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On the Dirichlet Problem For
Degenerate Elliptic Equations

By

J. H. CHABROWSKI*

§1. Introduction

The purpose of this paper is to study the Dirichlet problem with
L’-boundary data for degenerate elliptic equations of the form (1)
(see Section 1). The degeneracy of the ellipticity is controlled by a
function m satisfying conditions (2) and (3). Degenerate elliptic
equations, with m satisfying (2), have been widely examined by
Murthy and Stampacchia [5]. Further extensions of their results
can be found in Trudinger [6]. In particular, the Dirichlet problem
in the above mentioned papers, was solved in the case when a
boundary data is a trace of a function from a suitable Sobolev space.
Here we discuss more general situations when a boundary data belongs
to L% For uniformly elliptic equations this problem was solved in
[1], [2] and [3] (all historical references can be found in [1] and
[2]). To solve the Dirichlet problem with L?*-boundary data we
impose on m an additional condition (3), which allows us to recover
a boundary function in the sense of L’-convergence. Therefore the
equation (1) is uniformly elliptic in a neighbourhood of a boundary
and degenerates in an interior part of a set.

The plan of this paper is as follows. Section 1 contains some
preliminary work. In Section 2 we examine traces of solutions in
H}Z(m,m). In particular we obtain a sufficient condition for a solution
in HiZ(m,m) to have an L’-trace on the boundary (see Theorem 2).
This theorem justifies our approach to the Dirichlet problem adopted
in this work. In Section 3 we solve the Dirichlet problem for a
boundary data in L=, In the final part of the paper, Section 4, we
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solve the Dirichlet problem for a boundary data in L% under more
restrictive condition on m, namely me L™

Finally, we point out that the methods of this paper are not new
and have appeared in the author’s earlier papers [1] and [2].

§2. Preliminaries

Let QCR, be a bounded domain with the boundary 6Q of class
C%. In Q we consider the equation of the form

(D Lu=~3} D[3: a;(e) Dartdi()ud + 3 bu() Dau+ o () u =),

whose coefficients are assumed to be measurable functions on Q.
To formulate further assumptions on the coefficients of L we
introduce a non-negative function m on Q such that

@) meL Q) and meL!(Q) with _i-+%g%.

We also assume that there exist constants 8 and B, and a neighbour-
hood N of 9Q such that
3 0<B<m(x) <pB

for all xEN.

We denote a distance from x€0Q to 90 by r(x).

Throughout this paper we make the following assumptions on the
coeficients of L

(A) The operator L is elliptic, that is,

m@) [§17< 3 2, () 6
LJ=
for all £ R, and almost all x€Q Moreover we assume that m™a;;E
L=(Q) and that D.g,; exist on N with
DuereL=(N), 0<a<l, (,j=1,++,n).
B) bm ™% dm™?eL®(Q) (G=1,+++,n), ¢c€Li(Q) with §>q,
where q is given by
(2¢) '=2"1—(2) T=n"1—(20) "L
(C) fm™'%¥°<L*(Q), where 2<6<3.
We associate with the function m the weighted Sobolev spaces. The
completion of the space C'(Q) with respect to the norm
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is denoted by H“*(Q,m,m) =H"?(m,m). Here ||+||,..» denotes the norm
in the space L?(Q,m) of all functions u such that

a=S 10 a) [ ) dx <o,

The closure of the space C5(Q) in H**(m,m) is denoted by
H{:(m, m).

Throughout this paper we frequently make use of the Sobolev
inequality:

there exists a constant 4=A4(m,n,t) such that

4 lleal] #<A| Dul|

for all u€ Hy*(m, m).
The norm in Hy®(m,m) is equivalent to ||Dul|,,z that is, we have

®) 1Dtz <llel 1.2, ., < Bl Dl

where B>0 is a constant independent of u. (For the proofs of (4)
and (5) we refer to [5] Theorem 3.2 and Corollaries 3.3 and 3.5).
A function u defined on Q is said to belong to HjZ(m,m) if
us Hy?*(m, m) for every {ECH(Q).
A function u(x) is said to be a weak solution of the equation (1)
if ue Hy2(m, m) and u satisfies
(6) SQ [i.,Z;ai DD p+ é d,-uD,-v-{—gi b;Duv+cu-v]dx= SQ fu dx
for every v H“%(m, m) with compact support in Q,
It follows from the regularity of 0Q that there exists a number
do>0 such that for 6= (0,0,] the domain

Q:=00N {x; ‘f;i,.,g |x—y | >0}

with the boundary 0Q,, possesses the following property: to each x,E0Q
there is a unique point x;(x)) €0Q; such that xs(xo) =xo—0v(x,), where
v(x,) is the outward normal to 90 at x,.. The inverse mapping of
Xo—>x5(xo) is given by the formula x,=x;+0v;(x;), where v;(x;) is the
outward normal to dQ; at x,.

Let x; denote an arbitrary point of 9Q, For fixed & (0,0,] let

A5=8Q5ﬂ {x: Ix_x5[<5},
BE: {x3 x=x~d+5”6(x~§); .f'aEAE},
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and

ASs i 14|

ds, ~im P
where |A| denotes the (n-1)-dimensional Hausdorff measure of a set
A. Mikhailov [4] proved that there exists a positive number 7 such
that

7 7 Sdsoér
and

. dSs _
(8 1;-130171,3,;—1

uniformly with respect to x;& 00 ,.

According to Lemma 1 in [3], p. 382, the distance r(x) belongs to
CZ(Q—Q,%), if g, is sufficiently small. Denote by p(x) the extension of
r into Q satisfying the following properties: p(x) =r(x) for xEQ—Q%,
eEeC*(Q), p(x) 2% in Qg it r(x) <p(x) <y r(x) in Q for some
positive constant y;, 00 ;= {x; p(x) =0} for 6 (0,0,] and finally 00 =
{x; 0(x) =0}. We may also assume that Q—QaOCN.

We will use the surface integrals M1(5)=Saolu(x,;(x)) |2 dS, and
M) = Soo lu(x) |%dS,, where uc Hy;2(m,m) and the values on 0Q and
0Q 5, respeétively, are understood in the sense of traces (see Theorem
3.9 in [4D]).

Note that if M (d) is bounded on (0,d,] and

S u(x)%m (x) dx<oo,
Q
then for every 0<u<(l there exists a constant C>>0 such that

u(x)m(x)
(9) SQ‘,W)—ﬂdx S C

for all 0 (0,0,/2]. Indeed, for d (0,d,/2] we have

u(x)%m (x) w'm w'm
SQ,, (p(x) —0)* x_Saﬁ—Q% (p—0)* dx+SQ% (p—0)* da
5

0 _ 2 7
< . 2 2 2
_,3186 (s—0) ﬂSaQu dS,,-I—(50> S%u mdx

< ﬁl[ﬁ},‘f‘ sup S uzde+(£>#S uzmdx]
0<s<8)JoQ do %,
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§ 3. Properties of M and M,

To study M and M; we need the following modification of Lemma 1
in [2].

Lemma 1. Suppose that us HY:(m, m) and that
SQ | Du(x) |7 (x) 7 (x) dx<oo.

Then if 0<pu<l and 0<0:<00/2 we have for 6< (0,0,/2]

e, (o(x) —0)*
+5i-ﬂg u(x) 2dS,,+5{‘#S
%y,

S Ma’xﬁ]{[al‘#go u(x)’m(x)dx
o

o, 1Du(®) 1?(0(x) —0)dx],

[

where K is a constant independent of 0, and 9.

Proof. First we observe that by (3) we have
So . | Du(x) |2(p(x) —5)dx_<_ﬁ’lgq | Du(x) |2m (x)r(x)dx<oo.
&~ 51

Let 6= (0,0,/2] and put

uzm uZm uzm
syl =S d +S dx.
So,s (0=07 " Yoo, (=007 " Jo, (0—0)F "

Since p(x) >0, on Q, we have

u'm 2 \#
——=_d §<—>S “mdx.
SQ‘H (p_a)p X 5, Qalu max

Now we note that

J

_u'm L - . dS,
SQ&‘%I (o—0)7 dxéﬁlga (t—0) #Swu (2, (x0)) ZS‘:dSodt

21
<pi|, -0 ux(w)sw,

ASSa u(x,(x))%S, is absolutely continuous on [d,4d;] (6>0), integrating
Q

by parts and using Young’s inequality we obtain

u’m Buyot+ S )
dx<
SQa—le (p—0)* > 1—p agu(xﬁl(x)) dS,
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208 (Mg o) D20 11 o) el

/317’ o1 * 2 2r'B,
< l—p Sao(, Ly 1—p Sa,,-o,,llu(x) [ 1 Du(x) | (0—8)*"#dx

191?’ o S WS, 27 S u?
I—p Jo, +1_/" o0 (0—0)* ¥

—2719151"‘8 Dul*(p—8)dx for all
+e(l—;z) Qa_%ll u|?(o—0)dx for all e>0.

4
Now choosing %‘8%7‘:=;— the result follows.

Lemma 2. Let usHYZ(Q) be a solution of (1) and let 0<6,<0,<0%.
Then

SQ | Du(x) |2m(x)deC[SQ u(x)zm(x)a’x—l-go F)m (x) ~dx],
% ° 1
where C>0 is a constant depending on the norms of the coefficients of L,

51 and 52.

Proof. We commence with the following observation. Let 2 be a
relatively compact subset of Q such that

1 57 0 gy 1152 i gy a0 il 2
are sufficiently small then
SQ | Du IZszdeConst[S W2(C2+ | DE | mdx +S fm]
] Q

for every C'-function { with- compact support in £ (see Lemma 8.5
in [5]). The assertion then follows from the compactness of le.

The following result is crucial in the subsequent treatment of the
Dirichlet problem.

Theorem 1. Let u be a solution of (1) belonging to H%Z(m,m), then
the following conditions are equivalent

@) M(0) is a bounded function on (0, 0],
an | 1DuG) o ds<es,
(III) There exists align M, (0) <oo.
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Proof. Put
o(x) = {u(x) (p(x) —0) for x€Q, ,
N for xEQ—Qa,
for 0<5<%. It is clear that v is a legitimate test function in (6)

and on substitution we obtain

(10) S > a; DD (p— 5)dx-!—§ 32 aDauDpd

Q5 i,j=1 5 6 7=1

+§Q S (d;+b;) Dau-u(p— 5)dx+S Zduszdx+S cu*(p—38)dx
5 i=1

Q5 =1

= gofu (p—90)dx.

The proof is similar to that of Theorem 1 in [2], but in our situa-
tion more care is needed to estimate the resulting integrals in (10).

The proof of “I = II”. Let us denote the integrals on the left
side of (10) by Ji,°-+, Js. By virtue of (A) we have

(1) JIZSQ [Du|*(o—0)m dx.
5

To estimate J, we set

.]z=S Z%Du «uD ;0D dx—l—g Za”Du uD;o(1 —0)dx

Qi 7=1 Qs i7=1
=J2+J2
where @ is a smooth function on Q such that ®=1 on Q=04 92=0
on Qs and 0<@<1 on Q.
Since 0<{0<(do/4, by Green’s formula we have
j;=%gQ > ;D) D;00dx

5 i 7=1

1
— _?SB% pap —78% j;_ D;(as;D;00) idx.

On the other hand supp (1—9)CQjs therefore applying Young’s

inequality and Lemma 2 to J; we arrive at the following estimate
for J.

12) Sl < S z a,DioD, %S, +01S wm (140~ dx,
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where a constant C,>0 depends on |la;m7'||,. and [|[Da;m™0%, .

To estimate J; we use a decomposition

Js'—“g =
=J3+J5

Since L¥®cC L¥, using Hélder’s inequality, Theorem 3.1 from [5]

> (d;+b;)Du-u(p—0) a’x+S Z":(d,-—l-b,-)D,-u-u(p—ﬁ)dx

- i=1
Q"O 1

and Lemma 2 we get

A8 IJISUZ G g, 10w (=) 1l g, I (0= s

30
< Cz[gqum"lpgdx - S u*mdx],

/2

where ;>0 depends on Hé(bi—l—d,-)m‘l/zllﬁ and a constant from

Lemma 2. To estimate J; we first use the Hoélder inequality to obtain

T3S Gt dom™ g, g, 16—~

LL0,-0;)
[ l7

Xlluo =02y [1Du(o—0) o

%@ 5~Qa)
CER)

1 _ 1 1 _1 1 1
with 2_‘]‘5—1-'—%_’ ?(]——2 2#: O<<

Hence be the Sobolev inequality (4) we have

Iiu(p_5)1/2+e/2“ " <||u(p 5)1/2+s/2H 2
L% @509 @
SA[HDu(P—ﬁ)1/27711/2HL2(Q)—I-IIu(,o &) /212y 1/2”L(Q 1,
so that
(13) |J51 <5_E+1/SIS | Du Izmpdx—i-CsSQ u?m (o —0) = dx,
% s

where C,>0 depends on the norms of d;+b; 4,¢ and s,
Similarly we write

> |d |u?dx]

Q=Qg, i=1

A9 AgdssupiDelt), Kidids |,
=sup | Dp |L/i+J]

It follows then from the Hélder and Sobolev inequalities that
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n
< d;m™? o||lum?’? o |lu
| J4l ”El f ||qu(%o) I ”LZ(Q%) I HLz#(Q%

<A||3; dm™| llum™?| 2, Cllum™| + | Duom™|
i=1

2q 2 2 2 ] °
L ) L ) L ) L )
(an (Q‘;O (an (Q(;o

Consequently applying Lemma 2 we arrive at the estimate

(15) |J;1s04[§ fzm'lp”dx-I—S wimdsx],
Q Qy2
where C, is a constant depending on the norm of _il} |d;], A and a

constant from Lemma 2. To estimate J; we first observe that by (3)
we have

135 dil <BIIZ dimil gy <00

qu(Qg—Q‘,o)

for € (0,d,]. Then using the Hélder inequality, we obtain

AR oD e A N D Rt
050 i=1 Q5

Q5 o

Qa"

<[, -0 "1 ule—0)" 7 s
Q-9 Qs

o RN

il o L1 L 1 1_ 11 &
with 2q—l-s1 TR 2#+2q+2 I, 0<le< 5 2<el—l—2and 0<Z

&<l. Let us now apply the Sobolev inequality (4) to obtain
a6y 1i<E" T 1Dule-0dv+Gl w007
(4 4

+ (‘0—'5) 251+52—2]dx,

n
where Cs; is a constant depending on the norm of > d;, 4 and s.
i=1

Similarly,

5=

IJslSSQ%Icluz(p—5)dx+gQ o e =D =T T

Now by the Sobolev and Hélder inequalities and Lemma 2 we get

(17) |J§ISC.~,[S uzmdx—l—ga SFm™o%dx],
%

9g/2

where C,>0 is a constant. On the other hand we have
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1/2+eg/2

Il 2

” <llell 5 —0 3 R —0
|J5| “ HLq(QB—QJO)“(p ) ”L I(Qa_an)Hu(p ) (Qd Qﬁ)

1/2+53/2

XIluo—)""" | 4

3
(Qa-Q(’o)

with +_§1#_+-1_+ 1 _ 1, 0<€a<—sl—, so that
1

(18) |J5] 351/51—8380 | Du |*(p—0) mdx +C7SQ w'm (p—3) " dx,
6 5

where C; depends on |[¢|[ z s1 and 4. Finally,

L?
(19) ig f-u<p—5>dxlsg fzm—1<p—5)0dx+g wm (p—8)**dx.
Qs Q5 Q5

Inserting the estimates (11) —(19) into (10) we obtain, assuming that
0o is sufficiently small, that

(20) {, 1Dulo—oymar<C{ frm-tix
[ ,

+S uzm(p—(i)““dx-l-g wPmdx + supg WS, ],
@ Q5

Qa2 0<838,

for all d<(0,0,/4], where p=max(a,0—2,¢6,¢,2—¢c—2¢;) and Cz>0
depends on d; and constants C;—C, Now note that if (I) holds then
we have the estimate (9), therefore the condition (II) follows from

the monotone convergence theorem.

Proof of II = III. From the first part of the proof we deduce that

@) _I-S . a,DioDsnldS. = SQ 3. a,DaDu(p—0)dx

2 Q"IJ— 51]—

-8 3 Di@p e 3 d) Dauto-drds

Qg"]" 5'-—
+S ZduzD pdx—l—S cuz(p—ﬁ)dx—g Su(p—0)dx.
Q5 i=1 9

It follows from Lemma 1 that

u(x)’m(x)
Ve oo mpatr<Cs 0=,

for 0= (0,0,/2], where C>0 is independent of d.
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Repeating the argument from “I = II” it is easy to show that all
integrals are convergent as 0—0. Hence “II = III” follows from (8)
and the relationship

M(3) — M, (3) = gmu (s () )2[%— l]dSo,

Finally “III > I” follows from the proof “II = III.

§4. Traces in L*0Q) and the Dirichlet Problem

In this section we first establish the existence of a trace of u on
0Q in L2(0Q), that is, u(xs) converges in L? (dQ) as d—0.

Theorem 2. Let u be a solution of (1) in HyZ(m,m). If one of the
conditions I, II or III holds, then there exists a function { belonging to
L*(0Q) such that u(xs) converges to § in L*(0Q).

The proof is identical to the proof of Theorem 4 in [2], therefore
we only give an outline. It is obvious that there exists a sequence
9,—0 as v—oo and a function {€L*(dQ) such that

limgaqu (%, (x)) g (x) dS, = gwc (%) g (x)dS,
for each g&L*(9Q). Repeating the argument of Theorem 3 in [2]
one can easily prove that the above relation holds true if the sequence
d, is replaced by d. Finally to prove that u(x;)—{ in L*(0Q) we
show that limgaou(x,;(x))zdS,,=SBQC(x)Zde and the result then follows
-0
by uniform convexity of L?(9Q).
Theorem 2 justifies the following approach to the Dirichlet problem.
Let ¢=L*(9Q). A weak solution u in HY%(m, m) of (1) is a solu-
tion of the Dirichlet problem with the boundary condition

(22) u(x) =¢(x) on 9Q
if limg [ (2 (%)) — () %S, =0
0—0 J3Q

To establish the existence of a solution of the Dirichlet problem
(1)-(22) we need some additional assumptions that will be used
only in this section.

(a) There exists a constant a_>—oo such that



12 J. H. CHABROWSKI

—3 Dd;+c>a
i=1
in the sense of distribution.
(b) ﬂAo[é |1B:m =" |5+ 2 [|dim 2|5y ] + A le] ;<1

with 4y=A4-B, where A and B are constants from the inequalities
(4) and (5).

Finally, let us introduce the Hilbert space H"?(m,m) of all func-
tions u in H%2(m,m) such that

el a2,y = SQu (x)*m (%) dx + SQ | Du(x) [m (x) 7 (x) dx-<oo.
It is obvious that for all d<<,
iz <max (1, B [ | DU Gy ()
+SQu ()'m (x)dx+sup M(®)].

We can now state the following existence result.

Theorem 3. Let ¢=L~(0Q) and suppose that S |f I'm™dx<oo for
Q
p>n—(;~;nl)—. Then, if the coefficients of L satisfy (a) and (b), the
Dirichlet problem (1), (22) has a solution in H3EZ(m,m).

Proof. Let {¢,} be a sequence of functions in C'(dQ) converging
in L*(9Q) to ¢. In virtue of assumption (b) and Theorem 4.7 in
[5] for every v there exists a unique solution u,&H“%(m,m) of the
Dirichlet problem

Lu=f on Q,
u=¢, on 0dQ.
Since = L~(0Q) we may assume that sup||@,|l.<lcc. The assumption
v=1

(b) implies that the maximum principle holds (see Corollary 7.4 in
[5]), consequently

(23) 4y () |3syg§>u¢u|;x+SQ \f [Pmtdx

for all ». Inspection of the proof of Theorem 1 shows that there
exists a constant C>0 such that
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(24) S | Du, |2mrdx+g ulmdx+ sup g uldx
Q Q 0<5<d J3Q,
sc:[ga ¢5ds,+g u,z,a’x—!—gg Frmdx].
Q

Q52
It is clear from (23) and (24) that there exists a subsequence {u,}

weakly convergent in H“?(m,m) to a solution of the Dirichlet problem

(H-(22).
§5. Case meL~ (@)

Throughout this section we assume additionally that meL>(Q).
This assumption allows us to consider the boundary data in L?(4Q).
The right Sobolev space in this situation is H*?(1,m) which is the
completion of C'(Q) with respect to the norm

1p.20,1,m = 12 + 11 DUz g,

We briefly denote this space by H“*(m). We define spaces Hy*(m)
and HpZ(m) in an obvious way.
We commence with the extensions of Theorems 1 and 2.

Theorem 4. Let u be a solution of (1) belonging to Hy*(m), then
the conditions (I), (II) and (III) are equiva’ent.

Theorem 5. Let u be a solution of (1) in Hy2(m). If one of the
conditions (1), (II) or (III) holds, then there exists a function (& L*(0Q)
such that u(x;) converges to C in L*(0Q).

The proofs of these results are essentially the same as of Theorems
I and 2 and therefore are omitted. We only point out here that
the inequality from Lemma I, which is crucial in the step II-—III,
can be stated in the following form: if u€H}2(m),0<p<<l and 0<
0,<0,/2 then we have

_u@)’ e tr | i ,
SQ(’ (o (x) —5) " dx < K[ 01 S%lu (%) %dx + 0} Sa%lu (x)%S,

+a%—ﬂ§ | Du(x) (o (x) —0)dx]

8 Yo
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for all 6 (0,0,/2], where K>>0 is a constant independent of d; and .
To proceed further let us introduce the equation

(12 Lu+Au=f,

where 2 is a real parameter.
We establish the following energy estimate

Theorem 6. Let usHY2(m) be a solution of the Dirichlet problem
(1) —(22). Then there exist positive constanis d, 2 and C independent
of u such that

(25) SQ | Dux) [7m(x) 7 (x)ds+ sup M(®) +ASQ u (%) (%) dx

<t swse+{ f () m o) ]
Sor 2=,
Proof. The proof is similar to that of Theorem 5 in [2] (see also

Lemma 1 in [1]). An examination of the proof of Theorem 1 shows
that we can write the following estimate

(26) S lDulzm(p—B)dx-i—lS uz(p—t?)deC’l[S F2(0—8)'mdx
Q5 Qa Qs
+ SaQauzdS,, + S%uz (p—0) ~*dx],

where p=max(a, 0—2,¢,¢,2—e—2,), C;>0 is a positive constant
independent of u,2 and d< (0, 8,/2], &,¢ and & are positive constants
introduced in Theorem 1. On the other hand, using (21) we easily
arrive at the following estimate

@27 supS u(x)? S,,SCZ[S | Du |*mpdx
0<8<a., )

+ lgauzpdx + SQ SfrPm™Ydx+ Souzp‘”dx] ,

where C,>0 is a constant independent of ,2 and d& (0,09,/2]. Letting
0—0 we deduce from (26) that

SQ | Du |*modx + ZSQuzpdx < Cl[SanbzdS,, + SQ foPmdx + Sguzp"‘dx] .

Combining this inequality with (27), we obtain
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(28) S | Du | mpdx-}-lg wodx+ sup gag 2dS,
5

0<éd<d
SCs[Sangzde-I—Sszpem“ldx'+SQu2p"‘dx] |

where C;>0 is a constant. Now

§ 0" dx < a7 sup gao udS,+ LuS wpdx
s

T 1 —poocoza
for all 0< u<1, with m;=infp(x).
Q

Taking 4, sufficiently large and d sufficiently small the result
follows from (28).

Now we are in a position to state the existence result.

Theorem 7. Suppose $=L*(9Q). Then there exists a unique solution
of the Dirichlet problem (1;) —(22) for 2=4,.

The proof is identical to that of Theorem 6 in [2].

Theorem 8. Suppose that Squm"ldx<oo and let ¢=L*(0Q). If there

is a function ¢ H"*(m) such that ¢;=¢ on 0Q in the sense of irace,
then a solution ues HYE(m) of the Dirichlet problem (1;) — (22) (A=2y) is
a solution in H“*(m) of the same problem.

This follows from the fact that any solution of (1) —(22) in
H“*(m) is also a solution of the same problem in H}Z(m) and both
problems have a unique solution in respective spaces.

§6. Final Remark

One can also establish the existence of a solution of the Dirichlet
problem with ¢=L?(0Q) and with m satisfying (2) and (3) but for
the equation

(Im, 2) Luy+2mu=f on Q.

Indeed, an examination of the proof of Theorem 6 shows that there
exist positive constants 4, d and C such that
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29) S | Du(x) |%r (x) m(x)dx + RS u(x)%m (x)r(x)dx + sup\M(B)
Q Q 0<d<d

<crl ¢<x>2dsx+Soﬂx)zr(x)ﬂm(x)dx]

%
for every solution u€ Hj;2(m,m) of (1m,2) —(22) with 1>4,.
We can therefore assert the following existence result.

Theorem 9. Let m satisfy (2) and (3) and let $=L*(0Q). Then
there exists a unique solution in HyZ(m,m) of the problem (1m,2), (22)
for 2>,

This follows by a straightforward approximation argument (for
details see the proof of Theorem 6 in [2]).
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