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Fermlon Ito's Formula II:
The Gauge Process in Fermion Fock Space

By

David APPLEBAUM*

Abstract

The stochastic calculus constructed in [2] for fermion Brownian motion is augmented
through the inclusion of stochastic integration with respect to the gauge process. The solutions
of certain non-commutative stochastic differential equations are used to construct dilations
of contraction semigroups on a Hilbert space f)o and of uniformly continuous, completely
positive semigroups on -ff(Ijo). Finally we construct a fermion analogue of the classical
Poisson process and investigate some of its properties.

§ 0. Introduction

In the recent paper [2], the present author together with R0 L0

Hudson developed a stochastic calculus on fermion Fock space over
L2(R+) in which the Brownian motion process of classical stochastic
calculus was replaced by fermion Brownian motion of variance 1 [4]
i.e. the process formed from pairs (At, AD of annihilation and creation
operators smeared by the indicator function of the interval [0, t) which
satisfy the anticommutation relation

{As,Al}=min{s9t}I (0.1)

for s, t^R+
e An ltd formula for products of stochastic integrals was

obtained wherein the "Ito correction33 term arose from the relation

dA dA'=dt (0.2)

between stochastic differentials.
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With regard to its sister theory previously developed in [10] by
R. L. Hudson and K. R. Parthasarathy for boson Fock space, the scheme
of [2] contained two major defects
( i ) The structure of the algebra of stochastic integrals involved
unnatural parity assumptions.
( ii ) There was no fermion analogue of the gauge process which in
[10] ? to some extent, took over the role of the Poisson process from
the classical theory.

(i) was rectified by the author in [3] thus bringing the theory
into line with the general format proposed by L. Accardi and K. R.
Parthasarathy in [1]. The aim of the present paper is to rectify

(ii).
We recall that in [10], the gauge process was defined through its

action on the total set of exponential vectors { ( f i ( f ) 9 f ^ L 2 ( R + ) } in
boson Fock space by

^(/)-^(^CM]/)U=o. (0.3)

Together with the boson Brownian motion process of variance 1
formed from pairs of annihilation and creation operators (Bt, B\)
smeared as above, a stochastic calculus was obtained with the "ltd
correction" rules

dB dB^=dt, dA dA=dA

dA dB*=dB\ dB dA=dB . (°' 4)

Furthermore, the classical Poisson Process Ul— (IIl(t),t>Q') of inten-
sity 1^>Q was realized in boson Fock space as

W (0 = At + {I (Bt + BD +lt (0. 5)

where we note that the process formed by Bt + B] is itself a realization
of classical Brownian motion.

The organization of the present paper is as follows; after collecting
together some useful algebraic facts in § 1 we proceed to define the
fermion gauge operator in § 2 and examine its relevant properties.
As in [2] our strategy is to use /2-particle vectors in place of ex-
ponential vectors to define our operators. In § 4 and § 5 we develop
our stochastic calculus and find that the extended version of (0. 2)
is precisely (0. 4) with the boson processes therein replaced by their
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fermion analogues,,
In § 6 we prove the existence of solutions to a certain class of

stochastic differential equations and investigate those conditions under
which the solutions are unitary. Such equations are a source of
cocycles for perturbing the group of shift operators on fermion Fock
space over L2(R)» We use the perturbed group to construct a dila-
tion scheme for contraction semigroups on Hilbert space in the sense
of [17] and of quantum dynamical semigroups [14] on the algebra
of bounded operators on Hilbert space in the sense of [7].

Finally we investigate the fermion analogue of (00 5) which defines
an object which, we propose, deserves to be called a fermion Poisson
process of intensity L

We employ the following notation:
If \ and |2 are inner product spaces, we denote by ^i(X)^2 their

algebraic tensor product and §i®§2 it's Hilbert space completion,,
Densely defined maps between Hilbert spaces are mutually adjoint

if each is contained in the adjoint of the other. Pairs of such maps
will be denoted (T,T)e

Whenever a proposition contains the symbol T* it should be read
for both T and T\

Let V be a vector space and

X V where

for 1</<7Z, define the maps
n n—1

rf XV->X
j=i y=i

by

rj(£) — (^1? • •

We write

I am grateful to the referee for valuable criticism of the first draft
of this paper.
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§1. Preliminaries (cf. [2], [9])

A Hilbert space 3? is said to be Z2-graded if it may be written
J^ = ̂ f+@^^ where J^+ and Jf _ are called the even and odd subspaces
(respectively). Suppose that T is a densely defined operator on Jf
whose domain $ is an internal direct sum (f+0<^_ where <f + and
<f _ are dense in ^f+ and ^f_ (respectively). $ is then said to be

densely graded. We say T is even if T^±^Jf± and <wW if T^±^Jf^,
Let ^ denote the parity automorphism of B(J^) defined by linear

extension of

p(T) =T if T is even
p(T) = -T if T is odd

^o is implemented by a self-adjoint, unitary operator 0 on Jf (called
the parity operator} which acts as / on ^f + and — / o n Jf _.

Let ^fi and Jf2 be Z2-graded Hilbert spaces and ^f be their
Hilbert space tensor product. Jf is Z2-graded by the prescription

It is easy to see that the parity automorphism of fi(^f) is p=
and that /o is unitarily implemented by 0^)0 2 where P i ( 9 ) = 0 i ( ^ } 0 i

is the parity automorphism of U(JfV)j (i = l*2).
Let ^,-e^f,. and T^B(^i) (i=l,2) with ^ and 7*2 of definite

parity.
The Chevalley product T^T2 is defined by continuous linear exten-

sion of

(T&Tj (^(x)^2) - ( - 1) 8(Tz^ 7^(8)7^2 (1.1)

where 3(T2) =sgn p2(T2) and e(^i) =sgn ^i. (1.1) extends by linearity
to the case of arbitrary T2^B(J^2).

For S^T^B^i) (i = l,2) with 5"2 and 7\ of definite parity we
have

(i. 2)

which again extends by linearity to the case of arbitrary 6*2 and 7\.

If SeU^) its ampliation to ^f is the operator 5(x)/eB(^f). If
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T is an operator on J^i with densely graded domain S \ its algebraic
ampliation to 3? is the operator T®I with domain $i®3f?2 where the

symbol (§) is manipulated in the same way as (^)(with due regard for

limitations of domain).

For § a complex, separable Hilbert space let ^ (§) denote the
C, A0 R. algebra over §. ^ (I)) is a C*-algebra with identity generated
by {0(/),/elj} satisfying

for each /,;

From (1.3) we deduce (see e0g8 [6])

(1.4)
for each /£=§.

Let G> be the (vacuum) gauge invariant quasi-free state on ^ (§)
whose two point functions are given by

^ a g f l =</,«> °

for f,

The G0 Ne So representation of (^(!)),<M) lives on fermion Fock
space r(fj). For each f^.\ #(/) and <2T(/) are realized as anni-
hilation and creation operators respectively on /^(5), these being
bounded and mutually adjoint,, a) acts as expectation with respect to
the vacuum vector ^0 in -T(I)) which is characterized by the relation

fl(/)00 = 0 for all /el). (1.6)

Let SP be a dense subspace of 5 and let
n

We write

/=(/!,../....,/,)

and
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/»= (/!. . . A. . . A. . ./„)

where \<j, k<n (j¥=k).

For Tefi(§) we write

Tf=(Tfr...,TfJ.

The set Jr={^(/),/ex^,/ze^U {0}} is total in T(§) where each
.7=1

By (1.4) we have

From now on, $ will denote the linear span of </". For each

/ex^weAT^elj we have, by (1.3) and (1.6)

*(£)&(/) = S(-1)"-W;>«W/'). (I- 8)

.F(§) is ^-graded as the direct sum of even and odd antisymmet-
ric tensor powers with respect to which, the annihilation and creation
operators are odd. Let PF(*) = ^F(')^F denote the parity automor-
phism of F(fy. We have

M.(/) = (-DV.(/). (1-9)

for all/ex^,«eJV.
y=i

Let 5 = li©152, then we may make the canonical identification
r(§)=r(ljl)(g)r(Ijz) for which ^0 = ^o(X)^o (where ^o>) is the vacuum
vector in r(Ifc) (j=l, 2)) and

for ^=Ca,«O

Hence for T=00r2eJB(5) we may identify a(Tg) with

Let §o be a complex separable J?2-graded Hilbert space with parity

automorphism /o0(-) =^o(0*o. We write



FERMION ITO'S FORMULA 23

where 3?i = \®F($d and Jf2 = ^(5z). &\ will denote the dense sub-
space Ifo© $ i In 3P i (where <f i is the linear span of 72-particle

vectors In rr(^i))8 We denote by p(°)=6(°)6 the parity automor-
phism of B(tf). For arbitrary X^B(tf^ and odd Fefi(Jf2) we
deduce from (1.2) the formula

(/(g)Y) (Z(x)/) =/9((z<g>/))/(S>y. (i. 10)
ffi is ^-graded by the prescription ( (? i )±= (?

We will make frequent use of the relation

( loll)

§20 The Gauge Operator

Let T^.JB(fy). We define an operator %(T) on the dense domain
by linear extension of the prescription

^/)U=o (2.1)

where differentiation is in the strong sense. %(T) is called the gauge
operator.

It is well defined for suppose that9 for some m^N^ we can find

for which

Z^,(/o-))-0

then for each <pp(g)^J' we have

whence

z:^

so, by linearity,
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as required.

Lemma 2, 1. The folloing relations hold on the dense set $ for all
g^ and T,UeB($) with [T,t/]=0.

(t) [a(g),t(T)-l=a(Tg) (2.2)

(«) &(g),*(T)l = -a'(Tg) (2.3)

(m) [JCTM(£/)]=0 (2.4)

(M>) [*CT),0F]=0. (2.5)

The proof is by straightforward computation.

From (iv) we see that Z(T) is an even operator.

Let A and B be operators in 3F^ with domain <f x. We identify
them with their algebraic ampliations in Jf. For S, T^B($2),e^§2
we similarly identify A(S) and %(T) with their algebraic ampliations
in ffl and a(^) with its ampliation in ^fa

Lemma 2.2. For w,ye§0, /ex^, g(=X<9*9 m,n<^N we have
j=l k=l

CO <

' (2. 6)
J— 1 fe— 1

(ii) <^fl («) «(g)j&. ( f ) , B X ( T ) v®4>m (g) > =

S S 0) Z ( - 1 ) "- J'+t+I"</,-
-1 (/*)> (2.7)

(m) <a'(«)^«

Z ( - 1)

m m— 1

+ Z Sa
k=l c=l

(2.8)

(w) <^(r)M

= Z Z ( - 1 ) y+
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j=l 4-1 1=1 t-l

(2. 9)

Proof, (i) By repeated use of (2. 3) we obtain

• • • «' (ft) 0o>

by (1.3)

by (L 1) and (1.6)
re »i

- Z E ( - 1) "+1>-'-*</y, Tg^SAee^^.^fi) , &Bee0v^m^ (g*) >
j=l fc=l

by (1.3) and (1.8).

The result follows from applying (1.11), (1.9) and the unitarlty
of 00

(ii) From (1.8) we obtain

m (g) >
y=i

and the result follows from applying (2. 6) to this expression,,

(iii) By (L 10) and (2.2) we have

by (1.8) and (2.5). The result follows by applying (2.7) to this
expression,,

(iv) Repeated application of (2. 3) yields
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= Z Z ( - 1 ) "+M-'"*<^(gwT (7J,) &_! (/) , Bv®a< (Ug,} ^
;•=! *=1

= 2 Z ( - 1 ) "+"-''-s<? (X) 00«(8)^-i (/O « (77}) «'
by (1.10)

= Z Z ( -
y=i *=i

- Z Z ( - 1 ) a+m-i-"<P (A) ̂ (8)̂ -! (/') , J (Ugj a (r/,) p (B) &av

by (1.3)

Z Z (
j=l k=l

j=l fe=l

by (1.11), (1.9) and (1.10). The result follows from applying
(1.8) twice in the second term. Q

§ 3. Adapted Processes—The Gauge Process

From now on, we will take § = L2(R+), §i = L2([0,0) and §2 =
L2([£, oo)). Indeed, we will find it convenient to use the notation

1)1:z::: ^, ^2=v > ^o =i $Q tTQ == T o> ® i ~ & t> *ffl\ ~~ 3rt 1 and J& 2== 2ft * SP will con-
sists of locally bounded functions. We recall the following definitions
from [2].

An adapted process is a family F= (F(t),t&R+) of operators in 3C
such that

a) For each t^R+,F(t) is the algebraic ampliation to /t®3f' of

an operator in Jtf*t with domain $ t.
b) A family of operators Ff= (FT(0 ̂ R+) exists satisfying the

conditions of a) with each F*(t) adjoint to F(t). Fr is called the
adjoint process. It is clearly adapted.

We
cesses in

denote by j/ the complex vector space of all adapted pro-
«>77
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is said to be simple if there exists an increasing sequence
oo

in ^+ with t0 = Q, lim£ r=oo and F== ^, Frvrt t +1) where each
„ r=o

Fr = F(tr), continuous if for arbitrary we/z0,/e X&*9n^N(J (0}3 the maps
j=i

from J2+ to Jf given by t-^F(t)u^(pn(f) are strongly continuous

and locally square integrable if each of these maps are strongly measur-

able and F satisfies

Q\\F(s)u®</>n(f)\\
2ds<oo for each

We denote by jtfQ, s$c and £?2
loc the subspaces of <stf of simple5

continuous and locally square integrable processes, respectively0

We have j/0, ^cd^2
loco

We say that Fej/ has the property a(e.g0 unitarity, even parity)

whenever each F(i) is the algebraic ampliation of an operator in ffl t

with domain / 1 possessing the property a0

The annihilation and creation processes are the mutually adjoint9 odd

continuous processes defined by

We define the gauge process (At,t^R+) by the prescription

4=/<8tf (fro.*)) (3. 1)

for each t^R+
9 where the indicator function %[(U) acts by multiplica-

tion on L2(R+).

By (2. 5) 3 it is clearly an even process,, It is continuous for given

with *<£ we have by (2.9)

= : ( -y=i fe=i

-s ;
JS

as

For each £EEJJ+
5 we define the £ime ^ vacuum conditional expectation
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Et]:B(3>l?)->B(3ft)(^)I by continuous, linear extension of the prescrip-
tion

Ex (X® Y) = X®I<<PI F$> (3. 2)

where X^B(^t), YeJB(^fO- JSb extends in the obvious way to
densely defined operators on ^f whose domain includes </>0 .

We say that F^jtf is a martingale if for each ,y, t^R+ with

Bsl(F(t»=F(s). (3.3)

We show that the gauge process is a martingale. For all 0S,
we have

whence Esi(At) =AS, as required.

It follows that the martingale representation theorem of [15] is
not valid in this case.

We will find a use in § 6 for the following estimate. Let L be
»

the ampliation in Jf of a bounded operator in §o, u^.^ /e X§,
j=i

9 then

. by (2.3)

(3.4)

by (1.4) and (1.7).

§4. Stochastic Integrals of Simple Processes

Let E,F,G,H<=3/Q with
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00 00

E== S '̂r-Wi'' F= S, ^r-W

G=SGrJ&vw, H=±HrlLtr.tr+l, (4.1)

where 0<Oo<° - • <X - >0°.

We define the stochastic integral of (E, F9 G, H) to be the family
of operators M= (M(t) ?£>0) defined inductively by the prescription

M(0 = Af (fr) +Er(4-4; + (Al-A]JFr+Gr(At-AJ

+ Hr(t-Q (4.2)

whenever Zr<O<£r+i, where Af (0) is the ampliation in Jf of an element
of 5(10,

We write

M(t) =Af(0) +T (EdA+dAT+GdA + Hdt) (4.3)
Jo

whenever (40 2) holds. Equivalently, we will use the differential
notation

dM=EdA+dA'F+GdA + Hdt . (4. 4)

We note that by (1. 10) we have the formal relation

dA'F=p(F)dA\ (4.5)

By formal adjunction in (4. 2) we see that M is adapted., the
adjoint process being given by

(4.6)
o

Clearly M depends linearly on (E,F,G9H)0

Theorem 4. 1. Let E9F,G,H^£/Q and M be their stochastic integral,
n m

For each u,v^$Q,f^X&'9g<=X&',n9m&N,t^R+ we have

(4.7)
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Furthermore M(t)=M(Q) for all t<=R+ if and only if each E(t)
=F(t)=G(t)=H(t)=0.

Proof. By Theorem 4. 1 of [2] we have

-Af (0) -\* EdA)v®<j>m(g)y
JO

,m (g) >
JO j=l

+ Z ( - 1 ) m~\u®<l>n(f ) , G (r) floiKg)^ fes) >A (r)
k = l

+ <U<80n(f),H(T)v®l>m(g»}dT (4.8)

so it is sufficient to establish

<"•&<!>„ (/ ) , {' EdAv®<I>m (g) > =Jo

' f , S(-l)y+*y}
O j=l fe=l

(4.9)

whence (4. 7) follows from adding (4. 8) to (4. 9) .

Without loss of generality, we take

£=g)^rXBr.frfl) with 0 = f0<...</r-
J-»oo

and establish (4.9) by induction. (4.9) clearly holds for t = 0, assume
that it holds for t=tr, then for tr<.t<tr+1, by (4.2) we have

by (3.1)

by (2. 6)

For re(£r, 0 we have Er=E(r) and the result follows from addi-
tivity of the Lebesgue integral.

Now suppose that M(f) =M(0) for all t^R+. Applying the argu-
ment on p. 479 of [2] in (4.7) we deduce that F=G=H=Q. Thus
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we conclude that for all

n m

Z Z (-1) J+kfj(0 <K<8>&-i(/'), ^(0 zK8>0«-i(£*) >&(0 -0
3=1 k = l

and since the set of 0n(/) corresponding to a choice of/e X 5^ such

that each //(£) =£0 for all £eU+ remains total in F(L2(J2+)) we con-
clude that E=09 D

The following theorem is essentially the fermion Ito formula for
simple processes and plays a central role in the further development
of our theory0

Theorem 4e 2. Let E,F9G,H9E',F',G'9H'

o

M'(t)={' E'dA+dA'F' + G'dA + D'dt.
Jo

For arbitrary u9v^0jf^X^9g^X^,n,m^N^ the mapping

from R+->C is absolutely continuous with derivative

-i (/O, ^x

+ Z( -1)"-'/,- (0 [<G (0 ̂ (8)^-1 (/O, M' (01

^(/O^'CO^^Cg))
,.-! (/O, ^' (0 »(8)0. (g) >]

10)
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Proof. By Theorem 4. 2 of [2] and proposition 4 of [4] we have

4at

v®<pm (g) > + <j> (M(f) -

+ < (Af (0 -
Jo

Without loss of generality, we take E,F,G,H as in (4.1) and
assume that E', Ff, G', Hr have the same intervals of constancy. Thus
we may write M(t) and M'(f) in the form (482) e

We establish (4.1) by induction. It clearly is valid for £ = 0 and
we assume that it holds for t = tr.

Now suppose that tr<^t<tr+i. Given (4.11) it is sufficient to com-
pute

+ <(Af(0 -
Jt

^ (4.12)

by (4.2).

We compute each of the terms in (4. 12) separately
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=4- i; z(-

= S Z (-1)w
y=i *=i

(4.13)

by (2.6).

A similar argument yields

= Z Z (-1) m
j=i *=i

(4. 14)

Again, by (20 6) we have

// n m C*a v1 w__n'+*\= 4- Z Z(-l)m \ f,Wgt(T)dT<Hr(t-tr')U®4>.-1(f
f),

at s=i *=i J(

= Z Z ( - 1) m

n m

+x; z<
i=\ k=l

+ Z (-1) m//(0 <Hr(t-tr) «<8>&-i(/0
j=l

(4. 15)

Similarly

Z ( - 1 ) /+ *// CO

Using (2. 7) we obtain
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=4r i; zw)z (-
Of j=l (=1 *=1

_2( /-) , £ (̂8)̂ -! (g*) >

'+'+*[7XO V T
J^

TXOft

= XX -

n m

Z ( - 1 ) '+*/y (0 <^®^.-i (/O , G;a (x[(r.

+ Z Z ( - 1 ) m/y (0 <Gra (fer.») «(8K6.-i (/O ,
j=l k=l T

E'JStf.-MygM (4.17)

by (2. 6) and Appendix (i) .

Similarly

r. * (0

(4.18)

By (2.8) we deduce

4- ZCat k=i

-
ar *=i 1=1 >=i

l ( f j ) , p(E'r) Orfgrf.-

- Z( - 1 ) ™-k<Fru®</>n (f ) , /> (£:;

+ Z( - 1 ) m~\Fru®<pn(f} , p (Er) X (&tr. „) «o»(8^«-i Cg*) >^* (0

+ Z Z (-1) ""fj(0 <«'(tor.») ^«®9>.-i(/O,
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where we have used the same arguments as In the previous computa-
tion.

Similarly, we obtain

dt

= Z (-1) '''ft (0 <P (£,) tfow®^-! (/'), Fjgtf* (g) >
J=l

f o) 0B

n m

j^l k=l

5- S g i(-l)

({'
J«r

(4.20)

Finally, using (2.9) we have

= Z Z ( - 1 ) "*// (0 «^<8H&.-i C/0 , ̂ ®0«

§*) >

(4. 21)

by Appendix (ii).

Collecting together the terms in (4.13) to (4.21), we find that
the right hand side of (4. 12) is equal to

n m
Y V( —]/_j Z_j \ J

zc -
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(4. 22)

Adding (4.2) to (4.11), where the latter equation is cut down
to the range (t,,f), we obtain (4.10) as required. Q

§ 5. Extension to Square Integrable Processes

In (4.10) we take E' = E,F' = F,G' = G, H' = H,v = u, m = n, and g=f
to obtain

y-i

F(0 w®^B (/) > + <Z( -1) •-'/, (0 p (E (0) ̂ (8)̂ -! (/'),

+||Af (0«(8K6.(/) II2] + HG^(8)#.-i(/0 II2}

(5.1)

where we have used the inequalities 2Re<^i, ^^l l^i lP+ll^zl l2 and

HZ ^y||z^«Zll^llz together with the unitarity of 6.
j=i y=i

Let E,F,G, He &*,,„. By Proposition 3. 1 of [2] there exist
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, (Gp)pejr, (Hp)peN such that each EP9 FP9GP9 HptEj/0 (p^N) and

for arbitrary MeB0, /^ X SP, n^N9 ah 8j9r9d^^9 I<j<n9j=i
t n

-i(/0 II2]

}rfr—-^00 (5.2)

Let

Theorem 5.1. For arbitrary Me^,,/e X ^, n^N and T>0, (Mp(t)u

n(f))pt=N converges uniformly in ^ for £e[0,T] £0 <2 /x'mzY independent
of the choice of (Ep)p^N, (Fp) *=*, (Gp) peN, (Hp) P^N satisfying (5.2).

Proof. The argument is very similar to that of the proof of
theorem 5. 1 in [2], indeed replacing M by Mp— Mq in (5. 1) and

rt n
using the integrating factor exp{ — t — \ Zil/Xr) I2^r} yields

o y=i o y=i

[2n\\(Mp(r) -M?(r)

(5.3)

Putting ?z = 0 in (5.3), the sequence (Mptt^u®^ P^N is uniformly
convergent for £e[OyT] by an identical argument to that of [2].

Making the inductive hypothesis that each
is uniformly convergent, hence uniformly Gauchy for £G[0, !T], the
result follows from applying (5. 2) in (5. 3) where we take each

e[09 T] .

The analogous result for (Ml(t)u®<pn(f))peNis proved identically.

A similar inductive argument establishes the required independence
of the convergence. Q
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We define the operator M(t) on S by the prescription

for all t^R+. We denote also by M(t) its extension as an algebraic
ampliation to d%{gpf?. Clearly M(t) is an adapted process, we call

it the stochastic integral of the square integrable processes E9 F, G and
//and write

M(t)={* EdA+dA'F+GdA + Hdt (5.4)
Jo

for t^R+, the adjoint process being given by

AT(0 =

By identical arguments to those used in [2], we see that M is
a continuous process, furthermore the maps t-*M(t)u®<fin(f) are
bounded on finite intervals whence we may pass to the limit of simple
approximation in Theorems 4. 1 and 4. 2, hence establishing the validity
of these for E,F, G,

Let %Jl denote the set of all stochastic integrals of square integrable
processes which satisfy (5.4) with each M(t),E(t),F(t),G(t),

for £<EJ?+ and

Theorem 6. 1 below demonstrates that SK is by no means empty.

Theorem 5. 2 (Fermion ltd formula in bounded form) . SK is a
Z2-graded *-algebra under pointwise operator multiplication and the involu-

tion M-^M\
Furthermore for MI, Af2^SPfl with

we have

d(MlM2) =dMl-M2+Ml-dM2+dM1.dM2 (5. 5)

where

(5. 6)

(5. 7)
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and dMidM2 is evaluated by bilinear extension of the multiplication rules

dA

dA

dA1

dt

dA

dA

dA

0
0

dA1

dA1

dt

0

0

dA

0

0

0
0

dt

0

0

0

0

Proof, The structure of 2K ensures that the right hand sides of
(5. 6) and (5. 7) are well defined. The result follows from putting
M=M{, M' = M2 in (4.10) and then applying (4.7)0 D

§6, Stochastic Evolutions

Let Lj^£?2
loc (^=1,2 ,3 ,4) be such that each L/(0 is the ampliation

in J^ of a bounded operator Lj(t) in §0 such that [Lj(t)u, t^M+] is
bounded for each u^$Q.

Hence, by the principle of uniform boundedness, there exists
such that

y for each t^R+ (j=l, 29 3, 4).

Let C = max [Cj9j= 1,2,3,4}.
Our aim in this section is to establish the existence of a unique

solution to the stochastic differential equation

dU= U(LldA+dA^L2 + L^A + L4f)
U(0)=I (6.1)

and to establish conditions on the L/s under which each £7(0 is a
unitary operator in 3tf .

We establish the existence of a process U= (U(t)9 t^R+) satisfying
(6. 1) as the limit of the sequence of stochastic integrals defined
inductively by

£/o(0 =/

[/ (t) =/+f [Up-^dA+dA'pWp-dLt+Up-iLJA + Up-iLddt
Jo

(6.2)
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for all
Up is well defined for all /?, by the same arguments as used in

[2], with adjoint process given by

U1
t(f) =/+

Jo

(6.3)

The following estimate is crude, but as we shall see, effective.

Theorem 6.1. For arbitrary p>Q9u^09f^X^9n^N and t>Q we
j=i

have

|
p\ Jo j=i

(6.4)

Proof. This follows very closely the argument of [2], whence we

argue by induction on n and on p. By (5. 1) we have

S f n
2l/j(T) \2d?}, and the

0 j=l
unitarity of 6 we obtain upon integration
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,-i (r) -C7,-a(r))I,4(T)K<8^.(/)inrfr. (6.5)

When ?z = 05 we obtain from (6.5), for all

by iteration.

Now, making the inductive hypothesis that

-) \2dr] (t + n-}

n-i ..

we find that the first term on the right of (6. 5) is bounded above

by

'2fi-U»+*-1C2*nfc-2 S exp (t + [' I]0''
/>! >=i Jo i=i

\ 'exp(\' |/,W 1%) |/,W
JO Jr

X
fe=l

(6.6)

Now, integrating by parts

* exp(\*
o Jr

= T exp(\'|/y(j) I
JO Jr

whence (6. 6) Is bounded above by
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2«2exp [t +

. (6.7)

Similarly the second term on the right hand side of (6. 5) is
bounded above by

Sn—l^CV-^-W"-* £ exp [t + (' Z« \fk (j) | %}
(/> — i)! j=i Joi=i

X\ 'exp( \ ' !/,(
JO Jr

XexpZ

<3n2 exp U +

(6.8)
/=!

and the third term on the right hand side of (6. 5) is bounded

above by

os=i

X ' '\' exp(\' I//
JO Jr k=l

< n exp {f + Zl/,- ( J) 1 *ds] -

(6. 9)

Adding together (6.7), (6.8) and (6.9) we find that the first
three terms on the right hand side of (6. 5) are bounded above by

exp {t + El/, (j) |

p\

o >=i

S ll/yl!2 (6. 10)
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where we have used the binomial theorem to deduce that

~l(t + n-iy+p(t + n-l)*-i]<

So substituting this into (6. 5) we have

<exp {f +
Jo j=i

. (6.11)

We proceed now to establish our result by induction on p.
When /> — 1, for all «>0 we have

< exp [t + E I/,- (J) I %} (n + 1 ) 2" (< + n) C26»
JO J = l

X|M|2 exp E||/,H2

as required9 where we have used (3. 4), (1.4) and (1.7).

Now making the inductive hypothesis in (6.11) that

our result follows from the observation that
2"
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A similar argument establishes (6. 4) for the case where Up(t) is
replaced by £/J(0(/C>0). D

From (6.4) we obtain

whence

(6. 12)
p=l

exists and defines an adapted, square integrable process.

To see that the limit indeed satisfies (6.1), we use (6.10), the
Schwartz inequality and the uniformity of the convergence in (6. 12)
on finite intervals of R+ to show that, for each

= 0.

Theorem 6.2. The solution U of (6. 1) is unique.

The proof is similar enough to the proof of theorem 6. 2 of [2]
to make repetition unnecessary here. Note however that our more
general estimate (5. 1) frees us from the requirement of [2] that
U be of definite parity.

We will now investigate the conditions under which U defines a
unitary process.

Let us, first of all, assume that U is indeed unitary whence it is
bounded and U, ULj(j=l,2,3,4) are uniformly bounded on finite
intervals, whence by Theorem 5. 2,

dU+dU'dU
+dA'Li+Lyt

+ Lid A + dA*L2 + LjlA + L

where we have used the relation U*U=I and (1. 10) together with
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the odd and even parities of dA and dA respectively8

Using the independence of the stochastic differentials established
in Theorem 5. 1 we find the conditions

=0 (6.13)
LI+L|Z,2=0

whence we may take

Lt=iH~LU

where L9 W and H are arbitrary, unitary and self-adjoint processes,
respectively.

Theorem 6. 3, A necessary and sufficient condition for the process U
to be unitary is that (Li,L2,L^L^) be of the form (6.14).

Proof. We need to show the conditions (6. 14) are sufficient
n m

Let M^eBoj/e x«^,£e X «$*,«, me JV. From (4.10) we have
j=i k=i

which together with the initial condition U*(Q)=I ensures that f/f is
isometric.

To show that U is an isometry, we again use (4. 10) and after
some simplification, we obtain

(f ) , U(t) v®<]>m (g) >

,-i C/0 ,^ CO »®^
.7=1
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We define bounded operators Km.tt(f,g; t) on f)0 by the prescription

and using the unitarity of 6 and (1.11) we see that these satisfy
the (weak sense) ordinary differential equations

2 E(-Dm/y(0[^(O^.-i.-iC/',^;0

*=1

0 (6. 15)

together with the initial value

where Dn(f,g) is the determinant of the rcXra matrix whose (i,j)th
entry is </f,^-> (which follows from E/(0)=7).

We prove by induction onN=n + m that Kmtn(f,g\ t) =8mtHDH(f,g)I.

When ^^O^^m^O and all except the last three terms in (6. 15)
vanish. Since 6 and JP(0 are unitary, it is easy to check that
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^0,0 W = .£0.0(0) =/ is the unique solution to the given initial value
problem.

We now consider the case N=l and take n = Q and m = l. Here
(6. 15) reduces to

and using K0iQ(t) = /, we see that the unique solution to the given
initial value problem is K^(f) = *i,o(0) — 5i§0/=0.

A similar argument holds for the case n=l and m = 0,

We now make the inductive hypothesis for TV— 2 and N— I so
that in particular we require that

#„_!,„_! (/',£*; 0 =3m-l.n-lDH-l(f',&I

*„.„-!(/',£ 0 =dmiH-lDH-l(f',g)I

and

Km-i.n(f, gk; 0 =dm.l,nDn-l(f9g
k)i .

It is necessary to make the inductive step in the three cases
m = n,m = n — l and m — \=ne

When m = n, (6. 15) yields

The first term vanishes by unitarity of W(f) and K n i n ( f ^ g \ t ) =
D n ( f j g ) I is the unique solution of the resulting initial value problem
by the same reasoning as used in the case N=Q.

Similarly, the cases when m = n — I and m — l=n follow by the same
argument as that used for N=l.

Whence U(t) is isometric, as required,, Q
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§7* Applications to the Construction of Dilations

Throughout this section we will take U to be the unitary solution
of the stochastic differential equation

-~^LL^dt') (7.1)

with L, H and W constant processes in JB(ljo). Since U is a stochas-
tic integral we have t/GE«£/c, furthermore it is unitary, therefore
bounded whence the map t-*U(t) is strongly continuous from R+

to

For T a contraction on JC2(U), its second quantisation F(T) on
r(L2(R)) is defined by

for /<E XL2 (12),
3=1

In particular, /^(T) is itself a contraction and we have F (T*) =
and F(7T) =T(T)F(V) where 7 is another contraction on

Let {St,t^R} be the strongly continuous unitary group of shift
operators on L2(R) where for each f^L2(R)

(Stf}(s}=f(t-s} s9t^R. (7.3)

It is not difficult to verify that [F (St) , t GE R] is a strongly continuous
unitary group on F(L2(R))*

Let 3?=\®r(L2(R)}. We write {r(^)^e/2+} for the strongly
continuous unitary group on $ given by

We will use the same notation to denote these operators acting on
the subspace Jf of & (where they are still a semigroup).

Theorem 7.1 (c.f. Theorem 7.1 of [11]). For arbitrary s,

(7.4)

Pn?0/. For ^e!2+ write
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By analogous arguments to those used In [11] we see that V=(V(t),

£eI2+) is adapted and it inherits continuity from U, Thus we may

consider the stochastic differential equation

By Theorem 4a 1, for each w,y<E]§0,/e X ̂ ?g<E X <$VeJS+ we have

O

3 = 1

m

«<8)#.(/ ) , ̂ (r) »//- - - Z - L ® ^ (g) >} rfr

(W-I)

+ XX -

(7.5)

where we have used (7.2) and the even parity of

Replacing each /y(r) with S,fj(r + s) (i<j<n), each gs(r) with

•S'jft(r+-y) (!<^<m) and making the substitution r- »r — j in (7.5)
we obtain

fi+s w ?w

= \ tS S(-l)w5,/y(Js y=i fe=i



50 DAVID APPLEBAUM

3=1
- 1) "-' S.fj (r

+ Z ( - 1 ) m-*<H(g)^ OS./ ) , IT (s) U (r

-±
2

where we have used Theorem 4. 1 and the isometry of f ( S s ) . Whence
M(t) = V(t) and so V satisfies (6.1) from which we conclude by
Theorem 6.2 that V=U, as required. D

We define a family of operators on $, {Pt,t^R} by the prescription

if *>o
if

Corollary 7. 2B {Pf,^£U} z^ a strongly continuous unitary group on

* (c.f.[8],[16]).

Proof. The group property is a trivial consequence of the cocycle
condition (7. 4) . Strong continuity follows by an e/2 argument from
the strong continuity of the maps t-*"f(St') and t-*Ut. D

Let {Pt, t^R+} denote the uniformly continuous contraction semi-

group on I}o with infinitesimal generator iH — ̂ -LL* and let r denote

the injective isometry from §0 into $ given by

for each

Theorem 7.3. (tf, {Pt,t^R}) is a dilation of (^ {Pt,t£^R+}) in
the sense that the following diagram commutes for all
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The proof imitates that of theorem 78 1 of [2].
Let 'Pt denote the strongly continuous group of automorphisms of

defined by

tt(X) =PtXPl for X^B(^)e

In particular let X^B(§Q) and j be the canonical injection of

into B(tf) given by

Let [Tt9t^R+] be the norm continuouss identity preserving, com-

pletely positive semigroup of operators on the Banach space

with infinitesimal generator J£P[14] given by

Theorem 7, 4. (B(^J~loEQ, {Tt9t^R}) is a dilation of

{Tt9t£=iR+}) in the sense that the following diagram commutes for all

where j~l is the left inverse of j (c.f. [7], [13]).

The proof is again a slight variation on that of Theorem 7e 1 in

[2].

We remark that neither of the dilations constructed in Theorems

7. 3 and 7e 4 is unique since both of the semigroups are independent
of the choice of coefficient W—I of the gauge differential in (7. 1)0

Furthermore these semigroups may also be dilated using the boson

stochastic calculus of [10].

§89 Fermion Poisson Processes

Let §1 be the Z2-graded vector space comprising stochastic in-

tegrals of the form

where, for each t^M+, the restriction of F{(t) to J)0 is an even
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operator (i = 1,2, 3,4).

We denote by 37 the automorphism of period 2 of SI given by

y(X)=X when X is even
7](X) = (0<&I)X when X is odd .

(We remark that the restriction of 27 to the ^-graded ^-algebra
is a ^-automorphism of period 2.)

In (7.1) take L = iT(W-I)0, and //= -^l(W-W^, for

so that we obtain

du=u(w-i}di)(n1} (8.1)
where Ul= (II1 ( t ) , t^R+) is the solution of

+ldt

with /7'(0)=0 .

Clearly, by Theorem 5. 2, (dniy=dlll.

Furthermore substituting these values of L and H into (7. 7) we
find that (8. 1) yields a cocycle for the dilation of the semigroup on
-B(ljo) with infinitesimal generator

g(X)=l(WXW^-X) . (8.3)

Equations (8e 1) to (8.3) indicate a striking resemblance between
the process Ul and the realisation of the classical Poisson process in
boson Fock space over JL2(JS+)[10] whose application to the dilation
of semigroups of the form (8, 3) was discussed in [3]0

II1 is clearly not a classical Poisson process, for although it is
self adjoint, it does not commute with itself at different times,,

We investigate this process more closely in the spirit of [10] by
taking §Q=C so that ^f = L2(R+) and 00 = L Let a be a measurable,
locally bounded function on R+.

By Theorem 6. 3 we may take W in (8. 1) to be the process given
by

W(t) =eia(t\ where we note that only in the case where a is
constant may we dilate the semigroup (8.3).
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Now applying Theorem 48 1 in (8. 1) with n = m = 0 we obtain

<^o, (£7(0 -I)<p*y = l f U(T) (e^-Ddr
Jo

which upon iteration yields

™-!)^} . (8,4)

The right hand side of (8. 4) is recognizable as the expectation
rt

of exp(i \ adXt) where Xl is a classical Poisson process of intensity
Jo

I (c.f.[10]). We feel that this justifies our calling I7l afermion Poisson

process of intensity L

Remark that the integrated form of (8. 2) yields the following

"central limit theorem"

/-+(#, (0 -It} =0(0 +/-M(0 (8. 5)

where (/>(t)=At + A] is the Clifford process of [5] which plays the

role of an anticommuting analogue of the classical Brownian motion

process,

Note

Since this paper was written3 [18] has appeared in which the
main results of § 5 and § 6 are obtained in a much more elegant

and economical manner, Furthermore, in the light of these new
resultss it becomes immediately apparent why classical and fermionic

Poisson processes share so many of the same properties,,

We give the proofs of the following formulae which were used to

establish Theorem 40 2

"(i) 2 S ( - 1 ) '-'+'+i ( 7&)dr) 7CO& (0

X
n m
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a!) -si; i;w) E* c - D »»'**({' j
/=! fc=i t=i p=l Jtr

o/ (i). It is sufficient to establish the following for ra>

J=l i=l

= |i(-D
J'/y(0«(tor.»)^-i(/0. (A. 1)

We prove (A. 1) by induction, noting that when w = 23 the left
hand side of (A. 1) becomes

=/2 (0 fl ( tor.t)«
f (/l) ^0 -/I (0

as required.
More generally we find that

i(/0 - (A. 2)
j= t,,

Now
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/(0 fnn+l

by the inductive hypothesis and (L3) e

We also have by (L8)

g(-«" jt

— ( —l)n+1/n+1(0«(Xco.o)^n(/w+1) (A. 4)

and the result follows upon substituting (A. 3) and (A. 4) back into
(A, 2),

Proof of (ii). By a slight generalization of the proof of (A.I)
we obtain for each l<k<m

± I^C-D'+'d' /cto&torfr)/y(0^-2(/^)
y=i 1=1 )tr

= Z (-1) B+y"1/y (0 * (to .«>£*) 0»-i(/'") • (A. 5)j=i r

A straightforward inductive argument establishes the formula
m m—l

— — Zi 2] (W(~~l)*+j^fc(OflT(to r,»&)^jn-2C?*) (A.6)
fc=l J=l r

and the result follows from (A. 5), (A.6)9 (1,11), (1.9) and (2.3)0
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