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On the Dirichlet Problem For
Degenerate Elliptic Equations

By

J. H. CHABROWSKI*

§ 1. Introduction

The purpose of this paper is to study the Dirichlet problem with
L2-boundary data for degenerate elliptic equations of the form (1)
(see Section 1). The degeneracy of the ellipticity is controlled by a
function m satisfying conditions (2) and (3). Degenerate elliptic
equations, with m satisfying (2), have been widely examined by
Murthy and Stampacchia [5]. Further extensions of their results
can be found in Trudinger [6], In particular, the Dirichlet problem
in the above mentioned papers, was solved in the case when a
boundary data is a trace of a function from a suitable Sobolev space.
Here we discuss more general situations when a boundary data belongs
to L2. For uniformly elliptic equations this problem was solved in
[1]? [2] and [3] (all historical references can be found in [1] and
[2]). To solve the Dirichlet problem with L2-boundary data we
impose on m an additional condition (3), which allows us to recover
a boundary function in the sense of //-convergence. Therefore the
equation (1) is uniformly elliptic in a neighbourhood of a boundary
and degenerates in an interior part of a set0

The plan of this paper is as follows. Section 1 contains some
preliminary work. In Section 2 we examine traces of solutions in
H}'0

2
c(m9rn), In particular we obtain a sufficient condition for a solution

in H}£(m,rn) to have an L2-trace on the boundary (see Theorem 2).
This theorem justifies our approach to the Dirichlet problem adopted
in this work. In Section 3 we solve the Dirichlet problem for a
boundary data in L°°. In the final part of the paper, Section 4, we
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solve the Dirichlet problem for a boundary data in L\ under more
restrictive condition on 772, namely m^L00.

Finally, we point out that the methods of this paper are not new
and have appeared in the author's earlier papers [1] and [2],

§ 2, Preliminaries

Let QjdRn be a bounded domain with the boundary dQ of class
C2. In d we consider the equation of the form

(1) LM=-ZZ^|^

whose coefficients are assumed to be measurable functions on Q.
To formulate further assumptions on the coefficients of L we

introduce a non-negative function m on Q such that

(2) meL'CQ,) and m^eL'CQ,) with -±-+-L^-±..
S £ /I

We also assume that there exist constants (3 and $. and a neighbour-
hood N of dQ such that

(3) 0</3<m(*)<&

for all x(=N.
We denote a distance from #e(£ to 9Q, by r(#).
Throughout this paper we make the following assumptions on the

coefficients of L
(A) The operator L is elliptic, that is,

m « i ? i 2 < i; ay we A
l, .7=1

for all $^Rn and almost all #eQ, Moreover we assume that m
L°°(Q) and that D^ exist on N with

Diairr
a^L°°(N), 0<a<l, («J=1, • • -, H).

(B) 6t.m-1/2, dim'^2^Lss(Q) ( « = I f . . . , n ) , ceL?(0 with
where q is given by

(2?) -1 = 2-1- (2s) -^fz-1- (20 -1.

(C) fm-12reE^L2(Q), where 2<6<3.
We associate with the function m the weighted Sobolev spaces. The
completion of the space Cl(Q) with respect to the norm
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Is denoted by Hl°2(Q,m9m)=Hl'2(m,m). Here |HL,2 denotes the norm
In the space L2(Q^m) of all functions u such that

The closure of the space CJ(0 in Hl-2(mfm) is denoted by
Hl'z(m,m).

Throughout this paper we frequently make use of the Sobolev
inequality:

there exists a constant A = A(m9n,t) such that

for all

The norm In H\>2(m,m) is equivalent to ||jDtt||Wi2, that is, we have

(5)

where B^>0 is a constant independent of u, (For the proofs of (4)
and (5) we refer to [5] Theorem 3. 2 and Corollaries 3. 3 and 38 5) .

A function u defined on Q is said to belong to H}>2
c(m9m) If

£>u^Hl'2(m9m) for every C<ECJ(Q,)B

A function u(x) is said to be a weak solution of the equation (1)
if u^.H}o2(m9m) and u satisfies

(6) { [ E auDiuDp + Z diuDp + Z b^uo + cu *v\dx = \ fv dx
JQ i,j=l i=l i=l JQ

for every v^Hi>2(m,m') with compact support in Q.
It follows from the regularity of 3Q, that there exists a number

such that for <5e(0,<50] the domain

y<=dQ

with the boundary 9Q^9 possesses the following property: to each
there is a unique point XS(XQ) e9Q^ such that XS(XQ) =xQ-~dv(x0), where
y(*o) Is the outward normal to dQ at XQ. The inverse mapping of
xQ->x8(xQ) Is given by the formula ^0 = ̂ +^(^)5 where y5(^5) Is the
outward normal to dQ8 at x8a

Let x8 denote an arbitrary point of dQd. For fixed ^e(0,50] let
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and

where \A\ denotes the (n-1) -dimensional Hausdorff measure of a set
A. Mikhailov [4] proved that there exists a positive number j such
that

(7)
and

(8)

uniformly with respect to xs&dQs.
According to Lemma 1 in [3], p. 382, the distance r(x) belongs to

C2(Qj~ Q,«50), if ^o is sufficiently small. Denote by p(x) the extension of

r into Q satisfying the following properties: p(x) — r(#) for x^Q—Qd^

p ( x ) > ~ in ̂  nl r(x)<p(x)<Tl r(x) in £ for some

positive constant ft, dQ^ = {x; p(x) =S\ for ^e(0,^0] and finally dQ=
{x;p(x)=Q}. We may also assume that (5 — Q8QdN.

We will use the surface integrals A/1(5)=\ |M(^(AT)) |2 rf5x and

S J3Q
IM(^) |2fl?5^ where u^H\0l(m,m) and the values on 30 and

**a
3Q^5, respectively, are understood in the sense of traces (see Theorem
3.9 in [4]).

Note that if M(S) is bounded on (0,(50] and

Q

then for every 0</*<O there exists a constant OO such that

for all 8e(0,V2]. Indeed, for <5e(0,(50/2] we have

u(x)2m(x) j ^f M2m 7 , f &2m ^
^- +

f5o
<M (J-

J5
^^ + ( \ u2mdx

dQ \00

u2dSx + - u2mdx
0<s<6QJdQs \00



DEGENERATE ELLIPTIC EQUATIONS 5

§ 3o Properties of M and Jfi

To study M and MI we need the following modification of Lemma 1

in [2].

Lemma 1. Suppose that u^H}£(m,m) and that

( |DM(*) \2m(x)r(x)dx<oom
JQ

Then if 0</*<1 and Q<dl<d0/2 we have for 3e (0,^/2]

\ "(f,M%dx<^A u(xrmWdx
JQ8(pW-dy JQ8i

\Du(x) \ 2 ( p ( x )

where K is a constant independent of <5X and da

Proof. First we observe that by (3) we have

\ __ \Du(x)\2(p(x)-d)dx<p-l( \DuW\2m(x)r(x)dx<c

Let 3e(0,3i/2] and put

f u2m r f u2m 7 . f u2m ,I ^ = I fix -4- I ^e

Since ^(A:) >dl on ^ we have

f u2m / 2 V f
\ ~7 s\ « ̂ ^ — I ~^~ J \ ^
JO^ (p — °) \0i/ jQ8i

Now we note that

3Q

As\ u(xt(x))2dSx is absolutely continuous on [5, 5J (5>0), integrating
J9Q

by parts and using Young's inequality we obtain

f

\J Q (O — C
y v\ ^>
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\u(xt(xo)) -
tit

for all

Now choosinsr / ^g =-^7- the result folio ws.
° 1— JL 2

Lemma 2. L<tf u^H}'0
2

c(Q) be a solution of (I) and let

Then

\Du(x) \2m(x)dx<C[(
jQ

where C>0 is a constant depending on the norms of the coefficients of L5

dl and d2*

Proof. We commence with the following observation Let Q be a
relatively compact subset of Q, such that

(fl and |k||i2(fl)

are sufficiently small then

\ \Du |2C2m^<Const[^M2(C2+ |/>C \2)mdx + ( /^m"1]

for every ^-function C with -compact support in Q (see Lemma 8.5
in [5]). The assertion then follows from the compactness of Q^.

The following result is crucial in the subsequent treatment of the
Dirichlet problem.

Theorem 1. Let u be a solution of (1) belonging to H}'0
2(m,m)9 then

the following conditions are equivalent

(/) M(S) is a bounded function on (0,50]5

\Du(x) \2m(x)r(x)dx<oo,
JQ

(///) There exists lim
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Proof. Put

u(x) (p(x)—8) for x^Qs 9

0 for x^Q— Qj,
%

for 0<<5<-p, It is clear that v is a legitimate test function In (6)

and on substitution we obtain

JQ5 i ,J=l tJ * 3 JQ8i.j=l t3 l 3

cu2(p—8)dx
®d

The proof is similar to that of Theorem 1 in [2], but in our situa-
tion more care is needed to estimate the resulting integrals in (10).

The proof of "I =^> II". Let us denote the integrals on the left
side of (10) by /1?

 Q e 8 , /s* By virtue of (A) we have

(11) /i> \Du\2(p-d)m dx.

To estimate J2 we set

DjpQ dx + aijDiu*uDjp(l-®)dx
Q8i.j=l JQ8i.j=l

where $ is a smooth function on (5 such that 0=1 on Q^— Q^a0/2, $ =

on Q8Q and 0<<P<1 on Q,.

Since 0<C^<C^o/49 by Green's formula we have

«.j=l

= — s-\ S atjDipDjfnfdS, - -|-\ L A («.-,- A'
4 JdQdi.j=l Z jQ8i,j=l

On the other hand supp ( 1 — <P) c Q,̂ , therefore applying Young's

inequality and Lemma 2 to J"2 we arrive at the following estimate
for /2

(12) |/2|<JL\ ^auDipDjfnfdSx + CA u2m(l
- - , i . j= l JQ8
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where a constant Ci>0 depends on ||0 l-jw"~1liL«> and

To estimate /3 we use a decomposition

Since L2qdL2q, using Holder's inequality, Theorem 3. 1 from [5]
and Lemma 2 we get

}

<C2K J2m'1f
JQ

where C2>0 depends on ||Zl(bi + ^)m~1/2||L2g and a constant from

Lemma 2. To estimate Jl we first use the Holder inequality to obtain

. , , 1 . 1 1 1 1 1
Wlth 2?+V= V 2^ = Y~^'

Hence be the Sobolev inequality (4) we have

so that

(13)
Q8 JQd

where C3>0 depends on the norms of d{ + bh A,q and Si.
Similarly we write

(14) \J*\<*up\Dp\{( ±\di\u
2dx + \ £ \dt\tfdx-

Q JO, i=l JCji-0* *=1'°o
= sup I ~ '

It follows then from the Holder and Sobolev inequalities that
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\L^\\um^\\L2(^

Consequently applying Lemma 2 we arrive at the estimate

(15) \J

where C4 is a constant depending on the norm of XM^|? A and a
i = l

constant from Lemma 2. To estimate J\ we first observe that by (3)
we have

for 5e(0,50]. Then using the Holder inequality, we obtain

1/4 1 < [ (£ K l)2Wr°rf (p-d) "EISI^]VSI

£2<1. Let us now apply the Sobolev inequality (4) to obtain

(16) |/:|<^/SI

where C5 is a constant depending on the norm of 2Z d^ A and
i = l

Similarly,

1/5 1

Now by the Sobolev and Holder inequalities and Lemma 2 we get

(17)

where C6>-0 is a constant. On the other hand we have
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with -L+l+J.+i.^l, o<s3<— , so that
z.q Z Si Z Si

(18)
JQS JQ8

where C7 depends on \\c\\ L$9 Si and ^4. Finally,

(19) |( f.u(p-d)dx\<( f2m-l(p-d)edx + {
JQS JQS JQ

Inserting the estimates (11)— (19) into (10) we obtain, assuming that
<50 is sufficiently small, that

(20) ( \Du\2(p-d)mdx<C8l(f
2m-lpedx

- p
<6

u2mdx+ sur
Q8 " ' jQ8/2 0<d<dQJdQ8

°0

for all d e (0,<V4], where /^ = max (or, d — 2,s2,£3> 2— £2 — 2%) and C8>0
depends on 50 and constants Ci~C7. Now note that if (I) holds then
we have the estimate (9), therefore the condition (II) follows from
the monotone convergence theorem.

Proof of II =^> ///. From the first part of the proof we deduce that

cu2(p-d)dx~( fu(p-d)dx.
JQ8}QS JQ8

It follows from Lemma 1 that

u (#) 2m (#)

for <5e (0,5o/2], where C>0 is independent of d.
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Repeating the argument from "/ 4> //" It is easy to show that all
Integrals are convergent as d->Qa Hence "II =^> III" follows from (8)
and the relationship

J3Q

Finally "III =^> I" follows from the proof "II ^> III.

§ 40 Traces In L2(3Q) and the Problem

In this section we first establish the existence of a trace of u on
dQin L2(dQ), that is, u(x8) converges in L2 (9Q,) as 5-»0.

Theorem 2, Let u be a solution of (1) in H}-0
2(m9m)e If one of the

conditions I, II or III holds, then there exists a function C belonging to
L2(8Q) such that u(x§) converges to C in L2(dQ).

The proof is identical to the proof of Theorem 4 in [2]5 therefore
we only give an outline. It is obvious that there exists a sequence
dv-*Q as v->oo and a function CeL2(9QJ) such that

J9Q

for each g^L2(dQ). Repeating the argument of Theorem 3 In [2]
one can easily prove that the above relation holds true If the sequence
d» is replaced by de Finally to prove that w(>5)-»C in L2(dQ} we

show that liml u(x8(x))2dSx=\ ^(x}2dSx and the result then follows
5-*Oj9Q J3Q

by uniform convexity of L2(dQ)a

Theorem 2 justifies the following approach to the DIrichlet problem.
Let <j)^L2(dQ)a A weak solution u in H]'0

2
c(m, m) of (1) is a solu-

tion of the DIrichlet problem with the boundary condition

(22) ii (*)=#(*) onSQ,

To establish the existence of a solution of the Dirichlet problem
(l)-(22) we need some additional assumptions that will be used
only in this section,,

(a) There exists a constant a> — oo such that
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In the sense of distribution.

(b) nA,\± |M-WI
» = 1 i=l

with A0 = A°B, where A and B are constants from the inequalities
(4) and (5).

Finally, let us introduce the Hilbert space H1>2(m,m) of all func-
tions u in H}'0

2
c(m,m) such that

JQ

It is obvious that for all

I MIX. .<max(l,/y)K IflaWVOOmOOrf*
•" ^m, 77!.; IQ

Q

We can now state the following existence result.

Theorem 3. Let 0eL°°(3Q,) and suppose that \ \f\pm~ldx<oo for

± - 1-. Then, if the coefficients of L satisfy (a) and (6), the
t — n

Dirichlet problem (1), (22) has a solution in H}£(m,m).

Proof. Let {0J be a sequence of functions in (^(dQ,) converging
in L2(dQ) to 0. In virtue of assumption (b) and Theorem 4. 7 in
[5] for every v there exists a unique solution u^Hl'2(m9m) of the
Dirichlet problem

LM =/ on ££,
u = (f)v on d<.

Since ^^L°°(dQ_) we may assume that supH^Hoo^00- The assumption
y^i

(b) implies that the maximum principle holds (see Corollary 7, 4 in
[5]), consequently

(23) | K « O O I < s u ! | f J J | o o + \f\*m-ldx

for all i/. Inspection of the proof of Theorem 1 shows that there
exists a constant C>0 such that
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(24) \ \Duv\
2mrdx-{-\ u2

vmdxjr sup \ uldx
JQ JQ 0<5<dJdQs

QdQ/2

It is clear from (23) and (24) that there exists a subsequence [uv }

weakly convergent in Hl>2(m,m*) to a solution of the Dirichlet problem

§5a Case

Throughout this section we assume additionally that
This assumption allows us to consider the boundary data in L2(dQ).
The right Sobolev space in this situation is Hl'2(lym) which is the
completion of CX(Q,) with respect to the norm

We briefly denote this space by Hlt2(m)a We define spaces H\'2(m)
and H}oc(m) in an obvious way.

We commence with the extensions of Theorems 1 and 20

Theorem 4. Let u be a solution of (1) belonging to H}£(m), then
the conditions (/), (//) and (///) are equivalent.

Theorem 50 Let u be a solution of (1) in H}£(m). If one of the
conditions (/) , (//) or (III) holds, then there exists a function C,^L2(dQ_)
such that U(XQ) converges to C in L2(dQ).

The proofs of these results are essentially the same as of Theorems
1 and 2 and therefore are omitted. We only point out here that
the inequality from Lemma 1, which is crucial in the step II-»III,
can be stated in the following form: if u^H}'0

2
c(m) , 0</^<1 and 0<

then we have

\ ( ^jQ8(p(x)-
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for all d^ (0,di/2], where K^>Q is a constant independent of 5X and d.
To proceed further let us introduce the equation

where X is a real parameter
We establish the following energy estimate

Theorem 6. Let u^H\2
c(m) be a solution of the Dirichlet problem

(1;) — (22). Then there exist positive constants d, ^0 and C independent
of u such that

(25) { | Du 00 \2m (x}r (x}dx + sup M(d) + *{ u(x)2r(x)dx
JQ

<[[ # (*) 2dSx + \ /(*) 2r 00 6m (*) -
JdQ JQ

for 2>20.

Proof. The proof is similar to that of Theorem 5 in [2] (see also
Lemma 1 in [!])„ An examination of the proof of Theorem 1 shows
that we can write the following estimate

(26) \ \Du\2m(p-d)dx + Z

u2dSx+( u2(p-
*8 J«*

where fjt = max(a, 0 — 2,£2,£3,2~e2—2£i), Ci>0 is a positive constant
independent of u, % and <5e (0,<50/2], elfs2 and £3 are positive constants
introduced in Theorem 1. On the other hand, using (21) we easily
arrive at the following estimate

(27) supf u(x)2dSx<C2\[ \Du\2mpdx
Q<5<dJdQ8 JQ

u2pdx +

where C2>0 is a constant independent of u, A and <5e (0,^0/2]. Letting
<5— >0 we deduce from (26) that

\Du\2mpdx + A u2pdx<d[{
JQ JJQ JQ JdQ JQ

Combining this inequality with (27), we obtain
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(28) \Du\*mpdx + j u2pdx + sup u2dSx
JQ JQ Q<6<dJdQ8

JdQ

where C3>0 is a constant. Now

{ f2pem-ldx'+{ u2

JQ JQ

[ u2p-«dx < -£-!— sup ( u2dSx + —LS u2pdx
JQ r l—[£o<dg*j9Qd mpfi JQ r

for all 0</*<O9 with md=inf p(x)»

Taking ^0 sufficiently large and d sufficiently small the result
follows from (28).

Now we are in a position to state the existence result

Theorem 7. Suppose 0eL2(9£))0 Then there exists a unique solution

of the Dirichlet problem (lA)-(22) for X>^

The proof is identical to that of Theorem 6 in [2].

Theorem 8. Suppose that { f2m~ldx<oo and let 0eL2(3Q,). If there
JQ

is a function (j>i^Hl'2(m) such that ^ — 0 on dQin the sense of trace^
then a solution u^H\£(ni) of the Dirichlet problem (1^) — (22) (^>^0) is
a solution in Hlt2(m) of the same problem.

This follows from the fact that any solution of (h) — (22) in
Hlt2(m) is also a solution of the same problem in H}2

c(m) and both
problems have a unique solution in respective spaces0

§6, Final Remark

One can also establish the existence of a solution of the Dirichlet
problem with <f>^L2(dQ) and with m satisfying (2) and (3) but for
the equation

) Lu-\-lmu=f on (X

Indeed, an examination of the proof of Theorem 6 shows that there
exist positive constants ^0, d and C such that
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(29) \Du(x) \*r(x)m(x)dx + u(x)2m Wr(x)dx + sup M(d)
JQ JQ 0<5<d

(*) V 00 em (*) <fc]
Q

for every solution u&H}£(m,m) of (1m, ̂ ) — (22) with ^>^0-
We can therefore assert the following existence result.

Theorem 9. Let m satisfy (2) and (3) and let 0eZ,2(3Q,).
£/?£?•£ exists a unique solution in H\?c(m,m) of the problem (Im, ^), (22)

for A>20.

This follows by a straightforward approximation argument (for

details see the proof of Theorem 6 in [2]).
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