Publ. RIMS, Kyoto Univ.,
23 (1987), 57-100

Mixed Problems for Singular and
Degenerate Hyperbolic Equations

By

Akisato KuBo*

We start with a simple example. Let us consider the mixed
problem for a weakly hyperbolic equation of third order:

A= (D,—at'?D,) (D}—tD%) +any smooth lower order terms,

where (¢, x) (0, T) XB,, D,=—i(d/0t), D,=—i(0/0x) and a is a
positive constant #1. Since the principal symbol of 4 is of the form:

Ao(z, §) = (t—at') (2 —18?),

Ay(z, &) =0 as the equation of & has the roots &, with positive
imaginary part and £L,£%2 each with negative imaginary part for
Imr<0. For the mixed problem considered to be well posed the
number of boundary operators to be given should be equal to that
of roots £ of Ay(z, £§) =0 with Im&>0. Therefore to the above example
we may give a boundary condition u|,-o=g(t), for example. Then
in our paper it will be shown that there exists the unique solution
ucH..((0, T) XR,) of the following problem. Since we consider ¢D;
and ¢¥?D, instead of D, and D, respectively, we write A[u] as
follows.

Alu] =t73{ (D, —at**D,) ((tD;)*—1*D}) +lower order terms}
0.1) =f(t,x) €H.((0,T) XR,),

U|m0=g ) EHL(0,T),

all t-derivatives of f and g are zero at t=0.

Now we consider the problem in the more general situation.
Let P and B,(k=1,...,m,) be given by
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0.2) P=P(t, x,y;tD,, D,, D,)
=3 3 (1, x,y) (D) DID}

s=0 it+it|v|=m—s
with a,0#0, ag=1, a real number #>0 and

0. 3) B,=B,(t,y;tD:, D,, D,)
"%
=3 X tUrPOpk,(¢,9) (¢D) DID;

s=0 iti+|v|=r,—s

with 8¢, 0=1 for 0=<r,<m—1, r;#r;(i)).

We assume all the coefficients of {P, B,} are smooth in R,XR"

Furthermore we impose the following assumption (A) on {P, By} :

(A)-i For the set K={({, x,9) ER.XR"; |(¢, x,9) |=Ty} all the
coefficients of {P, B,} are constant in R%'\K.

(A)-ii P is hyperbolic with respect to ¢, that is, the principal
symbol of P is of the form:

0.4 Paltyxyné ) =IG—t4 56 n), ¢7)cRxR

where 4;(¢, x, y; €, 1) are real and distinct. Hence when (¢, x, ) R,
Imz<0 and n=R*Y, P,=0 has only non-real roots with respect to
§. Let m, be the number of roots with positive imaginary part.
We denote such roots by {£5(¢, x,9; 7", D) }igigm, -

(A)-iii {P, B} satisfy the uniform Lopatinski’s condition on x=0,
that is, for the Lopatinski’s determinant

B > i=1
0.5 Rty 0, =det(gl § BulnbEDET ey
T (6—85,0,050, ) 7

Ry(2,9;0,7) #0 holds for (¢, y) €[0, c0) xR*, Im# =<0, pR** and
(0) 77) 75 (Oa 0)3 WhCI‘C Bko(ta .))s Dt, Dy; Dx) = Z b?ju (ta _y) D;D:ch;

i+itivi=r
In case of the above example, P(i,x; D, 5,,) =#£A[u] = (tD,)*—
a(tD,)*(t¥*D,) — (tD,) (t**D,)?+a (t3?D,)*+lower order terms and in (0. 4)
actually we have m=3, P3(¢, x;7, §) = (134) o (7, &), £=3/2, Ay=a&, 4,=§,
A= —&.
Now we consider a flat mixed problem for {P, B,} satisfying the
assumption (A).
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Plul=/fo(t, %, ») in (0, 7) xRz,
(0. 6) Bilul=gw(t,»), 1=k=<m,, on (0,T) xR,
((F. M. P.)) Jo and gy are flat at t=0.

Recently Sakamoto [10] considered the following flat mixed prob-
lem for a degenerate hyperbolic equation of order m:
A5 Dy D=2 T au(t, D@D D2
j=0 it+|v|=m—j
with
n=0=n=... =Tm1<Tm1+1== .o :Tm1+m2<° e <7’"‘1+-~-+"'z~1"'1
=eot =lmpteam (Mt Fm=m), x= (%', x,) ERIX R,

and t€ (0, T7), with the boundary operators on x,=0:

&, (t, s Dy, D)) =z§ LI )T D) D
= 1+ =1‘k—l
with ;= (7547541 /2, 1<k<m/2 and m is even. & has more degene-
racy than our operator P at t=0 and {#,} are boundary operators
associated with /. Then she gave a sufficient condition for the
problem to be H.-well posed and then showed that in case ;>0 the
problem is C~-well posed. However her result in [10] is not a full
extension of [8;9] in such a sense that on the equations some
stronger conditions are assumed in [10] than in [8;9].

The aim of this paper is to obtain a complete extension of
Sakamoto’s result in [8;9] without assuming m to be even. We
shall consider such mixed problem with flat data at ¢=0 in §1~§4
and with data which are not always flat at /=0 in Appendix. Our
main result is as follows,

Theorem 0.1. For given flat data: fo,€H.((0, T) XR%) and g,<
H..((0,T) XB*™) (1=<j<m.) there exists the unique solution u of (F.M.P.)
in Ho(0,T) XRr), For any integer s=0 there exist a constant C,
integers N and N;(j=1,...,m,) such that the estimate

Ol oy, SCULSIE

Ho, y(O.T)XRY)

4
+ % llgwll?,

m=lmr s+ (O T) xR”"l)}
J J

holds.
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Remark 1. C, N and N;(1<j<m,) depend on
[|DD:D5a; (b, %,0) || for k+I+ |p|<max(2,m—1,5), i+j+ |[v|=m,
|| DADEDS g (t, #,9) || for k414 || S5, i+j+ [v] Sm—1
and ||DiD5bk, (8, 9) ||, for I+ [p|Ss+m—1—ryit+j+ [v[=n, |SE=m..

This theorem can be applied to the following type of operators.

Example 1. (Toricomi’s operator)
D} —t (D4 D2) =t72{(¢ D)2 —3(D%+ D3) +lower order terms)
in (¢, x,9) €0, T) xR, xR with the boundary operator on x=0:

aD,+#2(—D,+bD,) =t"{atD,+t¥*(—D,+bD,)}
(a,bER', a>1b]).

2. (Euler-Poisson-Darboux operator)
D?— Z'i D2 +¢71D, =t {(tD,)?— Z” (tD,)2+tD;+lower order terms}
i=1 ! i=1 ¢

in (¢, x’, x,) €0, T) XR*" !X R, with the boundary operator on x,=0:
aD,+ (—D, +bD,) =t {atD,+t(—D, +bD,)}
(a, bERY, a>>b)).

Our method is summerized as follows.
By the substitution s=¢*, P is reduced to an operator:
P=s"P(s, x,y: Dy, D,, D,) =s™{P,,(s"*, x, y; £D,, D,, D,)
3 (5%, %,9) s DDID})
=1 ititivism—
where aj;,(f, x, y) are suitable smooth functions and P is regularly
hyperbolic, however the coefficients of P are not smooth. In the
same procedure, we define B,(s,y; D, D,, D,). Our method is based
heavily on the energy estimate for {P,B,. Following [8; 9], the
desired estimate is derived from estimates for some singular integral
operators with a parameter y>>0. In [8; 9] for this purpose sufficient
smoothness was needed for their corresponding symbols. However
in our case the symbols are not smooth at s=0. To overcome this
difficulty we must investigate the properties of the operator H(¢,; 7,
D,, D,) with the symbol A (¢,9; 7,7, n) satisfying (g(¢) D,)’'Dyhe B, ., (R
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G+ Iv|=1) where %, is 2 non-regular symbol class introduced in
Sakamoto [7] and g(t) =eZ~(EK) and is equal to ¢ in a neighborhood
of the origin. For such singular integral operators we obtain some
basic estimates, for example,

lle™™* (Hho Hy— HiHy) Ag (@) ull 12, SC {1 +7) 1g (D) e7ul] 2
+lle™"ull

(R™
LZ(R")}

where H, and H, are such operators. By making use of these esti-
mates we can derive the desired estimate.

This paper is organized as follows. In the first section the
existence and uniqueness theorem is proved from an energy inequality
by an approximation method. In Section 2 we shall investigate the
property of the singular integral operators with non-regular symbols
and in Section 3 we derive some basic estimates for them. The final
section is devoted to the proof of the energy inequality for (F. M. P.)
used in Section 1. In Appendix we consider a degenerate hyperbolic
mixed problem with data which are not necessarily flat at ¢=0.

The author would like to express his sincere gratitude to Professor
T. Kakita for suggesting the problem and helpful discussions. Also
his thanks are due to Professor R. Sakamoto and Professor H. Uryu
for their valuable advices.

§1. Existence and Uniqueness

We introduce a new independent variable
(1. 1) s=1i*
(see [4]). Then we observe that
t(0/0t) =ki*0/0s,
(z=«xt"z")

where 7’ is a dual variable of 5. We denote a (s, x,») =a(¢, x,»). Then
we have

P(t’ Xy V5 Ty Ea 77) = Z . dijv(59 x,)’) Sj-H”i (’CST,> iEjvv
1=0 i+jt+|v|=m—1
=Sm(Z dijv(ss xa_y)s_l("ﬂ-,) isjﬂu)'

1=0 itj+|v|=m—1

Thus, there exist smooth functions aj;,(¢, x,») satisfying (A)-1 such
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that
P(t,%,9; Dy D,y Dy) =s™{ 3 &;,(s,x,9) (£Dy) DD,

itit|vl=m
m

+ Z Z dz{iv(ss x,y)s"D;'D,{Dﬁ} -
1=1 i+j+|v|=m=1I
Then we introduce a smooth function &6(s) such that b6(s)=s in
{Is|=T+1} and constant in {|s|=7+2} where T, is appeared in

(A)-i. Put, for (s,x,9) R, XR,
P(s,%,9;D,D,,D)= >  d;,(s,x,9) (.D,)‘DiD?

iti+iv|=m
m
~7 _l 7 i
;35 (8, %, 9) b (s) T DiDD;.
1=1 itj+|vl=m—I
In the same procedure we define

Bk (S,}’; Ds, Dx, Dy) = Z I;{'zjv (S,)’) (IfD,) ‘DiD;

itit+p=r;

+3 > W(s,)b(s) DIDIDs.

1=1 it+j+ipl=r;=1

j

Then (F.M.P.) can be reduced to the problem: for 7,=T%,

Plul=b6(s) ™fs(s, %, ) =fi(5,%,9) in (0, T7) XR%

1.2 o -
(1.2 { Bi[ul=b(s) *8u(s,9) =gu(s,») on (0, Ty) X R,

Now we prove the existence of solution of (1.2) by the com-
pactness method as follows. Let ss=(s®+e)¥2 for a non-negative
parameter ¢=0. We write a.(s, x,9) =a(s,, x,). We define {3, g}
as extensions of {fi, ga} such that {fj, #a} have compact support in
{s=0} as function of s and satisfy for any fixed rEN,
| ﬁHHr(R,;_H) =(]| [fl”Hr((o'Tl)xkr_;)_y

(1. 3) {

1861, SCNil ety

We consider the following hyperbolic boundary problem:
14 P.lu]l =f(, x,5) in RXR:

-9 { Bi[ul =3u(s,») on RxR!

where P,(B,) is the operator defined by replacing d, b(s) 'd);,
(5?;'::, b(s) —15?1{”) by e, be(s) "’ﬁ,f,-»,a(a%-»,s, be(s) —ll;?;u.s in P(Bk) respec-
tively. We easily see that the compatibility between the data in (1. 4)
holds and that the uniform Lopatinski’s condition for {P,, B,]} holds
from (A)-iii, i.e., for Lopatinski’s determinant
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R, (s, 9; k7', 7) =dct<L§

Bios (s, ys 67, & ) &7
27fi k0. df i k=1 my

I (6~ &5 (s., 0,35 7', )

})noflRE[qu holds for Imz’ <0, R, (z/, ) #(0,0) and (s, y) ER"
Therefore the existence of unique solution u.EH,-14,((0, T¢F) X Rr)
of (1.4) is guaranteed for any fixed e (see Sakamoto [8;9]). Then
since for s=T¢ all the coefficients of {E, Bka} are constant, considering
especially the hyperbolic mixed problem (1.4) with initial data
Diu (T§F, x,9) (j=0,..., m—1) in (T, o) xR%, we have the solution
u. of (1.4) such that ¢ "u.eH, ., (B XE%) for y>7, where 7, is
some positive constant independent of e, To prove the existence

theorem of (l.2) we apply the following energy inequality which
will be established in the later section.

Theorem 1.1. Let v be a non-negative integer. Then there are a
constant C and an integer N such that for any solution u. of (l.4) the
Sollowing inequality holds:

2 2
(1.5 el lHD+m—1((o' TP R =ClIA IH»+N+1<<°-T1) xR

.y
2
+,-Z=:1 ”gnHH

m=1=r ;+ 841420 TD xE"h

}

where C and N are both independent of ¢=0.

Now a family of solutions {u} ese, forms a bounded set in the

space H,-11,((0, T7) XR%) since the right hand side of (l.5) is
independent of e. Thus there exist a sequence {4, };-12... and a function

usH,,,—1((0, T)) XxE%) such that Us, U weakly in H,,,-,((0, Ty) X RB2)
as k—oo. Since for each & U, is the solution of the problem (1.4),

making k-—>co, we observe Plu] =f; and Diu(0,xy) =0(=1,...,
m—1) respectively by usual arguments.

Next we shall show B;[«] =ga1(j=1,...,my) according to Kimura
[2]. For ¢(s, ») €2 ((0, T1) XR*™), we get

S:l S n—1 ng[us] (S) .y) ¢(S, )’) d)’ds
R

:_STl S L L ax(X(x)B,-E[us])gﬁ(s, _y)dxdyds
0 Jr**Jo
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T

- SO S n—lS:{ax(X(x) ng) [UE] + X(x) Bfﬁ[a"us]} ¢(S, y) dxd}’dS,

where y(x) €C~(RB,) is equal to 1 in a neighborhood of x=0 and
vanishes when x>1. Taking account of Bj[u]=gy,(j=1, ..., my),
we have as e—0,

T
S 1 S (& (5,9) ¢ (5, ) dyds
R"™

0
T

- So 1 S ,,_18;{3"0(31') [w] +B;[0.u]} 6 (s, »)dxdyds

T

--{ SS 8, (B, 1) ¢ (5, ) dxdyds

- So SRn—l Bilul¢ (50)dpds

which concludes B;[u]=g; in 2’((0,Ty) XR*™Y), j=1,..., m,. There-
fore we see that u satisfies (1.2). Then the uniqueness of solution
follows from (1. 5) for ¢=0.

§2. Singular integral operators with a parameter ;>0

For a multi-index a=(ay, aj, ..., a,1) = (a, a’), we write D=
D;°D,. Djf::: Let 2 be either R% or R*'. We define, for I an

open interval in ¢, #, _,(IX£) with a positive parameter 7 as
follows. uss#, -,(IX2) if and only if ¢y belongs to H,(IX£2)
with the inner product defined respectively by

i) in the case for 2=R?

(8, _uxo= s e SIXQ e™*'D}, D} fD},Dig dtdxdy
S g>x’m._r(1xag) = mgm SIxage'Z”.Df,.flTyg dtdy.

ii) in the case for =R,

(/, 9 H =y IXD = 2. SIXQ e™'D}, fDg didy.

Ivism

For the both cases the norm are denoted by

”f”?;fm‘_r(1xm= (s f).;f’m,_r(lx!))
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<<f>>§fm,_7umm2<f, f>.#m._r(zxam-

In this section and §3 we treat the case ii) only. We denote there
Hom -y (BXRB*™) by #, -,. In §4 the case i) is treated. Then we
denote (f’g)sr,,,__,mxze'},) and <f,g>x,m._rmxk,,-1) by (f,®w,_, and
fi®w, _, respectively. In particular for the both cases we denote
Ho.-r by H_, simply.

We say that a(¢, y; 7, 7, ) is a regular symbol of degree m if it
satisfies the conditions:
i) a is homogeneous of degree m in (7, 7, 1) ER, XR",
ii) a is infinitely differentiable in (¢, y; 7, 7, 7) €ER*XRK,.XB" and
satisfies

sup | DEDDEa(, p; 1, 7 1) | <o,

¢, »eRrR
.epeLl”

where L*={(y, z,5) 5" |y>0}.

Then we define a singular integral operator for a regular symbol a
(2.0 a(t,y;1,Dy Dy)u

= (2x) “"e”S e D (¢ sy, T, 77)3/'7\‘u (z, n)drdy
&

for ueCy(R"), following to Sakamoto [8;9]. When we regard
a(t,y;7,7,7) as a pseudo-differential operator for any fixed y>0,
Ay, 7, 9) = (P+72+ |7])Y* essentialy play the same role as a weight
function. Therefore the same arguments as established for the pseudo-
differential operator with a weight function hold for a(s,;7, D, D,),
too. We represent the symbol of a singular integral operator a(Z,;
7, Dy, Dy) by o(a). Then the following results hold for a(X’) where
X'=(,9 717171 (sce Kumano-go [3]).

Lemma A. Let a(X’) be a regular symbol of degree k. Then for
any real number s

) o(at,p; 1, Di, Dy) £(y, Dy Dy)) =a(X) £, 7, 1),
ii) for a non-negative integer m, there holds

7(a(t,3 7, Dy D)) £ (7, Dy DO
=2 Db O™/} ((3/0) (@(X) £ (r, 7, )} +a.(X),

where A=G-mD=hg (X7) &80,
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From Lemma A it follows immediately

Lemma B. There exists a constant C such that for any uEH o144 -,
it holds

[La @, 35 1, Dy, D)) £, 6(8) Jullse_ <Cllull s _,,, _ -

We introduce the norm of a(x) €%, :

laly @n= 2 sup [Dia(x)|

1ISTal L pn
2. sup | (D7) (1) — (Da) (x2) |/ | (k1 —x2) [#71
wi=al ;. erti=12
Let us consider in detail the singular integral operator associated
with a non-regular symbol with a parameter y>>0. Let I' be an
open conic set in R'XR* that is, " is an open subset in R!'XRr*!
and for any (x,6)&I’ and s>0 it holds (x,s0) I, and let
H(x; 7, 7, ) be homogeneous of degree 0 with respect to (7, 7, 7).
Now according to [7] we introduce a symbol class for I'y;={(x;7,7,7)
er; |, o ) |=1},

B ={Hx;7,7,7) | |nga.k<r1)= > sup | Hu(x 7,7, 7) |

wISe] I
lul+isk
su 1H/wi(x1; 7% 77) _Hpui(xz; 7% ﬂ) [ <oo}
. — —[al 4
}gilri[gg (7 T el i=12 [ (1 —x5) |57

where H,,;(x; 7,7, 7)) =D4D2DiH (x;7,7, 7).
We denote %, (R*XL*) by #,.,and #,(R") by %, for simplicity.
Let Y;(y,7,7) be a normalized real spherical harmonics of degree

l such that S 2(1, 7, 7)do=1. Let us write a base of the spherical
harmonics ost—th order as {Y,,(7,7, M)} m12. 20>

Let H(X')e#,,(«=0). Then there exists an extension I;V(X’)
of H(X’) such that H(X’) is homogeneous of degree 0 with respect

to (7,7, 7) €R*! and that H(X') satisfies
21 HI, =C[H]|,

o (BTXSH = 0. s (B™XLT)

(see [7]).

We put a,,(¢, ») =S ﬁ(t, 57T 0) Yiu(y, 7, p)do:  Then we have
Sﬂ
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2.2) I-}(X’) =a(t, y) + zz;m Aty ) Y1 (7,75 1)

Now we define the singular integral operator H (¢,y;7, D:, D,) with
HX)e%#,, for a=0, keN: for uc & (R,

2.3)  H{,;7 Dy Dut,) =H(t, 7, Dy D)u(t, 5)
RS
= > e"a,(t,y) (2r) "‘S @Y, (1,7, n) e " u(r, n)dedy
120,m n

R
where we write a,(¢,9) for a(s,y) and Y, for the identity operator.
We have

@4 |1 Hulloe_ <C|H g, ,Jlull_.
By the mean value theorem
2.5) H(X")=H(X") +rH"'(X’)

where H°(x") =H (¢, y; 0, 7, ) and H*(X’) is homogeneous of degree
—1 with respect to (7, 7, 7).

Proposition 0. For constants 0<a<1, 0=0 and 0<p assume that
c(t, ») satisfies the following properties:

¢(t, ) =a1(t, ») +e2(t, )
*) le: (2, 2) 1g,<tts i=1,2
BB ety ) gy, <0,
a1ty 3) EB 140
Then it holds for ues#_,, i=0,...,n—1 and H(X)ERB ..
(2.6) || (cH — He) Db @) ulle_ SCCA+7m)1b (@) ulle_ +ollulle_)

where ¢;=(0,..., T, vee50) and h is a sufficiently large integer.

The proof consists of two parts. We begin with the proof for the
case when H(X’) is independent of (¢, y). We shall prepare two
lemmas.

Lemma 2.1. There exists a constant C such that for us#_,,

D 71, Dy D)l <Cllullr_,

i) 7llH;(r, Dy Dy)e(t, pulloe_, 7lle (¢, 9) Hi(r, Dy Dy)ulle_,
=Crpllulle_,
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where H(r,7, 1) = (zt, 7)) "H' (1,7, 7) for j=0,...,n—1.

Proof. i) By the definition (2.0)
~
HIE(r, Dy D ullie_ =1\ # ZLHT G, 7, 1) a5, D) 2
A~
=7||H*(y, 7, ) e "u(z, ) || 22 (Plancherel’s formula)

< 1 lllulle_,

Since yH'(X’) is homogeneous of degree 0 in (7,7,7), we have i).
ii) In the same way as in i)

7l Hlculloe_ <Crllculle_ SCrlulue_,

and similarly

PllcH L SrellHulle_ <Crellullue_.

Lemma 2.2. There exists a constant C such that for |B|=1 and
uEH_,, we have

) (cH = H) DGO w)lle_ =C 6@ ulle_, +0llulle_)-
i) 7llcHYDE GO W e, vII(He)DEGHw)|le_,
=CA+rwb@ulle_,+0llulle_)-

Proof. We write 2= (¢, ») and b(t) by ¢ for simplicity.
i) Put D.={(z,z2)eR*"7||(z—2") |>¢} for 0. Then we
consider the expression according to Calder6n-Zygmund [1],

e "V (cH'— H%) D8 (zqu)

= limSD (c2(2) —ea(2)) Y (2 —2") DA (¢ ™) dz’

g—0
+e¢ "0 (e, H'— H',) D? (z),

where Y (z) is the kernel of the operator H’ homogeneous of degree
—n and belongs to & (R"\{0}) and its mean value over the sphere
|z]|=1 is zero. By integrating by parts we have

e "O(cH — H') D8 (zu) =e¢ " °(cyH'— H') D? (zq)
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+ li‘?{gp Y(z—2") (Dkey(2"))e ziudz’
E—> e

@7 + SD (DEY) (2—2") £ (¢2(2) —€2(2")) zqudz’

+ SI (z—2")|=¢ Y(z -—z’) (62 (Z) —Cz (Z /) ) e_Tz(l’Z(’)u‘Sida}

where the last integral is extended over the surface of the sphere
|(z—z") | =¢ and B; is the i-th direction cosine of the normal to the

spherical surface.
Calderén-Zygmund [1] proved for ue L*(R")

1T —T¢) Diul| 2 1, = Cllul|

L2rH = L%(R™

where ¢(2) E#1+.(B") and T is an arbitrary singular integral operator
with symbol independent of z. Since ¢,(z) € #1440, we have immedia-
tely

2.8) || (e.H®— H;) D% (244) lle_, =Cll2otll_ .
Observing that |z0D%¢,(2") |<const. 8, by Theorem 2 in [1] we

see that the first term of (2.7) represents a function of z whose
L?>-norm does not exceed const. 5|lu||3f_7.

Since z0=— (z2—2z")o+20, we have the second term of (2.7)

=SD (= 2o (DEY) (z— 2"y e ey () udz’

+{ | Cm@ —ziente) (D) 2= e ude
:I1 +Iz.

Taking account of |2e6:(2) |g,,,<<0, we have

n—1
(2.9) 2002(2) —2a62(2") =2 (2= 23) (2002(2)) 5, +6(2, 27)
where |b(z, 2') |<Cd|z—2"|*"*. Hence, by the same method as used
in the second, third and fourth terms in (44) of [1], we have
[122]] 2 m, = GOl ]| _ -

(R™M =
Similarly, noting that |c;(z) |<const. d, we have
HI1HL2(R,;)§05HUHW_T-

From (2.9) it follows
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|§ £ (0(2) — () 2Y (2 —2")ubido |

I(2=2")| =€

gC"S &7 u(—ew+2) | 1Y (ew) |do,

on

where o= (z—2")/e. Since 'Y (ew) =Y (w), we see that as ¢ tend to
zero this term has a limit whose absolute value is dominated by

const. 0le u(z)|. Therefore we have

(2.10)  |[(eaH"— H'3) DZ (2" |l _, < Collullsp_ -
Gathering these results we obtain i).

ii) Noting that |zo(Dic)u | < | (D)) zou | + |20(DEe) u<C (|zu|+d|ul),
the proof of ii) is carried out using Lemma 2. 1.

The proof of Proposition 0. By combining i) with ii) of Lemma
2.2 we easily see that it holds for :=0, ..., n—1,

”(C(t, )’)H(T, -Dt: Dy) —H(T, Dt, Dy)c(t,y))ny"(tu) ”‘#‘T
<C(A+7 lulle_, +0llull_)-

Next we consider the case where H(X’) depends on (¢, ). Let
expand H(X’) in spherical harmonics in (2. 6) and apply the above
estimate to every term of the numerical series. Then by the well
known properties about {Y;,} we see that they are dominated in

# _,-norm by a convergent numerical series (see [1][5]). Therefore
we have Proposition 0.

Remark 2. In case ¢;=0, by the same arguments as in the above
for ¢,=0 we have

|| (cH—He) D, (1w e, SC((L+71 b (Dulle )

which corresponds to the conclusion of our Proposition for d=0.

§3. The Estimates for Singular Integral Operators
with Some Non-regular Symbols

Now we consider a non-regular symbol H(X’) of the form:
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) HX')=(H,+H,+H,) (X,

(k) i) |H, 1.%'2,; | Hs |-%,2h<”’
i) 160 Hslg,,, ;<0
iv) H,(X') EB1iam

where H,(X’) and H;(X’) are non-regular symbols of degree 0 with
0<<p<d<cy,<<co and H, is a regular symbol, and 0<la<l, ZEN.
Actually it will be shown in §4 that such a non-regular symbol does
exist. We assume 4 is chosen appropriately large in the following
argument.

Lemma 3.1. For any Hi(X') EB o0 (0=a<l) and any k&N, there
is a constant C such that for uEH 4

@1 [(HeH—HH) 2 @)ullp_
=C(A+rmllb@ulle, , _ +ollulle,_, )

where HioH(t,9;7, Dy, D,) is a singular integral operator with symbol
Hy(X")H(X").

Proof. We write b(t) by ¢ for simplicity. If H(X') is a regular
symbol, by the representation H, given in (2.2) we have
II(HloH—HlH)A"tuH”_T
<5 an 1| (Vi H = YinH) £,
=const. ||tu||3¢k_1._7 (see [8;9D).
Therefore it suffices to prove (3.1) for the case where H(X') =
H,(X")+H;(X’). By the expansion formula we get
H,(X') =3 afn(6,) Yin (7, % 1)
and
Hy(X') =% i (1,0) Yin (7, 7).
We note that from (**)-ii), iii) and iv) in the above it follows that

11) ’ lallum (ts_y) lgu, ‘a?m(t,y) |.@0§Gﬂl—2h+("/z)
(¥*) iii) ’ |¢ad, (¢, ) lw1+a§05l‘2h+<"/2>
iV) ’ laf‘maa }’) |ﬂ1+a§01_2h+(n/2)
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(see [11 [5D).
Let Ri(ra 7, W) = (T; 77)://1(7, 7, 7}) (7':09 ceey l)
and R, (7,7, 1) =7/A(,7,1).
First we shall prove (3.1) for k=1. We have
I (H1°ﬁo—'H1]§a) Atu”a?_,
n—1 .
= lZm I !;) (a(l’mHl - Hla?m) Dt;YlmRitu + (a(lsmHl - Hlalam) r (YlmRTtu) ””—T

=Crultulle_,

n—1 .
3.2 +2 X {Il(alnH1— Haaln) Dy (LY iR, 810) |15 _,

(3.8)  +l(aluth—Hial) DY imRi) |lr_} -

Lemma B implies that (3.2) is dominated by const. 5”"””—1' By
using (2.10) (3.3) is dominated by const. 5””“;?_7-

Therefore we have

3.4) ||(Hi°H;—H\H,) Atu[|x_T§C(T#Ht””;f_T+5||u! l.;f’_r) .

On the other hand, since H,(X') E#1iqun(R") on account of
Remark 2, (x%)-ii)’ and iv)’ we have similarly

(3.5)  |[(HH,—HyoH,) Mtullp_ =C (147 |ltulle_ .

Combining (3.4) and (3.5) we get

(3.6)  |[(Hio(H,+Hy) —Hy(H,+Hy)) diulp_ <C((1+7p) |ltulle_,

+allulle_)-
When £=2, we have
| (Hyo (H,+ Hy) —Hi(H,+ Hy)) Atull_,

3.7 <||(HyoHs— H H) A[A*7, t]uH#_T
+|](HIOH,,—HlHa)AtA"‘luH;f_T
+l|(HIOH#—HlHﬂ)/I(/Ik‘ltu)llaf_r,

applying Lemma B to the first term of (3.7) and by (3.4) and (3. 5)

we have

<CA+7mltulle,, _ +rldlle,, )
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Hence we complete the proof of Lemma 3. 1.

Lemma 3.2. For u€ ', -, there exists a constant C such that
| CH—H*) 25 @)l o SCCA+7m 6@ e,y +0llull,_, )

where H* is a formal adjoint operator of H with respect to (z,7) and H
is the singular integral operator with symbol H(X').

Progf. 1Tt is sufficient to prove for H=H,+H; by [8;9]. The

proof for k=1 is done as follows. By expanding the function ﬁ,ﬁ.—ﬁa
in spherical harmonics, we have

”(ﬁﬂ‘l‘ﬁa"HZ—'H?)Ab(t)u”;r_r

<5 (511 (Vin (@20 — @+ @) Vi) DERS ) L,

N Vin(atn+a5) — (@t a5) Vi) TR, (0w lp_}

§C((l—l—r,u)Ilb(t)uii‘#_r-l-BHuii#_T) in the same manner as in

deriving (3.6) in Lemma 3. 1.
The case for £=2 is carried out as in Lemma 3. 1.

Lemma 3.3. Let X' EB1onN Brrazm and assume | H | g, ,<p. Then
Sfor ueH -,

) (L=l SCA+7m)llullse,, _ -
i) [[(*A =R ullp_ SCA+rmllulle, , _ -

Proof. In case k£ is even, we obtain for
n—1
A (y, Dy, D,) = (rz—i—D?—f—Z1 D3 )

we obtain

(3.8) |1~ 28l <Clltllr, , .
For k=1 we have
n—1 . -
/1.%”—-.%’/1:._20: {R.(Diyot) + (R# —HR,) Dij} + (R, H# —H#R,) 7.

The same method used in deriving (3.5) in Lemma 3. 1. leads to
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(3.9 (A=A ) ullop_ SCA+71) Ul _ -
Also in case £ is odd (=3), making use of (3.8), (3.9) we have
| (2= L)l S| (A= A) £l +Cllulle,_,
‘ SCA+rm) |lulle,, -

In the same manner we have ii).

Lemma 3.4. For u€t,, ,
(HLATS (@) —b (@) HAA D ulle_ SCpllulle,_,  (v=p, 9).

Proof. Since we have H,=3 a4 (t,9) Yiu(7,7,7) and
lm

n—1
/1=i=Z° (=, DR (77, 0) +1R, (7,7, 1),

on account of (*x)-ii)’ Lemma B give the desired result.

Lemma 3.5. For ucs#,—, -, the following estimates hold
) ({6 () Hod— 46 (0) H A7l SCC+7) 6@ ulle,_, _
+allullory ),

) || (Hi A~ AHFYb (0 47 SCCA+7m 6Oty ,
0l -

Proof. 1) It is sufficient to prove i) in case k=1. We have
n—1 .
(4b($) Hs—b(t) Hyd)u= go R;(Dib(t) Hs)u

+§—: (Rb (£) Hy—b(t) HsRy) Diiu+ (R;b (¢) Hy—b (8) HsR,) yu
=L+1,+1,
From (#x)-iii) it follows that ]]Illlif_r§05]|u|]f_r. In the same way as
in the proof of Lemma 3.4 we have
el S 11 (R Ho— R 7b (13l o, +Celul e,
from (%) -ii)

=CGellb@ulle_,+ollulle_)-
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Also we have
n—1 o
L, £C (T (ReHy— HoR) DEG (1) L, +0llull_)
n—1 e.
=C {go(ll (R;H;—R;oHy) Diy (b (D)) | _,

+1[(R;oHy— H3R;) Dy (b (£) u) e _) +ollulle_}
SC(U+7) b @ulle_+olldle_) by (3.4).
ii) In the same manner as derived (3.4) we can easily check that
| (RHE — Rio H) Db ) 0) o SC((L+7) 116 @ ull_ +3llulle_)-

Thus ii) follows by the same argument almost identical to the
preceding one.

Combining Lemma 3.4 with Lemma 3.5 imply

Lemma 3.6. For uci#, _,
|[(4b (2) Hs— HpAb (8)) A7l op_ <C((A+7m b (D ullse, -
+ollulr, )

Let ue sy, —,(RX2) with Diu|,.,=0, 0=j<Fk for £ in §2. We
note by Lemma 14. 1 in Ohya [6] we can see () usH )y -, (BX2).
Then we set

=l
Viw=A+7rp {”ull.z#k_l__T(RxQ) + EJID:’:“HZ#,:_M_L _T(RXBQ)}
> 170 {llb®) DDLU, _ wxo

i+i+v| k-1

+116(®) " DiDkull% _, , mxom}

and

G(w) =0 >
i+

it+iv|sk

_ —1Hb (O 7 DiDull s, _ wxor+ (L +10) |lullp, _; _ rx0>

The following notation is introduced for our convenience. X means

that the difference between the right and left side terms in some
k

equality is dominated by const. ¥,(u). = means that the difference

between the right hand side and left hand side terms in the equality

represents a function whose #_,—norm does not exceed const. ¢, (u).
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Let Q= %, .. Since we take r sufficiently large and choose g away
from 0 in §4, we may assume for any s>0 7~* is small enough and
¢~ 1<e;, for some constant ¢;>0.

Lemma 3.1'. For H and H, appeared in Lemma 3.1 and uEH 41, -,
with Diu=0 (0=<j=<k) on t=0, there holds

((HyoH— HyH) fru, QA7) 0 A0,

Proof. Since we may assume that it holds £y '<1 and p0=ce,
we have by (3.1)

| ((HyoH — HyH) Ay, QA+~"y) |
= | () V2 (Hyo H— HLH) By, (1) "047) |
=Cam 7 A+ ullse,_, _ + G 76 @) Tulll,_, _,
+redlullle, ., )
<C(U+7) llullse,, _+77016(0) ulll,_, ).
Therefore the lemma is proved.

As in the proof of Lemma 3.1’ the following results hold from
Lemma 3.2~3.6 for u defined in Lemma 3.1".

Lemma 3.2’.

((H—H*) £, Q) oo ~0.

Lemma 3.3’.
D (L= L) 4, QL) A
) (L — By, QA7) o A0,

Lemma 3.4'.
CLCHAb(8) —b () (HL A} b (8) ™y Q) o A0,
(v=p,0)
Lemma 3.5’.

({6 (2 Hod— 4b(£) Ha} 47 (&) ~u, Q47 0) o ~0.
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Lemma 3. 6’.

({4b(£) Hy— HoAb (£)} 475 (£) “'u, QA1) o ~0.

Lemma 3.7. (Garding’s inequlity) Let H= (H ) yxy be a hermitian
mairix of order N whose elements Hj, are singular integral operators with
o(Hy) satisfying (**). Assume that for a positive constant 0, o (H,) =0,
where H,= (H,,) yxy and Hy,, is a regular part of Hy.  Then there
exist positive constants 61 and C such that for u="'[uy,...,uy]EH#Y_, (R

Re (HAu, M) 5 _ Z 01| Au|% _ —Cllull%_,

Progf. Taking account of (**)-i), we obtain
Re (HAu, Au) = Re (H,Au, Au) #_, T Re ((H,+ H;) Au, Au) #_p
Since taking g so small that 0<p<8 Re((H,+Hy) A, Qu)y_ is a

harmless term for our estimate, we have the desired estimate by using
Garding’s inequality.

Remark 3. We consider a special case where H,=0 in (*¥),
Then the condition 6=y in (**) and (**)-iii) can be removed and
we note still the same arguments as in the above go well for =0
and 0<lg, too. Thus we see that all the results in this section
hold for 6=0 in this case.

Remark 4. Even if in Lemma 3. 1'~3. 6" we replace Q4*'u by
77O % (¢) “'u, it is seen that these lemmas remain valid. In fact,
for instance, under the same hypotheses of Lemma 3.1’ we consider
((HyoH — H H) Atu, ¢ 7*QA (2) ') ”_T———A. Then, rewriting

A= ((rw) ™ (Hyo H—HH) Fu, (r7p) QA7 @) ) r__

as in the proof of Lemma 3.1’ we have [4|=ZC?,(u).

§4. Energy Inequality

Now we shall derive the energy estimate (1.5) and subsequently
the estimate (0.7). In this section we write s defined in (1.1) by
¢t again for convenience.
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We proceed the following argument according to [9]. Let
X=(t, x, y; 7, p) ER* X C*'XR** with Imr<0. For a fixed X=X,
we write {€,..., &9 for the real roots of the equation P, (X, &) =0
where &1#£) (i#j) and each £} is an m;-tiple root. Let X move
aroud within a sufficiently small neighborhood U(X,) of X=X, Let

H,(X, &) =,}}i($—$,-k(X))

where {£;;(X)}=1,....n, denote the set of roots & of P, (x, &) =0 satisfying

€=€" at X=X, Let us also consider the roots & of P,.(X, &) =0

in a neighborhood U(X;) that are complex at X=X, and satisfy

Imé>0, and call them {&f(X),...,&".(X)}. Similarly for Imé<0
™0

we may define the set {7 (X),..., E;o_(X)}. Set

E.(X, & = jr;il(e-e,* X)).

Therefore P, (X, €) is decomposed into products of smooth functions
as

Puc(X,8) =11 H,(X, ) B, (X, O E-(X, §

in U(Xy).
Consider the following polynomials of degree m—1:
Pu(X, &) = (=& ILH(X, ) B (X, ) E-(X, §) o1
Qi (X, =L H(X, HE-(X,6)  *=0,...,mi~1),
Q,,'(X,S)=5kIIIH,(X,§)E+(X,€) (k=0,...,my—1).
If m; is even, then mj=m,/2. if m; is odd, then mj=(m;+e;)/2
where ¢;=sign ((d/07) h""’;) (Xy).

Now we use the following notations: Lz(X) =linear combinations
of {Bu(X, 8),...,B, X, )}, L= {the polynomials of degrec m—1 in
£}, L7(X) is the subspace of L generated by {P,;(X, E)};:;+h I
Qi o, .

N

Proposition 1. (Sakamoto [9] PP. 142) Let Xo= {Imr=<0, (¢, x,9, 1)
eR™}. If R(Xy) #0, then L=L;(X)®L7(X) in U(Xy) N {Imr=0,
(t’ x’.y’ ”) ERZ”} °
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In this section we write (f,g) %_T=( 5o - and
,—7BXRy
Sr@w =S g>.at"0._r(RxR""1)'

Lemma 4.1. For 0<a<l assume a(t) €C°(R,) and t~*(tD,)’a(t)
eC'(R,) for j=1,2 and a(t) is constant for t=T, Then there exists
a constant B with 0<B<1 such that for >0

G@)Dy’a(td™) eB,R) (j=0,1).

Proof. We take B a irreducible fraction whose denominator is odd
and 0<{f<l. Then we have

(4.3)  (9/0t%)a(tYF) = (0t/0t*) (dtc/ o) 3/ dt.a (L")
=BTt T) (7T 8OO (8,070 e (1)) .

If B is chosen so that —f+4a/£>0, then we have

| (8/3t?)a(t) |<oo.
Thus we have by the mean value theorem for ¢4, {,eR

la(t:F) —a(t) | SCltf—1£].
Since |t —tf|=C|t1—t,|% the proof of this lemma for j=0 is clear.
Next since from the assumption it follows that there holds ¢D,a(t)

e€#°(R,) and t™(tD,)% () € #°(R,), we can prove in the same way
the case for j=1.

Lemma 4.2. For 0<a<l assume that a(t,y) is constant in {(¢, »)
ERL||(1,) | 2T4) and =*Di(D) a(t, ) €CY(RY) for j=1, j+ |p| <2
and Dta(t, y) €C°(RL) for |u|<2. Then there exists a constant B such
that b()a(tM*, ) E RB11p

Progf. From Lemma 4.1 it follows that for (¢, y,) eR*(i=1,2)
[ (D (b () @) (41, y1) — (D (b(£) 4e)) (Ea o) |
n—1
§C{[h—-tzlzﬂ-}-gll}’li“‘)’zilzﬂ} vz

n—1
<2C{|t—t 12+ § | yu—yaz P2

Since |D4(b () a(tYs,p)) | 2,00 for [#|=1, we have by the interpolation

theorem D“(b(#)a(t:’",»)) € %5 Since we see immediately &(z)a (¢, )
€%, the lemma is proved.
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We set X' = (&, x,9; 1, 9, 1) ER** X R, XR". Let U be a neighborhood
of Xy= (to, %096 70, 00, 70) in R*1XL*. Let symbol a(X’") be difined
over U and be homogeneous of degree m in (7,0, 7) €R,XR" and
let ¢ be the regular symbol of degree 0 such that ¢=1 on some
Us(€U) and its support is contained in U. Define

d(X") =a(X") $(X") + (1= (X)) 4"(1, 7, ) a(X0).

Then we say that d(X”) is a standard extension of the local symbol
a(X"). Let ¢(¢) be a smooth function in ¢ such that supp ¢={|¢|=C}
and ¢() =1 in {|t|=C/2} for a constant C>0.

Now restrict our attension on the symbol 4.(X") =d,(X") defined
for a local symbol a(X") €#,..(U) (0=2,3,...) which is constant in
Un{Q, x, y) eRXR*||(t, x, y) |=T X L. Then for a constant
0<<p<l we express A.(X") as

4.9 4:(X") =a,(X") +a,(X") +a(X"),
where
a,(X") = a,(X7) ¢ (X") fds(X'é) (1—¢(X"),
a,(X") = (4:(X") _ﬁs({(g)) (X)) (1—¢(@®),
a(X") = (G:(X") —a.(X0)) $(X") ¢ (@)
with Xi= (f,, %0, 90 7, 0, 7). Thus if we take U(X4) small enough,

by using Lemma 4. 2 for an integer #=0 there exist positive constants
0 and B<l such that it holds ¢<é and for 4=Ri*'Xx L™,

184l @y pems 1]y 0 <t

oy | S5 160 s, IDIDIOW D)l gy <0, for ivejitIv] S0

a,(X") is a regular symbol, a,(X") ER,...(4) and a, and a; are
regualr in {(¢, x, ) ER*| |t | =Ty} X L*.

Let S,={a(X") |a(X") satisfies the properties of a in (x*x)} and
denote a symbol class defined by replacing @ by a, in the definition
of §, by §,. Then we remark that §,O8, for sufficiently large o.
Now we denote a(X”) by a;(X”). In the following argument we
take £ appropriately large.

If a symbol P(X") =p,(X") +p,(X") +ps(X") satisfies (*x), we say
P(X") is a symbol of the type A(X"). Then we can observe that
symbols of the type A(X") satisfy (xx) and for any fixed ¢, yER,
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Lemma A and B hold for singular integral operators with these
symbols, Therefore all the result in §3 hold for these operators. We
use sometimes the following notation in this section. If P(X", &)

k

=3 p;(X") ¥ A (y, 0, n) where EER and p;(X") is a symbol of the
i=0 k

type 4(X"), we write P,(X", &) =_Zop,-,(X") g=ifi (v=r, p and 9).
From now on for any local symbol our concern is only the

operator with its standard extension. Therefore we write a(X") for
d(X") simply.

Lemma 4.3. Let p(X") and q(X") be symbols of the tvpe A(X").
Then for kEN and uEH y41, -, with Diu|,.o=0 (0=;=Fk), there holds
(4.5) (plu, q70) o A (A7, q )

Progf. 1t suffices to prove (4.5) for k=1. We begin with the
proof of (4.5) for the case where p=p, and g=¢,. We denote b(#)
by ¢ for simplicity. By using Lemma 3.6’

(bolu, qau) s _,
(4.6) ~ (Aot ™y qot) s = (pot, Aot ™)
+ (Lo 81670, Aiqet™u) o+ (Aipst™u, [gs, £1070) .

By the representation p,(X") =IZ':na,fnY,,,, given in (2.2) we have
ALpy 8] + =2 (E R (Do) [V s 01 + Ain’)
where A,,,,-=§:R,- (@S DY im t1°) +7R, (a2, [Yimy t]:). We observe
the second term of the right hand side of (4.6)
= (8 ALps, 116U, gt ™)
=(§n{f:§lR,-(D:ja,m) [Yim, (167 u+tdint ™0}, qot ™)
le'Zm G2 Ayt ™, 7258 0) #_, (by Lemma A-ii))
’LIZ’" (2 Apt " u, 7% 5u) #_, (by Lemma 3. 4)
~0 (by Lemma A-ii)).

In the same manner we have the last term of the right hand side of

(4.6) A0. Hence we obtain



82 AkisaTo KuBo

(bodlty qots) s~ (ot Atqst™0)
L(pgu, gsAu) »_, (by using Lemma 3.6%).

Since the proof of (4.5) for other cases are more easy, we omit it.

Lemma 4.4. For non-negative integer m let H(X") and Hy(X") be
symbols of the type A(X") with p=max(m,2) where o is appeared in
(***). For an integer [=0 and uE H 111, -, with Diul,o=0 (0<j<m+1),

4.7 | (Hy A" ()" Hpd'b (8) =" — HyA™e Ho ) ul|p_ S Chram ()«

Proof. We denote b(¢) by ¢ for simplicity. We carry out the
proof by induction on m. (4.7) holds for m=0. In fact, by using
Lemma 3.1, we can easily prove it. Also (4.7) for m=1 is valid.
In fact, from Lemma 3.6 it follows that

1+1 1+1
H At H Aty = H H, At A u= H H A,
Since HydoHsA'=H o H, A"}, by using Lemma 3.1 we arrive at (4.7)
for m=1.
For an integer mo=2 suppose (4.7) is valid for m<m, and any
integer [=0. Then we have

HAmo+1 m0+1H Ay (m0+1)
=H1/1mo (Tz_'_zl Dzi_{_D%) tmoﬂ H,;Al (t—(mo+l)u)

by Leibniz’s formula

——H]_Amo—l mo—lH 2 (t-(mo—l)u)
+HAm0-1tm0_l[t2 HAH_z] (t—(m0+1)u)

n—1

+Z Z( > AT ~1 m°+1(D2"H,,)/1’D’ t (m0+1)u)

w)}

—(mp+1)

+ A (7 ) (D D £

~(mg+1)

+ H A9 (—i (mo+ 1) b’ (£) Hy+tD,Hy) D, A (¢
=I1+Iz+13+14+15.

u)

Set 2(—i(mg+1)b'(¢)Hs+¢D,H;) D, A'=H{*P, Then we have by Leibniz’s

formula
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ao C!o]

e, SC 5 5 3 1IDL (" (DI HF) DT ) e,

lalsmg—1 j=0 i=0

setting

ag—i
—f—i —j—i . = :
Zot“o '(D:‘o 'H,;(HD) D;=H"(z+1+t>
i=
for 0<i<a,,

(4.8 <G 3L Aoy,

lalsmy=1 i=0 -7

HIDFHFH (7T ||}

applying Lemma A-ii) to the first term of (4.8)
SC{Pnyrin (@)

ag mo—ag+i

Tda & B I () A e )
repeating the process from (4.8) up to here
= C¢mo+z+1 ).
Similarly we have
Zle_, SChminw) (=3, 4).
By using Lemma A-ii) we have similarly
ollp_, =CPmyr14a(u) .

Therefore we get

mg+l mo+l = (my+1)
H A ¢ Ho't 7
my+l+1

~ HlAmo—ltmo—lHdAH_z (t—(mo—l)u) .
By the assumption we have (4.7) for m=my+1. Hence we have

completed the induction.

Remark 5. In case [=1 by Lemma A-ii) we have
HlAmtm+1H6/11t—(m+1)u

B Anem (H A= — i (1) <—aa?Ha/1’>t‘(’”+1’)u

m+1
E+H1/1’"0H5/1’u (by using Lemma 4.4).
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Lemma 4.4’. Under the same assumption of Lemma 4.4 without
imposing Diu|,oo=0 (0= j<m+I1) on u there holds

(4.9) || HyAmH Ay~ HyAmo H A's] o SCA+7) lulig,,, -

Proof. By Lemma 3.3. we have
HHI/I"‘H#/I’u—Hl/l"‘oHﬂA’uH#_T
S| HH A — Hio H A"l +C 147 [lulle
=CU+rmlllle,,,, _,(by Lemma 3.1 with 0=0).

m+1-1,—7

Proposition 2. Let
P(X", &) =&m+ P (X)) ™ +... + P, (X"
with P;(X") =p;( X)L (1 <i<m) and
QX" 8) =Qo(X)E™ +. .. +Q pa (X))

with Q ;(X") =¢;(X") A (0<i<m—1) where p;(X") and ¢;-,(X") (1=<i=m)
are symbols of the type A(X") with p=max(m,2). For uEH p1,-, with
Diuli=o=0 (0=j<m)

4.10) (P, Q%) _ — (Qu, P*1) o Ri<CU,, Up>op_,

where C(X", &) =Q+PQy1+... +P,Q.,
and U,='[D" ', AD" 2y, ..., A" W],

0 0 00
%le---Qm-l 0:0,...0m5] loaf °
L R X R I T X B ARREE L N
T o ol -
Qn-y v 0 Qmiees 0 Qmet o0
0 ... o0 | 0 . . . 0
. -0, . :“Qo
Q,-= . ' 0 , Qu=| - : %
O—Qo..*Qm_g . b B ) :
0 Qm-1 0—-0Q0—01.. —Qn-

Proof. When p;(X") =p;(X") +$:,(X") and ¢;-(X") =¢;1,(X") +
gi-1,,(X") (1=i<m), by the same procedure to Theorem 1 in [9]
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p. 126, we arrive at (4. 10) using Lemma 3.3,3.3" and Lemma 4.4’".
Let us prove (4,10) for p;(X")=p;s(X") and ¢;(X") =¢;-1,:(X")
(1=i=m). We prepare the following lemma.

Lemma 4.5. Let q(X") be a symbol of the type A(X"). For
jtlal|<1, 0<i<m—1 put F,=DiD([ADr " gilu) (v=p,3), then
there exists a constant C such that for uEH piy, -, (B with Diul;oe=0
0=j<m), it holds

”Fv“.;f’_réc¢m(u) (l)=/,t, 5)-

n—1
Proof. When i is even, on account of Ai=(*+D?+% D%)"* we
i=1 !
have

[ F5] |.#_T =Cohn(w).

When ¢ is odd, using Leibniz’s formula, we have

Fy= (g5 —q5 4) DiD A7 D2y
= (Ags —gi Db () DiDg A Dr7 (b (1) )
=0 (by Lemma 3.5-ii).
In the same way we have using Lemma 3. 3-ii)

1Fullor_, SCpm ().

We return to the proof of Proposition 2. We denote b(¢) by ¢
for simplicity. We have

m m—l : : : :
(41D (P, Q) =3 3 (buoso Dty DU g8 y)

m m—1

"\n'/z Z (pm—i.GOQm—l—iﬁAm—iD;u: D;;Am—l—iu) H

i=0 j=0

where we write pos for the identity operator. In fact
1) in the case of i=m,

F,. ;= (Dfu, DA™ gy _1_; su) #_,
= (gm-1-5.0D7u, DA™ o — <Dy, [DIA™, gy slu>ar
+ (D7, D[ DA™, gh_i_j.s]uw) #_

Since
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KARLDIAI, gy TSl SCIIDIA™, ghoyoTullte,

by using Lemma 4.5 we have

Fp i~ (qme1-;,sD%uy DiA™1~7y) >y
il) in case i<m, we have by Lemma 3.6’

F; ;= (pm-isA" " Diu, DiA™gx_\_; su) #_,

A (AP A" TIDE (M), DEATI g 50) #_,
4.12) = (Atp i s A" DL MU), Grmrs 8 DIA™ T 0) #_,
+ (tpmmi, e A™ DL (), ALDIA™TY gy s u) P

Since by Lemma 3.4 we have

1Lt fmos, s DL Ml B <7470l

m=1, -7’
taking account of Remark 4, from Lemma 4.5 it follows
the second term of (4.12)
Il(pm—i.ﬁAm_l_iD:ua A[D:Jru’ 9:—1—:'.6]”).#_7

m

~0.
We have by Lemma 4.4

F i.i'(n' (Gm—1-7,0°Pmi.aA™ " Diu, DiA™179y) 4

Thus we arrive at (4.11).
In case i=j, integrating by parts and making use of Lemma 4.3
we have
F,~i {[<Om-i.6°Gm1-5,6A" " Di™u, DA™ "y>,,
+...
(4.13) + <Pm-i,6°qm-1-7,64™ ' Diu, Di_l/lm—iu>.;f_r}
+ (P09 m-1-3,6A™ ' Diu, Did™"'y) 4 .

We have for i<m—1 by using Lemma 4.3

the last term of (4.13) ~ (P s9Gmor—;s/A" " Diu, Didn1=iy) ,

by the reverse procedure to ii)
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(4.148) R (Mtgpyes s IDIE ), phoy s DIARY

-T

in the same procedure from (4.6) to the end of the proof of
Lemma 4.3

(4‘. 15) o (q,,,_l_,-,,,/l"‘"l"'D,’;u, DiAm—ip,:_i.gu) ‘#—T‘

Taking account of p,;=1 obviously the above result remains valid
for 0<i<m, too. Consequently by repeating the above procedure
interchanging ¢ and j, we arrive at (4.10) for the case where
P(X’, &) =Py(X", &) +&" and Q(X’, &) =Q (X", &).

Other cases are proved more easily. Therefore we omit it.

In the rest of this paper we denote 6(¢) by ¢ for simplicity.

Set t=0—iy for sR and y=R,.

Following to Sakamoto [9] let us separate the standard extension
of H;(X,§&) into the two parts such that H;(X, &) =H;(X,§&) —
irH (X, §) where

Hi(X,8) = (E—ED™ +hy(X)AE—EM " +. .. +hj (X) 47,
H(X, &) =Hpy(X) E—EM™ ... + 1 () AV,

where £};(X) and £j;(X) are real symbols for 1=<i<m;. Obviously
these symbols have the same properties as 4.(X"), that is, these are
symbols of the type 4(X").

Lemma 4.6. For an arbitrary 0<u<l, there exists a neighborhood
U® of X=X, such that if H; is the standard extension with respect to
U™, then for UEH p 41, WiLh Diyloo=00Zi<m;), there exist constants
C, C, and ¢, such that

m.—1

.
cilulle, _+

T 7
k=m

LD —=EM u>% | -
+ o

+

m; -1
<Cpt % KWD=80Sy A C I Hulfe + Vs, @)

Proof. Let Q(X, &) be any regular real symbol of degree m;—1
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such that
Q(X, §) =Qo(X) E—E " +Q1(X) (E=ED™ "+ +Q0 ().
Then we observe
(H ju, Q,*u) > (Qu, Hfu) >y
= (Hin, Q%) o — Qu, Hi*u) o — iy {(Hlt, Q%)
+ (Qu, H7*u) ”-r}
=il,+irl,.

By applying Proposition 2 to I;, there exists a m; Xm; matrix #; such
that for

Un, =*[ (D= & ™ 0, AD,— &)™ "u, ..., 4770],

11’\J;<';f;Umj9 Umj>.9?’_7.'

It is known in the proof of Lemma 3.4 in [9] that we can choose
Q(X, &) so that for positive constants C and C’ and U =‘[u,,,j_1, o eeylip]
m'-"—l

m;-1 fi
tU#U=C Z+ lug |2—C" 12 E)Iuk %

k=mj

By using Lemma 3.7 we have,

mi-l
(4.16) L=C X K (D:—&MD u>%

k=m; j-l-k' -7
Jm;-"—l
—C T KDY, —CV W)

On the other hand, taking the neighborhood U® of X=X, sufficiently
small, we have

(4.17)  Lzc,|lull% —C A Hull5_ +77¥ 0 ()}

m;-1,-1

This inequality was proved for the case where H; is regular in the
proof of Lemma 4.4 in [9]; the extension to our case is carried out
in the same way taking care that H;(X, &) is not smooth on ¢=0.
Since we have by Lemma 3,2’

(Qu, (HF =H)w) oo~ Qu, TUD—~ 8™ b}
— B (D~ A"
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i (D= 8) ™™ G — A (D~ 8 ™)
in the same way as in the proof of Lemma 4.5 we have
418)  (Qu, (Hf —H))u) o_ 0.

Therefore (4.16)~(4.18) imply that the desired result holds.

Let us separate the standard extension of E(X, &) =E (X, §) X
E_(X, & into the real and imaginary parts such that

E.(X, 8 =E.(X, 8 —iEL(X, §),

where
EL(X, 8 =6" 1o (A" 7 4 e (XA
Ell (X E) —e:t”(X)AEmah_l-i—,, . +emg:”(1Y>Am0:t°
From the arguments for A.(X") it follows immediately that e¢f’(X)

and ¢f"(X) (1=i<m§) are symbols of the type A(X").

Lemma 4.7. For uEmeiH__r with Diul,.o=0 (0=j<m§) it holds

+

mgy =1
Dol SCUE KDY, +rtiBall 4T ),
mg =1, -7 my ~1-k, -
mg =1
i) 7yl + Z LDlu>% <C{r'1HE_u|l§f_ +¥ _w}.
my =1,-1 my —1-k, - 7 )

Proof. We consider
|4 RE ulfy_ = (|42 (B —iEL)ullf_
=By +I A Bl
+i{(Bl, A EL) o — (B, Ea) o} =IF + 1.
By using Lemma 3.3 and Lemma 3.6 we have
4B+ ELullle_ ZIAP QLA ur EL AT |5 —CF ()
gﬂ](E;5+E;,,)A-1u;|§f_r—cwm§ (w) (by Lemma 3.4)

= —C'WmOi ).

Therefore we have
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14-V2E, (u) ||§?_T;T| |EL,A-%| ]}_T—Cwmoi ).
Similarly we get
14 Bl Z 71| B A7l ~C¥ o (1)

Since in the proof of Lemma 3.5 in [9] it was established that

M Bl + A Bl ZCIA 0 —lulle )
my ., — my -1,-

we have
(419)  IZCHlME , |~V ).
Now we represent A7E%, as in the form
A B u=A"F, (¢ ) +G, A () + EL A,
where
F,=[E.A", At] and G.=[t, EL,4"1]A.
We note that by Lemma 3.6 and Lemma 3.4 we have
(4.20) |47 F ot~ ulle_ SCrp¥, . () and
G Al SCr . (w).

Now we shall prove

mE
*.20) (B, B o~ (B, BLl7) 0
+ (B u, (AYF +G A ) >

To prove this, we begin by considering

(Bistty S7F (470) o = (VP (Bod™) uy (P47 FL (7))

mi
~ (At (B A=Y ¢, AF .7 ¢ (by Lemma 3.6)

= (P B A 1, 7V
m:l:
~ (PB4 7 V7F 4t ) #_, (by Lemma 3.4)
my
~0.
We have by Lemma 3.3" and Remark 4

m:!:
(Bt EL)t, AF, (7)) o ~0.
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Therefore we have
(4.22)  (Eiu, 47F, (") )M_T’i(Eiu, APFL (7)) e
On the other hand we have by Lemma 3.6" and Remark 4
(Efsu, GoA7 %t y) #_T’E (At (B ) 7, GoA™% ) #_p

by the same way as used for estimating the second term of the right
hand side of (4.6) in Lemma 4.3

m
~0.
Similarly we have
((Ehr+Eiu, God™ )
= (U (EL+Ei)u, g A7) p_
%,
Therefore we obtain
mE
(4.23) (B, G A7) p_~ Bty GoA7 (170))
Combining (4.22) with (4.23) implies (4.21). From (4. 21) it follows
immediately
m +
(4.2 I~i{ (B, EvA™) p_ — (BLd™, Bl
+2Im (Eu, (AF,+G At ) ”—7} .
We have
(4. 25) [12Im(E u, (A7 F +G. At ) ”—rl
§C(T—111Eiul]§?_7+wm§ (w)).
We denote E A by K, for simplicity. Let
I =i{(Baw, Ktu) o~ (Kut, Ei*) 0 _}.

From Proposition 2 it follows that there exists a mgXmiy matrix
& .(X) such that

mE
'~ —<6.U,, U >,

7o
—T(R )
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Then it is known in [9] that the following inequality holds for
Iz >+ |7]?=1 and U=‘[um§_1,....,uo]

mE-1

_ 0
+U& . (X)U=C k;) lag |2

From Lemma 3.7 it follows that

+
01

(4.26), IF'z—C{ X <Du>% ., +¥ (W},
=0 my —~1—k, =7 my
1

(4. 26) _ 1;20{% <<D£u>>§?’m_

N SO
By the same argument as derived (4.18) we have
(B*— By K)o 0.

On the other hand
(Eiu, (Ki—K)u),p_ = (Epu, (Ki—K)u)p_,
—i(EL, (K2—K)u)

by the same way as used for deriving (4.12) and as derived (4.15)
from (4.14)

mE

~ (B, (K2 —K)w) _ —i(ELAu, (K=K Au)
by the same way as derived (4.18)

mi:
(4.27)  ~ (B, (KE—K)0) e .
Similarly the absolute value of (4.27) is dominated by const.
(r‘1|[EiuH_2,f,_T—*-ZFmoi (u)). Consequently we obtain

1 = | =CQTIEsullle_ +¥ ).

Hence by (4.19), (4.24)~(4.26). and the just obtained inequality
we get the desired result.

Here and in the rest of this paper let u be the solution of (l.4).
We consider the symbol P,.in a neighborhood U(X;) of X=X, as

Pru(X, &) =H H,(X, &) E+ (X, &) E—(X, &) = Hy(X, &) Pu(X, &) =. ..
=Hh(Xs E)PhO(Xy 5) =-E+ (X’ E) Q,(‘)F (Xs E) :E— (X: E) QO— (Xs E)



DEGENERATE HYPERBOLIC EQUATIONS 93

and the corresponding operators with standard extension with respect
to U(X,). Now we introduce a neighborhood of Xy U; such that
X,€U,eU,eU. Let ¢, be a regular symbol of degree 0 such that
supp ¢oCU, and ¢o=1 on U;. Then by Remark 5 and Lemma 4. 4’
we have
Pms¢0uépms°¢0u
=H {(Pyo,,+Pu,) °¢0u‘|'tm1+lplo.a° ¢ot—m1_1u}
= Hw{(Pro.r+ Pro. ) °¢ou+tm1+1Pho,5°¢ot—mh_lu}
g m —mi—
ZE{Qa+Q8) o pauti™ "Qisogut ™™ u)
=F_ {(Q&—{—Q'o;) °¢0u+tm6.+1Q'&,0¢ot—m6._1u} )

s

Let
(4.28) P.(X,8=P,.(X,6 —&m.
Then it holds

|14 By <Cllul

m—l.—r'
We have by (4.28)

m=1 < -1D
<<Dx u>>”—1/2.—7(RXRn_1)=C(HA P”'EuH,}i"_T(R'_"_*'I)_*_Hu”.#m_l__T(R'_fl))'

By using this estimate and the easily proved inequality for jEN:

(4. 29) So g g gcgo Ll
we have
*.30) YV, =C{s > A Di Dl 17 D Dinll )

+ A+ llulle,_, .
+ A+ 147 Pyeuly_ )

s [ [

Now we introduce some notations for convenience. For any integer
k=0, we denote
FPw= > > [ID5*Dally_,

lal+ism—1 |Bl=k

Pw= > X l7'D5*Diull%_,

lal+ism—-1 |Bl=Ek

UPw=_ > = D Dl

al+igm-1 |Bi=k

Then we observe that
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v,w=C {é WP () + TP ) +7¥P )
770 3 G Pl ).

If we take tm"HP,-o,ao ¢ot-mj_1u+(P,-o.,-!—Pjo,,‘)cqiou instead of u in the
statement of Lemma 4.6, using Remark 5 and Lemma 4.4’ we have

mj—l
a); curllPudoull% + Z+ <<ij¢07‘>>.2;2’,,, -
k=mj J '

mj—l.—T
+
mg -1 1 .
SC X (Pudidee, o, +CAr™ X Ol (rt) 7 Preil o _
%=0 m;=1—k, =7 =0 T

3
+re¥®P (pou) + TP (u) +77%0 Z_]z T (u)}

for arbitrary 0<pg<l and j=1,..., k. If we take

t"’(:)E'H

—mE
Qéodet ™ ut (QE+QE) odou

instead of # in the statement of Lemma 4.7, we have similarly

+

mg —1
b) rlQigull,, SCUE (Qfdud,
mo L7 k=0 my =1~k =7
1 ~
+7 ;Z;:') || (38) Pl lgf_r Ll ® (o) + TP ()

3
+77 2 0P @),

o -1-k-7

my —1
O 1IQidulle_ + X Qi
mg —=1,-7 = m
SCO 5 11D Pulle_ +7208 ($0) + TP @
+7719 3 TP W)

By Proposition 1 and combining a); b) and c) we have for sufficien-
tly small g,

S Diga, ,_,  SCIE VNGO Pl

-1-j,-1=

"y 3 .
+j2=l<<Bjo.su>>§f +re¥ (go) +YP @} +ep 07 2 7§ ().

m—l—rj,—r

Since P (1=<j=<h, 0Zk<m;—1) and Q F(0=<k<mfF—1) form a basis
of L, by adding the inequalies a);, b) and c) and using the just
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obtained estimate we obtain

(4.31)  27llgoull%, , -

m=—1 1 ) L~
DI,  SColr LN GO Pl

+gl<<1?,~o.5u>>§f el E (ga) + TP W)}

m—l—rj. -
3
+eg 077! ;=Z; U (u).

By using the following inequality

1 o ~ I ~
GG 2 VG (B Prullle_ + 2 Bi—Boo)w, ,_, )
SCor 7V (u) +Coy 707§ (w)

and (4.31) we have

(4.32)  2—Co)1lldoull%

m=1,—71 m—1—Jj,—7

n :ﬁzif<<D:¢ou>>§f

<Gl B 116D~ Palle + X B, ATEW)

m—l—rj, -
3
+Cor P (u) +c 077 Z‘,z T& (u).

Put A _={(zr,7) EC'XR*!|Imr <0, |z |+ ||?*=1}. We can choose
a finite open covering {U(X,): Xo= (s, X1 Vi3 T M) eKxua} £=1 of
Kx o _ where K={(, x, y) €R*||(t, x, y) |<Ts} and T,=max{Ty,
T#}. Then we consider a partition of unity {¢;}].; crresponding to
open covering and we take every U(X,) so small that for every ¢,

J
(4.32) holds instead of ¢, Put a=3 ¢, For |[B|=s we have
k=1

I[P, D Julll_ <C{TP W) +¥P W)},
([Bsss DiTudle SCHTR @) TP )

m—l—rj. -

Connecting the above inequalities with (4. 32) implies that for every
¢, there exist constants C(k), Cy, and ¢4, such that

m—1
.33, T (E(DDLaVe, ,_,_+@—C® PTIDbdalk, , )
<C®H = (7 B0~ DhPalle_+ TADLBYe, .,

3
FEP W) +7C TR W) +epdr 2 VP W),

Adding (4. 33), for 1<k=] there exist constants G, and ¢, such that
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for C(a) ={151?;§] Ck)
(4.39) QC-C(a)w V¥ (aw)

1 . - iy ~
<Co 3 7 511G~ Db Pullly_+ (DL BuaiY,

e
3
+TD W) +77CI P () +c,0r VP (w).
=2
Now we take g so small that 2—C(a) #>0.

Recalling that the coeflicients of {PE, B,)} are constant in R"“\K,
following to [9] we have

(4.35) 270D ((1—a)u)

= {r—lnnyPsu]|§f_7+ZZ:<<nyB,-su>>§fm_1_,j__,}
+CT®L (w).

Then, by (4.34) and (4.35) we have

(4.36) @-PPWSC T 7 G0 DyPall,

oy - 3 .
+3UDEB Yy, , ) +7TCIR @) et X VP W),

where v=C(a) g+ (Cs+C3) 7. Now we take 7; so large that for any
=7 it holds 2—v>0. Then we note that we can take C; indepen-
dent of such 7. Let M(s) =4(C,+2c,0) (2—v) 143,

Since it was shown in [9] that the solution u of (l.4) is
independent of 7, by integration by parts, it holds

oo m—1
=21t | Dk, 12
Tgoe ’ IEJIIDtu“qu-k(Ri)dt
o m—-1
_ ~278[ 13 =1 )k, | |2
=—1/40/) (" T e DRI,

o m—1
—1/2(8/3y) go Cetry SIDkR, e d

Multiplying the both sides of (4.36) by 2(2—v) 41 by the above
equality we have

(.37 ~1/200/3) (PO ()
— @/ap oo e = Dy,

2
u dt
lal<s k=0 HH,,,_I_,,(R';L) }

+{(IM]+1)/2—2(Cy+c0) (2—v) "1} MU D (y)

~ "t -
=G 3 17 D Parllle_ + 3 1(DLB )y }

m-l—rj,—r
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+2¢,8(2—) MU (1)

We consider

[~ oo wyar
s}

dtdr

2 7
lal+ism—1 |Bi=s LYBxRY

:S S T[M]—Ze—Zrtt—Z Z Ht—ng"l-ﬂDzu”
71 J0
by Fubini’s theorem and integration by parts with respect to 7

22 2
—WS [M];’f(Z) (u)d7’<g [M]w()(u)dr

Integrating the both sides of (4.37) over (y;, oo) the above inequality
implies that we have by the dominated convergence theorem

(4.38) S“S 0 3 Z_HD’*D ull, g ey
7 Jo dl=s h=0

1-#F3)

<Gy zg 79| Dg, Pl _ dy

+ 20 DB, dn.
=N

m——l—rj.

By Fubini’s theorem and integration by parts with respect to y we
have

w [M] m=1 —274t
(4. 39) S ST == > Sy DiulP ¢ dr
0 j=0 a

lal<s k=0 Hy_ g 3R

LZ(R"

[MI+1 o
=c'x { z s Pal

i=0 lalss JO
my m=l-r;

5 R

J (o

_ a+tke,
Ot - £I|D OBJSuHZ l—rj—k(Rn_l)

di}.

Remark 6. If P and B, are the same operators as treated in [8;9],
then taking account of Remark 3 we may take x=1, 6=0 and
0<p<1 all through the above arguments. Clearly C, may be taken
0. Therefore we conclude the loss of regularity do not occur in this
case and so the energy estimate obtained in the above takes the form
of extension of one in [8;9].

The proof of Theorem 1.1. Let us choose N(s) so that 2N(s)+1
=[M]+2. Then on account of (1.3) by using Lemma 14.1 in
Ohya [6] we have
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(4. 40) IaZ ||D‘tza'““2 1 (QTPXER)
<C Z {”D?}'fIHZLZ((o,Tl)xRﬁ_)

lel<s+N+1

+3IDbel,

-}
_1_,j<(o,T1)><R" )

By making use of (4.28) and (4.29) we have for |a|=sand A=1,2...
(4.41) ||D# qu », =C{|| D% Pull?

141 (O.TPXERY) Hy_1(O.TPXRY)

+ X 1Dg"ull?
141=1

Hy oy pp(O.TPXRY)

1.
By using (4.41) for h=1,2,... successively, we conclude that
44 Nully or e, SCUIPaR

Hy_1(0,T)xR%)
a 2 B
+ lalzé:s ||Dtyul[Hm_1(<0.T1)xR'_“_>}

holds.
Combining (4.40) with (4.42) we obtain Theorem 1. 1.

The proof of (0.7). Let us go back to ¢-variable in (l.1) again.
From (4.39) it follows

Srt—mM]w > m_lll(t (m—l)Dt)k+a0Da,u]|2 g
0 IaISkO LY - S
1 a,
gc Z t—m”(t (IE-I)D) ODalt—nmeHLz = t/c—ldt
Ialss i=0 (RY,
4y

—K7 ;

(i e agtk oy, _
Sot N(1+1)|l(t ( I)Dt) 0 Dy +op ’gm”izmnq)ﬁ Lt

i=1 k+|u|§m—1—rj
Now for G=([M]+1)e+25(e—1) +2me— (¢—1), G,=([M]+2)r+
2(s+m—1—r))(k—1) +2r;e— (e—1), let

[G/2]+1 (G>0)
0 (G=0)

[Gi/2]1+1  (G;>0)
0 (G;<0).

In case k=1 by the same procedure from (4.40) to (4.42) we
obtain (0.7). When 0<{t<l, by taking M so large that

e([M]+2) +1=—2(k—1) (m—1+s5),

in the same way we have the desired result.

N={ and N,.={
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Appendix

In §1~§4 we considered the flat mixed problem for a degenerate
hyperbolic equation.

Here we shall consider a degenerate hyperbolic
mixed problem without imposing the flatness at {=0 on data.

We define for a non-negative integer [<m
1
P=P(t, %5 D5 Db Dx, Dy) =§ tl_st-s(ta X5 Vs Dt, Dx, Dy)

+ i Pm—s(ta X525 Dta Dx, DJ’):

s=I+1
Po= > ;%) t PP DIDID}(0<s<m)
i+i+|v|=s

Wlth dmoo'5&0, aom():l and Bk by (0. 3).

We assume that the coefficients of {P, B,} satisfy the following
condition:

i) @;jmy t(i:_l)(.i+lvl)+l—-saiju (Z +]+ 'X) i =m —S, 0 §J§l) , t(lc_l)(i+lvl)aiju
GHj+ |v|Sm—1—1),by, and 79+"Ppk, are in #=((0, T) X Rr).
i1) The indicial equation associated with P is defined by
1
€ (2, x,9) =ZE)2(2—1). co A=—m+1+1a;(x,y)
j=

where a;(x, ¥) =a,-00(0,%,9). Then we assume that € (4, x, y) #0
for any integer A=m—[ (see Tahara [11]).

Furthermore we assume {t"'P, B} satisfy the assumption (A).
Now we consider the mixed problem for {P, B,}.

Plul=f@, x,5) in (0,7) xRy

Bk[u] =gk(t’y)9 1§/€§m+, on x=0

Diu=h;(x,9), 0=j<m—1—1, on ¢=0.

(M.P.)

Theorem. For given h;(x, y) €H..(Rt) (j=0,...,m—1-10), g.(t,9)
EH.((0,T) xR (k=1,...,my) and fEH.((0, T) XR~) there exists

a unique solution usH..((0,T) XR%) of the problem (M.P.), provided
the data satisfy the compatibility condition of infinite order.

Proof. Let u(4, x,») be a smooth solution of the Cauchy problem
{P[u]———f in (0,7) xRz

Diu(0, x,) =h; for j=0,...,m—1—L
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By Taylor’s formula in ¢ we can express u(¢, x,») in the form

ult, %,9) = 5 (/i) (3, 5) + 00,0, %,9)

for s& N. Therefore under the assumptions i) and ii) we can uniquely
determine the Taylor coefficients {u;(x,»)}i; inductively.  Then,

taking account of compatibility condition we can find weCy (R, XR~)
so that Di{(f—P[w]) |;=0=0 and Dj(g,—B:[w]) [;=0=0 for j=0 and
k=1, ..., m,. Hence (M.P.) is reduced to the following flat mixed
problem

t"'Plu] ="' (f—PlwD) =/, in (0,7)XR%
B,[ul=g,—B,[w]l=gw, 1Zk<m,, on (0,7) xR
u=0, 0=;<m—1, on ¢=0.

Thus the proof can be accomplished by using the same technique as
stated in §1~8&4.
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