
PubL RIMS, Kyoto Univ.
23 (1987), 117-181

Twisted SU(2) Group. An Example of a
Non-Commutative Differential Calculus

By

S.L. WORONOWICZ*

For any number v in the interval [— 1, 1] a C*-algebra A generated by two elements
a and f satisfying simple (depending on v) commutation relation is introduced and investi-
gated.

If y=l then the algebra coincides with the algebra of all continuous functions on the
group SU(T). Therefore one can introduce many notions related to the fact that S£/(2)
is a Lie group. In particular one can speak about convolution products, Haar measure,
differential structure, cotangent boundle, left invariant differential forms. Lie brackets, in-
finitesimal shifts and Cartan Maurer formulae. One can also consider representations of

For y<Cl the algebra A is no longer commutative, however the notions listed above are
meaningful. Therefore A can be considered as the algebra of all "continuous funct:ons" on
a "pseudospace SVU(2)" and this pseudospace is endowed with a Lie group structure.

The potential applications to the quantum physics are indicated.

§ 0. Introduction

From the point of view of the theory of groups the passage from
nonrelativistic to relativistic physics consists in replacing the group of
Galilean transformations by the Poincare group. These groups will be
denoted by G and P respectively.

Let g be the Lie algebra of G3 Ai9 A^ , * . , Aw be a basis in g and
CH ttyjy k = 13 2, . . 0 , 10) be corresponding structure constants:

k
Then for any e>0 one can find a basis B^ J52? . . , , Bw in the Lie
algebra p of the group P such that the structure constants C"f/ (z, j"5 k
= 1, 2,..., 10) corresponding to this basis
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are close to Cf/:

|C'J,-C?,|<e

for i,j, k = l,2,...9 10.

Due to this fact nonrelativistic theory can be considered as a

limiting case of the relativistic one and in certain region (small

velocities) the relativistic predictions coincide with (are close to)

nonrelativistic ones. In other words the correspondence princip e

works.

Many theories (especially in elementary particle physics) are based

on semisimple Lie groups. For example SU(2) plays the fundamental
role in the theory of isotopic spin. It turns out that SU(2) (like any

other semisimple Lie group) has the following rigidity property:

Any connected, simply connected Lie group whose structure constants are

sufficiently close to the structure constants of SU(T) is isomorphic toSU(T).

This result seems to indicate that any theory based on SU(2) can

not be considered as a limiting case of a more general theory based

on "perturbed" SU(2) group.

The content of this paper shows that the above conclusion is not

well justified. It turns out that 677(2) can be perturbed. There

exists a one parameter family of objects SVU(2) depending continuously

on ye[-l, 1]-{0} such that for *=1 we have S»U(2) = SU(2) .

However for v<O, S»U(2} is not a group in the usual sense. It is a

pseudogroup i. e. a locally compact (in fact compact) topological
group on which the algebra of "all continuous functions" is not commu-

tative.

The concept of quantization entered physics at the beginning of

this century. Since 1925 quantization consists in replacing commuta-

tive quantities by non-commutative ones. In mathematical language

an algebra of continuous functions on a locally compact topological

space (e. g. a phase space of a mechanical system with finite degrees

of freedom) is replaced by a noncommutative C*-algebra. It is

convenient to consider the latter algebra as the algebra of all "con-

tinuous functions" on some "non-commutative locally compact topological

space". In [3] we proposed the name "pseudospace" to describe objects
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of this kind. Consequently a ^pseudogroup^ is a pseudospace endowed
with a group structure.

The theory of pseudogroups is now more than 20 years old. After
the first papers of G. I. Kac [4] we have the work of M. Takesaki
[5] and a series of papers by Jean Marie Schwartz and Michel Enock
(see [6] for the list of papers).

The main aim of the theory was to construct a category containing
the category of locally compact topological groups and the category
of objects dual to them. The (generalized) Pontriagin duality is then
a contravariant functor acting within this larger category,,

At first the theory was developed in the W^*-algebra framework.
In our opinion it was not a natural approach,, It means that we
neglect the topological structure of pseudogroups concentrating our
attention on their measurable structure. As a result we have to start
with a very complicated notions (like Haar measure which existence
is assumed (not proved)) and axioms which have no direct connec-
tions with the postulates of the theory of locally compact groups.

In the program presented in [3] we pointed out that the right
approach to the pseudogroup theory is the one based on the C*-algebra

theory*

Recently the C*-algebra approach to the theory of pseudogroups
was used by Jean Michel Vallin [6]. Unfortunately also in his work
the existence of Haar measure is postulated.

As far as I know the theory of pseudogroups suffered the lack of
interesting examples. Except the one example of finite pseudogroup
given by G. I. Kac the only examples supporting very complicated
formalism were locally compact groups, objects dual to them and
direct products of groups and group duals.

In this paper we present essentially new examples of pseudogroups.
The one parameter family of pseudogroups introduced in Section 1
can be regarded as a perturbation of 577(2) group. This fact is very
interesting from the point of view of physics. It means that we may
try to replace 577(2) group playing an important role in many physical
theories by SVU(2) with v close but not equal to 1.

Having in mind these applications we concentrate our attention on
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detailed description of the pseudogroups SVU(T) and their representa-
tions pushing the general theory to a separate paper [1]. The present
paper is mostly devoted to the differential calculus (in the spirit of
Alain Connes [7]) that is necessary to introduce infinitesimal genera-
tors of representations of S»U(2) (in applications such generators
describe important physical quantities related to the group via Noether
theorem).

Let us briefly discuss the content of the paper. In the first section
we introduce the pseudogroups S»U(2) and investigate their properties.
In particular we prove that SVU(2) satisfies the axioms listed in [1].
In Section 2 the basic notions of differential calculus are introduced.
The main role is played by a bimodule F which elements correspond
to differential 1-forms on a Lie group. The external derivative of
"smooth functions53 is introduced. Section 3 is devoted to higher order
differential forms. We derive formulae corresponding to that of Gartan
Maurer and find the commutation relations for infinitesimal shifts.
Section 4 is of very technical nature and contains the proof of an
important Proposition used in Section 3. In Section 5 we use the
differential calculus to the representation theory of SJJ(T)a We de-
scribe the irreducible representations of SJJ(T). Like in the SU(2)
case the irreducible representations are labeled by a non-negative
integer or half-integer n. The dimension of representation correspond-
ing to a given n equals to 2n + l. The tensor product of representa-
tions is also discussed. It turns out (this is typical phenomenon for
pseudogroups) that the tensor product is no longer commutative.
This fact has profound consequences which are not discussed in the
present paper. Let us mention two of them.

In the theory of identical particles the operator interchanging
particles has no longer the simple form S(x®y) =y®x. In particular
the operators interchanging particles do not form a representation of
the permutation group. Instead we have to deal with representations
of an infinite group covering the group of all permutations.

The algebra describing the composed system is no longer the tensor
product of algebras associated with the components of the system. In
particular observables associated with different parts of the composed
system do not commute.
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The above remarks mean that introducing pseudogroups to the

description of physical system we are forced to abandon many simple

principles that we get accustomed to in the usual quantum theory0

Nevertheless we belive that despite these unusual features one can

formulate the coherent quantum theory with a pseudogroup playing

the role of the symmetry group,

At the end of the paper we put two appendices. In the first we

discuss the twisted unimodularity condition which for SVU(2) case

replaces the condition det u = l satisfied by elements of 617(2), This

twisted unimodularity condition was in fact the starting point in the

discovery of SVU(2)B The second appendix is devoted to the study

of the C*-algebras associated with SnU(2). It turns out that pseudo-

groups SVU(2) (for H<1) are mutually homeomorphic (but not

isomorphic).

§ 1. The Pseudogroup

In this section we introduce the basic object investigated in this

paper. It is the pseudogroup SUU(2). In general pseudogroups should

be considered as "locally compact topological groups" on which the "algebra

of continuous functions" with "pointwise multiplication" is not commutative,,

The particular example considered in this paper is closely related to

SU(T) group and can be obtained by a modification of the unimodu-

larity condition that is used in the definition of SU(T). This twisted

unimodularity condition leads to the commutation relations in the

algebra of "continuous functions" collected in the Table 0 below. For

details see Appendix Al.

Let v be a number belonging to [ —1, 1]. We denote by A the

C*-algebra generated by two elements a, j satisfying the following

The commutation relations in the algebra A

r*r=rf
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The precise definition of A is the following: Let C\[a9 7-, a*^ 7-*]] be

the free noncommutative ^-algebra with unity generated by symbols

a and y. A ^-representation TT of C[[ar, 7", a*, 7**]] acting on a Hilbert

space // is said to be admissible if operators a'=-it(a) and f' = 7i:(f)

satisfy the above commutation relations. For any a^C\[a, 7-, «*3 7-*]]

we set

||fl||=SUp||*(fl)|| (1.1)

where TT runs over the set of all admissible representation of C\[a, f,

tf*, 7**]]. Clearly ||a|] is finite for any a belonging to C\[a, y, a*5 7**]] and

|1 •]] is a C*-seminorm. Therefore the set

N=[aeCla, r, <**, r*3- 'IWI=0} (1-2)

is a two-sided ideal in C\[a, 7-, a*, 7-*]] and the seminorm (1.1) produces

a C*-norm on the quotien algebra

^ = C[a,r,a*,r*J/N. (1.3)

Then 4 is the completion of $4 with respect to this norm. The

following result follows easily from the above construction.

Theorem 1. 1. A is a C*-algebra with unity containing two distinguished

elements #, y satisfying relations of Table 0. The *-subalgebra $4 generated

by a and 7- is dense in A. For any two operators a', f acting on a Hilbert

space H satisfying the relations of Table 0 there exists one and only one

representation K of A acting on H such that TT(«) =a' and n(j) =?'.

The more information about the structure of the algebra A and

its dependence on i* is given in Appendix A2. In particular it turns

out that A is GCR algebra. Therefore it is nuclear and the tensor

product of C*-algebras used in the sequel has unique meaning.

In what follows the ^-algebra jtf generated by a and 7- will play

a central role. Elements of A should be considered as continuous

function on our pseudogroup whereas elements of stf correspond to
smooth functions. In other words jtf defines a differential structure

on the pseudogroup. The following theorem provides us with a
necessary information concerning the structure of j/.

Theorem 1. 2. Let y^O. The set of all elements of the form

a*k'^*m (1 .4)



NON-COMMUTATIVE DIFFERENTIAL CALCULUS 123

where k, m, n = Q, 19 2,...; £'=1, 2,,.. forms a basis in jtf: any element

of $f can be written in the unique way as a finite linear combination of

elements (1. 4).

Proof. Inserting k = m = n = Q we see that / is one of the elements
(1.4). Moreover using formulae of Table 0 one can easily check
that the product ab, where a is one of the element (1.4) and b —
ai T? a*3 T* *s a linear combination of at most two elements (1.4).
It shows that the set of all linear combinations of (1.4) coincides
with 3$. To end the proof we have to show that elements (1. 4) are
linearly independent.

Assume that M<1. Let H be a separable Hilbert space with an

orthonormal basis (<fink: I L . ' " " " • ^e introduce operators a',

B(H) such that

By simple computation one can check that these operators satisfy the
relations of Table 0. In virtue of Thm. 1. 1 there exists a representa-
tion TT of A acting on H such that

= Vl -i* &-!.* . (1.5)

The case v= ±1 should be treated separately0 Let H be a separable
Hilbert space with an orthonormal basis (<finki n, £ -integer) . For any
^e[05 1] we consider operators a't, ft acting on H such that

By simple computation one can check that these operators satisfy the
relations of Table 0 (with v = d b l ) . In virtue of Thm 1.1. there
exists a representation xt of A acting on H such that

Let us consider a nontrivial finite linear combination of elements
(1.4)
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kmn=0 mn=Q

where ckmn, c'k,mn^C are almost all (but not all) equal to 0. Let s

be the smallest integer such that either ckmn=£Q or c'kmn^Q for some
k, m, n such that m + n=s. Then using (1.5) one obtains for the

case M<1

s-nn forlim +»..-*
.-« for

Similarly using (1.5') we get for the case v— ±1

,. (&.s-2nk(c)lo,o) fcM-». for *>°
f W™ for *<0.

Therefore in both cases c^O and the linear independence follows.

Q.E.D.

Theorem 1, 3* Let M be an associative algebra with unity Im and am,

Ym, XMI Tm be elements of M such that

(1.6)

Assume that v^O. TA^ ^^ exists one and only one linear, multipli-

cative^ unital mapping

K: j* - >M

such that

*(«) =*m, K(J) =Tm, ^(a*) =< «(r*) =r: . (i. 7)

Proof. The uniqueness of K is obvious: the algebra s$ is generated

by or, f, a* and 7-*. To prove existence we introduce the ideal N in
CJor, 7-, a*5 7-*]] generated by the following seven elements: a*a + f*f— /,
aa* + 1^7'*7< — /, 7-*^ — 77*, 0:7- — j^a, af*—-vr*a, fa* — i>a*f and f*a* — va*^*.

Since C[[a, ^ a*, 7-*]] is free, one can find a linear multiplicative
mapping

such that
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It follows immediately from (1. 6) that K vanishes on generators
of N. Therefore K defines a linear multiplicative mapping

if. CQ>, r? a*, r*yN - >M

and the theorem will be proven if we show that

N=N (1.8)

where N is introduced by (1.2) (cf. (1.3))
Clearly generators of N are mapped to 0 by any admissible *-

representation of C\[a, 7-, a*3 7-*]]. Therefore N is contained in the ideal

N.
To prove the converse inclusion we consider subspace T in

CJa, p, a*3 7**J of all linear combinations of elements of the form
akfmf*n and a**fmy*n

9 where A, m, n are nonnegative integers.
One can easily check that any element of C\[a, 7*, a*3 7-*]] is

equivalent (modulo N) to an element of Ta In other words

On the other hand it follows immediately from Thm. 1.2 that no
non-zero element of T is killed by the canonical map

It means that

T f } N = { 0 ] . (1.10)

Now we are able to prove (1.8). We already know that N is
contained in N, Let a^N. Then (cf. (1. 9) a = t + n, where t^T
and n<=N. Therefore t^-a-n^T^N and according to (1. 10) £ = 00

Thus a = n^N and formula (1.8) is proven,, Q. E. D.

In what follows we deal with NxN matrices (in most cases N—T)
with entries belonging to a C* -algebra B (in our case B = A or B =
A^)A) . From the formal point of view these matrices can be consi-
dered as elements of the algebra MN(B) —MN^)B^ where MN denotes
the C*-algebra of all NxN matrices with complex entries.

Therefore if

. o ,, UNN/



126 S. L. WORONOWIGZ

is a NXN matrix with entries belonging to a C*-algebra B and <p: B->B'
is a linear map of B into a C*-algebra B/ then (id(x)^)w denotes the
NxN matrix

«=

\

with entries belonging to B'. Clearly "irf" denotes the identity map
of MN. If

are NxN matrices with entries belonging to B and B' resp. then
uQv will denote NxN matrix

with entries belonging to B(x)B' given by the formula

">,•*=£ Wf,®^* •
s

In other words @ denotes the usual product of matrices in which
the usual product of matrix elements is replaced by tensor product.

Now we are able to formulate our main result showing that A
carries a natural matrix pseudogroup structure (cf. [1]).

Theorem 1. 4. Let

(a, — vf
„r, a55.r,

7%*;z
1 ° TVitf *-algebra stf generated by matrix elements of u is dense in A,

2° There exists a C*-algebra homomorphism

such that

3° u is an invertible element of M2®A. If v^Q then there exists a
linear antimultiplicative mapping
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K\ Jit >J&

such that /r(/$;(<2*)*) =a for all <2EEj/ and

u = u~l . (1.12)

Proof. The first statement is already proven (cf. Thm0 1. 1).
To prove the second statement we notice that (1. 11) is satisfied

if and only If

r^^rvw-^rvv ^13)

To prove the existence of 0 we assume that AdB(H), where H

is a Hilbert space and consider operators

a' = a6§a — v\

acting on H®H. Remembering that a and 7* satisfy the commutation
relation contained in Table 03 one can easily check by direct computa-
tion that a' and 7-' also satisfy these relations,, (This fact is not
accidental; see Appendix Al) . Therefore according to the last state-
ment of Thm. 1. 1 there exists a representation

0: A

such that equations (1. 13) hold. Clearly the image 0(A) Is the C*-
subalgebra of B(H®H) generated by a.' and f. Since these two
operators obviously belong to A® A, we have 0(A) a A® A. This way
the second part of the theorem Is proven.

To prove the third statement one checks at first (by direct com-
putation making use of formulae of Table 0) that u Is a unitary
element of M2(A) . Therefore

-i * / a*> r*\u l = u* = l
\— 17, a/

Assume that y^O. We have to show that there exists linear,,
antimultiplicative mapping K: j/->j/ such that K composed with the
hermition conjugation is an involution and

fc(a) =«*, K( — yr*) =r*
T ) I (L14)K (T) = ~ VT> K(a ) = a

Let M=£/op be the algebra opposite to jtf (M is identical with jtf
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as far as linear structure is concerned, whereas the product of two
elements in the sense of M coincides with the usual product (ia ea in
the sense of j/) of the same elements taken in the reverse order) and
am = <**5 Tm=—VTi am~a and Ym = ——T* • OnG can easily check that
am, Tm, am and 7* considered as elements of M satisfy relations (L 6)
in Thm. 1. 3, Let K be the linear multiplicative mapping which exist-
ence is stated in this theorem. To end the proof we notice that in
the considered case relations (1. 14) are identical with (1.7) and
that any multiplicative mapping into M=J/°P is antimultiplicative if
it is considered as a mapping into j/. Q. Ee D.

Remarks: 1. Theorem L 4 states that for y=£0, (A,u) is a compact
matrix pseudogroup in the sense of [1]. It will be denoted by SVU(T)
and called twisted 617(2) group for the reasons indicated in Appendix
Al (see also Remark 3 below).

20 Clearly C*-homomorphism 0 and linear antimultiplicative map-
ping K are determined uniquely by conditions (1.11) and (L 12)
resp. Moreover the diagram

L 15)

is commutative. The latter can be proved in the following way. At
first one checks by direct computation making use of (L 13) that

(0(x)zW) 0 (a) = (irf(g)0) 0 (a) (L 16)

for a = a and 7. Next using the fact that 0 is a *-homomorphism one
sees that this formula is valid for any a^j/ and finally using the
density of j/ and the continuity of 0 we obtain (1. 16) for all a^A.

3. It follows immediately from Table 0 that for u=l the algebra
A is commutative. According to the general theory [1] in this case
the algebra A can be identified with the algebra C(G) of all continuous
functions on G3 where

G= {(zW(x)%)u: i is a character of the algebra A]

is a compact group of 2 X 2 matrices. Matrix elements of u are
functions of the form uki(g) =gkt (where A , /=1 ,2 ) for
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L5 gl2\ „
GEG.

L, g22/

In particular a(g)=gn and f(g) =g2i» The C*-homomorphism @ and
the mapping tc are given by formulae

It turns out that

G=SC/(2) . (1.17)

Indeed: for any character % of ^4 we have x(a*)=x(a), X(r*) =

=1 and the matrix

W)>
is unitary and unimodular. Conversely any v^SU(2) is of the form

\r', «')
where a1 and p' are complex numbers such that \af |2+ \f \2= 1.
Therefore a'? y' obviously satisfy relation of Table 0 (with y= l ) and
according to Thm. 1. 1 there exists one dimensional representation
(i.e. character) i of A such that 1(0) —af and %(?-) =7-'. Then
(id®%)u = v and formula (1. 17) follows.

It means that the pseudogroup S»U(2) can be regarded as a
deformation of SU(2) group.

At the end of this section we introduce some important notions
of the general theory of compact matrix pseudogroup and quote some
results.

We start with the notion of convolution product. Let % and ? be
continuous linear functional on A and a^Ae Then

(1.18)

Clearly y*a and a*f belong to A; f*# is a continuous linear func-
tional on .4. The commutativity of the diagram (1. 15) implies the



130 S. L. WORONOWICZ

associativity of the convolution product. Moreover we have

(1-21)

It turns out that there exists (unique up to a positive factor)
positive linear functional on A such that

h*a = a*h = h(a)I (1.22)

for any a^A. In the theory of compact groups the above condition
expresses the characteristic property of the Haar measure: The invari-
ance under left and right shifts. Also in the pseudogroup case h will
be called Haar measure. For SJJ(T) with |v|

where it is the representation of A introduced in the proof of Thm.
1.2.

Let (as before) j/ denotes the *-subalgebra of A generated by a
and p. It follows immediately from (1. 13) that

0:^ - »j/(g)fl/X- (1-23)

Therefore there exist linear maps

r, r'\jtf®alpsf

such that

for any j, JEEJ/. It follows from the general theory that r and r'
are linear bijections. Moreover for any a^jtf

r'(r-l(I®a))=I®K(a) (1.24)

where K is the mapping introduced in Thm. 1.4.

§2. First Order Differential Calculus

In the theory of Lie groups the external derivative of a smooth
function a GE *& °° (G) may be written in the form

where (cok) is a basis in the space of left invariant differential forms
of the first order, %t are directional derivatives of the delta-function
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concentrated at the neutral element of the group G and * denotes the
convolution product. We shall use the above formula as a guide-line
in our differential calculus. In this calculus the subalgebra s$ will
play the role of the algebra of smooth functions.

We shall use the convolution product introduced in Section 1.
Unfortunately the functional that are important in the differential
calculus are defined only on <s$ and have no continuity property
(we meet the same situation in the Lie group case: the directional
derivatives of the delta-function are not finite measures).

However due to (1.23) the right hand side of (1. 18)-(1. 20) are
meaningful for any linear functionals %, f defined on jtf and any
a&j/. In this case y*a, a*f ej/ and ?#% is a linear functional defined
on j/.

Now we introduce functionals #0, ^1? ^2 that will play the role of
directional derivatives of the delta-function,,

Remark. In Sections 23 33 4 and 5 vEE[ —1,1] and v^00

Let M be the set of all 4x4 matrices (with complex entries)
having non-zero elements only in the first row and on the diagonal.
Clearly M is a subalgebra in M4 containing unity Im = I. One can
easily check that the following elements of M:

/I, 0, 1, 0 \
09 v-\ 0, 0
0, 09 v-2, 0

o, o, o9 y
1, 09 -v\ 0 \
09 *, 09 0
0, 0, v\ 0
0, 0, 05 v I

r* =Tm

03 03 09 -v

03 03 0, 0
03 03 03 0

\0, 03 03 O/

03 -v~\ 09 0 \

03 03 09 0
09 09 09 0

1 09 09 0, 0 /

satisfy relations (1.6). Therefore (cf. Thm. 1. 3) there exists a linear
multiplicative unital map

: sf - >M

such that above matrices are equal to /(a), f ( f ) , /(«*) and
resp. Denoting by ^(fl)5 %o(«)5 ZiW9 %2(«) matrix elements of f(a)
standing in the first row and by e(a)9 f o ( a ) , fi(a), fz(a) the diagonal
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elements we introduce linear functional e, &, ft (i=0, 1,2) denned on

«s/. We have

e(a), & GO, &GO, &GO \
0 , /oGO, 0 , 0
0 , 0 , /GO, 0
0 , 0 , 0 , /,(a) /

and

«(o) =«(«*)=!, <Kr)=«(r*)=0 (2.1)

/»(«) =/»(«) =V~\ /(«) =V2

/o («*) =/2 («*) = v, /! («*) = v2 (2. 2)

Except the following four cases

=1 (2 3)

the all other values of &(0) (where i = 0 ,1 ,2; a = a, 7*, a*, 7*) are
equal to zero.

One can easily check that matrices am, fm, a* and ^* commute
with matrices

/ 0, 0, 0, 0
0, 0, 0, 1
0, 0, 0, 0
0, 0, 0, 0

and

/ 0, 0, 1, 0
0, 0, 0, 0
0, 0, T, 0
0, 0, 0, 0

where r = ( l — y2)y 2. It follows immediately that f(d) commute with
the above two matrices for any a^j/ and we obtain

/o («) =/»(«) (2.4)

/!(«)=« (a)+-1^1^ (a) . (2.5)

The multiplicativity of/ gives rise to the following relations

e(ab)=e(a)e(b) (2.6)

K (ab} = x,- (a)/, (6) + «(a) & (*) (2.7)

/,(«*)=/, GO/, (*) (2.8)

for any a, &e,s/ and i = 0, 1,2. Using (1.13) and (2.1) one can
easily compute that e*a=a for a = a, j-, a*, p*. Moreover in virtue of
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(2. 6) the map a->e*a is multiplicative :

e*ab=(e*a)(e*b}0 (2.9)

Remembering that a, 7-, a*3 ^* generate the algebra jtf we get

e*a = a (2.10)

for any a£=£/. It shows that the functional 0 plays the role of delta-

function concentrated at the neutral element of the (pseudo) group.

Similarly one can prove that

for any aej/: both sides are multiplicative linear functional on ^

and for a = a, 7, «*, p* the formula follows from easy computation

making use of (1.13) and (2.2).

The functional e appears in the following interesting context
Let m: j/(x)fl^j/->j/ be the multiplication map. This is the linear

map such that m(a&)b) —ab for any <23 b belonging to J/. Let K be

the antimultiplicative map introduced in Thm, 1.4. We claim that

m(K®id)0(a) =e(a)I (2. 12)

for any a^j/. Indeed using (1. 13) and (1. 14) one can easily check
that this formula holds for a = a, 7-, a*3 ^*0 Moreover if (2. 12) is true

for a = b and a = c, then writting

we have

and taking into account the antimultiplicativity of K we get

m

; K(c'J)c'i=e(b')e(c)I=e(bc')I .
j

It proves (2. 12) in full generality. Similarly one can show that

m(id®K)0(a)=e(a)I . (2.13)

Now we are ready to introduce an j/-bimodule F which in our
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differential calculus plays the same role as the module of smooth
sections of the cotangent bundle in the classical theory of Lie groups.
In other words elements of F correspond to differential forms of
degree one.

Let F be the free left module over jtf with generators <y0, coly co2.
It means that any co^F is of the form

where a^a^a^ji are uniquely determined and that the left multi-
plication by an element a^jtf is given by the formula

ao) = (aao) CDQ + (aai) o)1 + (aa^ co2 (2.15)

(in the following we shall omit the brackets).
For any o)=^lak(ok^F and any aEijtf we set

Proposition 2.1. The left module F considered with the right multi-

plication by elements of jtf introduced by (2. 16) is an $tf-bimodule.

Proof. Obviously the multiplication introduced by (2. 16) is bilin-
ear and the associativity low (bo))a = b(o)d) holds for any a^bEijtf

and o)^F0 Moreover if a=I then ®(a) = /(g)/, /**fl =/*(/)/=/ and
o)I=o). To end the proof one has to show that

o)(ab) = (o)a)b

for all <2,£ej/ and co^F. According to (2.16) this formula is
equivalent to the equation

fk*ab = (fk*a) (fk*b) (2. 17)

which in turn follows immediately from (2. 8). Q. E. D.

To show how the definition (2. 16) works we shall compute o)0aa

Using (1.18), (1.13) and (2.2) we have

(oQa = (fo*ct) O)Q = (id0fo) $ (a) COQ

I

v

Similarly one can compute other products coka, where A = 0,1, 2 and
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a = a, p, tf*3 7-*, For the readers convenience and for the future refe-

rences we list the results:

Table 1 Computation rules for a)^ w^ OD2

= i> lao)2

co2a* =

Now we can introduce the external derivative. For any

we put

o>* • (2-18)

Theorem 28 20 Formula (2. 18) introduces a linear map

d: st - >T0

For any a, b^Lstf we have

d (fli) = (da) b + adb . (2. 19)

Moreover any element co^F can be written in the form

N
a)= £] &idbi

i=i

where a^ a2, . . . , aNj b^ b2, . . . , bN^<s/ and ^ = 0.

Proof. Cleary d is linear. The equation (2. 19) can be checked

in the following way. According to (1.18) and (2.7) we have

(ab) = (u/(g)

(2. 20)

where in the last line we used (2.10). Therefore using (2.16) we

obtain

= (da) b + adb



136 S, L. WORONOWIGZ

To prove the last statement of the theorem we have to compute da
for a = I, a, ?, a*, p*. For example, using (1.13) and (2.3) we have

= Xo (a*) a* - v%0 (7**) 7- = 7-

= %x (a*) a* — y^i (7**) 7* = —
= #2 (a*) a* -ufcCr*) 7* = 0 .

Therefore

Similarly one can check the other formulae listed in the following

table

Table 2

dl=0
da = ao)l + v2Y*a)2y

d = a)i — va *ft)2

Now using Table 0 one can check that

Table 3

a)0 = -[* da*

Let w^r. Then (o=^ cka)k, where £0, c^ c2^£# and using formulae

of Table 3 we obtain

where a^si and b{ = a, ?, a*, 7-* for i= 1,2,3,4 resp. If the sum
2 flji; (where i runs from 1 to 4) does not vanish then we set
i

05 =20A- an<i b5=—I. Obviously

5

z=l
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This ends the proof of the theorem. Q. E0 D.

The following result shows that the pseudogroup SVU(2) is con-
nected0

Theorem 29 3. If a<=<%? and da = Q then a = 21 for some Z^C0

Proof, We shall use the basis (1.4). For any m, ^ = 0 5 l 3 2 9 a e o

and integer k we put
krmr*H ^T k>0

It follows immediately from Table 1 that GD1a
kmn = v2(n~m~~®akmna

Using (2. 16) we obtain

y\j^m» __ v2(n-m-V) akmn (2.21)

and taking into account (2.5) and (2.10) we get

2(w-w-fe) - 1 ) akmn . (2. 22)

It is more difficult to compute the convolution products y$*akmn

and x2*flfemn. In this computation one starts with formulae

which are essentially contained in Table 2 (cf. Def0 (2. 18)) and uses
the equation (r = 0,2)

f sk/7^^^ — *jn~w~'kfj'kinn

which can be derived in the same way as (2.21). Then using
repeatedly the product formula (2. 20) one can compute the desired
convolution products. We omit the boring details and quote the
results :

%Q*akmn is a linear combination of the following two basis elements :
ak+i.m+i,n and fl*+i.«.»-iB jf ^Q then tne latter eiement enters into the

linear combination with a non-zero coefficient.
-fa*akmn is a linear combination of the following two basis elements :

ak-i.m.n+i an(j 04-i.m-i.^ jf m^>Q then the latter element enters into

the linear combination with a non-zero coefficient
Let sej/. Then
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" (2.23)
kmn

where ckmn^C and ckmn = Q for almost all (kmn). The summation runs

over k = . . . , —2, —1, 0, 1, 2, . . ., 772, 72 = 0, 1, 2,. . . .

Assume that dc = Q. Then

Q (2.24)

for r = 0, 1,2.
Taking into account (2. 22) we see that in (2. 23) only the terms

with n — m = k do not vanish. It means that except the term k = m =

72 — 0 in all non-zero terms in (2.23) 72+772 is strictly positive.

Assume that some coefficients ckmn are different from zero for

72 + 7?2^>0. Let s be the smallest strictly positive integer such that for

some 772, 72 we have ckmn=£Q and ^ = 772 + 72. Then either the basis

element a
k+l>m'n~l enters with a non-zero coefficient into the decom-

position of ;&*£, or a
k+l>m~l'n enters with a non-zero coefficient into

the decomposition of %2*c. In both cases we have contradiction with

(2. 24) . It shows that all terms in (2. 23) vanish except the one

with k = m = n = 0. Therefore

a E. D.
In the next sections we need a characterisation of those sequences

<2u < 2 2 , . . . , fljv, AI, A2, ..., bN for which X #A-~ 0 and X! aidbi = 0 .
* »

To formulate this condition we shall use the bijective map

r'. <$?®alg&t > ̂ ®alg^

introduced in Section 1 such that

for all <2, A^jaf. Let us note that for any ^^J/(X)a^j/; c^c'^stf we

have

(2. 26)

Proposition 2. 4. Let ai,a2,..., <%, bi9 b2, . . . , bN<^jtf. Then the

following three conditions are equivalent:

II.
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where R is the right ideal in <$$ generated by the following six elements

(2*27)

III. Xi ai®bi can be written as a finite sum of terms of the form

(c®I}r~l(I®x} (/®O, where c,cf(=j/ and x is one of the element
(2.27).

Proof. At first we have to show that

R={x^^\ e(x)=0 and &(*) =0 for r = 0 3 l , 2 } 0 (2. 28)

Denote by R' the right hand side of (2,28), Clearly R' is a
linear subset of j/ and (since functionals e, #0, %i3 #2 are linearly
independent) dim j^//?' = 4. Moreover it follows immediately from
(2. 7) that R' is a right ideal in sf.

Using (2. 7) and (2. 3) one can easily check that functionals e,
%o? %i3 %2 kill all elements (2. 27) . It means that these elements belong
to R' and we have RdR'. To prove (2. 28) we have to show that

dim <*//£< 4 . (2,29)

For any a^b^jtf we write a^b if and only if a — b belongs to RB

Since R is a right ideal, both sides of the equivalence relation ec-^55

may be multiplied from the right by any element of s&\

(fl~i) => (ac^bc) (2. 30)

for any a, b, c^jtf*
Let us note that

Moreover a*^ — iA*+ (1 +^2)/ and in virtue of (2. 30)

( 1 + y2) 7"̂ , a*^* '̂

Obtained equivalences show that any second order polynomial in
a> T> a*s Y* ig equivalent to a linear combination of /, a, 7-, 7*. In
virtue of (2. 30) , any polynomial of total order n in a9 ^3 a*3 ^* is
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equivalent to a polynomial of order n — l. Applying the principle of
mathematical induction we conclude that any element of jtf is equiv-
alent (modulo R) to a linear combination of the following four
elements: /3 a, 7-, 7-*. This proves inequality (2. 29) and ends the
proof of (2.28).

Taking into account (2. 25) one can easily check that

Therefore in virtue of (2. 28) the first condition of Prop. 2. 4 is satis-
fied if and only if

r ( Z 0,-<8) W e &t®algR . (2.31)
i

This way we showed the equivalence of the two first conditions.

Assume now that (2.31) holds. Then r(Z 0,-(8)i») is a finite sum
i

of elements of the form v®xw, where v,w^j/ and x is one of the
elements (2.27). Since r is surjective, one can find elements c^c^stf

(j=l ,2, . . . , £ ) such that r(Z £,®O = z>(8)«>- Then we have (cf.

(2.26))

*) ̂  (O = (/®*) Z C's®/) 0 (O

This way we showed that r(Z ^-®W is a finite sum of elements of
i

the form r ( (c®/) r"1 (/(X)#) (/®O)> where c,c'^£/ and # is one of
the elements of (2. 27) . Now condition III of Prop. 2. 4 is implied
by injectivity of r.

Conversely assume that the condition III holds. Then r(Z 0,-(8)if-)»
is a finite sum of elements of the form

) (2.32)

where c^c'^stf and ^ is one of the elements (2.27). In the above
computation we used (2. 26) . All elements (2. 32) belong to

Indeed x<=R, c®x^jtf®aisR and ^0algR is a right ideal of
Therefore r(Z^®^0 belongs to <stf®aigR and condition II follows.

Q. E. D.
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We shall use the above result to prove the following interesting
theorem showing that in a natural way F is a *-bimodule over j/.

Theorem 2e 5. There exists one and only one antilinear involution

*: F >T (2033)

such that for all aGEj/ and co^F we have

(aa)}*=G)*a* (2.34)

= fl*o)* (2635)

rf(a*). (2.36)

Moreover we have

Table 4

co$ — va)23 CD* = — o>i, 0)2 =—(DO

Proof, Let co^F. Then a) can be written as a finite sum (cf.
Thm. 2. 2)

(^ = T.aidbi (2.37)

where a^b^sf and E^A = 0. Using the rules (2. 34) -(2. 36) one
i

easily obtain

and the uniqueness of (2. 33) is proven. To prove the existence we
have to show that for any al5 a2? ... 5 aN, 61? 62? - • • 9 bN

( '" _ ) => (Si*rffl*=0). (2.38)
\XX- 6i = 0/

Assume that ^ aibi = 0 and Y^1aidbi = 0. Then according to Prop.

2- 43 2] flj(8)^i can be written as a sum of terms of the form

where c,c'<^£$ and x is one of the elements (2.27). Let r"1 (/(X);c)
where pt,qt^jtf. Then the above expression equals to
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H cpt(g)qtc'. (2. 39)
t

Therefore XI bf®a* can be written as a sum of terms of the form

Applying the map r and using (2.26) we see that r(XI^*(8) f l?) can

i

be written as a sum of terms of the form

) (2. 40)

where c,c'^jtf and p^q^j/ are such that r(S pt®Qt) = /®#3 where
*

A; is one of the elements (2.27). Now according to (1.24)

and (2. 40) equals to

). (2.41)

The mapping X-*K(X)* is antilinear, multiplicative and (cf. (1. 14))
maps elements /9 ff, ft <**, r* onto /, a, — 17-*, a* and — v~lf resp.
Therefore this mapping maps elements (2. 27) onto elements (2. 27)
multiplied by a numerical factor. It means that in the formula (2. 41)
tc(x)*^R. Remembering that ^0aigR is a right ideal in <stf®aigs4
we see that (2.41) belong to <$?®aigR. Therefore KS £*(8)0*) ^

i

•rf®aigR and using Prop. 2. 4 we obtain

This way the implication (2. 38) is proved.
Now for any <weF of the form (2.37) we set

o>*=- 2 #</(*?). (2.42)
*

The implication (2. 38) shows that this definition is correct i. e. the
right hand side of the above formula is independent of the particular
choice of a{ and b{ in (2. 37) .

Clearly * : F-+F is an antilinear involution. Moreover if co is
given by (2.37) and aej/ then aco=Yl(aai)dbi and

i

= -S **<f(fl*)fl*-S bfafd(a*) =a)*a*
i i
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since S^? = (ZflAO* = 0. Formula (2.34) Is proved To prove
i i

(2. 35) we use (2. 34) and the fact that * is an Involution :

(va) * = ( (a*a)*} *) * = fl*o>*. (2. 43)

Setting in (2.37): ai = I9 a2=—a, bi = a and b2 = I we obtain a) = da
and (2.42) shows that (da)* = d(a*). It proves (2.36).

Using the expressions for o>0 and co2 given in Table 3 and the
definition (2. 42) one easily check that a)* = ua)2 and w^ =v~1o)Q. To
compute (0* one has to use the following expression for ^ (cf. Table 3)

(H! = a*rfa + -f*df — IdL

Then using (2. 42) one obtains co* = — &>le Q. E8 D.

§3. Higher Order Differentia! Calculus

In differential geometry second order differential forms on a smooth
manifold M are sections of the bundle /\2T*(Af) which can be
constructed starting with the cotangent bundle T"*(M) by taking the
tensor product T*(M)®MT*(M) and dividing by the subbundle of
symmetric elements. In the algebraic language, denoting by FM the
C°° (M) -bimodule of sections of T*(M) we construct the bimodules

where SM denotes the sub-bimodule of /~H2 composed of all elements
of /H2 which are invariant under the bimodule homomorphism

a: r§2 - >/H2 (3.1)

which maps cy(x) M)cor onto co'(g) «„ o>. Then F&2 coincides with the

^ °° (Af) -bimodule of second order differential forms on M,
Unfortunately in a noncommutative case (i.e. when ^f°°(Af) is

replaced by a noncommutative algebra) the homomorphism (3. 1) can
not be introduced and there is no canonical way to distinguish the
submodule S2.

We shall see however that all the main feature of the differential
calculus over Lie groups can be reproduced for the pseudogroup
S»U(2) if we take as S2 the sub-bimodule of
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generated by six elements of the form

S (&*&)(*) a*®^ (3-2)
ki=0

where x takes values (2. 27) .
At first we show, how to compute (3.2) for x = a* + v2a— (1 + y2)7,

72j r*75 T*25 (a~I}f and (a — 7)7-*. Let for example # = 7-2. Then using
the basic rules of differential calculus. Table 2, 1 and 0 we have

—~

It means (cf (2. 18)) that

Now we have (cf (1.21))

2 (&*&) (7*)«£ = Z

and %fe (a*7-) can be easily computed due to formulae (2. 3) and
(2.7). We get

fc(r*)=0 for ^-0,1,2
»(«*r)=0 for 4 = 0,1
£(or*r)=-i>.

Therefore

In the following the numeric factor will not play any role. Similarly
one can compute (3. 2) for other x. We list the results of these
computations in the following

Proposition 3. 1. The linear span of elements of the form (3. 2) ,
where x takes values (2. 27) coincides with the linear span of
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Let us denote by Ci, £23 . . . , Ce elements of I"7®2 listed in Prop, 38 1
and let

{Z
r=l

It follows immediately from Table 1 that S2 is a sub-bimodule of F®2.
Now we are going to construct j/-bimodules FA2, -FA3

5 . . . which
elements correspond to differential forms of order 25 33 . . . resp0 We
introduce these bimodules at once by constructing the graded external
algebra F^a Then FAn will denote the subspace of FA composed of
elements of grade n.

For any natural n we denote by F®n the j/-bimodule
(X)^r (re-factors). F®° will denote d. Let

Clearly F® is a graded algebra containing jtf as the subalgebra of
grade 0 elements and F as the subspace of grade 1 elements. We
introduce graded *-algebra structure in F® in the following way: on
elements of grade 0, * coincides with the hermitian conjugation in
jtf; on elements of grade 1 we use * operation introduced in Section
2 (cf Thm 2. 5) ; for elements of higher order we put

(Oi®^2®s* -.. ®J/»»)*=JA*(8)J/ - • - ®^%®^i (3. 3)

where 0b 62,..., On^F and jn is the sign of the permutation

Then
72 —

for any homogeneous elements 0 and 0' of F® of grade A; and i resp0

Let 5 be the (two-sided) ideal in T® generated by S2. Any ele-
ment of S can be written as a sum of homogeneous (i. e. of definite
grade) elements belonging to S. Therefore the quotient algebra

have a natural grading. It is clear that S contains no elements of
grade 0 and 1. Therefore in FA, the subalgebra of elements of grade
0 can be identified with stf and the subspace of elements of grade 1
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with the bimodule F. The multiplication in FA will be denoted by
A (this sign is usually omitted if one of the factors is of grade 0).
The algebra F* is generated by jtf and grade one elements o>0j MI, 0)2-

Taking into account the explicite expressions for Ci, £2, • • • ? Cs gene-
rating S2 we get the following

Table 5 External product identities

(00/\0)Q = 0, (t)2/\Q)Q = — V2Q)Q/\(D2

Moreover since the tensor products considered in this section are
tensor products over stf we have 6a(^)^6/ = 60^a6/ and

Oa/\6' = 0/\aO' (3.4)

for any 6, 0'eFA and «ej/.
One can easily check that S2 is ^-invariant. The same holds for

S. Due to this fact FA has a natural graded ^-algebra structure. In
particular we have

(CAO*=(-l)9C9C/C'*AC* (3.5)

for any homogeneous ^^^FA; 9£ and 9C' denote grades of C and C'
resp.

Now we can formulate the main theorem of this section.

Theorem 3. 2. There exists one and only one linear map

d: F* >FA (3. 6)

such that

1° d rises the grade by one

2° On j/crA, d is given by (2. 18)
3° d is a graded derivative'.

</(CAO=rfCAC'+(-l)8WC' (3.7)
for all homogeneous elements C, C'e.TA; 3£ denotes the grade of C

4° («Q*=rf(C*)
5°
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The proof of this theorem is based on the following proposition
which will be proven in the next section.

Proposition 39 3* There exists a larger graded ^-algebra FA (with
multiplication denoted by f\ or by e if one of the factors is of grade 0)
containing FA and a grade one element X^JPA such that

X/\X=0 (3.9)

X*=-X (3.10)

and

Xa-aX=da (3.11)

for any <2 6= j/ (da denotes the derivation introduced in Section 2) .

Proof of Thm.3«2« According to the condition 2° ? <f is defined
uniquely on elements of grade Oa Any element of grade 1 is a sum
of terms of the form adb, where a, b&sf. Using the conditions 3° and
5° we have d(adb) =da/\db. Therefore d is defined uniquely on elements
of grade 1. Remembering that FA is generated by elements of grade
0 and 1 and taking into account the condition 3° we see that d (if
it exists) is defined uniquely.

To prove the existence we use the larger graded ^-algebra FA and
the element X^fA described in Prop. 3. 30 For any C^FA we put

d£=[X9 C]grad

where \_X^ C]grad is the graded commutator:

if C is even
L >CJgrad if C is odd

We check that the conditions l°-5° of Thm. 3. 2 are satisfied.
Condition 1° is obvious (X is of grade 1). Condition 2° follows
immediately from (3. 11). Let C, C'e.fA be homogeneous elements of
grades 9£ and 3£' resp. Then

and the condition 3° is satisfied. Let C^/*A be a homogeneous element
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of grade 3C Then C* is of the same grade and taking into account
(3.5) and (3.10) we have

It shows the condition 4°. To prove the condition 5° we compute

and the condition 5° follows directly from (3.9).
To end the proof we have to show that d£&FA for any

Let us consider the linear set

. (3.12)

Condition 3° shows that (3. 12) is a subalgebra in JTA. According
to the condition 2° this subalgebra contains stf and due to the condition
5° all elements of the form da, where a^stf. Obviously the smallest
subalgebra of FA containing stf and rfj/ coincides with F*. In other
words rfCeTA for all C^FA

e Q. E. D.

Later we need the explicite formulae for rfo>0, da)i and dco2, If 0 =

2] a4bi (where ah lo{^^\ z = l, 25. . . , n) then using the rules of dif-
£

ferential calculus listed in Thm. 3. 2 we have

Using this formula, equations contained in Tables 0,1,2,3 and 5
and the property (3.4) one can compute do)k for A = 0, 1,2. E.g.

— daf\df

—

a*co2 —

*^ /\a)2 —

Similarly one can check two other formulae contained in the following
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Table 6 Cartan Maurer formulae

do)Q = v2 (I + y2) cy0 A
 wi

d(ol= v o)Q/\o)2

Moreover remembering that d2 = 0 we get

o
0 (3.13)

d(o)0/\a)2)=0 .

It follows immediately from Table 5 that any element C2^^A2 is
of the form

C^flo^iA^+^i^A^o+^oA^i (3. 14)
where ak^£/ (k = 0,1,2). Looking more closely to the structure of
the ideal S one sees that ak (k = Q, l,-2) are uniquely determined by
C2. Similarly any element C3^jTA3 is of the form

where a^stf is uniquely determined by C3. Moreover it is clear that
P*n = Q for n>3. Therefore the de Rham cochain complex for SVU(2)

has the following form:

o — > e^__»r--»rA 2— r*3 — >o .
We shall prove in Section 5 that this sequence is exact in F and

FA2, It means that the cohomology groups in dimensions 1 and 2
are trivial. The group #° (5/7(2)) is isomorphic to C (cf. Thme

2.3)). We shall prove in Section 5 that H3(SVU(2)) is isomorphic
to Ce It means that

dim coker (FA2-^-*rA3) = 1

and there exists unique (up to a complex factor) linear functional

>C

such that for any £2^^A2 we have the Stokes formula

. (3. 15)

It turns out that for any
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aa)0/\o)l/\o)2 = h(d) (3. 16)

where h is the Haar measure (cf. Section 1). Indeed if C2 is given by
(3. 14) then in virtue of (3. 13) and Table 5

and taking (3. 16) as the definition of the integral we have (cf (1.

21))

and (3. 15) follows (cf. (1. 22) and use equation &(/) =0 for k = 0, 1, 2)

Remark. \ is not a graded trace in the sense of A. Gonnes.

For any a^.stf and /t = 0? 1,2 we set

Then

It means that in our theory Fk play the role of left invariant differential
operators of the first order.

Using the basic properties of the external derivative d listed in
Thm. 3. 2 we have

- 1] (F/i a) a., AMU + E (F»a) da>k .
ife &

The last expression can be reduced to the form (3. 14) with the help
of Tables 5 and 6. This way we obtain

T kl 7 Commutation relations for
lable 7 infinitesimal shifts
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Clearly these relation correspond to the well known formulae

F^-F/^E^-F*k
for infinitesimal shifts on a Lie group (c^ are structure constant of
the corresponding Lie algebra).

§4 Extended BImodules

This section is exclusively devoted to the proof of Prop* 30 3, No
notion introduced in this section will be used later. The reader
interesting in applications of the differential calculus described in the
previous sections may omit Section 4 and pass to Section 50

To prove Prop, 3. 3 we have to extend #-bimodule Fa Let jtX
be a free left ^/-module with one generator X and

Any element GjeJT is of the form

® = cX+co (4.2)

where c£zs$ and a)£=F are uniquely determinedo We Introduce right
multiplication by elements of s$'. for any &^F of the form (4.2)
and any a^<$/ we set

&a=caXJr (cda + wa)e (4. 3)

Let us notice that for any a ^ b ^ j t f we have (aco)b=a(a>b) and

(d>0) b = (caX+ (cda + coa) ) b=cabX+cadb+c(da) b+coab
= c(ab)X+cd(ab) +co(ab) =0(06).

Moreover obviously aJl=w. Therefore the left ^/-module F endowed
with the right multiplication (4. 3) is a bimodule over j/0

Inserting in (4.2): £=/, a) = 0 and using (4.3) we obtain Xa =
aX+da. Therefore

da = Xa-aX. (4.4)

We know (cf. Thm. 2. 2) that any element of F can be written as
a sum of terms of the form adb, where a , b ^ j t f a Taking Into account
(4. 4) we see that any element of F is a sum of terms of the form
aXb, where 0, b e j/.

Let Q. be a bimodule over jaf0 Then using the above remark and
equation q0^aXb = qa(^)^Xb we see that any element of Q^^F is a
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sum of terms of the form q^Q^Xb, where q^Q and 6ej/. We express
this property writing the equation

We introduce *-bimodule structure in F: for any ft) of the form
(4. 2) we set

o)*=-Xc*+co*. (4.6)

Let us notice that

(&*)*= (-Xc*+a)*)*=(-c*X-dc*+a)*)*

It shows that the map * : T - >F introduced by (4. 6) is an involu-
tion. It follows immediately from (4. 6) that (ao>) * = a>*a* for any
a^jtf and die A Repeating the computation (2.43) we get (d)a)* =
a*aJ*. It means that f is a *-bimodule over ««/.

Inserting in (4.2): c = I, (o = Q and using (4.6) we obtain

X*=-X . (4.7)

It follows immediately from the construction that F is a sub-
bimodule of A For any ft) of the form (4. 2) we set

=c.

One can easily check that

j.f* - ̂  (4.8)

is a ^-bimodule homomorphism and that ker j = F, Therefore we
have the exact sequence

0 - >r< - »f-Uj/ - >Q .

We repeate for F the tensor algebra construction that is done in
Section 3 for F: for any natural n, F®n will denote the tensor product
(over j^) of n copies of A We use the definition (3. 3) to endow F®n

with a *-bimodule structure. For n = 0 we set F®n = &tfa Since F is
a sub-bimodule of F hence r®*cf®* for all n.

For any natural k<n we set

where irf is the identity map acting on F and j standing at the &-th
place is the *-bimodule homomorphism (4. 8) . More precisely jk is
the *-bimodule homomorphism
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such that

for any Si9S29 ...9ffn^JT. One can easily check that

kerji = /*(*-w®^r®^/*fr-» . (4.10)

Let

n=0

Like in the case considered in Section 33 F® is a graded *-algebra0

We denote by § the (two-sided) ideal In JT® generated by single
element X^^X^F®2. Obviously 5 is *-in variant. Moreover

where §* denotes the set of all elements of § having the grade equal
to 72. Therefore the quotient

Is a graded ^-algebra containing jtf as the subalgebra of elements of
grade 0 and F as the j^-bimodule of elements of grade onee The
multiplication in ,TA will be denoted with the same symbol as in FA

e

We know that Xt&^X^S* Therefore

X/\X=0 . (4.11)

Lemma 40 1. Let ph p2,.»., pn ql9 qz,aeo,qs^^ and

(4.12)

where r is the bijective linear map introduced by (2. 25) and z belongs to

the right ideal R generated by (2 e27) 0 Then

S ptX®^Xqt = S (&*£) fe) 01*®^ .̂ . (4. 1 3)
f H=0

Proof. In virtue of Prop 2. 4

SAfr = 0, EM?, = 0 . (4.14)t *
The second equation means that
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SMfc*?«)=0 (4.15)

for t = 0,1,2. Using (4.4) we have

and (cf. (4.14))

Xp,Xq, = 0. (4.16)
t

Taking into account (4.16), (4.4) and (4.15) we compute

Z

= E A (&
«

= Z«

On the other hand

) = Z A
ife

= i; A (

r

and formula (4.13) follows. Q, E. D.

Since r is surjective, for any z&R one can find ph qt (J = l,2, ...,
j; j sufficiently large} such that the assumption (4. 12) is fulfiled.
Lemma 4. 1 shows that for any

In particular setting z = «* + ^2« — ( 1 + ^2) /? r2
? r*r> T*2? (a~

(a—/) 7-* we see that all six generators of S2 belong to S. Therefore
and

To complete the proof of Prop. 3. 3 it is sufficient to show that

Snr®cs. (4.17)
Indeed if this inclusion holds then the kernel of the composed map
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(where the second arrow denotes the canonical projection) coincides
with S and (4.18) defines the embedding of r* = F®/S into fA

0

Therefore FA can be considered as a larger graded ^-algebra con-
taining TA and equation (4.11), (4.7) and (4.4) show that Zef
satisfies the conditions listed in Prop0 3. 3.

Relation (4. 17) means that for any n = Q, 1, 2, 3, . . .

frnp**c:S* (4.19)

where Sn (§n, jT®n) denotes the j/-bimodule of elements of grade n
belonging to S (£, P® resp.) . For n = 0, 1 this relation obviously holds
(both sides equal 0).

We consider the case n = 2. Any element C2^*52 is of the form

where ^b^st. If C2eT® then (cf. (4. 10) and (4. 9))

Taking into account the definition (4. 3) we obtain ^ aibi = 0 and
i i

= Q. Using Prop. 2. 4 and repeating the argumentation used in Section 2
immediately after implication (2. 38) we see that Xj Gi&i can be

i

written as a sum of terms of the form (cf. (2.39))

where c^c'^stf and pt9qt^J& are such that

where ^ is one of the elements (2. 27) . Therefore C2 is a sum of
terms of the form

c t
Using Lemma 4. 1 we see that C2 is a sum of terms of the form

where c, c'^jtf and ^ is one of the element (2.27). According to
Prop. 3. 1 elements in square brackets generate S2. Therefore C2^S2

9

This way we showed that

(4.20)
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In particular

Let ?z>2. Clearly t,n^Sn if and only if C" is a sum of terms of
the form

s Qv j^^QS'.j^ QS'j^^ v. • ^^•j

where Cs e /* ®', Cr e /^ J, r = 0, 1,2,..., 72-2 and s+r = n~2. Separating
terms with s = n — 2 we see that

Q»_ n<8Kn-2)/9s F/ON Fo/J-Q""1/^ fo — -t v^S'^-^-vcS'j/-^-1^ i *j ^<yjtf-*-

and using (4. 5) we obtain

5M=f®(n-2)(x)^Z(x)^Zj/+5n"1®^^ . (4.23)

Inserting n — 1 instead of ft we obtain

Inserting this expression into (4. 23) we get

Now, using simple formula

Xa® ,fXb = X®^aXb = X®^Xab - X®^ (da) b (4. 24)

we see that

and

QO

Therefore
1®J/r (4. 25)

Let ?<E5n. Then

?=S C^^O^^+g' (4- 26)t
where ^e/^"-®, ^ej/, qf^Sn~l®^r.

In order to have compact notation we put ^=0)-! and for any
sequence r= (rl3 r2,. . . rn_2) of elements of the set {—1,0 ,1 ,2} we put

Then, using Table 1 and the formula aX=Xa — da one can write any
element £<Ef®(n-2) in the form
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where <zrej/ and the summation runs over ail possible sequences of
length n — 2. In particular all £»• in (40 26) can be written in this
way0 Therefore

ri £4Q 27)

= S «K&, (S ari*<8>^,) +?'.
r i

Assume that Jn (<?) = 0, where jn is the last of the mappings (4B9) 0

Remembering that q'^Sn~l®^r we see that jn(q') =Q. Therefore
using (4e 27) we obtain

S^r(g)^(X; «***<) =0 .
r t

It means that for any r

and in virtue of (4B 20) we get

Z /T Wv^ "FA cart-ylv^) ,^.At?£ c
»

It shows that the first term in (4. 27) belongs to r®0*-®®^ and

? e r ®^-»
This way we showed that

(8)J/r . (4. 28)

Let m>0. Using (4. 5) we obtain

Therefore for m^>l we have

Now using (4. 24) we see that

f®« =|J« + f®(m-D®^ro (4. 29)

We shall prove that for k = l9 2, . . .

f ®*=Jg
i + f (gj^r®*-". (4. 30)

For A:=l the formula is evident. For A; = 2 it coincides with (4. 29)
with m = 2. Assume that (4.30) holds for k = m — l. Then using
(4.29) we have
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and taking into account the obvious inclusion Sm~l^)j/rc.§m we obtain
(4.30) for k = m. This way (4.30) is proven in full generality.

Let us put k = n — 2 in (4.30) and insert the obtained expression
for f®(«-2) into (4. 28) :

s» n ker jn^sn-2®J,s
2+r®J,r®^®^s2+sn-l®J*r.

Clearly

Sn'2®^S2c:Sn'l®^r and r^n~^®^S2c.Sn'\

Therefore

5nnker jnCfCx)^"1^-^"1®^ . (4. 31)

for 72 = 3,4, 5, ____
We shall prove that

sk n (r®^r®«-») ^x^sk-l+sk (4. 32)
for 4 = 2,3,4,. . .

For k = 2 this formula follows from (4.20). Let n>2. Assume
that (4.32) holds for k = n-l. Let

Then jn(C
n) =0 and using (4.31) we see that

&*<»* (*• 33)

where £ _b £„, £1, fzSS1"'1 and fo, fi, fzS^1. The first and the second term
in (4.33) belong to f(8vr®("-1). Therefore £ fi<8)rfa»Je/'<g)^r8to-u.

i

It means that f; belong to r®^r®(n~2\ Now using (4.32) with
k = n — 1 we obtain f • e ^(x)^""2 + Sn~~l and the last term in (4.33)
belongs to X® ̂ 5B"20^r + Sn~l®^F c Z®^""1 + 5". On the other
hand the first and the second terms belong to X®^Sn~l and Sn resp.

Therefore

and (4.32) holds for A = «. This way we proved (4.32) in full
generality.

Inserting in (4. 32) k = n and remembering that F®n is contained
in f ®^r®(n-1} we get

Sn n r®* c z®^^-1 + s* . (4. 34)
We know that Sndr®n and (^(g)^"1) nr®" = 0. Therefore the

inclusion (4. 34) means that
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and (4. 19) holds in full generality. This ends the proof of Prop0 3.3.

§5. Finite Dimensional Representations
of the Pseudogroup

In this section we apply the differential calculus built in Sections
2 and 3 to the investigation of representations of £y[/(2)0 We shall
assume that these representations are finite dimensional This assump-
tion is not restrictive. According to the general theory [1] any
unitary representation of a compact matrix pseudogroup is a direct
sum of finite dimensional irreducible representations.

At the beginning we remind the notion of representation. Let V
be a finite dimensional vector space. We say that v is a representation
of SVU(2) acting on V if v is an invertible element of the algebra
B(V)®A such that

(id®@)v = v©v (5. 1)

where 0 denotes the bilinear multiplication defined on elements of
B(V)®A with values in B(V}®A®A such that

(mi® a) 0 (m2(8)4) =^mim2®a(^)b

for any ml9 m2£EB(V), a, b^A. If V=CN then B(V)=MN and the
product © introduced here coincides with the one considered in
Section 1. In particular 2x2 matrix u considered in Thm 1.4 is a
representation of S»U(2) acting on C2. This representation is called
fundamental.

In the group representation theory we consider equivalent represen-
tations, invariant subspaces, subrepresentations and irreducible represen-
tations. All these notions based on the concept of intertwining operator
are meaningful in the representation theory of pseudogroup (cf. [1]).

Let v and w be representations of SVU(2) acting on V and W
resp. A linear mapping S: V->W intertwines v with w if

(S®I}v = w(S®I). (5.2)

Representations v and w are equivalent if there exists an invertible
S intertwining v with w. A subspace V of V is invariant under v if
there exists a representation v' acting on V such that the embedding
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F'-»F intertwines v' with v. The representation v' is then a
subrepresentation of v. It is uniquely determined, v is irreducible if
there is no non-trivial invariant subspace. If v and v' are representa-
tions acting on V and V resp., then a representation w acting on
70 F' is a direct sum of v and z/ if the canonical embeddings F— >
F0F' and 7'->707' intertwine z; and v' resp. with ze;. A repre-
sentation v is called unitary if the space F on which it acts is a Hilbert
space and if v is a unitary element of 5(7)0-4. It is known that
any finite dimensional representation is equivalent to a unitary repre-
sentation.

Let F and F' be a finite dimensional vector spaces. We consider
bilinear multiplication © defined on elements of B (F) 0.4 and 5(70
0-4 with values in 5(70700-4 such that

(;n00)©(fl0i) =m®n®ab (5. 3)

for any m^5(F)5 «e5(70 and a, ieA One can easily check that
if v and v' are representations of SVU(2) acting on F and F' resp.
then v®vf is a representation of SliU(2) acting on F0F'. It is called
tensor product of representations v and v'. Let us notice that in the
pseudogroup case the tensor product is not commutative. More pre-
cisely the flip map 707/-»7/07 interchanging F and V does not
in general intertwine v®v' with z/®y.

In the theory of Lie groups the matrix elements of finite dimen-
sional representations are smooth functions. Due to this fact we can
use the differential calculus in the representation theory. Similar fact
holds for pseudogroups (see [1]). If v is a representation of 6"yt/(2)
acting on a finite dimensional vector space F then v and v~l belong
to 5(F)(X)j/. Therefore for any linear functional % on j/ we may
introduce an operator

In particular we set

Ak=(id®ri)v (5.4)

for k = Q, 1, 2 (see Section 2 for the definition of %Q, %i5 #2). Operators
AQ, AI, A2 introduced by (5. 4) will be called infinitesimal generators
of v.

Example 5. 1. If u is the representation of S»U(2) considered in Thm.
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1.4 then using formulae (2. 3) we compute infinitesimal generators of u'.

V

\0,

f /I V "• 7 • " ]f\ \ I I \ I - " - * V/ '

Ai=(id®%i)u = \

i-C

y»^*)\ /«, 0\

»(«*)/ \-», of
/J / •

-°-2 v^^vcyA^/1* i x>. ,

Let y be a representation of SVU(T) acting on a finite dimensional
vector space V. Then v can be written In the form

where m^B(V) and y£ej/e Condition (50 1) means that

Applying to the both sides the map irf(x)irf(X)%, where % Is a linear
functional on j/ we obtain

(5. 5)

If % = g then (cf. (2. 10)) x*yi = z;ij the left hand side of the above
equation equals to z; and remembering that v Is Invertible we get

Inserting in (5. 5) %ft instead of %, multiplying both sides (from
the right) by I®Q)k and summing over A: we get

(id®d)v = v(Y> Ak®a)u} (5. 7)
&

where ^40j -4i, A2 are infinitesimal generators of v.

Proposition 58 2e L^ v, vf be representations of SJJ(T) acting on finite
dimensional vector spaces V and V resp., A^ A^ A2, and A'0, A{, A'2 be
infinitesimal generators of v and vf res p. and S^B(V^V'}. Then the
following conditions are equivalent:

I. S intertwines v with v'
II. SAk = AiSfor A = 0, 1,2.

Proof. If (S(g)/)z; = z/(5'(B)/) then applying to both sides the map
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(A = 0, 1,2) we obtain £(w/(g)fc)z; = (id®ik}v'S. Therefore I
implies II.

To prove the converse we have to compute (id®d) (zT1) where v~l

is the inverse of v. Using relation dl = 0 we get

and using (5. 7) we obtain

Now, using the rules of differential calculus, formula (5. 7) with v
replaced by v' and the above equation we have

(zT1)

k

If condition II is satisfied then

and using Thm. 2. 3 we see that

v/(s®r)
where S' e 5 ( 7, Fx) . Therefore

- (5.8)

Applying to the both sides of the above equation the map id®e, using
(5.6) and the same formula for v' we get S' = S and (5.8) shows
that condition I holds. Q. E. D.

If V=V and Ak = A'k for k = Q9 1,2, then setting S = I (the identity
acting on F) we satisfy condition II. Therefore S = I intertwines v
with v' and v = vf* This way we get

Corollary 5. 3. Any representation of S»U(2) is uniquely determined
by its infinitesimal generators.

Now we shall show that the infinitesimal generators AQ, A^ A2 intro-
duced by (5. 4) satisfy the same commutation relations as infinitesimal
shifts (cf. Table 7 in Section 3) .
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We apply (id®d) to the both sides of (5. 7). Remembering that
2 = 0 we get

2

)a>4)=0 .
k=0

Therefore
2

(id®d) (v) A (2 <^*(8)<Wfc)

where A denotes the usual product in B(V) tensored with the A
product in FA. Using once more (5. 7) we get

2 2

ki=0 k=Q

Proceeding in the same way as at the end of Section 3 we obtain

The commutation relationsTable 8 for infinitesimal generators

V ^2^-0
V

r

- -4^2 - ( 1 + P2) A2

Assume now that V is a Hilbert space and that v is a unitary
representation of SJJ(T) acting on V. Then v*v=I®I and

0= (W(g)flO (z>*z>) = (
- [v* (id®d) v~]

where in the last line we used (2.36). The star * standing just
after the square bracket denotes the hermitian conjugation in B(V)
tensored with the involution (2. 33) in F. Taking into account (5. 7)
we get

(i;^(8)^)*=-i:^(8)^
k=0 k=0

which means (cf. Table 4) that

Table 9 The selfadjointness relation
for infinitesimal generators

- A A * — A
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Let V be a finite dimensional vector space. We say that (A^ A^ A^
is an infinitesimal representation of SVU(T) acting on V if A0,Ai,A2G
B(V) and if the relations of Table 8 hold. An infinitesimal rep-
resentation (AQ, AI, A2) is called selfadjoint if the relations of Table 9
are satisfied. According to the results presented above the investigation
of (global) representations of SJJ(T) can be reduced to study of
infinitesimal representations.

Theorem 5. 4. Let (AQ, A^ A2) be an infinitesimal representation of
SVU(2) acting on a finite dimensional vector space V. We assume that this
representation is irreducible (i. ea there is no non-trivial subspace of V
invariant under Ak where k = Q, 192).

Then the eigenvalues of AI are real and denoting by Amax the maximal
one we have the following possibilities :

I Ji - *le Amax •

Then dim V=l and there exists c^C such that

A, = c^-jl (5.10)

A l = - - I (5.11)

(5.12)

n ; — V

"max —
_

i _ 2 ^ ^

where n is a nonnegative integer or half -integer : n = Q, -=-, 1, 1-=-, . . . . Then

dim V=2n + l and there exists a basis

(E.MS.n+l,...,Sn) (5.13)

in V such that for k=—n, — n + l9...9n we have

AQBk=-ck+1Sk+1 (5.14)

(5. 16)

where
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If V is a Hilbert space and the infinitesimal representation (A0, Ai9 A2)
is selfadjoint then the case I cannot occur and in the case II the basis
(5.13) is orthonormal (more precisely (Bk \Bk/) = cdkk, where c is a positive
constant} .

Remark. If v = ± l then the case I cannot occur and In the case
II the expression for Amax and the right hand sides of (5. 15) and
(5. 17) should be replaced by the suitable limits: Amax = 2n9 AiSJt

Proof. For v » = l the relations contained in Table 8 coincides with
the commutation relations in the Lie algebra su (2) . One can check
that for v= — 1 the relations of Table 8 are identical with the com-
mutation relations in su(l9 1). Since these two cases are covered by
many textbooks in the following we assume that |v|<l.

Let

B=I+±=£-Al (5.18)

(5.19)

Then using Table 8 one can check that operators B and C commute
and

BAQ = u-*A0B, CA0 = v-2AQC (5. 20)

B A2 = v*A2B, CA2 = JA2C . (5.21)

Moreover

(5° 22)

(5.23)

Let F7-(ker B) n (ker C). It follows immediately from (5. 20)
and (5.21) and the first equation of Table 8 that V is invariant
under AQ, A2, AI* Therefore either V '=V or V'={0}0 Assume that
V'=V. Then B = C = Q and (cf. (5. 18)) formula (5. 11) follows. More-
over in virtue of (5. 22) and (5. 23) operators AQ and A2 commute and
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using the irreducibility we get dim V= I and all operators on V are
multiple of identity: A0 = cQI and A2 = c2L In virtue of (5.22) c0c2 =
v3(l—v2)-2 and setting c = v~1(l — »2)cQ we obtain (5.10) and (5.12).

Now we consider case F'={0}.

Assume that ker^o^lO}- Then using (5.20) we see that the
common spectrum of the pair of commuting operators (B, C) is in-
variant under the map (b, c) -> (y~4&, v~2c} . Clearly the orbit of any
point (b, c) 3= (0, 0) is infinite. The case (b, c) — (0, 0) is excluded
since V = {0} . Therefore we obtain contradiction with the assumption
that dim V is finite. It proves that ker AQ is non-trivial.

First of the equations (5. 20) shows that ker AQ is B-'m variant.
Let Emax be an eigenvector of B belonging to ker AQ:

where b&C. Then using (5.23) we obtain

CBmax = cSmax

where

c-c 1+y2 - . c

Using ^-times equations (5. 21) we obtain

x (5.26)

(5.27)

for k = Q, 1,2, ... . Assume that Ak
23max^0 for all k. Then we have

an infinite sequence of vectors (A2Smax)k=0ili2i... being common eigen-
vectors of (B, C) corresponding to different pairs of eigenvalues
(y4*£5 v

2kc) which cannot happen for finite-dimensional V0 Therefore
A23max = 0 for some k.

Let N be the smallest integer such that A£+lBmttX = Q. Then
A2Bmax^§ and applying both sides of (5.22) to A2Bmax and using
(5.26) and (5.27) we get

l+v*N+zb=(l+v2)v2Nc . (5.28)

Solving (5. 25) and (5. 28) with respect to b and c we obtain

y
C= :
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Let «=-o-- We set

Bn = Bm (5029)

and for k = n, n — 1, n — 2,eaa, — n + l

B^=-±-A& (5.30)
"Ck

where ck is given by (5.17). This way we introduce subsequently
vectors Bn, Sn_^ . , , , S_n+lj E_n e V, Clearly Sk is proportional to

An
2-*Smax: 3k = c'kA

n
2~

kZmax with 4^0.
Using (5.26) and (5. 27) with k replaced by n — k and formulae

for b and c we obtain

Now formula (5.15) follows directly from (5.18).
For k=—n: ck = Q and the right hand side of (5.16) vanishes0

On the other hand S_n is proportional to A2
2Emax and A23_n vanishes

(because A2Aln3max = A?+l£max = V)* Therefore (5.16) holds for k=-n.
For other values of k it holds in virtue of (5. 30) .

For k = n: ck+i = 0 and both sides of (5.14) vanish (cf. (5. 24) and
(5.29)). To prove (5. 14) for other values of k we insert k+l instead
of k in (5.30) and compute using (5.22) and (5.31) with k replaced

by k + l:

'+1 (1-^+1

ck+l

and (5. 14) follows.
It follows from (5. 14)-(5. 16) that the subspace of V spanned

by vectors (5.13) is invariant under A0, A^ A2; therefore in virtue of
irreducibility this subspace coincides with V. In other words (5. 13)
is a basis in V and dim V=2n + l.

Assume that V is a Hilbert space and that A*=Ai and A* = —vAQ.
If AQ and A2 are given by (5. 10) and (5. 12) then the last equality
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in the previous sentence leads to contradiction cc=~l. If A^ A^ A2 are
given by (5. 14) -(5. 16) then vectors (5,13) are mutually orthogonal
(as eigenvectors of selfadjoint operator AI corresponding to different
eigenvalues) and

for k = n,n-l,..., —n + l. Q. E. D.

Remark 5. 5. One can easily check that operators A0, A\^ A2 defined
by (5. 10) -(5. 12) satisfy the relations of Table 8. However they are
not infinitesimal generators of any representation of SVU(2). Indeed
since any representation is equivalent to a unitary one, the infinitesimal
generators always satisfy the selfadjointness relations, which are not
fulfiled in the considered case.

Remark 5. 6. If n is nonnegative integer or half-integer and V is
a (2rc + 1) -dimensional vector space with a basis (5.13) then elemen-
tary computations show that operators A^A^A2 introduced by (50 14)-
(5. 16) satisfy the relations of Table 8. In other words ( A^ AI, A2) is
an infinitesimal representation of S»U(2). This representation will be
denoted by d™f. One can easily check that d™f is irreducible (V
contains no non-trivial subspace invariant under Ak & = 0, 1,2). If V
is the Hilbert space and the basis (5. 13) is orthonormal then the
selfadjointness relation hold.

Remark 5. 7, Let dinf = (AQ, A^ A2) be an infinitesimal representation
of S»U(T) acting on a vector space W. Assume that W contains a
non-zero vector 3max such that AQ3max = Q and Ai3mas = 2maxSmttX9 where
Amax^C. Then repeating the reasoning started with formulae (50 24)
we see that

for some nonnegative integer or half-integer n and dinf contains a
subrepresentation equivalent to d™f.

Theorem 5. 8. Any infinitesimal representation d%f (where n is a non-
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negative integer or half-integer corresponds to a (global) representation of

Proof, Let n be a nonnegative integer or half-Integer and

T— { — n, — n + l, a.e,n}a

For k&T we put

Xk = a»+*j.**-*.

It follows immediately from (L 13) that

(5.32)

where wik^<s/ (i^k^T'). According to Thm0 1. 2 elements (;efc) are
linearly independent. Therefore elements wik are uniquely determined,

Taking into account the commutativity of the diagram (L 15) we
have

Therefore

Let w be the (2/z + l) X(2ra + l) matrix with matrix elements equal
to wik: w=(wik)ike=To Then weAf2n+i(x)stf and (5. 33) means that

(zW(x)0) w = w®w . (5. 34)

We shall prove that w is invertible. Indeed using (5.32) and
(2. 10) we have

S y-P (7f)-L\ ~~ (ifJC'X}?} (J)(YI} —~ VTAJ& \tc'ij^1/ — v^tLtv/x/t/y =*^ x^fex —"^fe °

Therefore e(wik)=dik where 5ife is the Kronecker symbol Using (2. 12)
we get

Similarly using (2. 13) we obtain

*£wisK(wsk) =dikl .
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These relations show that (id^tc^w is inverse of w and (5.33) shows
that w is a (global) representation of SJJ(T).

Let dinf be the infinitesimal representation corresponding to w :
dinf = (AQ, Al9 AZ) , where (cf. (5.4)) Ar are (2/z + l) X (2« + l) matrices

4r=0fr(a>tt))i.*6r - (5.35)

In virtue of (5. 32)

• (5- 36)

It follows from Table 2 that Xo*# = 0. Using (2.20) we obtain
Zo*«2w — 0 and the above equality shows that %o(witt) = 0. It

means that the last (i. e. corresponding to k = ri) column of AQ vanishes.
Therefore denoting by Smax the vector in C2n+l having all except the
last component equal to zero we have

A03max = Q .

Moreover using formulae (5.35), (5.36) and (2.22) we see that
AI is a diagonal matrix with elements v2(l — v2)"1^"4* — 1] on the
diagonal. In particular for k~n we get

Now using Remark 5. 7 we see that dinf contain a subrepresentation
equivalent to dyf. Since the dimensions of the two representations
are equal to 2n + l we conclude that dinf is equivalent to d™f.

Q. E. D.

The representation constructed in the above proof will be denoted
by dn. Clearly any irreducible representation of SVU(2) is equivalent
to dn for some n. Any finite-dimensional representation of SyC/(2) is
equivalent to a direct sum of representations dn.

Let F£ be a subalgebra in /"A (see Section 3) generated by / and

^o, a>ij ^2- Clearly F£ is a graded ^-algebra and due to Cartan-Maurer
formulae (Table 6) F£ is closed under the external derivative d.
Therefore denoting by F£r the subspace of all elements of grade r
we have the following cochain complex:

o — > rc
AO -i-> TAI -i-> rc

A2 -i-> rc
A3 — > o . (5. 37)

According to (3. 13) d: /^A2->,TA3 vanishes. Moreover equation
dl = 0 shows that d: F^->F£l vanishes. On the other hand in virtue
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of Cartan-Maurer formulae (Table 6) d: F1^1— >/^2 Is a linear Isomor-
phism. Therefore denoting by H°, H1^ H2, H3 the cohomology groups
of (5. 37) we obtain

H* = C, Hl = Q, H2 = Q, H* = C. (5. 38)

Let v be a representation of SVU(2) acting on a vector space F3

A0, AI and A2 be infinitesimal generators of v. We consider the tensor
product r$ = V®r*. Clearly F$ is a graded vector space: the
subspace of all elements of grade r coincides with r$r

For any x&V and Ce/^> we put

(5. 39)
fe=0

This formula defines a linear map

</.: n — >r$ .
Clearly rf0 increases the grade of any homogeneous element by one

o — > F£° -^ r$l — r^)2 -^u r^3 -^u o . (5. 40)
Using (5. 39)? (3.7) and remembering that d2C, = 0 we obtain

<42Wx)Q =S ^^(8)^-A^AC+i; ^(8)rf^AC
ife=0 fe=0

and formula (5.9) shows that ^ = 0, It means that (5.40) is a
cochain complex. We shall prove

Theorem 5. 9. Let q be the multiplicity of one dimensional trivial rep-
resentation in v. Then denoting by Hi, Hl

v, H
2

v,Hl the cohomology groups of

(5. 40) we have

H°V = C<, //J = 0, #* = 0, H* = C*. (5.41)

Proof. It is known that any representation of SVU(2) can be
decomposed into a direct sum of irreducible representations. Therefore
one may assume that v is irreducible.

Let v be irreducible trivial representation: v = /(X)/^5(F) ®j^ \

where dim V=l. Then Ar = 0 (r = 0 , l 3 2 ) and complex (5.40) coin-
cides with (5.37). In this case q=\ and (5.41) follows from (5.38).

Assume that v is a non-trivial representation of S»U(2). Then the
infinitesimal generators of v are given by formulae (5. 14) -(5. 16) with
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some strictly positive n (the case n = Q corresponds to the trivial
representation). In this case q = 0 and we have to show that the
sequence (5. 40) is exact.

Let us notice that if n is half-integer then (cf. (5. 15)) A\ is inver-
tible0 If n is integer then SQ is the only basis vector killed by AI.
Since A030=—ciS1^Q9 we see that the intersection of kernels of
AQ, AI, A2 contains only zero. Thus

ker (d: F$Q - » Fp) =0

and sequence (5. 40) is exact at J7^0.
Using formulae (5.39), (3.13) and Table 5 we get

dv (

In virtue of (5. 14) -(5. 16) any vector of basis (5. 13) belongs to the
range of at least one generator Ar (r = 0, l ,2) . The above formula
shows that the mapping

is surjective and sequence (5. 40) is exact at
Let

be an element of F$l=V®F£l. Assume that dvx = Q. It means that

X! = Q (5. 42)

l - (1 + y2) XQ = 0 (5. 43)

i?AM - »-2AlX2 - (1 + v2} x2 = 0 . (5. 44)

If n is half-integer then AI is invertible and

xi=Aiy (5.45)

where y — A^XI. If n is integer then in virtue of (5.15) the ( + 1)-
component of iPAix0— (1 +vz)x0 vanishes (the term " (s) -component of
a vector z^V" means g if £ = !>£*'5'*) and using (5.43) and (5.14)

we see that the (0)-component of Xi vanishes. In this case ^e Range
AI and again we have (5.45) with somejyeF,, Let

x' = x-d,y . (5.46)

Then dvx' = Q and writing
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we see that x'09 x{9 x2 satisfy relations (5. 42) -(5. 44) e However now
x'i = Xi—Aiy = Q and these relations take the following form

(5.47)

0 (5,48)

x2=0 . (5049)

If w is half-integer then operators iPAi — (1 + y2)/ and v~2Ai + (1
are invertible (cf. (5. 15)) and we obtain x'Q = x2 = 0. Therefore x' =
and

Therefore in this case the sequence (5. 40) is exact at
If n is integer then equations (5. 48) and (5. 49) show that

x/
Q = 2QS1 and X2 = ̂ -i9 where ZQ, 22^C (cL (5. 15)). Now (5. 47) implies

equality

A^+^ = 0 . (5.50)

Using (5.17) one can easily check that cl = D2c\a Therefore (5. 50)
is equivalent to

Let

Then A0y = 2QSl = x/
09 A^y' = 09 ̂ J^'^^-i^^ It means that x' = dvy'

and using (5. 46) we get

Therefore also in this case the sequence (5. 40) is exact at F$1
0

Exactness at F$2 follows now easily from simple dimension compu-
tations which we left to the reader. Q. E0 DB

We are going to apply this theorem to the regular representation.
It is known that any irreducible representation enters into regular
representation with the multiplicity equal to the dimension of the
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representation. In particular the multiplicity of the trivial representa-
tion equals to 1. In this case the sequence (5.40) coincides with the
de Rham sequence

and we obtain

Corollary 5. 10. The de Rham cohomology groups of SVU(2) equal C
in dimensions 0 and 3 and equal 0 in dimensions 1 and 2.

The end of this section is devoted to some remarks concerning the
tensor product of representations.

Let v and w be representations of SJJ(2} acting on finite-dimensional
vector spaces V and W resp. If

3

where m^BCV), nj^B(W}, ah 6/ej/, then the tensor product of
representations v and w is a representation of S»U(2) acting on
V<g)W introduced by (cf. (5.3))

and denoting by Av®w the infinitesimal generators of v®w we have

ij

Using (2. 7) we get

Af"° = A^Bf + I®Aa
r (5.51)

where r = 0, 1, 2,

y

are infinitesimal generators of v and w resp. and

Bw
r = T>fr (bj) nj = (zW(x)/r) w.

j
In virtue of (2.4), (2.5) and (5.6)

(5.52)
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Moreover using (2.11) and (5.1) we obtain

It turns out that for any representation w operator B% has only
positive eigenvalues. This fact can be checked by direct computations
for irreducible w (then w is equivalent to dn with some n and one
can use formulae obtained in the proof of Thm. 5. 4) and clearly
holds for any w (since w can be decomposed into a direct sum of
irreducible representations) . Therefore

l/2
. (5.53)

Formulae (5. 51) -(5. 53) express generators of tensor product of
two representations in terms of generators of these representations.
They correspond to the simple formula

known in the Lie group representation theory. The asymmetry between
first and the second factor in formulae (5.51) reflects the noncommu-
tativity of the tensor product mentioned at the beginning of this section.

Using formulae (5. 14)-(5. 16), (5. 51)-(5. 53) and Remark 5.7
one can prove the following

Theorem 5. 11. Let n, m be non-negative integer or half -integer. Then
the tensor product dn®dm is equivalent to the direct sum

Theorems 5. 4 and 5. 1 1 show that the representation theory for
SVU(2) is similar to that of 617(2).

Appendices

Al. The Twisted Unlmodularlty Condition

Let K be a two-dimensional Hilbert space. We denote by A2K and
SPK the subspaces of K®K composed of antisymmetric and symmetric
elements resp0 Then

K®K=A2K@S2K
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and dim A2K=L

The determinant of an operator u^B(K) can be introduced in the
following way: One has to consider u®u acting on K®K. Then A2K
is an eigenspace of u®u and the corresponding eigenvalue coincides
with det u. Therefore denoting by f a nonzero vector belonging to
A2K we have

In particular unimodular operators u are distinguished by the
condition

(«®M)£ = f . (AL1)

Replacing £ by another non-zero vector $'&K(x)K we obtain the
following "twisted unimodularity condition"

(f<<g)iO£' = £' . (A1.2)

The vector £ ' can not be arbitrary. In order to have non-trivial
unitary solutions of (Al. 2), £' should have the following property:
There exists a number complex number r such that

for any x, y^K. One can easily verify that (Al. 3) is satisfied if
and only if £ ' is of the form

£ f = k(ei®e2—ve2®e{) (Al. 4)

where (e^ £2) is an orthonormal basis in K, v is a real number in
the interval [-1,1], ktEC and \k \ = (1 + *2)-1/2||£ 11. Then r =

-v(l+v*rl\\%'\\2. If v=l then fe^WST and (AL 2) coincides with
the usual (non-twisted) condition (Al. 1).

Even if (Al. 3) is satisfied, equation (A 1.2) has no interesting
solutions if we are restricted to unitaries u belonging to B(K). In
order to find non-trivial unitary u satisfying (Al. 2) one has to
consider elements of B(K)®A, where A is a C* -algebra which need
not be commutative. In this case (Al. 2) should be rewritten in the
following more precise way

where © denotes the tensor product elements of B(K) combined
with the usual product in A (cf. def. (5. 3) ) and / is the unity of A.

In the following theorem we consider C2 instead of K assuming
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that the basis entering to the formula (AL 4) coincides with the

canonical basis in C2
0 Then B(K)®A can be identified with the

algebra M2(A) of all 2x2 matrices with entries belonging to A.

Theorem Al. L Let y£i [—1 3 1] and ^» = ei§<)e2 — ̂ 2®£i? where (e^e2)

is the canonical basis in C2* Then for any 2x2 matrix u with entries

belonging to a C*-algebra A the following two conditions are equivalent:

I. u is unitary and

(u®u) (ft®/) =ft,®/ . (AL 5)

II. u is of the form

fa , —u:
(A1.6)

where a.^ y^A and (cf. Table 0)

ar^vja (AL 7)

Proof.

Let

'=("'

\r,
where a, /33 ^ d^A. We use the unitarity to simplify (Al. 5). Multiply-

ing both sides of (AL 5) by w*®/2 (where 72 denotes the unity of

M2(A)) we get

(/2®«) (f«(8)/) = («*©/2) (f«®/) - (AL 8)

We rewrite this equation in the matrix form using the basis in

Cf2(X)Cf2 composed of the elements e^e^ ^®^2? e2®ei and e2®ez. In

this basis I2©u and w*©/2 are represented by the matrices:

/«,
r,
o,

\o,

A
s,
o,
o,

o,
o,
a,

r,

0 \
0
18

la*,
o,
/3*,

81 \0,

o,
a*,

o,
P*,

r*,
o,
5*,
o,

0

r*
0

5*
whereas ft®/ is represented by the column



178 S. L. WORONOWICZ

o \

-vl

\ o
Therefore we have

a, ft 0, 0
T, S, 0, 0
0, 0, a, /5

o, o, r, d

\
I

-vl

/«* o, r*, o\
0, a*, 0, r*
£*, 0, 5*, 0

0, £*, 0, «

0

-vl

o /
This relation is satisfied if and only if £=—17* and d = a*. It

proves (Al. 6). To end this part of the proof we notice that (A L 6)
is unitary if and only if equations (Al. 7) hold.

Assume that u is given by (Al. 6), where a, y^A satisfy (AL 7).
Then (see the remark at the end of the first part of the proof) u is
unitary and (Al. 5) is implied by (Al. 8). The latter is equivalent
to (Al. 9) with j8 and d replaced by — 17* and a* resp. and evidently
holds. Q. E. D.

Assume that a unitary u^M2(A) satisfies the twisted unimodularity
condition (A 1.5). Let v = u®u^M2(A&)A) (see page 1.7 for the
definition of Q). Then v is unitary and using the obvious relation

we see that v also satisfies the twisted unimodularity condition with
the same v. This explains why elements a' and 7-' considered in the
proof of Thm. 1. 4 satisfy relations of Table 0.

A2. Structure of the Algebra A

We shall use the notions and results of [2].
For any Hilbert space H we denote by DV(H) the set of all pairs

of operators (a, f) acting on H and satisfying relations of Table 0.
Then Dv is a measurable domain and for any //, DU(H) is a closed
subset of B(H}2. Therefore Dv is a compact domain.

One can easily verify that the algebra A introduced in Section 1
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coincides with the algebra ^ (Dy) of all continuous operator functions
defined on D».

At first we consider case |v|<!l.
It is not difficult to prove the following

Lemma A2.1. Let H<1. Then for any Hilbert space H and any
(a, f) belonging to DV(H) we have

Sd a*aC (0, 1 — y2, 1 — y4 1 — y6 , . . . 0, 1}J T 1 3 7 3 j - » o j j

Sp T^fC (13 v2, v4
9 y

6 , . . . . 5 0} o

Let /5 g be continuous functions on [0, 1 ] such that:

fl for *>l-y2

for t = 0

for t<v2

for * = 1 .

For any Hilbert space H and any (a, 7-) eZ)y(/f) we set

Obviously T1, T2 e ^ (Dy) . Moreover using Lemma A2B 1 one can
easily check that (T^(a57)5 T2

H(a, 7)) ^D0(H) for any (a,r) <^DU(H)0

Therefore T=(T\ T2) is a morphism from Dy into DQ:

T: Dv - >DQ . (A20 1)

It turns out that this morphism is invertibles The inverse T=
(T1, T2) is given by the formulae

- ; , - q*v+i ( A2o 2)
^2n

(A29 3)

Clearly P, T2<=<£ ( D0) (the series (A2. 2) and (A2. 3) are uniformly
converging) . Therefore (A28 1) is a homeomorphism and using [2]
we obtain
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Theorem A2. 2. For any ye[ — 1, 1] the algebra A is isomorphic to

Remark* This result does not mean that the pseudogroups SVU(2)
are isomorphic for all y in the interval [—1, 1]. It only means that
the underlying pseudospaces are homeomorphic.

For any Hilbert space //9 S1
H will denote the set of all unitaries

acting on H. Clearly Sl is a compact domain and the algebra % (S1)
coincides with the algebra of all continuous functions on the unit
circle.

Let us notice that any pair of the form (a, f) , where a is unitary
and f — 0 satisfies the relation of Table 0. Therefore we have mor-
phism (injection)

R: S1 - >DV (A2. 4)

such that R(LT) = (U9 0). By inverse image (A2. 4) defines C*-algebra
homomorphism (surjection) :

The kernel of this homomorphism consists of all continuous operator
functions a defined on Dv such that aH(U9 0) =0 for any Hilbert space
H and any unitary U acting on H, One can prove that this kernel
is isomorphic to the tensor product C®^ (S1), where C denotes the
algebra of all compact operators acting on a separable Hilbert space
(at first one has to show that the representation TC constructed in the
proof of Thm. 1. 2 is faithful). Therefore we have

Theorem A2.3. The algebra A is a GCR algebra.

Remark, We considered only the case ye[ — 1, 1], However for
v=l the algebra A is commutative, whereas for v= — 1 all irreducible
representations of A are two and one-dimensional. Therefore in these
cases A is a GCR algebra.
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