On the Dirichlet Problem For Degenerate Elliptic Equations

By

J. H. Chabrowski*

§1. Introduction

The purpose of this paper is to study the Dirichlet problem with L^2 -boundary data for degenerate elliptic equations of the form (1) (see Section 1). The degeneracy of the ellipticity is controlled by a function m satisfying conditions (2) and (3). Degenerate elliptic equations, with m satisfying (2), have been widely examined by Murthy and Stampacchia [5]. Further extensions of their results can be found in Trudinger [6]. In particular, the Dirichlet problem in the above mentioned papers, was solved in the case when a boundary data is a trace of a function from a suitable Sobolev space. Here we discuss more general situations when a boundary data belongs to L^2 . For uniformly elliptic equations this problem was solved in [1], [2] and [3] (all historical references can be found in [1] and [2]). To solve the Dirichlet problem with L^2 -boundary data we impose on m an additional condition (3), which allows us to recover a boundary function in the sense of L^2 -convergence. Therefore the equation (1) is uniformly elliptic in a neighbourhood of a boundary and degenerates in an interior part of a set.

The plan of this paper is as follows. Section 1 contains some preliminary work. In Section 2 we examine traces of solutions in $H_{loc}^{1,2}(m,m)$. In particular we obtain a sufficient condition for a solution in $H_{loc}^{1,2}(m,m)$ to have an L^2 -trace on the boundary (see Theorem 2). This theorem justifies our approach to the Dirichlet problem adopted in this work. In Section 3 we solve the Dirichlet problem for a boundary data in L^{∞} . In the final part of the paper, Section 4, we

Communicated by S. Matsuura, May 22, 1985. Revised September 15, 1986.

^{*}Department of Mathematics, University of Queensland, St. Lucia QLD, Australia.

J. H. Chabrowski

solve the Dirichlet problem for a boundary data in L^2 , under more restrictive condition on *m*, namely $m \in L^{\infty}$.

Finally, we point out that the methods of this paper are not new and have appeared in the author's earlier papers [1] and [2].

§2. Preliminaries

Let $Q \subset \mathbf{R}_n$ be a bounded domain with the boundary ∂Q of class C^2 . In Q we consider the equation of the form

(1)
$$Lu = -\sum_{j=1}^{n} D_{j} \left[\sum_{i=1}^{n} a_{ij}(x) D_{i}u + d_{i}(x) u \right] + \sum_{i=1}^{n} b_{i}(x) D_{i}u + c(x) u = f(x),$$

whose coefficients are assumed to be measurable functions on Q.

To formulate further assumptions on the coefficients of L we introduce a non-negative function m on Q such that

(2)
$$m \in L^s(Q)$$
 and $m^{-1} \in L^t(Q)$ with $\frac{1}{s} + \frac{1}{t} \leq \frac{2}{n}$.

We also assume that there exist constants β and β_1 and a neighbourhood N of ∂Q such that

$$(3) \qquad \qquad 0 < \beta \le m(x) \le \beta_1$$

for all $x \in N$.

We denote a distance from $x \in Q$ to ∂Q by r(x).

Throughout this paper we make the following assumptions on the coefficients of L

(A) The operator L is elliptic, that is,

$$m(x) |\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j$$

for all $\xi \in \mathbb{R}_n$ and almost all $x \in Q$. Moreover we assume that $m^{-1}a_{ij} \in L^{\infty}(Q)$ and that $D_i a_{ij}$ exist on N with

$$D_i a_{ij} \cdot r^{\alpha} \in L^{\infty}(N), \ O < \alpha < 1, \ (i, j = 1, \dots, n).$$

(B) $b_i m^{-1/2}$, $d_i m^{-1/2} \in L^{2\overline{q}}(Q)$ $(i=1,\dots,n)$, $c \in L^{\overline{q}}(Q)$ with $\overline{q} > q$, where q is given by

$$(2q)^{-1}=2^{-1}-(2^{*})^{-1}=n^{-1}-(2t)^{-1}$$
.

(C) $fm^{-1} r^{\theta} \in L^2(Q)$, where $2 \le \theta < 3$.

We associate with the function m the weighted Sobolev spaces. The completion of the space $C^1(\overline{Q})$ with respect to the norm

$$||u||_{H^{1,2}(Q,m,m)} = ||u||_{m,2} + ||Du||_{m,2}$$

is denoted by $H^{1,2}(Q, m, m) \equiv H^{1,2}(m, m)$. Here $|| \cdot ||_{m,2}$ denotes the norm in the space $L^2(Q, m)$ of all functions u such that

$$||u||_{m,2}^2 = \int_Q |u(x)|^2 m(x) dx < \infty.$$

The closure of the space $C_0^1(Q)$ in $H^{1,2}(m,m)$ is denoted by $H_0^{1,2}(m,m)$.

Throughout this paper we frequently make use of the Sobolev inequality:

there exists a constant A = A(m, n, t) such that

(4)
$$||u||_{2^{\sharp}} < A ||Du||_{m,2}$$

for all $u \in H_0^{1,2}(m, m)$.

The norm in $H_0^{1,2}(m,m)$ is equivalent to $||Du||_{m,2}$, that is, we have (5) $||Du||_{m,2} \le ||u||_{H^{1,2}(m,m)} \le B||Du||_{m,2}$,

where B > 0 is a constant independent of u. (For the proofs of (4) and (5) we refer to [5] Theorem 3.2 and Corollaries 3.3 and 3.5).

A function u defined on Q is said to belong to $H^{1,2}_{loc}(m,m)$ if $\zeta u \in H^{1,2}_0(m,m)$ for every $\zeta \in C^1_0(Q)$.

A function u(x) is said to be a weak solution of the equation (1) if $u \in H^{1,2}_{loc}(m,m)$ and u satisfies

(6)
$$\int_{Q} \left[\sum_{i,j=1}^{n} a_{ij} D_{i} u D_{j} v + \sum_{i=1}^{n} d_{i} u D_{i} v + \sum_{i=1}^{n} b_{i} D_{i} u v + c u \circ v \right] dx = \int_{Q} f v \, dx$$

for every $v \in H^{1,2}(m,m)$ with compact support in Q.

It follows from the regularity of ∂Q that there exists a number $\delta_0 > 0$ such that for $\delta \in (0, \delta_0]$ the domain

$$Q_{\delta} = Q \cap \{x; \min_{y \in \partial Q} |x - y| > \delta\}$$

with the boundary ∂Q_{δ} , possesses the following property: to each $x_0 \in \partial Q$ there is a unique point $x_{\delta}(x_0) \in \partial Q_{\delta}$ such that $x_{\delta}(x_0) = x_0 - \delta \nu(x_0)$, where $\nu(x_0)$ is the outward normal to ∂Q at x_0 . The inverse mapping of $x_0 \rightarrow x_{\delta}(x_0)$ is given by the formula $x_0 = x_{\delta} + \delta \nu_{\delta}(x_{\delta})$, where $\nu_{\delta}(x_{\delta})$ is the outward normal to ∂Q_{δ} at x_{δ} .

Let x_{δ} denote an arbitrary point of ∂Q_{δ} . For fixed $\delta \in (0, \delta_0]$ let

$$A_{\varepsilon} = \partial Q_{\delta} \cap \{x; |x - x_{\delta}| \le \varepsilon\},\$$

$$B_{\varepsilon} = \{x; x = \tilde{x}_{\delta} + \delta \nu_{\delta}(\tilde{x}_{\delta}), \tilde{x}_{\delta} \in A_{\varepsilon}\},\$$

and

$$\frac{dS_{\delta}}{dS_0} = \lim_{\varepsilon \to 0} \frac{|A_{\varepsilon}|}{|B_{\varepsilon}|},$$

where |A| denotes the (n-1)-dimensional Hausdorff measure of a set A. Mikhailov [4] proved that there exists a positive number γ such that

(7)
$$\gamma^{-2} \le \frac{dS_{\delta}}{dS_0} \le \gamma^2$$

and

(8)
$$\lim_{\delta \to 0} \frac{dS_{\delta}}{dS_0} = 1$$

uniformly with respect to $x_{\delta} \in \partial Q_{\delta}$.

According to Lemma 1 in [3], p. 382, the distance r(x) belongs to $C^2(\bar{Q}-Q_{\delta_0})$, if δ_0 is sufficiently small. Denote by $\rho(x)$ the extension of r into \bar{Q} satisfying the following properties: $\rho(x) = r(x)$ for $x \in \bar{Q}-Q_{\delta_0}$, $\rho \in C^2(Q)$, $\rho(x) \ge \frac{3\delta_0}{4}$ in Q_{δ_0} , $\gamma_1^{-1} r(x) \le \rho(x) \le \gamma_1 r(x)$ in Q for some positive constant γ_1 , $\partial Q_{\delta} = \{x; \rho(x) = \delta\}$ for $\delta \in (0, \delta_0]$ and finally $\partial Q = \{x; \rho(x) = 0\}$. We may also assume that $\bar{Q}-Q_{\delta_0} \subset N$.

We will use the surface integrals $M_1(\delta) = \int_{\partial Q} |u(x_{\delta}(x))|^2 dS_x$ and $M(\delta) = \int_{\partial Q_{\delta}} |u(x)|^2 dS_x$, where $u \in H_{loc}^{1,2}(m,m)$ and the values on ∂Q and ∂Q_{δ} , respectively, are understood in the sense of traces (see Theorem 3.9 in [4]).

Note that if $M(\delta)$ is bounded on $(0, \delta_0]$ and

$$\int_{Q} u(x)^{2} m(x) dx < \infty,$$

then for every $0 \le \mu < 1$ there exists a constant C > 0 such that

(9)
$$\int_{Q_{\delta}} \frac{u(x)^2 m(x)}{(\rho(x) - \delta)^{\mu}} dx \leq C$$

for all $\delta \in (0, \delta_0/2]$. Indeed, for $\delta \in (0, \delta_0/2]$ we have

$$\begin{split} &\int_{Q_{\delta}} \frac{u(x)^2 m(x)}{(\rho(x)-\delta)^{\mu}} dx \leq \int_{Q_{\delta}-Q_{\delta_0}} \frac{u^2 m}{(\rho-\delta)^{\mu}} dx + \int_{Q_{\delta_0}} \frac{u^2 m}{(\rho-\delta)^{\mu}} dx \\ &\leq \beta_1 \int_{\delta}^{\delta_0} (s-\delta)^{-\mu} \int_{\partial Q} u^2 dS_x + \left(\frac{2}{\delta_0}\right)^{\mu} \int_{Q_{\delta}} u^2 m dx \\ &\leq \beta_1 \left[\delta_0^{1-\mu} \sup_{0 < s < \delta_0} \int_{\partial Q_s} u^2 dS_x + \left(\frac{2}{\delta_0}\right)^{\mu} \int_{Q_{\delta_0}} u^2 m dx \right] \end{split}$$

4

§ 3. Properties of M and M_1

To study M and M_1 we need the following modification of Lemma 1 in [2].

Lemma 1. Suppose that $u \in H^{1,2}_{loc}(m,m)$ and that

$$\int_{Q} |Du(x)|^2 m(x) r(x) dx < \infty.$$

Then if $0 \le \mu < 1$ and $0 < \delta_1 \le \delta_0/2$ we have for $\delta \in (0, \delta_1/2]$

$$\begin{split} & \int_{Q_{\delta}} \frac{u(x)^{2}m(x)}{(\rho(x)-\delta)^{\mu}} dx \leq K [\delta_{1}^{-\mu} \int_{Q_{\delta_{1}}} u(x)^{2}m(x) dx \\ & + \delta_{1}^{1-\mu} \int_{\partial Q_{\delta_{1}}} u(x)^{2} dS_{x} + \delta_{1}^{1-\mu} \int_{Q_{\delta}-Q_{\delta_{1}}} |Du(x)|^{2} (\rho(x)-\delta) dx], \end{split}$$

where K is a constant independent of δ_1 and δ .

Proof. First we observe that by (3) we have $\int |Du(x)|^2 (o(x) - \delta) dx \le \beta^{-1} \int |Du(x)|^2 m(x) r(x)$

$$\int_{Q_{\delta}-Q_{\delta_{1}}} |Du(x)|^{2} (\rho(x)-\delta) dx \leq \beta^{-1} \int_{Q} |Du(x)|^{2} m(x) r(x) dx < \infty.$$

Let $\delta \in (0, \delta_1/2]$ and put

$$\int_{Q_{\delta}} \frac{u^2 m}{(\rho - \delta)^{\mu}} dx = \int_{Q_{\delta} - Q_{\delta_1}} \frac{u^2 m}{(\rho - \delta)^{\mu}} dx + \int_{Q_{\delta_1}} \frac{u^2 m}{(\rho - \delta)^{\mu}} dx.$$

Since $\rho(x) \ge \delta_1$ on Q_{δ_1} we have

$$\int_{Q_{\delta_1}} \frac{u^2 m}{(\rho - \delta)^{\mu}} dx \leq \left(\frac{2}{\delta_1}\right)^{\mu} \int_{Q_{\delta_1}} u^2 m dx.$$

Now we note that

$$\int_{Q_{\delta}-Q_{\delta_{1}}} \frac{u^{2}m}{(\rho-\delta)^{\mu}} dx \leq \beta_{1} \int_{\delta}^{\delta_{1}} (t-\delta)^{-\mu} \int_{\partial Q} u(x_{t}(x_{0}))^{2} \frac{dS_{t}}{dS_{0}} dS_{0} dt$$
$$\leq \beta_{1}\gamma^{2} \int_{\delta}^{\delta_{1}} (t-\delta)^{-\mu} \int_{\partial Q} u(x_{t}(x_{0}))^{2} dS_{0} dt.$$

 $\operatorname{As}_{\partial Q} u(x_t(x))^2 dS_x$ is absolutely continuous on $[\delta, \delta_1]$ ($\delta > 0$), integrating by parts and using Young's inequality we obtain

$$\int_{\mathcal{Q}_{\delta}-\mathcal{Q}_{\delta_{1}}} \frac{u^{2}m}{(\rho-\delta)^{\mu}} dx \leq \frac{\beta_{1}\gamma^{2}\delta_{1}^{1-\mu}}{1-\mu} \int_{\partial\mathcal{Q}} u(x_{\delta_{1}}(x))^{2} dS_{x}$$

$$\begin{aligned} &+ \frac{2\gamma^{2}\beta_{1}}{1-\mu} \int_{\delta}^{\delta_{1}} (t-\delta)^{1-\mu} \int_{\partial Q} \left| u\left(x_{t}\left(x_{0}\right)\right) \right| \left| Du\left(x_{t}\left(x_{0}\right)\right) \right| \left| \frac{\partial}{\partial t} x_{t}\left(x_{0}\right) \right| dS_{0} dt \\ &\leq \frac{\beta_{1}\gamma^{4}\delta_{1}^{1-\mu}}{1-\mu} \int_{\partial Q_{\delta_{1}}} u^{2} dS_{x} + \frac{2\gamma^{4}\beta_{1}}{1-\mu} \int_{Q_{\delta}-Q_{\delta_{1}}} \left| u\left(x\right) \right| \left| Du\left(x\right) \right| (\rho-\delta)^{1-\mu} dx \\ &\leq \frac{\beta_{1}\gamma^{4}\delta_{1}^{1-\mu}}{1-\mu} \int_{\partial Q_{\delta_{1}}} u^{2} dS_{x} + \frac{2\gamma^{4}\beta_{1}\varepsilon}{1-\mu} \int_{Q_{\delta}-Q_{\delta_{1}}} \frac{u^{2}}{(\rho-\delta)^{\mu}} dx \\ &+ \frac{2\gamma^{4}\beta_{1}\delta_{1}^{1-\mu}}{\varepsilon(1-\mu)} \int_{Q_{\delta}-Q_{\delta_{1}}} \left| Du \right|^{2} (\rho-\delta) dx \quad \text{for all } \varepsilon > 0. \end{aligned}$$

Now choosing $\frac{2\beta_{i}\gamma^{4}\varepsilon}{1-\mu} = \frac{1}{2}$ the result follows.

Lemma 2. Let $u \in H^{1,2}_{loc}(Q)$ be a solution of (1) and let $0 < \delta_1 < \delta_2 < \delta_0$. Then

$$\int_{Q_{\delta_2}} |Du(x)|^2 m(x) dx \le C \left[\int_{Q_{\delta_1}} u(x)^2 m(x) dx + \int_{Q_{\delta_1}} f(x)^2 m(x)^{-1} dx \right],$$

where C>0 is a constant depending on the norms of the coefficients of L, δ_1 and δ_2 .

Proof. We commence with the following observation. Let Ω be a relatively compact subset of Q such that

$$||\sum_{i=1}^{n} b_{i}m^{-1/2}||_{L^{2q}(\mathcal{Q})}, ||\sum_{i=1}^{n} d_{i}m^{-1/2}||_{L^{2q}(\mathcal{Q})} \text{ and } ||c||_{L^{2}(\mathcal{Q})}$$

are sufficiently small then

$$\int_{\mathcal{Q}} |Du|^2 \zeta^2 m dx \leq \operatorname{Const} \left[\int_{\mathcal{Q}} u^2 (\zeta^2 + |D\zeta|^2) m dx + \int_{\mathcal{Q}} f^2 \zeta^2 m^{-1} \right]$$

for every C^1 -function ζ with compact support in Ω (see Lemma 8.5 in [5]). The assertion then follows from the compactness of \bar{Q}_{δ_1} .

The following result is crucial in the subsequent treatment of the Dirichlet problem.

Theorem 1. Let u be a solution of (1) belonging to $H^{1,2}_{loc}(m,m)$, then the following conditions are equivalent

- (I) $M(\delta)$ is a bounded function on $(0, \delta_0]$, (II) $\int_{Q} |Du(x)|^2 m(x) r(x) dx < \infty$, (III) There exists $\lim_{\delta \to 0+} M_1(\delta) < \infty$.

Proof. Put

$$v(x) = \begin{cases} u(x) \ (\rho(x) - \delta) & \text{for } x \in Q_{\delta} \\ 0 & \text{for } x \in Q - Q_{\delta}, \end{cases}$$

for $0 < \delta < \frac{\delta_0}{4}$. It is clear that v is a legitimate test function in (6) and on substitution we obtain

(10)
$$\int_{Q_{\delta}} \sum_{i,j=1}^{n} a_{ij} D_{i} u D_{j} u(\rho-\delta) dx + \int_{Q_{\delta}} \sum_{i,j=1}^{n} a_{ij} D_{i} u \circ u D_{j} \rho dx$$
$$+ \int_{Q_{\delta}} \sum_{i=1}^{n} (d_{i}+b_{i}) D_{i} u \circ u(\rho-\delta) dx + \int_{Q_{\delta}} \sum_{i=1}^{n} d_{i} u^{2} D_{i} \rho dx + \int_{Q_{\delta}} c u^{2} (\rho-\delta) dx$$
$$= \int_{Q_{\delta}} f u(\rho-\delta) dx.$$

The proof is similar to that of Theorem 1 in [2], but in our situation more care is needed to estimate the resulting integrals in (10).

The proof of "I \Rightarrow II". Let us denote the integrals on the left side of (10) by J_1, \dots, J_5 . By virtue of (A) we have

(11)
$$J_1 \ge \int_{Q_\delta} |Du|^2 (\rho - \delta) m \ dx.$$

To estimate J_2 we set

$$J_2 = \int_{Q_\delta} \sum_{i,j=1}^n a_{ij} D_i u \cdot u D_j \rho \Phi \ dx + \int_{Q_\delta} \sum_{i,j=1}^n a_{ij} D_i u \cdot u D_j \rho (1-\Phi) dx$$
$$= J'_2 + J''_2,$$

where Φ is a smooth function on \overline{Q} such that $\Phi=1$ on $Q-Q_{\delta_0/2}, \Phi=0$ on Q_{δ_0} and $0 \le \Phi \le 1$ on \overline{Q} .

Since $0 < \delta < \delta_0/4$, by Green's formula we have

$$J_{2}^{\prime} = \frac{1}{2} \int_{\mathcal{Q}_{\delta}} \sum_{i,j=1}^{n} a_{ij} D_{i}(u^{2}) D_{j} \rho \Phi dx$$
$$= -\frac{1}{2} \int_{\partial \mathcal{Q}_{\delta}} \sum_{i,j=1}^{n} a_{ij} D_{i} \rho D_{j} \rho u^{2} dS_{x} - \frac{1}{2} \int_{\mathcal{Q}_{\delta}} \sum_{i,j=1}^{n} D_{i}(a_{ij} D_{j} \rho \Phi) u^{2} dx.$$

On the other hand supp $(1-\Phi) \subset Q_{\delta_0/2}$, therefore applying Young's inequality and Lemma 2 to J_2'' we arrive at the following estimate for J_2

(12)
$$|J_2| \leq \frac{1}{2} \int_{\partial Q_{\delta}} \sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho u^2 dS_x + C_1 \int_{Q_{\delta}} u^2 m \left(1 + \rho^{-\alpha}\right) dx,$$

where a constant $C_1 > 0$ depends on $||a_{ij}m^{-1}||_{L^{\infty}}$ and $||D_ia_{ij}m^{-1}\rho^{\alpha}||_{L^{\infty}}$. To estimate J_3 we use a decomposition

$$J_{3} = \int_{Q_{\delta_{0}}} \sum_{i=1}^{n} (d_{i} + b_{i}) D_{i} u \cdot u(\rho - \delta) dx + \int_{Q_{\delta} - Q_{\delta_{0}}} \sum_{i=1}^{n} (d_{i} + b_{i}) D_{i} u \cdot u(\rho - \delta) dx$$

= $J'_{3} + J''_{3}$.

Since $L^{2\bar{q}} \subset L^{2q}$, using Hölder's inequality, Theorem 3.1 from [5] and Lemma 2 we get

(13)
$$|J'_{3}| \leq ||\sum_{i=1}^{n} (b_{i}+d_{i})||_{L^{2q}(Q_{\delta_{0}})} ||Du(\rho-\delta)^{1/2}m^{1/2}||_{L^{2}(Q_{\delta_{0}})} ||u(\rho-\delta)||_{L^{2^{\sharp}}(Q_{\delta_{0}})} \leq C_{2} \Big[\int_{Q} f^{2}m^{-1}\rho^{\theta} dx + \int_{Q_{\delta_{0}/2}} u^{2}m dx \Big],$$

where $C_2 > 0$ depends on $||\sum_{i=1}^{n} (b_i + d_i) m^{-1/2}||_{L^{2\bar{q}}}$ and a constant from Lemma 2. To estimate J''_3 we first use the Hölder inequality to obtain

$$\begin{split} |J_{3}''| \leq &||\sum_{i=1}^{n} (b_{i}+d_{i}) m^{-1/2}||_{L^{2\bar{q}}(\mathcal{O}_{\delta}-\mathcal{O}_{\delta_{0}})}||(\rho-\delta)^{-\varepsilon}||_{L^{s_{1}}(\mathcal{Q}_{\delta}-\mathcal{Q}_{\delta_{0}})} \\ &\times ||u(\rho-\delta)^{1/2+\varepsilon/2}||_{L^{2^{\sharp}}(\mathcal{Q}_{\delta}-\mathcal{Q}_{\delta_{0}})}||Du(\rho-\delta)^{1/2+\varepsilon/2}m^{1/2}||_{L^{2}(\mathcal{Q}_{\delta}-\mathcal{Q}_{\delta_{0}})}. \end{split}$$

with $\frac{1}{2\bar{q}} + \frac{1}{s_1} = \frac{1}{2q}$, $\frac{1}{2q} = \frac{1}{2} - \frac{1}{2^*}$, $0 < \varepsilon < \frac{1}{s_1}$.

Hence be the Sobolev inequality (4) we have

$$\begin{split} ||u(\rho-\delta)^{1/2+\varepsilon/2}||_{L^{2^{\sharp}}(Q_{\delta}-Q_{\delta_{0}})} \leq ||u(\rho-\delta)^{1/2+\varepsilon/2}||_{L^{2^{\sharp}}(Q_{\delta})} \\ \leq & A[||Du(\rho-\delta)^{1/2}m^{1/2}||_{L^{2}(Q_{\delta})} + ||u(\rho-\delta)^{\varepsilon/2-1/2}m^{1/2}||_{L^{2}(Q_{\delta})}], \end{split}$$

so that

(13)
$$|J_3''| \leq \delta_0^{-\varepsilon+1/s_1} \int_{Q_\delta} |Du|^2 m \rho dx + C_3 \int_{Q_\delta} u^2 m (\rho - \delta)^{\varepsilon-1} dx,$$

where $C_3 > 0$ depends on the norms of $d_i + b_i$, A, q and s_1 . Similarly we write

(14)
$$|J_4| \leq \sup_{Q} |D\rho| \left[\int_{Q_{\delta_0}} \sum_{i=1}^n |d_i| u^2 dx + \int_{Q_{\delta}-Q_{\delta_0}} \sum_{i=1}^n |d_i| u^2 dx \right]$$
$$= \sup_{Q} |D\rho| \left[[J'_4 + J''_4] \right].$$

It follows then from the Hölder and Sobolev inequalities that

$$\begin{split} |J'_{4}| \leq &||\sum_{i=1}^{n} d_{i}m^{-1/2}||_{L^{2q}(Q_{\delta_{0}})} \cdot ||um^{1/2}||_{L^{2}(Q_{\delta_{0}})} \cdot ||u||_{L^{2^{\frac{n}{2}}(Q_{\delta_{0}})}} \\ \leq &A||\sum_{i=1}^{n} d_{i}m^{-1/2}||_{L^{2q}(Q_{\delta_{0}})} ||um^{1/2}||_{L^{2}(Q_{\delta_{0}})} [||um^{1/2}||_{L^{2}(Q_{\delta_{0}})} + ||Du \circ m^{1/2}||_{L^{2}(Q_{\delta_{0}})}]. \end{split}$$

Consequently applying Lemma 2 we arrive at the estimate

(15)
$$|J'_4| \leq C_4 \left[\int_Q f^2 m^{-1} \rho^\theta dx + \int_{Q_{\delta_0/2}} u^2 m dx \right],$$

where C_4 is a constant depending on the norm of $\sum_{i=1}^{n} |d_i|$, A and a constant from Lemma 2. To estimate J''_4 we first observe that by (3) we have

$$||_{i=1}^{n} d_{i}||_{L^{2\bar{q}}(Q_{\delta}-Q_{\delta})} \leq \beta_{1}||_{i=1}^{n} d_{i}m||_{L^{2\bar{q}}(Q)} < \infty$$

for $\delta \in (0, \delta_0]$. Then using the Hölder inequality, we obtain

$$\begin{split} |J_{4}''| &\leq \left[\int_{Q_{\delta}-Q_{\delta_{0}}} (\sum_{i=1}^{n} |d_{i}|)^{2q} dx\right]^{1/2q} \left[\int_{Q_{\delta}-Q_{\delta_{0}}} (\rho-\delta)^{-\varepsilon_{1}s_{1}} dx\right]^{1/s_{1}} \\ &\times \left[\int_{Q_{\delta}-Q_{\delta_{0}}} u^{2} (\rho-\delta)^{-\varepsilon_{2}} dx\right]^{1/2} \left[\int_{Q_{\delta}-Q_{\delta_{0}}} |u(\rho-\delta)^{\varepsilon_{1}+\varepsilon_{2}/2}|^{2^{\sharp}} dx\right]^{1/2^{\sharp}} \end{split}$$

with $\frac{1}{2\bar{q}} + \frac{1}{s_1} = \frac{1}{2q}$, $\frac{1}{2^*} + \frac{1}{2q} + \frac{1}{2} = 1$, $0 < \epsilon < \frac{1}{s_1}$, $\frac{1}{2} < \epsilon_1 + \frac{\epsilon_2}{2}$ and $0 < \epsilon_2 < 1$. Let us now apply the Sobolev inequality (4) to obtain

(16)
$$|J_4''| \leq \delta_0^{1/s_1-\varepsilon_1} \int_{Q_\delta} |Du|^2 (\rho-\delta) dx + C_5 \int_{Q_\delta} u^2 [(\rho-\delta)^{-\varepsilon_2} + (\rho-\delta)^{2\varepsilon_1+\varepsilon_2-2}] dx,$$

where C_5 is a constant depending on the norm of $\sum_{i=1}^{n} d_i$, A and s_1 . Similarly,

$$|J_5| \leq \int_{Q_{\delta_0}} |c| u^2(\rho - \delta) \, dx + \int_{Q_{\delta} - Q_{\delta_0}} |c| u^2(\rho - \delta) \, dx = J'_5 + J''_5.$$

Now by the Sobolev and Hölder inequalities and Lemma 2 we get

(17)
$$|J_5'| \le C_6 \left[\int_{Q_{\delta_0/2}} u^2 m dx + \int_{Q_{\delta_0}} f^2 m^{-1} \rho^{\theta} dx \right],$$

where $C_6 > 0$ is a constant. On the other hand we have

$$\begin{split} |J_{5}''| \leq ||c||_{L^{\tilde{q}}(Q_{\delta}-Q_{\delta_{0}})} ||(\rho-\delta)^{-\varepsilon_{3}}||_{L^{s_{1}}(Q_{\delta}-Q_{\delta_{0}})} ||u(\rho-\delta)^{1/2+\varepsilon_{3}/2}||_{L^{2^{\sharp}}(Q_{\delta}-Q_{\delta_{0}})} \\ \times ||u(\rho-\delta)^{1/2+\varepsilon_{3}/2}||_{L^{2^{\sharp}}(Q_{\delta}-Q_{\delta_{0}})}, \end{split}$$

with $\frac{1}{2\bar{q}} + \frac{1}{2^{\ddagger}} + \frac{1}{s_1} + \frac{1}{2} = 1$, $0 < \varepsilon_3 < \frac{1}{s_1}$, so that

(18)
$$|J_{5}''| \leq \delta^{1/s_{1}-\varepsilon_{3}} \int_{Q_{\delta}} |Du|^{2} (\rho-\delta) \, m dx + C_{7} \int_{Q_{\delta}} u^{2} m \, (\rho-\delta)^{\varepsilon_{3}-1} dx,$$

where C_7 depends on $||c||_{L^{\overline{q}}}$, s_1 and A. Finally,

(19)
$$|\int_{Q_{\delta}} f \cdot u(\rho - \delta) dx| \leq \int_{Q_{\delta}} f^2 m^{-1} (\rho - \delta)^{\theta} dx + \int_{Q_{\delta}} u^2 m (\rho - \delta)^{2-\theta} dx.$$

Inserting the estimates (11) - (19) into (10) we obtain, assuming that δ_0 is sufficiently small, that

(20)
$$\int_{Q_{\delta}} |Du|^{2}(\rho-\delta) \, mdx \leq C_{8} \left[\int_{Q} f^{2} m^{-1} \rho^{\theta} dx + \int_{Q_{\delta}} u^{2} m(\rho-\delta)^{-\mu} dx + \int_{Q_{\delta_{0}}/2} u^{2} mdx + \sup_{0 < \delta < \delta_{0}} \int_{\partial Q_{\delta}} u^{2} dS_{x} \right],$$

for all $\delta \in (0, \delta_0/4]$, where $\mu = \max(\alpha, \theta - 2, \varepsilon_2, \varepsilon_3, 2 - \varepsilon_2 - 2\varepsilon_1)$ and $C_8 > 0$ depends on δ_0 and constants $C_1 - C_7$. Now note that if (I) holds then we have the estimate (9), therefore the condition (II) follows from the monotone convergence theorem.

Proof of II \Rightarrow *III*. From the first part of the proof we deduce that

(21)
$$\frac{1}{2} \int_{\partial Q_{\delta}} \sum_{i,j=1}^{n} a_{ij} D_{i} \rho D_{j} \rho u^{2} dS_{x} = \int_{Q_{\delta}} \sum_{i,j=1}^{n} a_{ij} D_{i} u D_{j} u (\rho - \delta) dx$$
$$- \frac{1}{2} \int_{Q_{\delta}} \sum_{i,j=1}^{n} D_{i} (a_{ij} D_{j} \rho) u^{2} dx + \int_{Q_{\delta}} \sum_{i=1}^{n} (b_{i} + d_{i}) D_{i} u \cdot u (\rho - \delta) dx$$
$$+ \int_{Q_{\delta}} \sum_{i=1}^{n} d_{i} u^{2} D_{i} \rho dx + \int_{Q_{\delta}} cu^{2} (\rho - \delta) dx - \int_{Q_{\delta}} fu (\rho - \delta) dx.$$

It follows from Lemma 1 that

$$\int_{Q_{\delta}} \frac{u(x)^2 m(x)}{(\rho(x) - \delta)^{\mu}} dx \leq C, \ 0 \leq \mu < 1,$$

for $\delta \in (0, \delta_0/2]$, where C > 0 is independent of δ .

Repeating the argument from " $I \Rightarrow II$ " it is easy to show that all integrals are convergent as $\delta \rightarrow 0$. Hence "II \Rightarrow III" follows from (8) and the relationship

$$M(\delta) - M_1(\delta) = \int_{\partial Q} u(x_{\delta}(x))^2 \left[\frac{dS_{\delta}}{dS_0} - 1\right] dS_{0}.$$

Finally "III \Rightarrow I" follows from the proof "II \Rightarrow III.

§ 4. Traces in $L^2(\partial Q)$ and the Dirichlet Problem

In this section we first establish the existence of a trace of u on ∂Q in $L^2(\partial Q)$, that is, $u(x_{\delta})$ converges in $L^2(\partial Q)$ as $\delta \rightarrow 0$.

Theorem 2. Let u be a solution of (1) in $H^{1,2}_{loc}(\mathbf{m}, \mathbf{m})$. If one of the conditions I, II or III holds, then there exists a function ζ belonging to $L^2(\partial Q)$ such that $u(x_{\delta})$ converges to ζ in $L^2(\partial Q)$.

The proof is identical to the proof of Theorem 4 in [2], therefore we only give an outline. It is obvious that there exists a sequence $\delta_{\nu} \rightarrow 0$ as $\nu \rightarrow \infty$ and a function $\zeta \in L^2(\partial Q)$ such that

$$\lim_{\nu\to\infty}\int_{\partial Q} u(x_{\delta_{\nu}}(x))g(x)\,dS_x = \int_{\partial Q} \zeta(x)g(x)\,dS_x$$

for each $g \in L^2(\partial Q)$. Repeating the argument of Theorem 3 in [2] one can easily prove that the above relation holds true if the sequence δ_{ν} is replaced by δ . Finally to prove that $u(x_{\delta}) \to \zeta$ in $L^2(\partial Q)$ we show that $\lim_{\delta \to 0} \int_{\partial Q} u(x_{\delta}(x))^2 dS_x = \int_{\partial Q} \zeta(x)^2 dS_x$ and the result then follows by uniform convexity of $L^2(\partial Q)$.

Theorem 2 justifies the following approach to the Dirichlet problem.

Let $\phi \in L^2(\partial Q)$. A weak solution u in $H^{1,2}_{loc}(m,m)$ of (1) is a solution of the Dirichlet problem with the boundary condition

(22)
$$u(x) = \phi(x) \text{ on } \partial Q$$

if $\lim_{\delta\to O}\int_{\partial Q} [u(x_{\delta}(x)) - \phi(x)]^2 dS_x = 0.$

To establish the existence of a solution of the Dirichlet problem (1)-(22) we need some additional assumptions that will be used only in this section.

(a) There exists a constant $a > -\infty$ such that

$$-\sum_{j=1}^{n} D_j d_j + c \ge a$$

in the sense of distribution.

(b)
$$nA_0[\sum_{i=1}^n ||b_i m^{-1/2}||_{2q} + \sum_{i=1}^n ||d_i m^{-1/2}||_{2q}] + A_0^2 ||c||_q < 1$$

with $A_0 = A \cdot B$, where A and B are constants from the inequalities (4) and (5).

Finally, let us introduce the Hilbert space $\tilde{H}^{1,2}(m,m)$ of all functions u in $H^{1,2}_{loc}(m,m)$ such that

$$||u||_{\dot{H}^{1,2}(m,m)}^{2} = \int_{Q} u(x)^{2} m(x) dx + \int_{Q} |Du(x)|^{2} m(x) r(x) dx < \infty.$$

It is obvious that for all $d < \delta_0$

$$||u||_{\dot{H}^{1,2}(m,m)}^{2} \le \max(1,\beta_{1}d) \left[\int_{Q} |Du(x)^{2}r(x)m(x)dx + \int_{Q} u(x)^{2}m(x)dx + \sup_{0<\delta< d} M(\delta) \right].$$

We can now state the following existence result.

Theorem 3. Let $\phi \in L^{\infty}(\partial Q)$ and suppose that $\int_{Q} |f|^{p} m^{-1} dx < \infty$ for $p > \frac{n(t-1)}{t-n}$. Then, if the coefficients of L satisfy (a) and (b), the Dirichlet problem (1), (22) has a solution in $H_{loc}^{1,2}(m,m)$.

Proof. Let $\{\phi_{\nu}\}$ be a sequence of functions in $C^{1}(\partial Q)$ converging in $L^{2}(\partial Q)$ to ϕ . In virtue of assumption (b) and Theorem 4.7 in [5] for every ν there exists a unique solution $u_{\nu} \in H^{1,2}(m,m)$ of the Dirichlet problem

$$Lu = f \quad \text{on} \quad Q,$$

$$u = \phi_{\nu} \quad \text{on} \quad \partial Q,$$

Since $\phi \in L^{\infty}(\partial Q)$ we may assume that $\sup_{\nu \ge 1} ||\phi_{\nu}||_{\infty} < \infty$. The assumption (b) implies that the maximum principle holds (see Corollary 7.4 in [5]), consequently

(23)
$$|u_{\nu}(x)| \leq \sup_{\nu \geq 1} ||\phi_{\nu}||_{\infty} + \int_{Q} |f|^{p} m^{-1} dx$$

for all ν . Inspection of the proof of Theorem 1 shows that there exists a constant C>0 such that

(24)
$$\int_{Q} |Du_{\nu}|^{2} mr dx + \int_{Q} u_{\nu}^{2} mdx + \sup_{0 < \delta < d} \int_{\partial Q} u_{\nu}^{2} dx$$
$$\leq C \left[\int_{\partial Q} \phi_{\nu}^{2} dS_{x} + \int_{Q} u_{\nu}^{2} dx + \int_{Q} f^{2} m^{-1} dx \right]$$

It is clear from (23) and (24) that there exists a subsequence $\{u_{\nu_s}\}$ weakly convergent in $\tilde{H}^{1,2}(m,m)$ to a solution of the Dirichlet problem (1)-(22).

§ 5. Case $m \in L^{\infty}(Q)$

Throughout this section we assume additionally that $m \in L^{\infty}(Q)$. This assumption allows us to consider the boundary data in $L^{2}(\partial Q)$. The right Sobolev space in this situation is $H^{1,2}(1,m)$ which is the completion of $C^{1}(\bar{Q})$ with respect to the norm

$$||u||_{H^{1,2}(Q,1,m)}^{2} = ||u||_{L^{2}(Q)}^{2} + ||Dum^{1/2}||_{L^{2}(Q)}^{2}.$$

We briefly denote this space by $H^{1,2}(m)$. We define spaces $H^{1,2}_0(m)$ and $H^{1,2}_{loc}(m)$ in an obvious way.

We commence with the extensions of Theorems 1 and 2.

Theorem 4. Let u be a solution of (1) belonging to $H^{1,2}_{loc}(m)$, then the conditions (I), (II) and (III) are equivalent.

Theorem 5. Let u be a solution of (1) in $H^{1,2}_{loc}(m)$. If one of the conditions (I), (II) or (III) holds, then there exists a function $\zeta \in L^2(\partial Q)$ such that $u(x_{\delta})$ converges to ζ in $L^2(\partial Q)$.

The proofs of these results are essentially the same as of Theorems 1 and 2 and therefore are omitted. We only point out here that the inequality from Lemma 1, which is crucial in the step II \rightarrow IIII, can be stated in the following form: if $u \in H^{1,2}_{loc}(m), 0 \leq \mu < 1$ and $0 < \delta_1 \leq \delta_0/2$ then we have

$$\int_{Q_{\delta}} \frac{u(x)^{2}}{(\rho(x)-\delta)^{\mu}} dx \leq K [\delta_{1}^{-\mu} \int_{Q_{\delta_{1}}} u(x)^{2} dx + \delta_{1}^{1-\mu} \int_{\partial Q_{\delta_{1}}} u(x)^{2} dS,$$

+ $\delta_{1}^{1-\mu} \int_{Q_{\delta}^{-Q_{\delta_{1}}}} |Du(x)|^{2} (\rho(x)-\delta) dx]$

for all $\delta \in (0, \delta_1/2]$, where K > 0 is a constant independent of δ_1 and δ . To proceed further let us introduce the equation

 $(1_{\lambda}) \qquad Lu + \lambda u = f,$

where λ is a real parameter.

We establish the following energy estimate

Theorem 6. Let $u \in H^{1,2}_{loc}(m)$ be a solution of the Dirichlet problem $(1_{\lambda}) - (22)$. Then there exist positive constants d, λ_0 and C independent of u such that

(25)
$$\int_{Q} |Du(x)|^{2} m(x) r(x) dx + \sup_{0 < \delta < d} M(\delta) + \lambda \int_{Q_{Q}} u(x)^{2} r(x) dx$$
$$\leq \left[\int_{\partial Q} \phi(x)^{2} dS_{x} + \int_{Q} f(x)^{2} r(x)^{\theta} m(x)^{-1} dx \right]$$

for $\lambda \geq \lambda_0$.

Proof. The proof is similar to that of Theorem 5 in [2] (see also Lemma 1 in [1]). An examination of the proof of Theorem 1 shows that we can write the following estimate

(26)
$$\int_{Q_{\delta}} |Du|^{2}m(\rho-\delta) dx + \lambda \int_{Q_{\delta}} u^{2}(\rho-\delta) dx \leq C_{1} \left[\int_{Q_{\delta}} f^{2}(\rho-\delta)^{\theta} m^{-1} dx + \int_{\partial Q_{\delta}} u^{2} dS_{x} + \int_{Q_{\delta}} u^{2}(\rho-\delta)^{-\mu} dx \right],$$

where $\mu = \max(\alpha, \theta - 2, \varepsilon_2, \varepsilon_3, 2 - \varepsilon_2 - 2\varepsilon_1)$, $C_1 > 0$ is a positive constant independent of u, λ and $\delta \in (0, \delta_0/2]$, $\varepsilon_1, \varepsilon_2$ and ε_3 are positive constants introduced in Theorem 1. On the other hand, using (21) we easily arrive at the following estimate

(27)
$$\sup_{0<\delta<\delta} \int_{\partial Q_{\delta}} u(x)^{2} dS_{x} \leq C_{2} \left[\int_{Q} |Du|^{2} m \rho dx + \lambda \int_{Q} u^{2} \rho dx + \int_{Q} f^{2} \rho^{\theta} m^{-1} dx + \int_{Q} u^{2} \rho^{-\mu} dx \right]$$

where $C_2 > 0$ is a constant independent of u, λ and $\delta \in (0, \delta_0/2]$. Letting $\delta \rightarrow 0$ we deduce from (26) that

$$\int_{\mathcal{Q}} |Du|^2 m\rho dx + \lambda \int_{\mathcal{Q}} u^2 \rho dx \leq C_1 \left[\int_{\partial \mathcal{Q}} \phi^2 dS_x + \int_{\mathcal{Q}} f^2 \rho^\theta m^{-1} dx + \int_{\mathcal{Q}} u^2 \rho^{-\mu} dx \right].$$

Combining this inequality with (27), we obtain

14

(28)
$$\int_{Q} |Du|^{2} m \rho dx + \lambda \int_{Q} u^{2} \rho dx + \sup_{0 < \delta < d} \int_{\partial Q_{\delta}} u^{2} dS_{x}$$
$$\leq C_{3} \left[\int_{\partial Q} \phi^{2} dS_{x} + \int_{Q} f^{2} \rho^{\theta} m^{-1} dx + \int_{Q} u^{2} \rho^{-\mu} dx \right]$$

where $C_3 > 0$ is a constant. Now

$$\int_{Q} u^2 \rho^{-\mu} dx \leq \frac{d^{1-\mu}}{1-\mu} \sup_{0 < \delta \leq d} \int_{\partial Q_{\delta}} u^2 dS_x + \frac{1}{m_d^{1+\mu}} \int_{Q} u^2 \rho dx$$

for all $0 \le \mu < 1$, with $m_d = \inf_{Q_d} \rho(x)$.

Taking λ_0 sufficiently large and d sufficiently small the result follows from (28).

Now we are in a position to state the existence result.

Theorem 7. Suppose $\phi \in L^2(\partial Q)$. Then there exists a unique solution of the Dirichlet problem $(1_{\lambda}) - (22)$ for $\lambda \geq \lambda_0$.

The proof is identical to that of Theorem 6 in [2].

Theorem 8. Suppose that $\int_{Q} f^2 m^{-1} dx < \infty$ and let $\phi \in L^2(\partial Q)$. If there is a function $\phi_1 \in H^{1,2}(m)$ such that $\phi_1 = \phi$ on ∂Q in the sense of trace, then a solution $u \in H^{1,2}_{loc}(m)$ of the Dirichlet problem $(1_{\lambda}) - (22) (\lambda \ge \lambda_0)$ is a solution in $H^{1,2}(m)$ of the same problem.

This follows from the fact that any solution of $(1_{\lambda}) - (22)$ in $H^{1,2}(m)$ is also a solution of the same problem in $H^{1,2}_{loc}(m)$ and both problems have a unique solution in respective spaces.

§6. Final Remark

One can also establish the existence of a solution of the Dirichlet problem with $\phi \in L^2(\partial Q)$ and with *m* satisfying (2) and (3) but for the equation

$$(1m, \lambda)$$
 $Lu + \lambda mu = f$ on Q .

Indeed, an examination of the proof of Theorem 6 shows that there exist positive constants λ_0 , d and C such that

(29)
$$\int_{Q} |Du(x)|^{2} r(x) m(x) dx + \lambda \int_{Q} u(x)^{2} m(x) r(x) dx + \sup_{0 < \delta < d} M(\delta)$$
$$\leq C \left[\int_{\partial Q} \phi(x)^{2} dS_{x} + \int_{Q} f(x)^{2} r(x)^{\theta} m(x) dx \right]$$

for every solution $u \in H^{1,2}_{loc}(m,m)$ of $(1m, \lambda) - (22)$ with $\lambda \ge \lambda_0$.

We can therefore assert the following existence result.

Theorem 9. Let m satisfy (2) and (3) and let $\phi \in L^2(\partial Q)$. Then there exists a unique solution in $H^{1,2}_{loc}(m,m)$ of the problem $(1m, \lambda)$, (22) for $\lambda \geq \lambda_0$.

This follows by a straightforward approximation argument (for details see the proof of Theorem 6 in [2]).

References

- [1] Chabrowski, J, Note on the Dirichlet problem with L²-boundary data, Manuscripta Math. 40 (1982), 91-108.
- [2] Chabrowski, J., and H. B. Thompson, On the boundary values of the solutions of linear elliptic equations, Bull. Austral. Math. Soc. 27 (1) (1983), 1-30.
- [3] Gilberg, D., and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer Verlag, Berlin-Heidelberg-New York, 1977.
- [4] Mikhailov, V. P., Boundary values of the solutions of elliptic equations in domains with a smooth boundary, Mat. Sb. 101 (143) (1976), 163-188.
- [5] Murthy, M. R. V., and G. Stampacchia, Boundary value problems for some degenerateelliptic operators, Ann. Mat. Pura Appl. 80 (1968), 1-122.
- [6] Trudinger, N. S., Linear elliptic operator with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 27 (1973), 265-308.

16