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The so-called lambda algebra A is the differential (bi-)graded augmented
algebra over Zjp, p a prime number, introduced by Bousfield, Curtis, Kan
et al. [4]. It is originally given as the £'rterm of a spectral sequence of Adams
type derived from a filtration by the mod p lower central series of the Kan
loop group of the simplicial sphere spectrum. There has been found since
many interesting applications of the lambda algebra to homotopy theory [5]?

[7], [10] etc.
It is characterizing that A is a quotient of the reduced cobar construction

C(A*) ([!]), where A* means the dual Hopf algebra [12] of the mod p Steenrod
algebra A, and itself being a considerably small cochain complex with cohomol-
ogy group HM(^f, d) isomorphic to Extiif (Z/p9 Zip). In such a view point
there appeared similar constructions of resolutions over (Hopf) algebras [15],
[9] and [17].

The purpose of this paper is to construct a differential graded algebra
AMU in the MU-cohomology theory ([3], [2]), similarly as the lambda algebra
A in the ordinary cohomology theory.

Our method is also available for the case of AP-theory, which will be
dealt with in a subsequent paper [18].

The author would like to thank A. Iwai, H. Ishii, K. Hirata, K. Kojima,
N. Yagita, A. Robinson and K. Shimomura for their valuable advice during
the preparation of this paper.

§lo Hopf Algebroid Associated to the MU-HomoIogy Theory

Recall first the definition of Hopf algebroid [2], [11].
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Definition 1.1. A Hopf algebroid over a commutative ground ring R con-

sists of a pair of graded-commutative R-algebras (A, F) such that there are mor-

phisms of graded R-algebras (called structure morphisms):

A-^F (left unit)

A-*F (right unit)

A-*F (augmentation)

F-*F®AF (diagonal)

F®AF-*F (composition-multiplication)

F-^F (conjugation),

where F is regarded as a left A-module by TJL and also a right A-module by TJR,

and the tensor product F®AF is that of A-bimodules. Moreover e, A and ju are

morphisms of A-bimodules, A and ja are associative, and the above morphisms

subject to the following commutation rules and diagrams:

erjL = er]R = 1 , £C = e, c2 = 1 , cr]L = TJR , C7]R — r]L ,

A®AF <^—F -^^F®AA
1 ^ I I , Il®6 VRl \A \r}L

+ 4- *
F < F®AF > P

Xc®i) Xi ®c)
A

4~*r*?J

The ^-algebra A is called the coefficient ring and F is called the coopera-
tion algebra of the Hopf algebroid (A, F). If A=R and 7]L=7]R, then F is the

usual Hopf algebra over A. Examples of Hopf algebroid are provided by

R=KQ(E), A=TU*(E) and r=E*E=7c*(E/\E) for each ring spectrum E, usual-
ly with the assumption F being left ^4-flat (and therefore simultaneously right
^4-flat), This condition is known to be satisfied in many important cases:

E=KO, K9 MO, MU, MSp, S, HZjp, BP etc. ([2]3 [3]).
In the below, we shall only deal with the case E=MU. As is well known

its associated Hopf algebroid (A9 F)=(MU%, MU*MU) consists of A=MU* =

Z\.xi> X2* 8 B e ]? the complex cobordism ring isomorphic to a polynomial algebra

over Z with generators x{ of even degree (deg*f-=2i"), and F^A®S, where

S=Z\bl9b29
 B f l o ] is the dual Hopf algebra of the algebra of the Landweber-

Novikov cohomology operations ([8], [2]). S is presented as a polynomial
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algebra over Z with generators bi of even degree (deg b{ =2i), and Its diagonal
is given by

(1.2) V<*) = 26'+1®*,-,
i^O

where b=l+b1+b2-\ — and b0=l.
The Hopf algebroid (A, A®S) is thus of split type [11] with structure

morphisms :

nL: A-»r = A®S9 7]L(a) = a® I

e:r=A®S-*A« e(l®j)=0 for deg5>0

A = i®T/r: r = A®s-^r®Ar = A®S®S
PL = l®m: F®AF = A®S®S->r = A®S ,

where m is the multiplication In S.
It is convenient, for our purpose, to take another set of generators for

the polynomial algebra S.
Put

(1.3) s=2-b~\

s = l+Jl+J2+o- , s0 = l .
Then we have

(1.4) 2b = l+bs,

We can express bk as polynomials of s'iS and vice versa. Note that bk are
polynomials of S{S with positive coefficients, for example:

(1-5)

etc.

Lemma L68 TAe diagonal of the Hopf algebra S=Z[sl9s29
 9 8 Q L degjl-=2f,

or wor^ explicitly:
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= ^30 1+^10 $2

etc.

Thus only Si and ,s2 are primitive elements among the generators Sg.

Proof of Lemma 1.6. We see, from (1.2) and (1.3),

^&-i) = iK*)"1 = A"1® 1 - 2 */"1®^- •
/^i

Then, from (1.4), it follows

2 y-^jy .

§2e DGA-Algebra ^s

Consider the primitively generated Hopf subalgebra S2 = Z[sl9 s2] of
S=Z[sl9s2, •••]. Let p:S-*S2 be the canonical projection, and s:S->Z be
the augmentation. We shall use the following notations :

(2.1) 6=(l-6)op:S-*L-»L,

0', J^O, i+7

Thus, ^ is a linear map such that

0 (monomial containing sk for some k^3) =0

and L is a free JZ'-module with basis {^y|i,j^0 and z'+j'X)}. L is bigraded
by degJ,y=(l,2f+4;).

Let r(L) be the tensor algebra on L "

(2.3) T(L) =

and define a linear map

(2.4) 6(10 = (0®0)°^i S-*L®LdT(L) .

Definition-Proposition 2.5. Define a quotient algebra

As = T(L)/I

of the tensor algebra T(L) by the two-sided ideal I generated by elements of
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6\J6(KerO), This mil be a DGA-algebra (differential, bigraded, augmented
algebra)over the ring Z of integers, with differential d, of degree (1, 0), being a

derivation such that d6 = —6[JO,

To show that this definition is well defined, we first consider linear map

(2.6) d=

where c: L~*S is defined by t(^j)=s{si. Extending d onto T(L) as a deri-
vation, we have

dO - -(6 U 6)0 cd = {(6 U 6)o(l-t6)} -6(J6==-6\J6 (mod I)

d(6\J6)=d6\J6-6\Jd6=-(6\J6)\J 0+6 U (6 U 6) = 0 (mod /) ,

in virtue of the associativity of the diagonal ^, where the U -product is defined
similarly as in (2.4).

Thus we have, in particular, J(/)c/and dod=0 (mod/), and d induces a
differential dA on As, which we will denote by the same notation d for sim-
plicity. And we have shown that As is a DG^4-algebra over %, generated by

•Rv'j J',.7^0, ?+j>0} . The differential d is given explicitly by

As for relations between the generators ^-y, there are first basic relations

(2.9) ^ = 011^)= S

where I _ 1 means binomial coefficient, and /l°/T product in As. And more

generally

(2.10) D{Di(Rk*-*Rki) = 0 U 6(sistskl-ski) = 0

where D1 and D2 are derivations of AS
9 defined by

= ̂ y (or I)i((2 1 D
Aft,) = ^£.y+i (or

and *: (L®L)®(L®L)->L®L is the product induced from the usual one in
the tensor product S2®S2, explicitly given by
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The left hand sides of (2.10) will generate the whole of the ideal 7. Here are
some examples of the relators (2.10) (notation (ijkl)=^ja^kh for simplicity):

R3 = (1001)

^4 = (2001)+(0101)

RS = (30Q1)+2(11Q1)

A*i = (3QQ1)+(2Q1 !)+(

DlR3 = (3001)+2(201 1)+(1021)
(2.12) D2R3 = (1101)+(1002)

R6 = (4QQ1)+3(21Q1)4-(Q2Q1)
A*s = (4QQ1)+(301 1)+2(2101)4-2(1 1 1 1)

DlR4 = (4QQ1)+2(3Q11)+(2101)+2(1111)4-(2Q21)+(Q121)

DlR3 = (4001)4-3(301 1)+3(2021)+(1031)

D2^4 = (2101)4-(2002)+(0201)4-(0102)

AA*3 = (21Q1)+(1111)4-(2QQ2)4-(1Q12)

R3*R3 = (2002)

etc. (Cf. (2.19), for the meaning of the underline)

We remark that the map 6: S->L~*AS (we made a confusing use of the
notation) gives a twisting cochain, in the sense of E.H. Brown [6],

On the additive structure of As, we have

Theorem 2.13. As is a free Z-module.

To prove this, we prepare the following lemma.

Lemma 2,14, In the n-th power tensor product S®n=S® — ®S of the
Hopf algebra S, the submodule

*=o

is a direct summand (of S®n), where ty is the diagonal of S and S is the kernel
of the augmentation e : S-*2%.

Proof. Induction on n. In the case n=2, from

*®1
S ±=5 S®S , (e® l)o^ = id. ,

*
we have a direct sum decomposition
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S®S = ir(S)®(5®S) .

For the case n=3, using the above decomposition, we have

Thus ir3(S)=T/r(S)®S+S®i/r(S) is a direct summand of S®3. Iterating this

process inductively, we obtain the lemma.

Proof of Theorem 2.13. Recall that, In the beginning of this section,

we put S=Z[sl9 s29 — ], Lt*sS2=Z[sl9 s2], L=Ker (e: S2-+Z)9 p: S->L the pro-

jection, and 6:S-^>L->Z the composition (1— e)°p. Consider the map;?®*:
S®n-^l®n and the image of the submodule ^H(S) (in 2.14) by p®*:

(2.15) P^n(^n(S)) = SZ®-®frUX'S))®'"®E.

This is a submodule of the ^-free module L®n and itself ^-free. Since p®n

is a surjection, it follows that p®n(^n(S)) is a direct summand of irn(S). By
lemma 2.14, we have

(2.16) 5] I ® • • 9 ® (p U Xs)) ® a ' ' ® E is a direct summand of 5®*.

On the other hand, it is easy to see that

(2.1?) (

Therefore we have

(2.18) ^)

The last module is ^T-free by (2.16), so the part Afn} of As of tensor°grade n

is proved to be ^-free. q.e.d.

In concluding this section we add a conjecture on a free basis of As. Let

us call a monomial ^liV^VV'^V* ^n ^S admissible, if the following condition

(2.19) minOWO^J^-^

Is satisfied.

Conjecture 20200 The set of admissible monomials would constitute a Z-

basis of As,
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In the list (2.12), we underlined admissible terms.

§30 Coraodule Resolutions

Let (A, F) be a Hopf algebroid (See § 1).

Definition 3.1. A left A-modu/e and an A-map i^M: M-^F®AM define a

left (A, r)-comodule (M, T/TM) (or simply, a left F-comodule), if the following

conditions are satisfied'.

ii) there is a commutative diagram

1/rM
M -UL+ r®AM

r®AM — r®Ar®AM.

For example, A is a left F-comodule via T/rA=7]L: A->F (left unit), and

so is F itself via tyr=A. A morphism (or F-comodule map) /: M— > N,

between left F-comodules M, N, is defined to be an ^4-map compatible with

T^M and i/rN. Denote by Homr (M, N) the totality of morphisms of M into

N. Then we have [11]

Homr (A, A0=

(3.2) Homr (A, A)^

Homr (A, F) = {/: A-»r-9f(\) = TJR(O) for some

Now consider the twisted tensor product S®9A
S (which we denote by

S®AS for simplicity, See §2). This is a bigraded cochain complex with

diffferential d such that

(3.3)
da = (l®0)ir(d) , bidega = (0, deg a) .

Theorem 3.4 The cohomology of S®AS is given by

Z for (s9 t) = (0, 0)

0 otherwise.

Proof. Consider the unnormalized cobar construction C(S, J%)=S®T(S)

over the coalgebra S. T(ST) denotes the tensor algebra on S' and the dif-
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ferential is given by

d(a[al\a2\ - K]) - 23 cr'Kkil - K] + 23 (-l)^K I - IV<«/)l - Kl

where iKa)=Sa/®«"- It is weU known that HM(5®rO$))==^ for (s, t) =
(0, 0), =0 otherwise.

Let n be the natural projection: T(S)-+AS
9 which factors through T(0):

T(S)-*T(SJ. Let / be the kernel of TT, a two-sided ideal of T(S), and Jc be
7T

a direct summand of r(S) complementary to J(T(S)=J@JC, JC^AS). We
may choose and fix Jcd T(S2).

To prove Theorem 3.4, it is sufficient to prove, in the exact sequence of
complexes :

0 -> S® /-> S® T(S) -> 5®^ls -» 0 ,

the following

Lemma 3.5. H**(S®J)=0.
For this purpose consider the following subcomplexes of /:

where J£=Ker(jr. S-^>S2), Ke=K.er(0: S-*S2) and • means the (tensor) product
in r(S). We can verify that

J = J'@[l]-Je,

(3.7) d/'C/',

Lemma 3.80 /« ^/?e exacr sequence of complexes:

0 -* 5®//x - S® /-> S®J/J" -> 0 ,

1) the induced map ?* : H**(Sf® J/O^H**(Sf® /) w rte z^ro mop,

2) H**(5®///70=0.

Proof of Lemma 3.8. Defining the chain homotopy a: »S® Jr//->*5'® / by

and i/e/, or
(3.9) a(a®\p\-u) = e(a)p®u for

ly^ = l and

we can easily verify that do+ad=i on S®J". This proves 1). For the
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proof of 2), we note the following direct-sum decomposition

(3.10) JIJ"^KQ»JC@^(K9)«JC .

Then, defining the following contracting homotopy on S®JjJ/r by

o(a®\k\ -v) — 0 for a^S , k^Ke and

(3J1)
« j « - v = , . 1for fc = l ,

we can directly calculate do+ad=id. on S®JjJ'f0 This calculations would
be straightforward but somewhat tedious. For example, we remark that

(3.12)
dv = 7c 1odA°n(v) (mod/) for

so that \k\*dv (resp. \i^k)\-dv) (mod/77) would be identified to \k\*(n-ldAn)(v)
(resp. 1^(^)1 •(rc~1<iirc)(v). Thus we have proved Lemma 3.8 and therefore
Lemma 3.5, which proves Theorem 3.4.

In the conclusion, we have an acyclic, injective (left) S-comodule resolu-
tion of Zi

, or
(3.13) '

0

Tensoring A=MU* to this from the Ieft5 we obtain an acyclic, injective
(left) .F-comodule resolution of A :

(3.14) A ̂  r®As (F = A®S = MU*MU) .

§4e AMU and the Adams-No vikov Spectral Sequence

Applying the Horn-functor in the category of left jT-comodul.es to (3.14),
we have a cochain complex

(4.1) Homr (A,

with differential d of the form

(4.2) d(a®X) =

We shall denote the complex (4.1) by AMU and call it the MU -lambda
algebra^ as it will be justified in the following theorem.
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Theorem 430 (I) the cohomology group H5)*(^MC7
5 d) of the cochain com-

plex AMU=MU*®AS is isomorphic to E^tMu^Mu(MU^ MU*)9 (li) AMU has a

canonical structure of free MU*-bimodule, and thereby becomes a DGA-algebra

over Z, (ill) there exists a spectral sequence of Adams-Novikov type, of which

Ej-term is AMU.

Proof, (i) is clear, because Extr (A, ) is the derived functor of Homr (A, ).

To prove (ii), we let MU* act on AMU from the right as follows:

def
(a®X)-b = S a°btj®DiD3

2l , a, b^MU* , Z<=AS ,
(4.4)

7]R(b) = S &,-/®<si'S2+(terms containing sk for some k^3) ,
i',;^o

here D13 D2 are the derivations of As defined in (2.11).

This right action is well-defined :

. = . .

Moreover we have

(4.6)

By these properties, /fMC/ has a free M(7^-bimodule structure and becomes a

D(L4-algebra over Z. Next, to prove (iii) we follow Adams' method [3]=

Consider a sequence of cofibrations of spectra :

Yn -> Wn =
7

which will be defined inductively on w such that

(4.7) Sw = V5'^' (wedge sum, {̂ }a basis of A fa,

bideg *, = (n, t(l,)))

S — YQ < ------- Jt j_ < ------- Y2 < ------- jt 3

\ /* \ / \ / \J0 = -n k, jl k.L j2 k2 j3 ......
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3G ^

dl

To define these maps of spectra, we start from the unit 37: SQ-*MU= Wg

and its cofiber kQ: W^Y^MU/S0.

Lemma 4.8. (Proposition 13.5 of Adams [3], Part III). Let E be one of
ring spectra listed in the beginning of §1, and F an E-module spectrum. Then,
if E*X is a projective E*-module, we have

By applying this lemma to the case: E=MU9 X=Wn_l=MU/\SA<-n~v
9

and F=MU /\ Wn9 we get a map ̂ _x: W^-^MUA Wn-> Wn which corresponds

to dn^\ MU*(Wn_.^-*MU*(W1d for all«. Now from the induction hypothesis:

rB_! —^> 1̂ .! —^—> FM is a cofibration,

E*(jn-i) is nionic,
E*(kn-.-^ is epic,

Ker ^(fc^.j) = Im E*(jn-d = Ker E^(dn_^ ,

it follows, by Lemma 4.8, that ^-i°A_i^O. Since C/»-i> ^n-i) is a cofibration,
there is a mapy°K: Yn-*Wn such that ^n-i^Jn^n-i- Since ^(fc^.j) is epic,
Im^(7JI)=ImJ&#(5B_1)=Ker£'*(5J, and E#(jn) is monic. If we form the

cofibration Yn-%Wn-*Yn+1, all the conditions of the #-th step (4.9)n are
satisfied and the induction is completed.

Applying the homotopy group functor n* to the cofibrations diagram in
(4.7), we have an exact couple

(4.10) 2
n

k*\ Jj*
E,=

which will give rise to a spectral sequence of Adams-Novikov type converging
to the stable homotopy groups of the sphere. This completes the proof of
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Theorem 4.3.

Remark 4.11. Direct computation of HStt(AMU
} d) is rather difficult except

for the cases of smaller s and t, because the differential d is related to the right
unit T}R (cf. 4.2). Here are a few examples:

Hs>odd=Q, H°'f=Q (r>0)5

HUetZp = &1

(4.12)

where {a} means that the cocycle a represents a generator, and ati are the
coefficients of the universal formal group law regarded as elements of MU*

(cf. [3], [13], [14], [16], [19]).

1.12. Putting L=A[sl9s^, we have a Hopf algebroid (?£, TI'R\
A-^L), where rir

L=riL and ri/
R=ponR (p; F->I the canonical projection). Put

L=Ker(e:L-»4), 0:F-»L3 6=(l—e)°p, and TA(L) the tensor algebra on I

over A (i.e. TA(L)==^L®AL®A*00®AL)' Then a direct definition of AMU

will be given as the quotient TA(L)/(0 U 6 (Ker0)) (cf. [18]).
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Note added in proof \ It turns out that the definition (3.6) of the subcomplex /' of / has
to be modified as follows. K is to be replaced dy JT, which is defined by the decomposition
Ke=KQ©K' where

Ke = Ker (6 : S-*I),
KQ = Ker (0 U 0 : Ke-*ksj) -

Then K?**I&.
As a consequence, [l]*/c in (3.7) is to be replaced by K^J°.


