumption we have

and

(a=min(l-2»,2p-l))

instead of (2.7) and (2.12), respectively. Using these we can prove Theorems
4 and 5. The detail is omitted.

§ 3, Proof of Proposition 3

As stated in the introduction, the necessity of (4) was already proved in
[9] in a little more general form (, see Theorem 3 of [9]). We can also prove
the sufficiency of (4) in a slightly more general form.

Let P0 be a differential operator of the form

(3.1) PQ = D2
x
l
i+D2

x
l
2+g(x1)D

2
y
l in M* ,

where 7=1, 2, — and g(x^ is a ^"-function such that ^)>0 (^=+=0) and
g(0)=0. When /2^2 we assume that for any integer j>0

(3.2) | gV\xJ | ̂  CygOO1"07' in a neighborhood of xl = 0 ,

where g(J)=DJ
Xig and a is a number satisfying

(3.3) 0«?<l/2/2.

It is clear that exp (— l/l^l*), S>0, satisfies (3.2) for any small a>0.

Proposition 3.L Let PQ be the above operator. When 1^2 we assume
(3.2) with a satisfying (3.3). Ifg(x1) satisfies
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(3.4) Hm\xl\\lOBg(x1)\=0.
\XI\->Q

then PQ is hypoelliptic in R3.

When 0«5<1, Qxp(-l/\xl\
8) satisfies (3.4). So the sufficiency of (4)

follows from this proposition. Proposition 3.1 for the case 1=1 is included
in Theorem 1.1 of [11] (, where (3.2) is not assumed). We shall prove Pro-
position 3.1 when /^2. Without loss of generality, we may assume that for
any #>0 there exists a constant cp>0 such that g(x^c^ for \x^\ ̂ /*. We
prepare the following:

Lemma 3.2, i) It follows that

(3.5) \\Dl'2u\\<\\P,u\\ , u^S.

ii) For any e>0 there exists a constant Cg such that

(3.6)

iii) Let K be (I— £0)/(/+l), where dQ=2l2a. There exists a constant C0

such that

(3.7) H^i)«ll2/-i

and moreover for any j=l9 •••, 21

(3.8) llg^OwlL-

Remark. It follows from (3.3) that dQ<l and hence

Admitting this lemma for a while, we shall apply Theorem 4 to the proof
of Proposition 3.1. We shall check the assumption (6). Set e=e'zl in (3.6)
for a small e'>0. Then we have

(3.9)

From (3.5) and (3.9) we have

(3.10) ii(aog^)/*'y^-
for 7=1, —, 21—1. It follows from (3.7) and (3.8) that for any e>0

(3.11)

holds with a constant C(, because the left hand side of (3.11) is estimated
above by
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Summing up (3.6), (3.10) and (3.11) we have (6) for PQ. By means of Theo-
rem 4 we have the hypoellipticity of P0.

For the proof of Proposition 3.1 it remains to prove Lemma 3.2. Note
that

(3.12) ||^lW[|2+||^2W||2+||g(x01/2/)>||2 = (/>, u) ,

Replacing u by Dl
X2u9 we have

^u, D'Hu) = (P0u, Dl'2u)

so that we have (3.5). Let/(f , rj) be a symbol in S°j0 such that

(/=! on

Since P0 is microlocally elliptic on { | f | ^ 1 77 1 } it is easy to see

(3.13) ||(1-/ .._. ... .

Hence, it suffices to show (3.6)-(3.8) with u replaced byfu. Since {| £ | ^
on supp/, instead of (3.6) it suffices to show

(3.14) ll(log<i>,»2/i/||^e||P0w|| + Ct|H| , utES.

If /i(£> tf) is a symbol in S°itQ such that/^1 on supp/and supp/C {|<? | ^
31771}, we have

fi(Dx, Dy)g
('\x^)f(D%, Dy)=g(j\x^f(Dx, Dy) mod. S~°°.

Since |£| ^3|?| on supp/l5 instead of (3.7) and (3.8), it also suffices to show

and

(3.16) Hg^xXO^-^ull^CQlP.ull+Ml),

for 0<y^2/, respectively. We shall prove (3.14)-(3.16), by using the similar
method as in Section 5 of [8].

Let <i>k (0 (k=Q, 1, 2, 3) be C^-functions in R1 such that
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(supp00c{|f |
supp01c{|/|<2}, 0! = 1 on

supp02c{|f |<1}5 02 = 1 on

Uupp03c{U|<3}3 03-1 on I * | ^ 2

and ^+02=1 in R1. Let (£, 37) denote the dual variables of (jc, j) and set
j(£, ?)=(|£|2</+1>4V+1)W+1). Then J(£, 37) satisfies (1.1) of Chapter 7 of [5],
so it is a basic weight function.

Lemma 3.3. Set A(f,
(fc=0, 1, 2). Then

and zk(xl9 Dx, Dy) (k=Q, 1, 2) belongs to S°tltSo, that is, for any a and j

(3.17) I (M,)^ **(*i, e, ?7)| ̂ c^^f, 37)-
|-l+v ,

where d0=2l2o<l

Proof. By means of (3.2) we have (3.17) by the quite same way as in
the proof of Proposition 5.1 of [8], if we set r = l/(/+l) there. The detail
is omitted. Q.E.D.

Set vk=xk(xl9 Dx, Dy)u (k=l, 2) for u^<S. Let v^x9 rj) be the Fourier
transform of v^, y) with respect to y. Setting Z3(xl9 rj) = <f>3(g(xl)h(Q, 37)),
we have vfc, 7j)=z3(x> ??)vi(x, ?7) because j3=l on supp ^fo, f , ??). It follows
from (3.12) that

(3.18) il
=
^ 3(P0v1?

because «=(l-^o)/(/+l) and g(jc1)<57>2/2/(l+1)<3 on supp x3. By means of
(3.2), for 0<j^2/ we have furthermore

(3.19) H*t/)(

It follows from the hypothesis (3.3) of Proposition 3.1 that for any e>0
there exists a constant ce>0 such that
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(3.20) I *! I ̂  e(log <??»~1 on supp x3(xl9 rj)

if
because (xl9 97) e supp j3 implies g(^i)<57>2/2/(/+1)<3. By means of Poincare's
inequality it follows from (3.20) that for a constant C0 independent of e we
have

(3.21)

if

because %sVl = vl and so supp v^x, ??)n K?7>^ ce} is contained in {|^|^
e(log ̂ y)"1}. Integrating (3.21) with respect to rj we have

by taking another small e>Q. Estimates (3.22) and (3.12) with u replaced
by v1 give

>,»' vjl^

Replace vl by (log <DJ,»
/ vlB Then, for any 0 <e ^ 1/2 we have

(3.23) Haog</>,»a/v1||
2^fi||P0v1||

a+C1
/||v1||

2

because for some C( we have

C.| |(log <D,»' vj |2^(1/4)| lOog <D,»2' vj |2+ (Ce'/2)| | vj |2 .

To obtain estimates for v2=x2(xi, Dx> &y)u we consider an operator
PQ=Po(xl9 Dx, Dy) which is obtained by modifying P0 in "a neighborhood of
x1==0" as follows: Set

Pfcl9 s, i) = sll+sll+(g(xl)h(^ ri+xQ(xl9 e,
Then we have

Lemma 3.4. M*^ f , ??) belongs to S2
K

l
t(

1^ and satisfies Hormander's con-
dition as follows: i) There exists a constant c0>0 such that

(3.24) !&(*„

ii) for anj a and ft there exists a constant Cafi such that

(3.25) | j^, e, tilpfa, f, rj)\ £

for large | f | + | ?? | ,
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The proof is similar as the one of Proposition 5.3 of [8]. The detail is
omitted.

In the consequence of this lemma, we have a parametrix Q^S^iiSo such

that

(3.26) 7 = 6-

furthermore

! = QoQi,
1 *(6o) = A>(*i, £, tf)"1 for large I f I + ^ I -

Note that ^2//(/+1)6^S°.i8o and P0/2 = P0^2mod. S"°°. Recall v2 = ̂ 2(xl5 A,,
Dj> for u e cS. It follows from (3.26) that

(3.28) l|v2||2//c/+1)^C(||P0v2|| + ||ii||).

In view of (3.27) and (3.25) it is easy to see g^x^D^Q^S^r^^ Noting

fto, we have

(3.29)

for 0^; ^ 2/. Note that, for k=1, 2, [P0, jJg e 5^7.̂  and

Then we have

(3.30) ||[P0, %k]u\\K^C(\\PQu\\ + \\u\\) (k = 1, 2) .

Since *1+jr2=/, from (3.23), (3.28) and (3.30) we have (3.14). Furthermore,
(3.15) follows from (3.18) and (3.29) together with (3.30), and we obtain (3.16)
from (3.19), (3.29) and (3.30). Now, we have proved Lemma 3.2. So the
proof of Proposition 3.1 for the case / J^2 is completed.

We remark that the proof of Proposition 3.1 for the case 1=1 also follows
from the above discussion. It follows from the nonnegativeness of g(x^)
that (3.2) holds with a = 1/2. Lemmas 3.3 and 3.4 still hold with fl0=l/2 if

we set *(£, ??)=(|e|G+??4+l)1/6 and A(£, ?)=-*(£, ?). We have (3.22) by the
same way as in the case /^>2. We also have (3.28) with 2//(/+l) replaced by
2/3 and (3.30) with K replaced by 1/3 because l(Dx, Dy}~1 belongs to Si/Y.i
Hence we have (3.6) with 7=1, which is nothing but (3) of Corollary 2. By
Corollary 2 we see that Proposition 3.1 also holds when 7=1.

We finally remark that the condition (7) is satisfied for
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<J,=D2
x[+exp(-l/\x1\

s)D2
y
l , <5>0, in R2 .

Indeed, we have (3.7) and (3.8) with PQ replaced by JL because we did not use
the assumption (3.4) in the derivation of (3.18), (3.19) and (3.28)-(3.30). So,
we have (7) if we show

(3.31) IMI^cdMMI+lMI-O, «<=S.
It follows from Poincare's inequality that

(3.32) IMP^II^Hll '

if u^S and if supp ud {| jrj fge} for a sufficiently small e>0. The estimate
(3.31) easily follows from (3. 32) and the elliptic estimate in the region -fo^O}.
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