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Equivariant Controllable Cutting-Pasting
and Cobordism with Vector Fields

By

Katsuhiro KOMIYA*

Introduction

Throughout this paper G always denotes a finite group of odd
order, and manifolds and maps considered are all of class C~. /,[G]
denotes the set of n-dimensional closed G-manifolds. In the set
M,[G] we will consider the two notions, Reinhart G-cobordism and
SKK-equivalence.

For M and Ne,[G], if there is an (n+1)-dimensional compact
G-manifold L with dL=M+ N, the disjoint union of M and N, then
they are called G-cobordant and L is called a G-cobordism between them,
This cobordism relation defines the cobordism group N,[G] of n-
dimensional closed G-manifolds. If a G-cobordism L between M and
N admits a nonzero G-vector field which is inward normal on A/ and
outward normal on N, then, following Reinhart [8], M and N are
called Reinhart G-cobordant, and L a Reinhart G-cobordism between them.
The set of cobordism classes by this cobordism relation in #,[G]
forms a semigroup with disjoint union + as its group operation.
Denote by NF[G] the Grothendieck group of the semigroup. From
the author [4] we obtain a necessary and sufficient condition for M
and Ne,[G] to represent the same class in NF[G] in terms of
N,[G] and the Euler characteristics of the fixed point sets of M and
N.

Let P, P/, Q and Q’ be n-dimensional compact G-manifolds with
dP=0P’ and dQ=0Q’. Let ¢ and ¢: 0P—0Q be G-diffeomorphisms.
Then by pasting two G-manifolds along boundary we obtain closed
G-manifolds PU,Q, P'UyQ/, etc. Give #,[G] the equivalence relation
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~ generated by relations of the form

PULQ+P UQ~PULQ+P UQ .
This relation is called SKK-equivalence (Schneiden und Kleben Kon-
trollierbar). The quotient set .#,[G]/~ becomes a semigroup with
the operation +. Denote by SKK,[G] the Grothendieck group of the
semigroup.

In this paper we will establish short exact sequences which contain
the groups N,[G], NE[G] and SKK,[G]. From the exact sequences
we will show, under a restriction for the one dimensional components
of the fixed point sets, M and N represent the same class in NE[G]
if and only if so do they in SKK,[G].

Heithecker [2,3] also discusses SKK-equivalence and Reinhart
G-cobordism of oriented G-manifolds, G an abelian group of odd order.
A modified version of SKK-equivalence is discussed in Prevot [5, 6, 7].

§1. Surgery

Given a G-manifold M and a subgroup H of G, M¥ denotes the
H-fixed point set of M and M=% denotes the union of those compo-
nents of M#? on which H occurs actually as an isotropy subgroup. If
V is a representation of H containing no direct summand of trivial
representation, M7’ denotes the union of those components of AM=#
at which the normal representation is isomorphic to V. Suppose
MV £6¢, Denote by Guyy the subgroup of G whose action keeps
MEV) invariant. We see that HC Gy CN(H), the normalizer of
H in G, and that G,y is determined by (H, V) and independent
of M.

Let dim M%7 >0 and dim M%V 4+1=p+q where p and ¢ are
positive integers. Then there is a smooth G-embedding ¢: GXj
D(VPR?) XS(RY)—M onto a G-invariant regular submanifold of M,
where D( ), S( ) and R* denote the closed unit disc, the unit sphere
and the k-dimensional trivial representation, respectively. Let L be
a G-manifold obtained from the disjoint union of M Xx[0,1] and
G X gD(VER?) X D(RY) by identifying Im ¢ X {I} with G X zD(VPR?)
XS(RY. Then, if M is closed, dL=M+ N where

N= (M—go(GXHDO(V®R1’) XS(R)) UG X zgS(VADR?) X D(RY),
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b( ) denotes the open unit disc. N is called a G-manifold obtained
from M by G-surgery of type (H, V, p, q), and L the itrace of the G-
surgery. We see the following.

(1) If dim M%P<dim M7, then the G-surgery does not
affect MED, i, e, MED=NED,

(2) If dim MY is even, then

ANED) =g (MET) + (= D20 G/ H),

where y( ) denotes the Euler characteristic, because N is obtained
from MV by deleting x(Gu,vy/H) copies of l%(R”)XS(R“) and
attatching as many copies of S(R?) X D(R?).

(3) If MYV is connected and p>1, then N¥V is also connected.
If dim M“%"Y is even and greater than 2, we may take p to be odd
and greater than 1. Thus, by doing G-surgeries of an appropriate type
we may then obtain N such that N¥7 is connected and yx(N“")>0.

The following lemma is obtained from the existence of excellent

G-Morse functions (see Field [1]) and a usual connection between
surgery and Morse function.

Lemma 1.1. Let M and Ne4,[G] be G—cobordant, and L a G-
cobordism between them. Then N is obtained from M by performing a finite
series of G-surgeries of type (Hy,V, pi, q:), 1=1,2,..., s, with trace L.

§2. Cobordism with Vector Fields

Lemma 2.1 ([3; Satz 1.1], [4; Proposition 1.2], [9; Theorem
4.41). Let L be a G-cobordism between closed G-manifolds M and N.
Then L admits a nonzero G-vector field which is inward normal on M and
outward normal on N, if and only if for any subgroup H of G, every
component A of M satisfies y(A) =x(ANM)=y(ANN).

For a space X and a nonnegative integer £, £X denotes the
disjoint union of £ copies of X. For a G-manifold M, M"* denotes
the k-dimensional components of M¥, If Me#,[G], [M] denotes
the class represented by M in the group N,[G]l, NX[G] or SKK,[G].

Lemma 2.2. Suppose that [M]=[N] in N,[G], and that M%'=¢
and N*'=¢ for any subgroup H of G. Then there exists a compact G-
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manifold L such that

(i) OL=My+N,,
Mo =M+ vy @@nG X gS (VPR -E™VH) |
No =N+ vy BaryG X pS (VPR -4mV41) |

where a gy, and Buv, are nonnegative integers, and the sums 3. gy, are
taken over pairs (H, V) of subgroups H of G and representations V of H
which contain no direct summand of trivial representation, and

(1) for any subgroup H of G every component A of L¥ satisfies
x(A) =x(ANMy) =x(ANNy).

From Lemma 2. 1 it follows that the G-manifold L in Lemma 2. 2
admits a nonzero G-vector field which is inward normal on A, and
outward normal on N,, Thus we see

Proposition 2.3. Suppose that [M]=[N] in N,[Gl, and that
ME =¢ and N¥1=¢ for any subgroup H of G. Then in NE[G],

[MI=[N1+Zww 7@nlG X &S (VPR V4],

where 7.y are integers.

Proof of Lemma 2.2. (1) From the hypothesis there exists a
compact G-manifold L, such that (i) dLy=M-+N, and (ii) L§Z% is
closed for any subgroup H. We eliminate all the isolated H-fixed
points from L, as follows. Take in L, invariant small open discs

UVDD(V) with the isolated H-fixed points as their centers. Cut the
discs off from L, and sew the resulting manifold along the newly
arising boundary UyS(V) by antipodal involution. Since G is of odd
order, no new fixed points arise by this process, and we obtain a
compact G-manifold L; such that (i) 0L,=M+N, and (i) for any
subgroup H of G, Lf® is empty and L{"? is closed.

(2) Cut an invariant small open tubular neighborhood of L2
off from L;. Then the newly arising boundary is a sphere bundle.
Sew the resulting manifold along the new boundary by antipodal
involution (on the sphere bundle). Since G is of odd order, no new
fixed points arise by this process also. Thus we obtain a compact
G-manifold L, such that (i) dL,=M+N, and (@ii) L#° and L#? are
empty for any subgroup H of G.



EQUIVARIANT CUTTING AND PASTING 187

(3) 1If for a component A of L{', dANM or dANN is two

points, then take a small open disc ﬁ(V(—DR) with a pointEInt 4 as
its center. We cut such discs off from L; and then obtain a compact
G-manifold L; such that

(i) aL3=M3+N3,
Mz=M+ 3 oG X gS(VOR),
N3=N+>BunGXaS(VDR),

(ii) for any subgroup H of G, any component of L{"! is either
a closed curve (=~&') or a curve in L; which joins a point of M,
and a point of N, and

(i)  LE® and L{? are empty for any subgroup H of G. Thus
L; is a G-cobordism between M; and N; such that y(A4) =y(4N Ms)
=x(4NN;) for any component 4 of L{", r=0, 1, 2.

(4) For a positive integer & consider the following assertion:

P(k). There exists a compact G-manifold L, such that
(i) OL,=M,+N,

My=M+ X mvawnG X gS (VR4

Ny =N+ arBuanG X gS (VORI

where &gy, and By, are nonnegative integers, and
(ii) for any subgroup H of G and any component A of LE™ (r<k),

1) =x(ANM) =3 (ANNy).

If k<3, the assertion P(k) is already proved by the above
arguments. We prove below that P(k) implies P(k+1) for k=3.
Since Lemma 2. 2 is equivalent to P(n+2), the lemma is inductively
obtained.

For a pair (H, V) suppose that dim L{¥-’=k. It is no loss of
generality to suppose that L{¥-" is connected, since if it is not, we
may make it connected by G-surgery of type (H, V, k, 1). Moreover,
as noted in §l this G-surgery does not affect L{*” for any subgroup
K<G and any r<k. Since M{¥" and N#" are cobordant with a
cobordism L{V), then y(MEV) —y(NE") is even. The assertion
(ii) of P(k) implies y((Mi"")*) =x((N§)¥) for any subgroup K
with HSZK<Gyy, From this we see that y(MEFEV) —yx(NE) is
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a multiple of y(Gw,vy/H), since H is the principal isotropy subgroup
of the G y,-manifolds M"Y and N{¥”. Thus we may put

X(MlﬁH'V)) - X(NIEH'V)) =2my(Gw.v/H)

for some integer m.
(5) Suppose that k=dim L{" is odd. It then follows that

Z(LEED) =21 (LE)
1
2
=y (M) —my(Ga.v,/H)
=y (V&) +my(Gavy/H).

Take |m| points xj, %z, ..., %, of Int L{-" whose isotropy subgroups
are all H and for which gx;#x; if g&Gyyy) and i#%j. Consider a
small disc D;(VEPR* with x; as its center, and let

Li=L,— UG X zD;(VRY.
We then see that

aL;,:Mk‘I‘Nk“i' lm lGXHS(V@Rk).
If m=0, then let

M,=M, and

Ni=N,+ |m|G X gS(VEDR?).
If m<0, then let

M;sz+ lmiGXHS(VG‘)Rk), and

N;:=Nk.
L7 is then connected and satisfies y(Liy#7) =y (M;HE ) =y (NEV),
Thus, performing the same as above for all (H, V) with dim L#" =k,
we obtain a compact G-manifold L., as in P(k+1).

(6) Suppose that £=dim LE" is even. Since y(MF") =0 and
x(NE) =0, we must then make the Euler characteristic of L{" zero
(keeping the connectedness of L{¥-"’). The assertion (ii) of P(k)
implies y((L{#7’)%) =0 for any subgroup K with HEXK<G4 . From
this we see that y(L{#") is a multiple of %(Gwy,/H). Thus let
x(LE) =my(Ga,vy/H), m an integer. We may suppose that m is

(M) + 2 (NEFET))

nonnegative, since if it is not, we may make x(L{""’) nonnegative
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by the argument (3) in §l. Take m points xy, X ..., X, of IntL{?
whose isotropy subgroups are all H and for which gx;#x; if g€Gun
and i#j. Consider a small disc D;(VEOR*) with x; as its center, and
let

Ly=L,— UG X zD;(VDR?).
We then see that

OL,=M,+N,+mG X zgS(VEDR?).
Letting M;=M, and N;=N,+mG X zS(VAPR*), we see that L7V is
connected and x(L;#V) =y (M;EV) =y (N¥V) =0. Thus, performing

the same as above for all (H,V) with dim L#&"=k, we obtain
a compact G-manifold L,,; as in P(k+1). ]

Let IZ[G] be the subgroup of NE[G] generated by G-manifolds
of the form GXzS(V) where H is any subgroup of G, and V is any
representation of H with dim V=n+1. Let N,[G] and NZ[G] be
the subgroups of N,[G] and NZ%[G], respectively, generated by G-
manifolds M with M#Z'=¢ for any subgroup H of G. Let I?[G]
=I*[GINNE[G]. If a representation V of an odd order group
contains no direct summand of trivial representation, V has a complex
structure, and hence its (real) dimension is even. This implies that
the dimensions of M and its fixed point sets are congruent modulo 2.
Thus if dim M is even, M*! is always empty. If G is abelian, the
normal bundle of M#%! in M are Reinhart G-cobordant to zero as
G-vector bundle (see the author [4; Lemma 5. 1]). Thus if n is even
or if G is abelian, then we see that N,[G]=N,[G], NE[G]=NE[G]
and IZ[G]=I%[G].

Theorem 2.4. There is a short exact sequence
0—IX[G]——N[G]——N,[G]—0
where 1 is the canonical inclusion, and j is the obvious homomorphism, i. e.,

the homomorphism sending a Reinhart G-cobordism class [M] to a G-co-
bordism class [M].

Proof. It is easy that 7 is monic, j is epic and joi=0. Ker jCIm
i follows from Proposition 2. 3. U]
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Proposition 2.5. If n is odd, then IZ[G]=0.

Proof. Tt is sufficient to prove that [GXgzS(U)]=0 in IZ[G] if U
is a representation of H with dim U=n+1 even. Note that dim U*
is even for any subgroup K of H. Let RP(UPR) be the quotient
space S(UPR) by the antipodal involution. It inherits a stucture of
an n-dimensional H-manifold, In RP(UPR) take a small disc D(U)
with the point RP(R) as its center, and let

L=GX zRP(UBR) —Gx zD(U).
We then see that dL=G X zS(U) and that for any subgroup K of G
any component 4 of L¥ is diffeomorphic to RP(U’@R)—IO)(U')
(where U’ is an even dimensional subspace of U) and A satisfies

x(4) =x(04) =0. By Lemma 2.1 L admits a nonzero G-vector
field which is inward normal on 9L. Thus [G X zS(U)]1=0. ]

Note that any element of the Grothendieck group of a semigroup
S is of the form s—s’ where s, s'ES.

Proposition 2. 6. Suppose that [M]—[N] is an element of IF[G].
Then [M]—[N]1=0 in IZ[G] if and only if y(MEV)=x(NE") for
any pair (H, V).

Proof. [M]—[N]1=0 implies y(M*")=x(N*") by Lemma 2.1.
If nis odd, [M]—[N]=0 is clear by the preceding proposition.
Suppose that z is even and that y(ME") =y(N®") for any (H, V).
Note that in this case the dimensions of fixed point sets are all even.
It is sufficient to prove that [M]—[N]=0 when

M= 2. (H, V)ET(G)a(H,V)G X HS(V(_BRn—dimVH) , and
N=X wwereBunGX pS(VPRrUmV+)

Here ay,vy and By are nonnegative integers, and 7(G) is a finite
set of pairs (H, V) such that if (H, V)+# (K, U) in T(G), then
G X xpS(VPR4"*1) and G X xS(UPR4"U*1) are not G-diffeomorphic.
Order the pairs in

T(G)={(H1, Vl)) (HZ) V2), ceey (Hn Va)}

in such a way that if H; is conjugate to a subgroup of H,, then j<i.
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It follows that

n—dimV  +1

—dim G(H-.Vi)/HiXS(R Y i i=j
(GX g S(V@R™ ) =i
' if i<,
Thus we see that x(M“"7) =35, &%,y and A (N TPy = i,y s
where ¢; is an integer, especially =2y (G, v,/H;) #0. Since X(M(Hi'vi))

@,V . .
=x (N7, then aw,vy=Ba,vy if @w,vy=Fw,vy for any j<i. Thus,

by induction we see that @w,vy=pwuy, for any (H,V)€&ET(G), or that
[M]=[N] in IF[G]. U

Corollary 2.7 (cf. [4]). Suppose that M and N are G-cobordant
closed G-manifolds with M¥'=¢ and N*1=¢ for any subgroup H of G.
Then there exists a Reinhart G-cobordism between M and N, if and only
if Y (MEV)=y(NEY) for any pair (H, V).

Proof. The “only if” part follows from Lemma 2.1. If y(M%7)
=y(N¥7") for any (H, V), then [M]—[N]=0 in IZ[G] by Theorem
2.4 and Proposition 2.6. This implies that there exists a Reinhart
G-cobordism between M and N. ]

§ 3. Controllable Cutting and Pasting

As in §1 and §2 of Heithecker [2] we obtain the following
Proposition 3.1, Lemma 3.2 and Lemma 3. 3:

Proposition 3.1. If [M]=[N] in SKK,[G], then
(i) [M1=[N] in N,[G], and
(i) (MED) =y (N for any pair (H, V).

Lemma 3.2. If N is obtained from M by G-surgery of type (H, V,
b, @, then in SKK,[G],

[M]+[GXaSVDR*)1=[N]1+[GXxS(VOR") XS(RY],
where p+qg=n—dim V41.

Lemma 3.3. Ir SKK,[G],
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2[G X xS(VAR!™)] if q is odd,

[G XHS(VG_)RP-‘-I) XS(Rq)] = { 0 l‘f q is even

where p+g=n—dim V+1.

The following proposition follows from the preceding two lemmas.

Proposition 3.4. If N is obtained by performing a finite series of
G-sugeries on M of type (Hy, Vi pirq:), 1=1,2,...,s, then in SKK,[G],

n—dimV .+1

[N]=[M]+Zia(— D [GXzS(V:OR™ )]

Let I,[G] be the subgroup of SKK,[G] generated by G-manifolds
of the form GXzS(V). From Proposition 3.4 and Lemma 1.1, if
M and Ne#,[G] are G-cobordant, then we see that [M]—[N]<,[G].
Thus we obtain

Theorem 3.5. There is a short exact sequence
0—I:[G]——SKK,[G]——N,[G]—0

where © and j are the obvious homomorphisms.

Proposition 3.6. If [M]=[N] in NE[G], then [M]=[N] in
SKK,[G].

Proof. From the hypothesis there is a Reinhart G-cobordism L
between M and N, and by Lemma 2. 1 L satisfies y (L") =y (M™7)
=x(N®V) for any pair (H, V). By Lemma 1.1, N is obtained
from M by performing a finite series of G-surgeries of type (H; V,,
b 99, 1=1,2, ..., s, with trace L. Here we may take the subgroups
H,, H,, ..., H,so that H;=H, if H; and H; are conjugate. Moreover,
we may take the representations Vi, V, ..., V, so that V,=V, if
H=H;=H;, and if GX4V; and GX;V; are isomorphic as G-vector
bundles over G/H. By Proposition 3. 4 in SKK,[G],

n—dimV,+1

[N1=[M]+ X5 (—1)“[G Xz, S(V:DR 1.

Divide the set I={l, 2, ..., s} into the disjoint union of subsets,
I=LULU...Ul, such that for any s (1=<b=<a), i, j=1, if and only
if H;=H; and V;=V,;, Let H=H, be a maximal subgroup in
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{H, Hy, ..., H}. Alsolet V=V, and 1€l,. Note then that H=H;
and V=V, for all i€l;. Note also that N#" is obtained from
M%Y by performing a finite series of (nonequivariant) surgeries of
type ({1}, {0}, ps, ¢o), i€, in which each type repeats x(Gw,v/H)
times. Since L7 is the trace of this series of surgeries, we see

L (LEDY =y (MED) + 1 (G ryy/ H) Tier, (=1

Since y (L") =y(M%V), then Zier (— 1)%=0. Considering induc-
tively the same as above we see that 2ier,(— 1)%=0 for any b (1=b=a).
This implies [M]=[N] in SKK,[G]. |

Consider the following commutative diagram
0—I2[G]1——NE[G] ——N,[G1—0
bk
0—I,[G]1——SKK,[G]—— N,[G]—0

where ¢;, ¢, and ¢; are the obvious homomorphisms. Note that ¢
and ¢, are well-defined by the preceding proposition.

Proposition 3.7. ¢,: NX[G]—SKK,[G] is injective.

Proof. In the above diagram the two rows are exact and ¢; is
injective. Thus it suffices to prove the injectivity of ¢;,. Suppose that
[M]—[N]1€X[G] and [M]—[N]=0 in [I,[G]. Proposition 3.1
shows that y(M%7") =y (N%") for any (H, V). By Corollary 2.7
this shows that [M]—[N]=0 in I?[G]. Thus ¢, is injective. |

Corollary 2.7, Proposition 3.6 and Proposition 3.7 are now
summarized as the following theorem.

Theorem 3.8. Let M and NeM,[G] be such that MT*=¢ and
N#i=¢ for any subgroup H of G. Then the following (i), (ii) and (iii)
are equivalent

@ [M]=[N] in NJ[G],

(ii) [M]=[N] in SKK,[G],

(ii) [MI=[N] in N,[G], and x(M*7)=x(N*7)
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Sor any (H, V).

Notes. (1) The restriction M#'=¢ is caused by the following
fact. Given a bounded compact manifold N+#¢ of dimension 2n—1>>2,
then there exists a 2z-dimensional compact connected manifold L which
bounds N and has a prescribed Euler characteristic. If n=1, however
x(L) is at most 1.

(2) If n is even or if G is abelian, from what we noted above
Theorem 2. 4, the restrictions M#!=¢ and N?'=¢ in Theorem 3.8
are not needed.

(83) In the case where G is of even order some different matters
happen. For example, gluing by antipodal involution yields new
fixed points, and the dimensions of fixed point sets are not congruent
modulo}2.
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