Publ. RIMS, Kyoto Univ.
22 (1986), 1155-1171

Stability and Instability of Certain Foliations of
4-Manifolds by Closed Orientable Surfaces
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Kazuhiko Fukur*

§0. Introduction

Let Fol, (M) denote the set of codimension g C>-foliations of a closed
m-manifold M. Fol, (M) carries a natural weak C’-topology (0<r<oco),
which is described in [7]. We denote this space by Folj(M). We say a folia-
tion F is C'-stable if there exists a neighborhood V of F in Folj(M) such that
every foliation in ¥ has a compact leaf. We say F is C’-unstable if not. A
foliation in a small neighborhood of F in Folj(M) is said to be a C”-perturba-
tion of F. It seems to be of interest to determine if F is C’-stable or not. Let
L be a compact leaf of F. Langevin-Rosenberg [8] showed, generalizing the
Reeb stability theorem [11], that if HY(L; R)=0, then F is C'-stable. Let
7 (L)— GL(q, R) be the action determined from the linear holonomy of L,
where ¢q is the codimension of F. Then generalizing the results of Hirsch [7]
and Thurston |16], Stowe [15] showed that il the cohomology group Hz,(L);
R) is trivial, then F is C'-stable. On the other hand, let F be the foliation
of an orientable S'-bundle over a closed surface B by fibres. Seifert
[13] showed that F is C%stable if x(B)==0, where x(B) is the euler characteristic
of B. The result was generalized by Fuller [6] to orientable circle bundles
over arbitrary closed manifolds B with y(B)=#0. Langevin-Rosenberg [9]
considered a fibration z: M — B with fibre L and showed that the foliation of
M by fibres is C’-stable provided that 1) =(L)=Z, 2) B is a closed sur-
face with x»(B)=#+=0 and 3) =#(B) acts trivially on =,(L). The author [4]
generalized the above result to compact codimension two foliations. Plante
[10] classified all foliations of closed 3-manifolds by closed orientable surfaces
into stable or unstable foliations. The author [5] classified all foliations of
closed 3-manifolds by circles into stable or unstable foliations.
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We study here the case M is a closed 4-manifold and F is a foliation of
M by closed orientable surfaces. Our main results are as follows. See §1
for definitions.

Theorem A (Theorem 8). Let F be a foliation with all leaves tori and only
reflection leaves as singular leaves. Then we can regard a union of reflection
leaves as T?x[0, 1]/h, where h is a diffeomorphism of T?. If the induced auto-

morphism hy: H(T?; Z)— H(T?; Z) is equal to <_(1) _(1)>, then F is C'-stable.

Theorem B (Theorem 17). Let F be a foliation of M without singular
leaves. Then F is C'-unstable (r >0) if one of the following is satisfied,
(1) M]/F is homeomorphic to the 2-sphere and the genus of a generic leaf >2,
(2) MJF is homeomorphic to the projective plane and the genus of a generic
leaf >4,
(3) MJF is neither homeomorphic to the 2-sphere nor the projective plane and
the genus of a generic leaf > 6.

Theorem C (Theorem 25). Let F be a foliation of M with generic leaf of
genus g and B=M|F be the leaf space. Suppose F has m rotation leaves with
holonomy groups Z,, (i=1, 2, «-+, m) and m; dihedral leaves with holonomy groups
D), (k=1, 2, -+, m;) which correspond to points of 0B for each j(1<j<n’}.
If gzmax(3max(k;; 1<i<m)+1, 8max(/;,; 1<j<n’, 1<k<m;)+1,7¢),
then F is C"-unstable (r >0), where ¢ =0 or 1 and F has no reflection leaves if and
only if €=0.

The paper is organized as follows. In §1, we recall the (local) structure
of compact codimension two foliations and prepare some definitions and
notations. In §2, we discuss about foliations with all leaves tori and prove
Theorem A. In §3, we discuss about foliations with generic leaf of genus>2
and no singular leaves and prove Theorem B. In §4, we discuss about folia-
tions with generic leaf of genus>2 and singular leaves and prove Theorem C.
All foliations we consider here are smooth of class C* and of codimension two.

§1. Compact Foliations and Singular Leaves

Let M be a closed manifold and F a compact foliation of codimension
two. By the results of Epstein [2] and Edwards-Millett-Sullivan [1], we have
a nice picture of the local behavior of F as follows.

Proposition 1 (Epstein [3]). There is a generic leaf L, with property that
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there is an open dense saturated subset of M, where all leaves have trivial holo-
nomy and are diffeomorphic to L,. Given a leaf L, we can describe a neighbor-
hood U(L) of L, together with the foliation on the neighborhood as follows. There
is a finite subgroup G(L) of O(2) such that G(L) acts freely on L, on the right and
LJG(L)=L. Let D* be the unit disk. We foliate LyxD* with leaves of the
Jorm Lyx{pt}. This foliation is preserved by the diagonal action of G(L), de-
fined by g(x, y)=(x-g7%, g-y) for g€G(L), x&L, and y=D?, where G(L) acts
linearly on D% So we have a foliation induced on U =Lo(2§)D2. The leaf cor-

responding to y=0 is Ly/G(L). Then there is a C™-imbedding ¢: U— M with
o(U)=U(L), which preserves leaves and ¢(Ly/G(L))=L.

Remark 2. U(L) can be considered to be the total space of a normal
disk bundle of L in M with structure group G(L).

Since G(L) is a finite subgroup of O(2), G(L) is isomorphic to a rotation
group Z, (k>1), a dihedral group D, (/>1) which consists of / rotations and

/ reflections or a group D consisting of only one reflection, which is called a
reflection group.

Defimition 3. A leaf L is singular if G(L) is not trivial. The order of
G(L) is called the order of holonomy of L. We say such an L is a rotation

leaf, a reflection leaf or a dihedral leaf if G(L) is isomorphic to Z, (k>1), D
or I, ({>1) respectively.

Let B=M|/F be the leaf space. B is a compact V-manifold of dimension
two and is also a topological manifold. The quotient map =: M—B is a
V-bundle (see Satake [12] for definitions). Since M is compact, there are
finitely many rotation leaves and dihedral leaves in F. Dihedral and refiection
leaves correspond to the boundary points of B. Let n(=n'-+n"") be the num-
ber of boundary components of B. We let L;(i=1, 2, ---, m) be all rotation
leaves with holonomy groups Z,, and L;, (j=1, 2, ---, n’; k=1, 2, «--, m})
all dihedral leaves with holonomy groups I);, respectively such that L;,
(k=1, 2, ---, m;) correspond to points in the j-th boundary 8,;B of B(1< j<n’).
All points in other boundaries 8,/ ;B (1< j<n") of B correspond to reflection
leaves. Choose saturated neighborhoods U(Z;) as in Proposition 1 to be
disjoint and take saturated neighborhoods U’'(L;) such that U'(L;)C (j(Li),
where U denotes the interior of U. Let V,==(UL,)} and Vi==(U'(L))).

Let B(,:B—{nﬂo/{, B,=By—0B and M,=="'(B;). The restricted map =z:
i=1

M,—B, is a fibre bundle with generic leaf L as fibre. We pow assume that
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M is a closed 4-manifold and F is a foliation of M by closed orientable sur-
faces of genus>2. Then the bundle z: M;— B, is represented as follows.
Let B, be a compact surface of genus 4 with m—+n boundaries. First we con-
sider the case B is orientable. Take simple closed curves c¢; (i=1, 2, ---, 2h)
and arcs d; (j=1, 2, -*+, m-+n) on B, such that 1) ¢; and c;, intersect at points
pi (i=1, 2, «++, 2h—1), 2) d; (j=1, 2, -+, m) join points py;,;—, of ¢y, and 9V}
respectively and d,,4;(j=1, -*+, n) join points pyjim+;j—1 Of ¢y and points g; of
9B, where q;==(L;,} for j=1, -+, n’, and 4) cutting off B, along c; (i=1,
«e+, 2h) and d; (j=1, --+, m+-n) yields a compact manifold B, which is homeo-
morphic to a disk (see Fig. 1). ¢, is separated to an arc ¢{ by ¢, ¢; (i=2, -,

oV

B

v}, 0B,

m+n—1

Figure 1

2h—1) are separated to two arcs ¢; ;, ¢; ; by ¢;—; and c¢;4,, and ¢, is separated to
m+n+1 arcs ¢y, ; (j=1, +++, m+n+1) by ¢, and d; (j=1, +--, m+n). Cut-
ting off B; along ¢; and d; yields a subset B; of B, whose interior is homeo-
morphic to an open disk. Then we obtain M, by making the following identi-
fications in L XB; as follows;

(x, ~(@(0)(x), y) for xEL, yEci, (x, y)~(p:;(»)(x), y) for xEL, yEc;
(i=2, =+, 2h—1; j=1, 2), (x, Y)~(@2,;(1)(x), ¥) for xEL, yEcy,; (j=1, -,
m-+n+1) and (x, y)~@0)(x), y) for x&L, yed, (k=1, -+, m+n), where
@ cf XL—L, ¢;;t ¢;jXL—>L @y, i ¢, ;X L—L and v d, X L—L are smooth
maps such that ,(y), ¢;;(3), ¢z, ;(v) and ¥(y) for yEci, ¢;j, ¢y,; and d, are
diffeomorphisms of L respectively. We may assume that ¢,(y), ¢:,(»), @z, ()
and y(y) are constant difftomorphisms on neighborhoods of the boundaries
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of ¢f, ¢;j, ca1,; and d, respectively.

Next we consider the non-orientable case. Let Bj be a closed surface
obtained by pasting disks to B, along the boundaries. B§ is homeomorphic
to 33, # P? or 35,4 K? according to h=2h+1 or 2/+2, where 3, is an
orientable surface of genus 4, P? is the projective plane and K? is the Klein

bottle. We can identify B, with 33, 4 P? —mLTJnDO? or 3, # K? —-mCJnlo)?.
i=1 i=1

Case of h=2h;+1. Take simple closed curves c; (i=I, 3, 4, -+, A+1)
and arcs ¢, d; (j=1, 2, ---, m+n) on B, such that 1) ¢; and ¢;,, intersect at
points p; (i=3, 4, +--, h), 2) ¢, generates the fundamental group of P% 3) ¢,
joins a point p, of ¢, and a point p, of c3, 4) d; (j=1, ---, m) join points p,, ; of
¢y and 8V}, d .y ; (j=1, -++, n) join points p,,,.; of ¢,4, and points g; of 9; B,
where q;==(L;,) for j=1, ---, n’ and 5) cutting off B, along c; (i=1, ---,
h+1) and d; (j=1, -+-, m+n) yields a compact topological manifold B, which
is homeomorphic to a disk.

Case of h=2h,+2. Take simple closed curves ¢;, ¢, on B, instead of
¢, C, in the case of h=2h,+1 as follows: their homotopy classes {c;} and
{c,} are generators of the fundamental group of K? with the relation {c;} - {c,}
={c,} *-{c;} and ¢; and c, intersect at p,. Take other simple closed curves
¢; (i=3, 4, --+, h+1) and arcs d; (j=1, 2, ---, m+n) on B, in the same way as
in the case of A=2h;+1. Note that ¢, and ¢, intersect at a point p,. ¢, is
separated to an arc ¢{ by ¢, ¢; (i=3, 4, ---, 2h;—1) are separated to two arcs
i1 Cig BY ¢;—; and c¢;yy, and ¢y, is separated to m+-n arcs ¢y, ;(j=1, 2, -,
m+-n) by ¢y, and d; (j=1, 2, ---, m+n). In the case of h=2h,12, c, is sepa-
rated to two arcs ¢, ;, ¢, , by ¢; and ¢;. The rest is similar to the orientable case.

Definition 4. Let Y be a subset of a manifold X. We say a diffeomor-
phism f: X—X satisfies the property P(Y,r) if 1) fis sufficiently C"-close to 14,
2) fis equal to 1, on the outside of ¥ and 3) f has no fixed points in Y.

We fix the following notations.

Notation 5. B is the leaf space, and B,, B; and B, are subsets of B as
is stated above. g is the genus of a generic leaf L, and «;, 8; 1<i<g) are
simple closed curves on L such that <e;, ;>=0, {g;, 8;>=0 and {a;, #,>=0;;
for any i, j, where { , > denotes the algebraic intersection number of 1-cycles
in L. We denote by [@;] and [5;] the homology classes of @; and S;. Then
[e;], [8:] (1<i<g) form a canonical symplectic basis for H(L: Z). We denote
by {e;}, {8} the homotopy classes of «;, #;. Then {e;}, {£} (1Li<Lg)
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represent generators of z;(L).

§2. Stability of a Foliation with All Leaves Tori

In this section we study about perturbations of foliations with all leaves
tori and singular leaves.

Proposition 6. If a foliation with all leaves tori has a rotation or dihedral
leaf, then the foliation is C*-stable.

Proof. This follows from Theorem 1.1 of Hirsch [7] since a certain linear
holonomy of such a leaf has not 1 as an eigenvalue.

We consider here the case a foliation F has only reflection leaves as sin-
gular leaves. Each connected component of the union R(F) of reflection
leaves of F is diffeomorphic to T?x[0, 1]/, where (x, 0) and (y, 1) are identi-
fied by a diffeomorphism # of T2 We denote a connected component of
R(F) by the same letter. Let M&b be the Mobius band obtained in the pro-
duct S'x(—1, 1) with coordinate (6, u), 6 S'=R/Z, uc(—1, 1) by identify-
ing (6, u) and (6+1/2, —u). The foliation on S*x(—1, 1) with leaves of form
S*x {pt} induces a foliation F; on M&b. So we define a foliation F, on M6b
xS %[0, 1] with leaves of form LxS'x {pt}, LEF,. Let U be a saturated
tubular neighborhood of R(F) in M. Then (U, F) is diffeomorphic to (M&b
x S'x[0, 1], F;)/H, where H: MobxS'—Mobx S' is a foliation preserving
diffeomorphism extended from # and a point p in Mdb x.S! is assumed to be
fixed by H. We take generators @ and g of z,(M&bxS!, p) corresponding
to generators of =;(Mob) and =, (S") respectively. Let hy: H,(T? — H,(T?) be
the automorphism.

2k+1 1

Lemma 7. h*z(
2m 2n-+1

), where k, I, m, n€ Z and (2k-+1) 2n-+1)
—2ml=-1.

Proof. The holonomy along a is non-trivial and of order two and the
holonomy along £ is trivial. So the holonomy along #44(8) is trivial, hence
he(B)=2ma-+n'g (m,n’€Z). Since hy belongs to GL(2, Z), diagonal com-
ponents are odd numbers.

We consider the special case k=—1 and n=—1.

Theorem 8. Let F and U be as above. Suppose h*:-(_ol Ol>' Then
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every sufficiently small C*-perturbation of F has a compact leaf in U. Hence F
is C'-stable.

Proof. We may assume that U=M0osbxS'x[0, 1J/H with coordinate
6, u,9,1), (6, ) €MD, p=S'=R/Z and ¢t [0, 1], and p=(0, 0, 0)=Mosb x S*
and a segment E={(0, u, 0); —1<<u<<1} CM§bx S" are left invariant by H.
The set EX[0, 1]/H can be considered to be the set ExS', if necessary, by
taking an appropriate double covering U of U. For, let F' be a small C-
perturbation of F. Then the foliation F’ induced on U is also a small C*-
perturbation of the foliation F induced on U. If F’ has a compact leaf in U,
then F’ has a compact leaf in U.

Let @ and g be loops in L,y with base point px {0} =(0, 0, 0, 0), re-
presenting generators of z(L,«()==Z @Z such that the holonomy along @
(resp. B) is non-trivial (resp. trivial). Let a(z) and £(¢) be translations of «
and B along the curve px {t},t<[0, 1]. Then we can define perturbed holo-
nomy maps H(F’, a(1)), H(F', B(t)): Esx{t} ={0,u, 0); —0<u<d} X {t}—>E
x 8! for each ¢ and some 6>0, which are imbeddings (cf. Hirsch [7], Langevin-
Rosenberg [9] and Fukui [4]). Note that 1) H(F', a(t,)) and H(F', 5(i,)) are
extended to maps H(F', @) and H(F', B,): Esx(t,2—r, ty+r)—>EXS" for
some small », which are local difftcomorphisms, 2) the extended maps H(F’,
a,) and H(F', «,). H(F', p,)) and H(F', §,) coincide on the intersections of
their domains respectively if ¢, and ¢, are close, 3) H(F’, a(t)) and H(F', A(¢))
are C'-close to the map R(u, t)=(—u, t) and id(u, ¢)=(u, i) respectively be-
cause F and F’ are C'-close and 4) H(F', a(1))=H(F', —a(0)) and H(F’, (1))
=H(F', —$(0)) may not coincide with H(F’, «(0)) and H(F’, 5(0)) respectively.

We put S'=R/2Z and let z: §'— S' be the double covering map defined
by #(f)=%(mod 1), 7€ S". Then there exist the maps H,(F') and Hy(F'):
E;xS'>ExS" extended from H(F', a(t)) and H(F', 5(t)) (cf. [4], [9]) respec-
tively, such that the following diagram commutes;

H(F") (resp. Hg(F"))

Ey;x St E xS
I')l[ Ixz|  eeeeee (%)
o g HOE 20 Gesp HE, pO) v

where i((0, u, 0, 1)) =(0, u, 0, t) and (1 x=) (0, u, 0, ¥)) =(0, u, 0, n(¥)). We
put H,(F') (u, )=(fy(u, 7), fou, 7)) using the coordinate (u, 7) of E;xS'. Then
there exists a unique u(7) for each 7 &S such that u(7)=f,(u(7), 7). The set
I={(u(f),7); 78"} is a loop in ExSY, so (I xz) (/) is a loop in Ex S, which
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rotates twice around S'. Therefore there exists a #,(f,&S8") with u() =
u(t,--1). We may assume 2,=0. So the set {(u(z), t); t=S'}t in ExS' is a
loop 4, which may have a corner at (x(0), 0). By the same argument as in the
proof of Theorem 4 of Fukui [5], there exists a point g=(u(t,), t;) { such that
H(F', a(t)) (q9)=q, that is, ¢ is a fixed point of H,(F").

We consider the behavior of Hg(F') (q) (nE Z) for a fixed point g of H, (F").

Lemma 9. Hy(F') (¢) is a fixed point of H,(F') and belongs to Z

Proof. H(F')oHy(F')=H(F', a-f)=H(F', f+&)=Hy(F)oH,(F'). Thus
H(F') (Ho(F') (q))=Hp(F') (H(F') (9))=Hp(F") (). Hence Hy(F") () is a fixed
point of H (F’'). Since we have a unique u(f) with u(@)=f(u(), 7) for each
7S, Hy(F')(q) lies in /.

For the simplicity, we put ¢'=Hg(F'). We denote by Fix(H,) the fixed
point set of H_(F'). Note that ¢'(Fix(H,))=Fix(H,) and go’(Fix(H,))CZ by
Lemma 9.

Let #: Ex$'—>/ be the map defined by #(u, 7)=(u(?), 7) and p=rog’|]:
/7. Then we easily see that ¢ is a diffeomorphism of Zand ¢ and ¢’ coincide
on Fix(H,).

Proposition 10. There exists a point p in 7 such that p is a fixed point of
H(F") and a periodic point of Hg(F").

We prove Proposition 10 as follows. We suppose that ¢ has no periodic
points on Fix(H,). We introduce on [ a fixed orientation. If ¢ and b are
different points of Z, the z/zB denotes the oriented simple arc connecting a with b,

and the formula a<c<b means that the point ¢ lies on the arc ab. Since
@ is C'-close to the identity, ¢ preserves the orientation.

Then we can prove Lemma 11 and use it to prove Lemma 12 similarly as
in the proofs of Lemmas 1 and 2 of Siegel [14].

Lemma 11. Let g be a point in Fix(H,). For a non-zero integer m be
given, then there exists an integer h such that q<<¢"(q) <¢"(q).

We suppose that a point p&Fix(H,) is not ergodic, that is, the orbit set
O(p)=1¢"(p); nEZ} is not dense in Z

Z—O_(-lv) is an open and non-empty set. Choose in ]—0(—17) an open arc c/zE
whose end points belong to O(p). The end points a,, b, of all images arcs
Zb\n =qo”(:z-l;) (n€ Z) lie in O(p) and the inner points of these arcs lie in I— o(p),
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hence c;;b\,,(n € Z) are disjoint.

Lemma 12. Let a,, b,nEZ) be as above. For an arbitrarily large natural
VR
number N, there exists an integer m>> N such that either the m-arcs a_;b,,_, or

~—~
b (k=1, 2, ---, m) are disjoint.

By the similar argument as in Siegel [14], Lemma 12 leads us to a con-
tradiction. Hence O(p) is dense in . This implies Fix(H,) =/ We put
o'(u, =(g,(u, 7), gu, 7)) for (u, F)EE;xS*. From (x), H(F', A1) (u, t)=
(g1(u, t), go(u, 1)). Since we suppose that ¢’ has no periodic points on Fix(H,),
the point (2(0), 0) is not a fixed point of ¢’ and if g,(u(0), 0)>0, then g,(u(1), 1)
>1. On the other hand, g,(u(1), 1)<<1 because H(F', f(1))=H(F', —p£(0)).
This is a contradiction. Hence we have Proposition 10.

The following proposition is proved by the standard argument (cf. Lan-
gevin-Rosenberg [8]).

Proposition 13. If p in lisa fixed point of H,(F") and a periodic point of
Hy(F'), then L}, is compact, where L} is a leaf of F’ through p.

We complete the proof of Theorem 8 by Propositions 10 and 13.

Remark 14. Theorem 8 holds for C%foliations.

Theorem 15. Let F and U be as above. Suppose hy =(:%1 i) or (2;1 io 1)

({,m&Z). Then there is a foliation F' such that F' is C'-close to F and F' has
no compact leaves in U.

Proof. We prove the case h*=<:}61 11 ) It is proved similarly for the

case hy =(2’11 :&) We consider the product Mob x S' xR with coordinate

@, u,0,1), (6, )=Mé6b, p=S* and tER, and define a foliation G on Mob

X S'X R to be the set of leaves whose tangent spaces are spanned by (% and

56—. Let A: Mob XS'X BR—Mobx S’ xR be a diffeomorphism defined by
@

A6, u, 0, )=(4-0+1-0, cu, o, 1+1), e=-1. Then (U, F) is diffeomorphic to
(Mob x S'x R, G)/H. Now we define a new foliation G’ on M&bxS'X R to

be the set of leaves whose tangent spaces are spanned by a—é;- and 58——{—16%, where
1

. . . A A [0 0

2 is a small irrational number. Then H preserves G’ because H*<%> =4 o0
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and B(2422)=2412 130
o

—+17—+4+2—. Hence we can define a foliation F,=
. ot/ 9p 00" ot

G’/|H on MobxS'xR/H. We can easily extend F, to F' on M such that F
and F’ are C'-close (r=>0). It is easy to see that F' has no compact leaves

in U.

§3. Instability of Foliations without Singular Leaves

In this section we consider the case F has no singular leaves, that is, z:
M—B is a fibre bundle. To begin with we show the following which is true
for arbitrary closed manifolds B.

Proposition 16, If the bundle =: M— B is trivial and g>2, then F is C’-
unstable (r =0).

Proof. Take diffeomorphisms f; and f, of B such that f; and f, are suffi-
ciently C’-close to 1; and the periodic point sets of f; and f; are disjoint. Then
we define a homomorphism @: =,(L)— Diff(B) by @ ({a;})=f; (i=1, 2),
o0({a;})=1z (i=3, 4, -, g) and O({B;})=1; (i=1, 2, +--, g). This defines a
foliation F’ of M =L X B whose leaves are transverse to the fibres of another
fibre bundle =': M— L with fibre B. From the properties of f;, we see that
F’ is sufficiently C"-close to F and has no compact leaves.

Theorem 17. (1) If B is homeomorphic to the 2-sphere S® and g>2, then
F is C"-unstable (r =0).
(2) If B is homeomorphic to the projective plane P* and g>4, then F is C’-
unstable (r >0).
(3) If B is neither homeomorphic to S* nor P? and g=>6, then F is C-unstable
(r=0).

Proof of (1). In this case, it is an immediate consequence of Proposition
16 because that any bundle over S* with fibre L of genus>2 is trivial.

Proof of (2). Any bundle over P? with fibre L of genus>2 is obtained
by making the identifications in LxD? as follows: (x, y)~(¢(x), —y) for
xeL, yeD? where ¢: L—L is a diffeomorphism with ¢?=1;.

Step 1. We perturb F on 7:“1(10)2)_%L><l°)2 as follows. Let G: D*— D?
be a diffeomorphism satisfying the property P(D? r). Let Q be an open tubu-
lar neighborhood of @, in L such that its closure @ is homeomorphic to @,
Xx[0, 1] with coordinate (s, t), s€«a,, 0<t<1. We start with the foliation
of (L—Q) x D? having leaves of form (L—Q) x {y}, yelo)2 and make the identi-
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fications (s, 0, y)~(s, 1, G(»)) to obtain a foliation of LxD? having no com-
pact leaves. Replacing F on n~1(132) by this foliation yields a new foliation
F’ which has no compact leaves on n"‘(i)z).

Step 2. Take a point p of 6D? _ and a conic tubular neighborhood 4
of 8D?/ _—pin D?¥ __ as in Fig. 2.

.

Figure 2

We want to perturb F' on z7! (4) =< L X A4 to obtain a foliation F” such
that 1) F” is sufficiently C’-close to F, 2) F”” has no compact leaves on
z~Y(P*—p) and 3) L,=="'(p) is the only compact leaf of F”/. Since g=>4, there
exists a simple closed curve 8 on L in z™* (D%, ) such that [6]=0in H, (L; Z)
and <0, @;> =<0, ¢(;)>=0 (see Plante [10]). In fact {a,, p(@))>B,—< By, p(a) e,
is homologous to a multiple of a simple closed curve. Let r be an arbitrary
closed curve on L. Then the holonomy of L in F’ along 7 is trivial if and
only if <r, a>=<r, ¢(a;)>=0. Hence the holonomy of L in F’ along 0 is
trivial. Take a tubular neighborhood Q, of & in L such that its closure Q
is homeomorphic to 9 x][0, 1] with coordinate (s, ¢), s€0, 0<¢r<1. Take
a diffeomorphism H: P>— P? satisfying the property P(4, r). F’ restricted to
0; X A has leaves of form 6 x[0, 1]x {y}, yE4. Thus we start with the folia-
tion of 0 %[0, 1] xA4—0 x(1/3,2/3) X A having leaves of form & x[0, 1/3]U[2/3, 1]
X {y}, yEA4 and make the identifications (s, 1/3, y)~(s, 2/3, H(y)) to obtain
a foliation of -Q—s XA. Replacing F’ on Qs X A by this foliation, we obtain a
required foliation F”.

Step 3. Finally we perturb F” on a neighborhood of the compact leaf
L, Since g=4, there is a simple closed curve # on L, such that [7]=0 in
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H, (L,; Z) and (1) <7, app=<7, $>=0, (2) <n, ¢(a,)>=<7, ¢(8)>=0. For, put
nzimiai—l—iniﬂi (m;, n;Z). Then the equations (1) are satisfied. So we

consider the equations (2). We can solve (2) over integers since g=>4. Let
7, be a non-trivial general solution of (2). Then we can choose a simple closed

g g
curve 7 such that 7, is homologous to a multiple of 7 because 7=>)m;a;+ > n;8;
i=3 i=3

is realizable by a simple closed curve on L, if m;, -+, m,, n;, -, n, are rela-
tively prime. The holonomy of L, in F” along 7 is trivial. Hence the rest
of the proof is done similarly as in Step 2.

Proof of (3). We prove the case B is orientable. It is proved similarly
for the non-orientable case. Note that B, is a closed surface in this case.

Lemma 18. There exists a foliation F, of M such that 1) F, is sufficiently
C'-close to F, 2) F, has no compact leaves on = (B—{p,, >+, Pay_1}) and 3)
Ly, =z"Y(p;) (i=1, 2, +-+, 2h—1) are the compact leaves of F,.

Proof. First we perturb F on n‘l(éz)zL ><1‘:3’2 as in Step 1 in the proof
of (2) using @, on L and a diffeomorphism of B satisfying the property P(B,, r).
We let F’ be the resulting foliation. Next take conic tubular neighborhoods
Ay, A;; (=2, 3, +++, 2h—1; j=1, 2) and A,,, of c{, c;; and ¢y, such that they
are disjoint and the closures of 4, and 4,; have the only point p; in common
(j=1, 2) and the closures of 4;; and A4;, (i=2, ---, 2h—1) have the points p;_,
and p; in common and the closures of 4,,-,; and Ay, have the only point
Dos—y in common (j=1, 2) (see Fig. 3).

Figure 3

There exist simple closed curves 8y, 0;; (i=2, -+, 2h—1; j=1, 2) and 0,
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on the compact leaves L of F’ in n7Y(4)), #7'(4;;) and z7'(4y,,) respectively
such that [8,]==0, [0;;]3=0 and [d,, ;130 in H,(L; Z) and <9,, a;p =<0}, ¢\(a,)
=0, <8;;, ap=<0;;, ¢;j(@)>=0 (i=2, 3, ---, 2h—1; j=1, 2) and <{By,;, ap
=<0y,1, Pai,1(@)>=0 (see Plante [10]). [d,], [0;;] and [dy;,,] can be considered
to be expressed as linear combinations of [a,] and [3,]. Take diffeomorphisms
G,, G;; (i=2, 3, -+, 2h—1; j=1, 2) and G,,,: B— B satisfying the properties
P(A,, r), P(4;;, r) and P(Ay,,, r) respectively. Then, by the similar argument
to Step 2 in the proof of (2), we can perturb F' on zn~'(4,)==L X 4,, n7*(4;;)
=L XA;; and =7(4y,,1)==L X Ay, using 8, ;; and J,,, to obtain a required
foliation F;.

Lemma 19. There exist simple closed curves n; on Ly, (i=1, 2, +--, 2h—1)
such that [7;]%0 in H(L,,; Z) and
(I—1) <Ly, ap=<ny, 0>=X1, 8,;7=0 (j=1, 2)
1—2) <=, ¢1(61)> =<, ¢2j<62j)> =0 (j=1, 2)
(A—3) <Ly, pl@)>=m, Puo@i(@)> =<, @1 o@yop,(a;))>=0
(i—1) <z, ep=<n;, 3ij>=<77is 6i+1,j>:0 (=12
(i—2) <u, §0ij(5ij)>:<77i, Pi11,/(0i41,7)7=0 (j=1, 2)
(i—=3)  <ms, Pir(@)>=<Ms> Pi111°0:1()) =<7, P72 °P;11,1°Pi2(€)> =0
(i=2, -+, 2h—2),
h—1—1) <71, @ =Mpp—1, Opp1,57=Tzp-1, O, >=0 (j=1, 2)
Ch—1—2) <nyp-1, Pon-1,iOon-1,1)> =U2p-1> P21,1(02,)>=0 (j=1, 2)
(h—1—3)  <myp1s Pon—1,1(@> = Dop-1 P2s,1°Pan-1,1(2)>
=Tgp-1 Pi—1,1°P24° P -1,1(@1)>=0

Proof. We prove for each i. Put n:i}m,-a,-—}—i‘}n,-ﬂ,- (m;, ;7). Then
i=3 i=3

the equations (i——1) are satisfied. So we consider the system equations (i—2)
and (i—3). If g>6, we can solve the equations (i—2) and (i—3) over inte-
gers. Let 7, be a non-trivial general solution of (i—2) and (;——3). Then we
can choose a simple closed curve #» such that 7, is homologous to a multiple of 7

g g X

because 7=>\m;a;+>\m;8; (m;, n;EZ) is realizable by a simple closed curve
i=3 i=3

on Ly, if my, -+, mg, ny, -++, n, are relatively prime.

Proof of Theorem 17 (3) continued. By Lemma 18, it is sufficient to per-
turb the compact leaves L, (i=1, 2, ---, 2h—1). Take small neighborhoods
C; of p; such that they are disjoint. From Lemma 19, there exist simple closed
curves 7; on Ly, satisfying the conditions (i——1), (;—2) and (i——3). Thus
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by the similar argument to Step 3 in the proof of (2), we can perturb F, on
z}(C;) using #; to obtain a foliation which has no compact leaves. This com-
pletes the proof.

§4. Instability of Foliations with Singular Leaves
In this section we consider the case F has singular leaves.

Proposition 20. Let F be a foliation of M such that B, has m-+n bound-
aries. If g=2, then there exists a foliation F, of M such that F; is sufficiently
C’-close to F and F, has no compact leaves on n"l(éo—{pl, oo, D}), where
s=2h+m-+n—1 if B is an orientable surface of genus h and s=2h,+m-+n

if B is homeomorphic to 33, # PU'D? or >4 K*—UD? for an orientable
i=1 i=1
surface of genus hy, 2.

Proof. 1t is similarly proved as in the proof of Lemma 18. Moreover
we can perturb F on n‘l(éz) using @, z7'(¢,) using &, z7Y(¢;;) using §;; (I=2,
ooy 2h—2; j=1, 2), 77 (&yy_y.;) USing By ; (=1, -+, m+n+1) and z(d,)
using 0% (j=I1, +--, m+n), where [0]’s are expressed as linear combinations
of [a,] and [B,].

A) Case of foliations with only rotation leaves as singular leaf,

Note that F is a foliation which satisfies n=0 in §1 and B is a V-manifold
without boundary.

Theorem 21. Let F be a foliation of M such that F has m rotation leaves
Ly, L, with holonomy order ki, -+, k,, respectively. If g=3max (k;; 1<i<m)
+1, then F is C"-unstable (r >0).

Proof. First we perturb F, in Proposition 20 on each U(L;)=<z"'(V)).
Let a,=p;(a,) and &,=p,(8}) (j=1, ---, m), where p;: L—L; is the covering
map. Letz; (j=1,2,::-, m) be simple closed curves on L; representing genera-
tors of the holonomy groups Z,, of L;. If g(L;)=4, then there exist simple
closed curves 7; on L; such that [7;]%0 in H,(L;; Z) and <7;, @ >=<n;, 6/>
=<{n;, 7;>=0 respectively. Note that p;oyr,(@))=p;(e;). Take tubular neigh-
borhoods §; of #; in L; which are homeomorphic to 7;x(0, 1) respectively.
By Proposition 3 (a) of Vogt [17], the normal disk bundles U(L;) are trivial.
Hence the bundles over S;(j=1, 2, ---, m) are the products S; x D? respectively.
Thus by the similar argument to Step 2 in the proof of Theorem 17 (2), we
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perturb F; on U(L;) to obtain a foliation F, which has no compact leaves on
= Y (B—{py, -, ps}). We easily see that g(L;)>4 if and only if g>3k;+1
(j=1, -+, m). Finally we perturb L, ==z"'(p;) (i=1, ---, 5) similarly as in
Step 3 of the proof of Theorem 17 (2). For this purpose, it is sufficient to take
simple closed curves 7; on L,, (i=1, -+, 5) such that the holonomy along each
7; is trivial. This is possible because 3max(k;; 1 <i<m)+1>6 (see Lemma
19). This completes the proof.

B) Case of foliations with only reflection leaves as singular leaf,

Note that F is a foliation which satisfies m=0, n=n" in §1 and
B is a smooth manifold with n boundary components.

Theorem 22. If g>7, then F is C"-unstable (r >0).

Proof. We take conic tubular neighborhoods 4; of 3;B—q; (j=1, «-+, n)
in B and want to perturb F, in Proposition 20 on each z7'(4;) which is homeo-
morphic to Lj>)<l°)2, where for gD, g=+1, g: D*—> D? is defined by g(x, y)=(x,
—y) for (x, y)EDOZ. Let p: L—Ly(=Lx{0}/D)Cz"(9;B—q,) be the cover-
ing map and a,=p(a,;). We put &;=a if p(e;) is homologous to a twice of a
simple closed curve a. We take a simple closed curve 0% on L, such that
[07/]1=0 in Hi(Ly; Z) and <0}, @, >=0. We can assume that [0}'] is expressed
as a linear combination of [@,] and [3,], where [@;] and [#;] form a symplectic
basis for H,(Ly; Z). Then taking a diffeomorphism G;: DP—> D? satisfying the
property P(D? r) and Gj(x, y) =(Gi(x, »), »), Gi(x, —y) =Gj(x, y), we can
perturb F, on z7'(4;) using 6}’ to obtain a foliation F, which has no compact
leaves on w '(B—{py, ***, Ps» q1» ***» 4,}). We can perturb the compact leaves
L,=="Y(p;) (i=1, -+, s) in the usual way. Finally we want to perturb the
compact leaves L,,=z"(q;) (j=1, ---, n). It is sufficient to take simple closed
curves 7; on L,; such that [7,]50 in H(L,,; Z) and {z;, app>=<7;, p0j)>=
<{n;, 03 >=Ln;, ¥i(@)>=<n;, ¥;j(0})>=0. This 1s possible because of g(L,)=>4.
g(Ly)>4 if and only if g=7. This completes the proof.

C) Case of foliations with dihedral leaves.

We consider the case F has no rotation leaves and some points of each

boundary 9;B of B correspond to dihedral leaves L;, with holonomy groups
Dy,

Theorem 23. If g>8max(l;,; 1<j<n; 1<k<m;)+1, then F is C'-
unstable (r >0).
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g
Proof. We can perturb F, in Proposition 20 on each =™'(8;B)—UL;,
m; k=1
using a simple closed curve 0}/, on a reflection leaf in =7*(8;B)—UL,, as
k=1

in the proof of Theorem 22, where [05/;] can be considered to be expressed
as linear combinations of [&,] and [F,]. We let F, be the resulting foliation.
Next we want to perturb F, on saturated tubular neighborhoods U(L;,) of
L;, Letp;,: L—L;, be the covering map and 4 and # simple closed curves
on L;, which represent generators of the holonomy group of L;,. We need
the following lemma.

Lemma 24. There exist simple closed curves 7, on L;, such that 1) [7;,]

F0in Hy(Ljw; Z), 2) <04 P;(@)> =<7} 4 pj,k(&2)>:<77j,kspj,k(lgz)>:<77j,ka D
=7, 4, >=0 and 3) U(L;,) restricted to 7;, are trivial disk bundles.

Proof. By the result of Vogt [17], List 1, Propositions 5 and 6, (U(L;,,),
F) is represented by the vector (v, 1, u, 1, ==+, 1) or (v, u'it/z, u, 1, ---, 1) (see
[17] for details). We may assume that p; J(a,), p; (@) p; «(5z), 2 and u are
represented by [e;], [z,] (l=1, 2, 3, 4) where [)], 18] (=1,2, -, g(L; ) form
a canonical symplectic basis for H,(L;;; Z). We can take the simple closed
curves @; and ;5 which satisfy 1) and 2) since g >8max (/; ,; 1< j<n, 1<k<m;)
+1 implies g(L;,)>5. If U(L;,) restricted to @; and ;5 are non-trivial re-
spectively, there is a simple closed curve 7 on L; , such that U(L; ;) restricted to

% is trivial and [7]=[@]+[Fs]. We put 7 j k=1

Now we continue the proof of Theorem 23. We perturb F, on U(L; ;) using
7;,4 in the usual way to obtain a foliation F; which has no compact leaves on
the z7*(B—{p,, -**, p;}). It is easy to perturb the compact leaves L,,=z""(p;)
(i=1, -+-, 5). This completes the proof.

D) General case.

Combining Theorems 21, 22 and 23, we have the following.

Theorem 25. Let F be a foliation of a closed 4-manifold M by closed ori-
entable surfaces and B=M|F the leaf space. Suppose F has m rotation leaves
with holonomy groups Z,, (i=1, 2, -++, m) and m; dihedral leaves with holonomy
groups Dy, (k=1, 2, -+, m;) which correspond to points of 8;B for each j (1<
j<n’).

If g>max(3max (k;; 1<i<m)+1, 8max(l; ; 1< j<n’, 1<k<m;)+1, Te),
then F is C"-unstable (r=0), where ¢=0 or 1 and F has no reflection leaves if
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and only if e=0.

Remark 26. If g=2 and g is even, then ¥ has only rotation leaves as

singular leaf. Hence Theorem 25 reduces to Theorem 21.
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