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Abstract

Some concepts of Majorization in the state spaces of certain operator algebras are dis-
cussed and the interrelations among them are established. The main case considered deals
with the class of non-finite AFD-factor vN-algebras.

§ 1. Some MajorlzatloE Concepts on Operator Algebras

Let §1 be a unital C*-algebra, with unitary group ^(Sl) and dual space 31*.
Let 33(31*) be the set of all bounded linear operators over St* acting Into 31*.
For we SI, let us define TM<E 33(31*) through the setting (1»0) =v(u*xu) =
//(jc), for all x^SC, #^31*. We put CU(^V) = point- w-*closure of conv
{Tv: ve^St)} , where the point- w*-topology refers to the system of semi-norms
p^a over S3(Sl*) given by p^m(T) = \(Tv)(a)\, ^eSl*, aeSI. Then, by well-
known facts, £M(3l) is a convex and compact subset of 93(31*) with respect to the
topology mentioned. Suppose, 5(31) denotes the w*-compact convex set of states
over SI. Throughout this paper we let n be a fixed natural number. Whenever
vl9 • • - , vn^S($l) are given, the finite sequence {vl9 ••• , yj- c 5(31) will be referred
to as a w-tuple of states, which will be abbreviated by {^} . In all what follows

we shall have to work in the set of all ^-tuples of states over SI. Within this set
of all ^-tuples of states we are going to introduce a preordering relation >M.
A preordering in our context is supposed to mean a reflexive and transitive
relation: {<y} >M{o>}, V{o>}, and {cy}>M{v} together with {^}>M{^} implies

always {^}>M{^}.
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Definition lo For n-tuples {o>}, {a}c$(3l) we let {^}>M{cr} mean that

cDk=0(okl Vk, with 0<=Cu@i).

In this situation, let us say that "{&)} is more unitarily mixed than {a}"
or "{&>} arises from {a} through unitary mixing".

It is easy to see that the concept of unitary mixing for w-tuples of states as
introduced above is a straightforward extension of the concept of (j-majoriza-
tion as given in [1, Chap. 14, B]. Namely, what we are doing is to consider the
/7-fold direct product C*-algebra 3IM (i.e. the set of ^-tuples {a}={al, •••,#,»} of
elements ^-^31). Then, the set of all n-tuples of states over SI can be inter-
preted as a convex, w*-compact subset of elements of 31J+ in an obvious way.
Within 33(31*), let us define a group G of transformations by G={TeS(3I*):
T={TV, TV9 —, rj, ve<U(3l)}, where the action of S={S19 —,5,} on the
77-tuple {v} is given via S({v}) = {^(XX• °°, Sn(vH)}. Then, the relation {CD}>u{a}
between the /7-tuples mentioned is equivalent to saying that the {&} -element of
31*+ is in the w*-closed convex hull of the orbit of the {0} -element under the
action of the group G. The relations to the concept of G-majorization should
be clear now by remembering that the original concept as represented in [1] can
also be interpreted in terms of C*-algebras. Indeed, RN might be thought of
as the hermitian part of §1* when $l=CN is chosen, cf. Section 2, Example 1,
and 77 = 1 is considered.

In the following, let us introduce and discuss another preordering
relation > over the set of 77-tuples of states on 31. A linear map 0: 3l*->3l*
is referred to as a c.p.-stochastic linear map, and the set of all these mappings
be ST(§1*), if 0 carries states into states and the adjoint $* is a completely posi-
tive, unital linear transformation over the second dual 31** (for generalities on
C*- and FF*-algebras the reader is referred to the standard textbooks, e.g. [2],
[3]). Note that ST($i*) is a point-vr*-compact convex subset of transformations
of 33(31*), which also forms a semigroup and contains the identity map.

20 For n-tuples {a;}, {a} C^(31) put {<»}>{ff}«3<Z>eST(3l*)
With Q)k = 0(Gk)y V/C.

Incase we are given a vN-algebra 3l=TO acting over some Hilbert-space §,
a third preordering relation > * will be of further interest. Let ^iffl* be the pre-
dual of 9JI, and S0(Wl) the set of normal states over 3Ji. Then, a linear map
T^: 2J£*->2Jl* is said to be c.p.-stochastic over SK*, and we collect all these
mappings into the set &T(2!?*), if the adjoint ^ over 9JJ is completely positive
and unital. Note that in the latter case ^* is a normal positive linear map in
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the usual sense. We shall denote by CP^SDl) and CP?(9Jl) the set of unital c.p.-
linear maps over 9M and the normal unital c.p.-mappings over 2W, respectively.

30 For w-tuples {&}, {o} C SQ(%Ji) of normal states we define

M>*{a}«30eSr(2»#) with G)jb=fl>(cjjk), Vfc.

Note that >* is a preordering relation since ST(2Jl#) is a semigroup in
33(501:1:) containing the identity map.

Remark. Whereas by Def. 1 the concept of G-majorization has been ex-
tended, Def. 2 and Def. 3 relate to the extension of the concept of a stochastic
matrix or stochastic operator from the commutative case (either (3Ji=CN

5 or
more generally 3Jl=L°°(ifi, /*), 3J1# =!/(£, #), with some localizable measure
space (J2, #)) to the general non-commutative situation of a unital C*-algebra or
FF*-algebra, cf. [4] and references quoted there. Note that {^}>#{0} is
equivalent with the existence of reCPi(3K) such that o)k = okoT,Vk. The
convex semigroups CPi(3K) and CP?(9K) both contain the Identity map and
extend to the non-commutative situation the notions of Markovian operators and
normal Markovian operators, respectively, which are known from the abelian
cases.

Majorization theory as one of its basic goals requires to establish func-

tional characterizations of the preordering relations concerned. By this the
following is meant. Assume a preordering J» on our set of ;?-tuples of states
(resp. normal states) is given. A realvalued function Fover the set of ;?-tuples
of states will be said to be isotonic with respect to the preordering in question,
whenever the implication {co}^> {o} H> F({a)})>F({a}) takes place, and F
is said to be ^>-anti-isotonic, if the implication {&} ̂ > {o} => F({o)})<F({a})

is always true. Aiming at a functional characterization of 3> then means to
meet two lines:

(1) Impose conditions on a realvalued function F which imply that F is iso-

tonic (resp. anti-isotonic) and which do not read in terms of the very
definition of the preordering.

(2) Extract a sufficient system (3f, ;$>) of isotonic (resp. anti-isotonic) functions

such that always /r({^})>F({cr}), VFe^,^>{cy» {a} is true (resp. with
> substituted by < in the anti-isotonic case).

Clearly, a theory of majorization tacitely confines to cases where such a sufficient
system of functions exists and reflects the non-trivial character of the preorder-
ing considered. Besides this fact, however, there might be a variety of sufficient
systems which might differ from each other. It is of an obvious use to keep
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the sufficient systems as "small95 as possible. Speaking in words of (1) one is
tempted to look for conditions on the functions which are as "stringent" as
possible when imposed on.

We shall try to meet this task of a functional characterization in case of
> * in the set of normal states over a properly infinite, approximately finite-
dimensional factor on a separable Hilbert-space.

§ 20 Classical

In all what follows we shall strictly adhere on interpreting the majorization
concepts in an algebraic language, even if these concepts do not refer to this
context in their original formulation.

Example 1. Let §1 be a finite-dimensional (say TV-dimensional) abelian
C*-algebra, and let Aut SC be the full group of linear *-automorphisms over SI.
Define G as a group of actions of Aut SI on SI* by defining Tg^G through
(Tgv)(x)=v(g[x)\ VxeSI, ^GESt*, for each geAutSt An element ^e^(Sl)
can be characterized by the values it takes on the atoms (call them spectral
values). Let vl>v2> ••• >VN be the decreasingly ordered sequence of these
spectral values (one has to take care to the multiplicity of the spectral values).
Let CD, G be states, and let <y>G a mean that the state o> is in the convex hull of

the orbit of a under G.
This then will give the starting point for one of the classical examples

majorization theory deals with: co^>Go is equivalent with the following condi-
tions,

^ F(co)<F(o) (2-2)

for any quasi-convex (see [1]), (/-invariant function F over 5(31);

(2-3)

for any convex, continuous function /on [0, 1].
In this example, in which we refer to the fundamental result of the theory

of inequalities in [5] (Muirhead's Theorem), Theorems of Rado and Birkhoff
(see [1], [4]), we have given three different functional characterizations of the
G-majorization in question in terms of anti-isotonic functions. Whereas the sys-
tem of functions in (2-2) certainly is the largest of the given three, the one of
(2-1) is the smallest under comparison (it contains n—l functions, the n-th
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being constant on 5(Sl)). This provides a good example to illustrate the

discussion below (1), (2) in the previous section.
In the next example we refer to Def. 1 with n=l, and 31 is an arbitrary

vN-algebra (we omit the parantheses in case of 1 -tuples).

Example 2. For states CD, <7e»S(Sl), o>>M a is equivalent with the following

two conditions :

& F(a))<F(a) (2-4)

for every quasi-convex, w*-lower semicontinuous, unitarily invariant function F

over 5(81);

<=> sup <*>\p)< sup a*(p) (2-5)
ffe^Ott)

for each of the orthoprojection of §1,

This example (unitary mixing on vN-algebras) has been investigated extensively

by several authors,, and is represented in [6], cf. the list of references there.

The original concept is due to A. Uhlmann and refers to the case of $l=MN9

the full algebra of complex N x TV-matrices, see [7]. In connection with its

applications in Statistical Physics, the whole subject for density operators is

referred to as "Uhlmann's Theory", and "order structure of states on W*-

algebras" in the general case, respectively, see [8], [9]. Once more again, the

structure of the example reflects the significance of the discussion at the end

of Section 1 .

Note that because of the Murray-von Neumann theory of factors a suf-

ficient set of functions which figures in (2-5) in case of factors over a separable

Hilbert-space can be parametrized conveniently by the relative dimension T.

Indeed, let us define functions {eT: re A} over &(§l), with the range A of

the relative dimension given by J={0, 1, ••- , N} for type IN9 J=N\J {0, 00}

for type /„,, A=[Q, 1] for type II19 J=[0, °°] for tYPe Hoc, and J = {0, 00} in the
remaining type III cases of factors. The function er reads er(y)= sup vu(p),

i*e <*/(&)
for an orthoprojection p with relative dimension reJ, Vy. Then, (2-5) is

equivalent to

^ er(o))<er(a) , VrGE A . (2-6)

Hence, {er: r^J} is a set of unitarily invariant, convex functions over

which forms a sufficient system of > M-anti-isotonic functions in case of a

factor, by (2-6).
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Example 3. Suppose 3W is a vN-factor of finite type. Let us look on the

case n=2 (the case of tuples) and restrict ># (see Def. 3) to all pairs of normal

states the second state of which is the canonical trace-state r. Then

in the sense of Example 2. Therefore, the sufficient systems of anti-isotonic

functions (2-4), (2-5) and (2-6) characterize >M as well as ># on the subset

considered (see [6]).

Example 4. Let $0l=L°°([0, 1]) (the unit interval with Lebesgue measure),

and suppose n=2. Then, for normal states coly a)2-> ^i? G2 (which correspond to

probability distributions)

{o>lf c*£>*ial9 ^HK-^2lli<IK-^2lli, V/eJR+ (2-7)

This has been proved in [10]. Note that the assertion remains true also in

the non-abelian case Wl=M2, see [11], [6].

The next example to be considered is a very instructive one and deals

with the general w-tuple situation over an abelian vN-algebra.

Example 5. Let 501 be a commutative WK*-algebra. Then, 501 is isomorphic

with L°°(i0, v) for some suitable localizable measure space (J2, #). Let

{^} 9 i°} ^ S0(%R) be ^-tuples of normal states ovre 501. Considering WI-

LT '(£, /«), a normal state v corresponds to a probability distribution

v<^.l}(Q,n\ and v(x)=\ v(t)x(t)d v(t\ for
JO

With all this notations adopted, we have:

{o>} >*{*}«{<»} >{*}<=>

(2-8)

for every non-negative, concave function G over J?""1.

This means, the homogeneous and superadditive functional

(2-9)

over the convex set of ^-tuples of normal states of 9K provide a sufficient system
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of Isotonic functions In both the > and the >* case. But note that (2-9)

has to be defined with some care (at the boundary of the cone Rn+~l one has to

adopt some convention concerning the function under the integral; we omit

the details, but refer to [13]).
Note that for n=2, @=[®y 1], /e-Lebesgue measure, the given equivalences

mean that (2-8) <=> (2-7), which fact is known since [10]. Basic results relating

the equivalences given have been derived in [12] and considered systematically

in [14], especially in the case where the measure space is finite and vn=o)n =

on=fji(Q)~l, which means doubly stochasticity of all transformations involved.

The complete set of equivalences in the general case is shown in [13]. Ob=

viously, the example reads in the classical tradition of majorization theory,,

theory of stochastic and doubly stochastic transformations on ^-spaces, and

so has much to do with rearrangement considerations, see references given in

[13], and [15] for related topics,

Note that the functions (2-9) form only one specific sufficient system of

isotonic functions. A sufficient system of anti-isotonic functions is given by

^....jjO'i, -, *„) = \ lh(0*i+
J Q

for any w-tuple {x} CL°°(£, /<)+» see [13], [14].

The objective of this paper is to show the intimate relations among the

preorderings >, >*, >M introduced in Section 1. In this connection, we

will find that such relations can only exist in cases of certain classes of non-

commutative vN-algebras and related to them C*-algebras. That means, we

restrict the subject of our investigations from the very beginning to those struc-

tures which seem most promising. In line with the examples of the previous

section, and following the discussion of majorization concepts In Section 1,

what will be done is to construct sufficient systems of isotonic resp. anti-isotonic

functions, and to Investigate their properties,

The central class of algebras under consideration consists of the approxi-

mctely finite-dimensional factors (AFB-factors) over some separable Hilbert-

space §. Let 2Ji be such a factor. Then, there exists an Increasing sequence

aJ^cSD^C —C2JI of finite-dimensional subfactors of 91 with 3Ji=(U3»tf)".

Let SI0 —UaJljv, and define §1—norm closure 310. The unital C*-algebra St

is referred to as a generating U.H.F.-C*-subalgebra of SJi (U.H.F. means
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uniformly hyperfinite). AFD-factors can be characterized by several conditions
all of which are equivalent, see [16], and [17] for a new and instructive proof of
these facts. The non-finite AFD-factors - these are all AFD-factors with ex-
clusion of the hyperfinite factor (which is the type IIj case) - will be of special
interest in our investigations. Let us call a vN-algebra 31 over § admissible if
there is a non-finite AFD-factor 2JI over § such that SJicSJi and a normal

conditional expectation E projecting from 2JI onto 31 exists. Note that both
the finite dimensional factor case and the hyperfinite factor case are admissible
in our sense. Of course, there are much more admissible cases than the men-
tioned ones.

§ 4» An Account of Basic Results

Let 3JI be a AFD-factor over the separable Hilbert-space §, and suppose
SI is a generating U.H.F.-C*-subalgebra of 50i. For ^-tuples of normal
states {y} C Si)(50l) and positive elements {x} c 2JZ+ let us define

(4-1)

(4-2)

u*yku): u^V(^)} (4-3)

if {p}cS(Sl) and {^}cSl+. In [18], the following two results have been
derived for AFD-factors.

Proposition 1. To every generating SI, there exists a net SK°. 2Ji— >3!0 of

completely positive, o-weakly continuous linear mappings into St0 such that

Kn( {»} ,{*})= lim Kn( {4 , {S^x}} ) = sup K,( {4 , {S^x}} ) (4-4)

for each n- tuple of normal states and any {x} c9Jl+.

Remark. The proof uses the condition "semidiscreteness" which holds for
AFD-factors. The right hand side equality in (4-4) is a consequence of the
proof in [18, Lemma 2].

Proposition 2. For a non-finite AFD-factor 501 one has

(4-5)

for all {y} cSl+ and every n-tuple {v} dSQ(Wl) of normal states (y^ indicates the
restriction ofv onto SI).
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These two facts together give the key for a proof of the following basic result.

Theorem 1. Let 2JI be a non-finite APD-factor, and SI be an arbitrary
generating UM.F.-C*-subalgebra. Assume {CD}, {a} are n-tuples of normal

states over 5UI. The following conditions are equivalent to each other'.

(1) {a>nk>.{'id (cf.Def. 1);
(2) M>W (cf.Def. 2);

(3) {o>}»*{<7} (cf.Def. 3);
(4) Kn( {«} , {x} ) < Kx( {a} , {x} ), V {x} C 2Ji+ ;
(5) ^({«}, {x})<K'K({a} , {*}), V{x> C§I0+; (!)
(6) KM; {«,«}, {x})<Kn(K; {a^}, {x}), V {x} cSt0+.

For a detailed proof see [18]. The remarkable feature in the result lies in the
fact that all problems around > or > * between normal states may be handled
equivalently as unitary mixing problems on the subset S0(^K)/% of the state space
of an arbitrarily given generating U.H.F.-C*-subalgebra St. Moreover, the
system of functions

= {ATII(SI; {-/a}, {4): {x}c§t0+} provide us with sufficient systems of
anti-isotonic functions in the sense discussed in Section 1 in either case. By

(4-1X4-3) and our Propositions, it is easy to see that ^0 ID $'($[), and 3f'(Sl) =
5̂(31) for every generating U.H.F.-C*-algebra SI holds, provided 3Ji is properly

infinite (i.e. 3Ji is non-finite, since we are in the factor case).

§ 50 Properties of Convex and Concave Functions

Let us adopt all the notations of the previous sections. Throughout,
assume 2JI is a non-finite AFD-factor, with an arbitrarily chosen, but throughout
fixed, generating U.H.F.-C*-subalgebra SI, and SI0=U2J^. We are going to
introduce some further notations. Let {x} c3Jl be a w-tuple of elements of SJt.
{x} will be referred to as an algebraically finite-dimensional system, a.f.d.-system
for short, if there is a finite-dimensional subf actor F of 3JI such that {x} CFC
3Ji. By An@Bl) let us denote the set of all w-tuples in 3Ji which form a.f.d.-
systems, and An(%R)+ be the subset which consists of ^-tuples of positive "ele-
ments. Let us introduce two further sets of functions:

^ sup

for some {x}
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xSoW:/(M)- inf 2 <*>!u^cum}
for some {x} e ^4(3K)+} .

Both sets of functions are Intimately related families. Namely,
be generated by {x} &Att$Bl)+9 and ge$~(9Ji) be generated by the a.f.d.-
system {y} . Then, there are constants a, @^R+ and g'e3f^(5Dl),/'e 9fJ(9M)
such that

f=a-g'9 (5-1)

g = P-f. (5-2)

In fact, let a==S !l**ll> and g' be the element of 3f;r(9W) generated by the a.f.d.-
system {/} with j>* = |l**l|l— **» Vk; for ft take £=S ||̂ 1|, and let/7 be the
element of 3f»(2TO) generated by the a.f.d.-system {x'} given through xj =
\\yh\\ 1 — .V*» Vfc. Then, a verification of (5-1) and (5-2) is a matter of easy in-
serting, hence the details are omitted. Owing to (5-1) and (5-2), the properties
of the two systems of functions are dual to each other. We shall investigate the
basic properties of the family 3£(

Lemma 1. Lef/eQftOTO). There is {y} cSl0+ such that

/(M) = Kid*}, {y}\ V{o>} cfiiOW) . (5-3)

Proof. Let / be generated by {x} ̂ An(Wl)+. Hence, there is a finite-
dimensional subfactor F of 3J1 which contains the a.f.d.-system {*} . Let us
chose the subscript N such that dIrn2J^>dimF (dim means the relative dimen-
sion of the subfactors under discussion). We are going to show that v
with v*v=l-, exists such that v*WlNv=F. In fact, we find unitarles ult

with the property that uimNuf=®($J®l9i4£'uf=®($'i)®l, with Hilbert-
spaces $!, ©{, §2, £>£ such that ^=§!®§2? &=&i®&2, and dim §1=dim SK^,
dim ©{= dim F. Let /j'eSB^) be an orthoprojection with dim/;/=dim©i.
Let {^^}, {?F^} be complete orthonormal systems of §2> §2, respectively, and

y} ? fry} complete orthonormal systems in p'&i, ©{, respectively.
We might define an Isometry we33(£>) through the settings W9>i®5rj =

jy k= 1, 2, — ,dimF, j'e^V. Then, w*w = l, ww*=p'®l. Moreover,
one easily recognizes that w^3(^/

1)®lw^=p'^3(^1)p
f®l is fulfilled. Therefore,

In putting v=ufwu2^^Q(^>)9 and using w*p'®l = w*, we easily see from the
facts above that F=v*TiNv, with v*v=l, and vv*=/7e50ljy. Let T be defined
by T(^)=V*OT, VjceSKtf. Now, the map T':pmNp~*F, with r(x) = r(^) for
all x^pWlNp, is a ^-isomorphism between p*$lNp and F. In fact, 7" is linear,
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and T'(ab)=v*abv=v*apbv = v*avv*bv=T'(a)T'(b) for all a, b In p$JlNp, and
T'(a*) = T'(a)* trivially. Moreover, c^pWlNp and T'(c)=Q implies pcp=®, by

vv*=p9 i.e. c=0.

Let J=T'~\ and £F a normal conditional expectation from 3JI onto F,
and let ge*S0(2Ji) fixed. Let us define a map R acting from 2Ji into WIN as

^-/o£F-^(°)^. (5-4)

Then, R is normal and completely positive. Since J(l)=p:> and g is a state,
£(!) = ! follows, i.e. £eCP?(3K). By (5-4), for x^F we see:

!TojR(jc) = v*J(x)v+g(x)v*p^v = v*J(x)v = T'oJ(x) = x . (5-5)

Therefore, if we define yk=R(xk), for fe=l, 2, - ° 8 , n, then {j} is a ?i-tuple of
non-negative elements in 331N such that T(yk)=xk for all k. Both maps r, J?
are in CPl(m). Hence

«M ; {x}) = sup 2J <*k«
s k

Kn({o>} ;{y}) = sup S o>»-
« /fe

with *S extending over CPf(2Ii). Taking together these inequalities gives

/aM ; {y}} = Kn({a>} ; {x}) (5-6)

for all w-tuples {&>} cS^fOT). By Proposition 2 (cf. (4-5)) this gives

K»(M; W)=^i(M; W)- (5-7)

Since F is a finite dimensional subfactor of 2Ji, with 2JI properly Infinite, we may
apply the result of [17, Proposition 2.1] to see that for each given F<E CP?(9K)
there is an ae5UJ, with a*a=I, such that F(%)=^a*xa for all x^F. Therefore

: a*a - 1, ae^} . (5-8)
*

Since 3JI is properly infinite, every isometry in 2Ji can be strongly approximated
by unitaries. Hence, (5-8) means that Kn({o)} ; {x}) =/({«}). The latter,
together with (5-7), proves the assertion. Q

Assume, EN : 2Ji-> 2Jl^ is a normal conditional expectation from 2JI onto
3Ji^. Let us investigate what happens to/({o>o^}),/e^(50i), when JV->oo
is considered.

Lemma 2. For ev^r;; n-tuple {to} aSQ(<3Jl) the following is true:

/O» = lim/({a>o£j) = sup/Ha^}) , (5-9)
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Proof. For given /, by Lemma 1, 3{^} C§10+ with

/(M) - K'U(M, {y})5 V{4 CS0(2«) . (5-10)

We know ^eCP?(2Jl), and EN<>EM=EM9 for ^>M. Hence, (5-10) allows
us to apply Theorem 1, especially (3)<=>(5), twice with the result

^» = f({a>oENoEM})<f({a>oEN})<f({a>}) , (5-11)

which proves the existence of the expression on the right hand side of (5-9).
Let e>0. Then, to each {a>} of SQ(3Jl), an subscript N0 is easily found such
that

-s<S o>k(u*yku) . (5-12)

Indeed, Proposition 2, (4-5) makes that this is possible. Let ^ such that
{y} dWtNl. If N> max {No, N£9 we have EN(u*yku)=u*yku, Vk, for, u*yku&
%JIN holds and ̂  projects onto WIN. Therefore,

2] o>l(yk)<K'n({o>*EN}, {y}) =f({o>*EN}} , (5-13)

for all TV^Hiax-fTVo, N£9 where we have been using the representation (5-10).
Taking together (5-12), (5-13), and making use of (5-10) once more again,
yields

/(M)-5</({o)o^})9 (5-14)

for N sufficiently large. Since e>0 could have been chosen at will, and the
information of (5-11) is available, (5-14) implies (5-9). D

Lemma 3o Let /w e 3£(3K) be generated by {x} (= An(%Jl)+. Then,

IIS ^il</(,}<S INI, over the n-tuples, (5-15)

moreover, the following equivalences take place:

/w(M) = IIS xk\\, V{4 e4,(3R)+, ~ (5-16)

{cy} w a« orthogonal system of states:

/w(M)= 1123 x,||, ¥{4 e^(3W)+, «G>1=...=a>. . (5-17)

The right hand part of the estimation in (5-15) is obviously valid.
To see the other one, let us look on the linear map T given by T(x)=v(x)l9

with an arbitrarily chosen ^eSf
0(50i). Then, a)koT=v,Vk. By Lemma 1,
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3 {y} C§I0+ such that (we suppose /is generated by {x})

(5-18)

Since T is unital and completely positive, normal, Theorem 1 says that for

{"}={", "Ml

/(M)</(M). (5-19)
But then, /(fr})= sup AS **)<!! S ** II- To see equality to hold, let

we'UOR)
^eSJi, p=^pO, an orthoprojection with XS xk)P = \\ S **!!/> • Since {*} cSI0+3

such j? exists. Let us now for v specify a normal state with support on p, i.e.

v(p)= 1. Then, by the previously clarified things, y(2 **) =/({^}) = IIS **!!•
Together with (5-19) we get the left hand side estimation of (5-15). Note that,
when talcing T(x)=o)(x)l, V*e3JZ for an arbitrary other normal state co, by the
same as above reasoning with Theorem 1 we see/({o>, •••,(»})</( {v, °*°*v}} =
US xk\\9 which together with (5-15) (which has been proved above) implies the
back-part of (5-17) to be true. On the other hand, assume f[x]({o)}) = \\ 5] xk\\9

V{x}^An(m)+. Because of (5-18) and (5-15), (5) of Theorem 1 happens to
be true for any other rc-tuple {#} cS^SJi). Especially, the «-tuple {v, a ° - 9 ^ }
might be chosen. Theorem 1 then asserts that Q^ST^Hl*) exists with o)k =
<Z>(v), Vfc, which obviously can only be true if o)1=***=o)n. This proves the
implication ==> of (5-17).

To see (5-16), assume the left hand part to hold. Then, (5-15) together
with (5-18) and Theorem 1 implies for each other «-tuple {v} C.SQ(%R) the ex-

istence of reCP?0Ui) with vk=o)koT, Vfc. Hence, \\^k-^3\\i = \\(^k-^j)°T\\i<
\\o>k— o)j\\l9 Vk,j. Since the w-tuple {v} might be chosen at will, assume
{v} is a system of mutually orthogonal, normal states (since SDt is infinite
dimensional, to every n such a system can be chosen). For k^pj we have

\\Vk~~ vj\\\ — 2. Therefore, by the inequality above, ||^~cyjlli = 25 Vfc=t=j", i.e.
{&>} is an orthogonal system of states. This proves the =^ -implication of (5-16).

To see the other way around, assume {v} is a w-tupel of mutually orthogonal
normal states over 3K. Let us denote by sl9 "-,sn the support projections of
the ^'s. To each «-tuple {&} of normal states let us associate a linear map
0: 5K*->SDl# defined through the settings

- S Jy)®» ,

By construction, (Z>eST(5K#). Therefore, Theorem 1 applies and yields

(5-20)
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for every {z} C§tt0+. Given such a {z}, we can provide us with orthoprojec-
tions p^ -'ipn such that PJZJPJ=\\ZJ\\PJ,VJ. Since {z} cSJl^ for a suitable
subscript N, all pk may be supposed dimensionally infinite (with respect to
33(£>)). Then, a result of [19, 4.3 Lemma] applies and gives the existence of a
/i-tuple {<?} C§ of mutually orthogonal unit vectors fk in § such that pkSk=Sk,
Vk. Defining coh(x)=(£k, x£ky, Vxe2Ji, i.e. the vector state over 9JI generated
by fyfe, we see that o)k(zk)=a)k(pkzkpk) = \\zk\\9 Vfc, by assumptions on the choice
of them's. By (5-15), we have to follow that K'n({a>}9 {z})=2 ||ZA||. Owing
to (5-20), and using (5-15) once more again, we see

The latter holds for each {z} cSl0+. Suppose {x} <= An(m)+. Then, (5-18)
reads as

/w(fr» = ^( {4 >{> '»> with ^^^,)e§I0+,Rc.p.9unital (5-22)

where Lemma 1 and the special form of the yk from the proof there has been
referred to. Since also xk=v*ykv, ve3Jl1? we see ||̂ 1| = ||̂ ||, Vfc? and (5-21),
(5-22) imply the desired equality. This closes the proof. D

§ 60 The Main Results

Theorem 2* Let 3JI be a non-finite AFJD-factor over some separable Hilbert-

space &. Let {&} , {a} c 50(5Ul) Z?e n-tuples of normal states. The following

conditions are equivalent to each other :

(1) M > to, i.e. 30eST(2Jl*) wirA ©^^(aj, Vfc;
(2) {cy} >^{(7>, i.e. 30<EiST($K*) w/rt o>A=(Z)((7A), V/c;
(3)
(4)
(5)

(6)

Thus, ^(3Ji) and 3ft (9R) provide sufficient systems of >-isotonic and >-anti-
isotonic functions, respectively.

Proof. Follows at once from Theorem 1 and Lemma 1. The latter telling
us that 3(Sl)-S»(a«), for every generating U.H.F.-C*-subalgebra SI of 9K,
The equivalence (5) 0(6) is due to (5-1), (5-2). D

Remark. Note that Lemma 2, Lemma 3 have their counterparts in case
of 3f-(2tt). By Lemma 1, 3f(Sl)=3ft(2R) for any generating U.H.F.-C*-sub-
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algebra SI of 501. Hence, we arrived at an intrinsic characterization for a par-
ticular family of >-isotonic resp. anti-isotonic functions without to have need
to refer to the (non-unique) substructure St.

For convenience, let us list up some of the properties of the functions
collected into 3ft (501) (an analogous dual list hold in case of 3ft" (50i)). Let

/€=3£(3»). Then:

/ is uniformly continuous, (6-1)

/ is (relatively) iv*-lower semicontinuous, (6-2)

/ is (simultaneously) cU(50l)-invariant, (6-3)

i.e. /({a/}) =f({co}\ with {a>*} =K, • • - , ofl,

/is (jointly) convex (6-4)

over the set of all /7-tuples of normal states on 501. Moreover, if f[x] is gene-
rated by the a.f.d.-system {x} , then

(6-5)
and

|, V {*} e=4,(2»)+, « M (6-6)

is an orthogonal system of normal states;

/w(M) - S IWI, V{*} e=4,(3R)+, ^ =.-= &n . (6-7)

Furthermore, each /e 3ft (5Ji) has the isotony-property, i.e. if SOijCSOigd ••• c50i
is a sequence of finite-dimensional subfactors of 501 which generates 501, and
EN ; 501-̂ 501̂  is a sequence of associated normal conditional expectations, then

) (6-8)

and lim/({a>o£j) = /({(y}) . (6_9)

These properties are either obvious, or they are collected together from all
we have been deriving in the previous sections.

§ 7. The Case of the vN-AIgebras

Let 5Jt be a vN-algebra that is admissible in our sense (see Section 2).
Thus, there is a properly infinite AFD-f actor 501 which contains 5JI, and there
is a normal conditional expectation E projecting from 501 onto 5JL In these
notations, the result of [18, Proposition] and our Theorem 2 imply the follow-
ing to be valid:
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Corollary. For n-tuples {&}, {a} dSQ(%l) the subsequently listed condi-
tions are mutually equivalent

(1) M»W;
(2) M»*W;
(3)
(4)
Therefore, the set of functions {/({(°)o£}):/e^~(2Jl)} forms, e.g., a sufficient

family of ^-isotonic functions.

As an application, let us consider the case 3Ji=33(£>), and 5JI— /°°. Let
{^:j^N} be a complete orthonormal system in £>, and denote by q$ the
orthoprojection onto [<fy]. We might assume that 5ft is generated by the q/s.

Then, ^(O^S ^X°)^y is the normal conditional expectation onto 5JL Let
{x}e ^(83 ($))+. Let {G>} c S^OK). We find non-negative reals o>H, with
SG)*^!, Vfc, such that o>k<>E = ^Q)klq1. Therefore, we have

sup S ®Ao£(w*^w)=sup S<^f/, ^/wf />=/(,)( fr», with ^ = 2

<fA, (e)O- The system {î } being an orthogonal one, and since
makes that (6-6) (with a little modification) applies with the result:

This, however, gives Example 5 in case @ =N, ju-the counting measure, es-
sentially (compare this to the sufficient system given at the end of Section 2),
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