Equivariant Controllable Cutting-Pasting and Cobordism with Vector Fields

By

Katsuhiro KOMIYA*

Introduction

Throughout this paper G always denotes a finite group of odd order, and manifolds and maps considered are all of class C^{∞} . $\mathcal{M}_n[G]$ denotes the set of *n*-dimensional closed G-manifolds. In the set $\mathcal{M}_n[G]$ we will consider the two notions, Reinhart G-cobordism and SKK-equivalence.

For M and $N \in \mathcal{M}_n[G]$, if there is an (n+1)-dimensional compact G-manifold L with $\partial L = M + N$, the disjoint union of M and N, then they are called G-cobordant and L is called a G-cobordism between them. This cobordism relation defines the cobordism group $N_n[G]$ of ndimensional closed G-manifolds. If a G-cobordism L between M and N admits a nonzero G-vector field which is inward normal on M and outward normal on N, then, following Reinhart [8], M and N are called Reinhart G-cobordant, and L a Reinhart G-cobordism between them. The set of cobordism classes by this cobordism relation in $\mathcal{M}_n[G]$ forms a semigroup with disjoint union + as its group operation. Denote by $N_n^R[G]$ the Grothendieck group of the semigroup. From the author [4] we obtain a necessary and sufficient condition for Mand $N \in \mathcal{M}_n[G]$ to represent the same class in $N_n^R[G]$ in terms of $N_{n}[G]$ and the Euler characteristics of the fixed point sets of M and N.

Let P, P', Q and Q' be *n*-dimensional compact *G*-manifolds with $\partial P = \partial P'$ and $\partial Q = \partial Q'$. Let φ and ψ : $\partial P \rightarrow \partial Q$ be *G*-diffeomorphisms. Then by pasting two *G*-manifolds along boundary we obtain closed *G*-manifolds $P \cup_{\varphi} Q$, $P' \cup_{\varphi} Q'$, etc. Give $\mathcal{M}_n[G]$ the equivalence relation

Communicated by N. Shimada, June 4, 1986.

^{*}Department of Mathematics, Yamaguchi University, Yamaguchi 753, Japan.

 \sim generated by relations of the form

 $P \cup_{\varphi} Q + P' \cup_{\varphi} Q' \sim P \cup_{\varphi} Q + P' \cup_{\varphi} Q'.$

This relation is called SKK-equivalence (Schneiden und Kleben Kontrollierbar). The quotient set $\mathcal{M}_n[G]/\sim$ becomes a semigroup with the operation +. Denote by $SKK_n[G]$ the Grothendieck group of the semigroup.

In this paper we will establish short exact sequences which contain the groups $N_n[G]$, $N_n^R[G]$ and $SKK_n[G]$. From the exact sequences we will show, under a restriction for the one dimensional components of the fixed point sets, M and N represent the same class in $N_n^R[G]$ if and only if so do they in $SKK_n[G]$.

Heithecker [2, 3] also discusses SKK-equivalence and Reinhart G-cobordism of oriented G-manifolds, G an abelian group of odd order. A modified version of SKK-equivalence is discussed in Prevot [5, 6, 7].

§1. Surgery

Given a G-manifold M and a subgroup H of G, M^H denotes the H-fixed point set of M and $M^{=H}$ denotes the union of those components of M^H on which H occurs actually as an isotropy subgroup. If V is a representation of H containing no direct summand of trivial representation, $M^{(H,V)}$ denotes the union of those components of $M^{=H}$ at which the normal representation is isomorphic to V. Suppose $M^{(H,V)} \neq \phi$. Denote by $G_{(H,V)}$ the subgroup of G whose action keeps $M^{(H,V)}$ invariant. We see that $H \subset G_{(H,V)} \subset N(H)$, the normalizer of H in G, and that $G_{(H,V)}$ is determined by (H, V) and independent of M.

Let dim $M^{(H,V)} > 0$ and dim $M^{(H,V)} + 1 = p + q$ where p and q are positive integers. Then there is a smooth G-embedding $\varphi: G \times_H D(V \oplus R^p) \times S(R^q) \to M$ onto a G-invariant regular submanifold of M, where D(), S() and R^k denote the closed unit disc, the unit sphere and the k-dimensional trivial representation, respectively. Let L be a G-manifold obtained from the disjoint union of $M \times [0,1]$ and $G \times_H D(V \oplus R^p) \times D(R^q)$ by identifying Im $\varphi \times \{1\}$ with $G \times_H D(V \oplus R^p)$ $\times S(R^q)$. Then, if M is closed, $\partial L = M + N$ where

$$N = (M - \varphi(G \times_{H} \mathring{D}(V \oplus R^{\flat}) \times S(R^{q})) \cup G \times_{H} S(V \oplus R^{\flat}) \times D(R^{q}),$$

 $\check{D}()$ denotes the open unit disc. N is called a G-manifold obtained from M by G-surgery of type (H, V, p, q), and L the trace of the G-surgery. We see the following.

(1) If dim $M^{(K,U)} \leq \dim M^{(H,V)}$, then the G-surgery does not affect $M^{(K,U)}$, i.e., $M^{(K,U)} = N^{(K,U)}$.

(2) If dim $M^{(H,V)}$ is even, then

$$\chi(N^{(H,V)}) = \chi(M^{(H,V)}) + (-1)^{p+1} 2\chi(G_{(H,V)}/H),$$

where $\chi()$ denotes the Euler characteristic, because $N^{(H,V)}$ is obtained from $M^{(H,V)}$ by deleting $\chi(G_{(H,V)}/H)$ copies of $\overset{\circ}{D}(R^{p}) \times S(R^{q})$ and attaching as many copies of $S(R^{p}) \times D(R^{q})$.

(3) If $M^{(H,V)}$ is connected and p > 1, then $N^{(H,V)}$ is also connected. If dim $M^{(H,V)}$ is even and greater than 2, we may take p to be odd and greater than 1. Thus, by doing G-surgeries of an appropriate type we may then obtain N such that $N^{(H,V)}$ is connected and $\chi(N^{(H,V)}) > 0$.

The following lemma is obtained from the existence of *excellent* G-Morse functions (see Field [1]) and a usual connection between surgery and Morse function.

Lemma 1.1. Let M and $N \in \mathcal{M}_n[G]$ be G-cobordant, and L a G-cobordism between them. Then N is obtained from M by performing a finite series of G-surgeries of type (H_i, V_i, p_i, q_i) , $i=1, 2, \ldots, s$, with trace L.

§2. Cobordism with Vector Fields

Lemma 2.1 ([3; Satz 1.1], [4; Proposition 1.2], [9; Theorem 4.4]). Let L be a G-cobordism between closed G-manifolds M and N. Then L admits a nonzero G-vector field which is inward normal on M and outward normal on N, if and only if for any subgroup H of G, every component A of M^{H} satisfies $\chi(A) = \chi(A \cap M) = \chi(A \cap N)$.

For a space X and a nonnegative integer k, kX denotes the disjoint union of k copies of X. For a G-manifold M, $M^{H,k}$ denotes the k-dimensional components of M^{H} . If $M \in \mathcal{M}_{n}[G]$, [M] denotes the class represented by M in the group $N_{n}[G]$, $N_{n}^{R}[G]$ or $SKK_{n}[G]$.

Lemma 2.2. Suppose that [M] = [N] in $N_n[G]$, and that $M^{H,1} = \phi$ and $N^{H,1} = \phi$ for any subgroup H of G. Then there exists a compact G- manifold L such that

(i) $\partial L = M_0 + N_0,$ $M_0 = M + \sum_{(H,V)} \alpha_{(H,V)} G \times_H S(V \oplus R^{n-\dim V+1}),$ $N_0 = N + \sum_{(H,V)} \beta_{(H,V)} G \times_H S(V \oplus R^{n-\dim V+1}),$

where $\alpha_{(H,V)}$ and $\beta_{(H,V)}$ are nonnegative integers, and the sums $\sum_{(H,V)}$ are taken over pairs (H, V) of subgroups H of G and representations V of H which contain no direct summand of trivial representation, and

(ii) for any subgroup H of G every component A of L^H satisfies $\chi(A) = \chi(A \cap M_0) = \chi(A \cap N_0)$.

From Lemma 2. 1 it follows that the G-manifold L in Lemma 2. 2 admits a nonzero G-vector field which is inward normal on M_0 and outward normal on N_0 . Thus we see

Proposition 2.3. Suppose that [M] = [N] in $N_n[G]$, and that $M^{H,1} = \phi$ and $N^{H,1} = \phi$ for any subgroup H of G. Then in $N_n^R[G]$,

$$[M] = [N] + \sum_{(H,V)} \gamma_{(H,V)} [G \times_H S(V \oplus R^{n-\dim V+1})],$$

where $\gamma_{(H,V)}$ are integers.

Proof of Lemma 2.2. (1) From the hypothesis there exists a compact G-manifold L_0 such that (i) $\partial L_0 = M + N$, and (ii) $L_0^{H,2}$ is closed for any subgroup H. We eliminate all the isolated H-fixed points from L_0 as follows. Take in L_0 invariant small open discs $\bigcup_V D^{\circ}(V)$ with the isolated H-fixed points as their centers. Cut the discs off from L_0 , and sew the resulting manifold along the newly arising boundary $\bigcup_V S(V)$ by antipodal involution. Since G is of odd order, no new fixed points arise by this process, and we obtain a compact G-manifold L_1 such that (i) $\partial L_1 = M + N$, and (ii) for any subgroup H of G, $L_1^{H,0}$ is empty and $L_1^{H,2}$ is closed.

(2) Cut an invariant small open tubular neighborhood of $L_1^{H,2}$ off from L_1 . Then the newly arising boundary is a sphere bundle. Sew the resulting manifold along the new boundary by antipodal involution (on the sphere bundle). Since G is of odd order, no new fixed points arise by this process also. Thus we obtain a compact G-manifold L_2 such that (i) $\partial L_2 = M + N$, and (ii) $L_2^{H,0}$ and $L_2^{H,2}$ are empty for any subgroup H of G.

(3) If for a component A of $L_2^{H,1}$, $\partial A \cap M$ or $\partial A \cap N$ is two points, then take a small open disc $\mathring{D}(V \oplus R)$ with a point \in Int A as its center. We cut such discs off from L_2 , and then obtain a compact G-manifold L_3 such that

(i)
$$\partial L_3 = M_3 + N_{33},$$

 $M_3 = M + \sum \alpha_{(H,V)} G \times_H S(V \oplus R),$
 $N_3 = N + \sum \beta_{(H,V)} G \times_H S(V \oplus R),$

(ii) for any subgroup H of G, any component of $L_3^{H,1}$ is either a closed curve ($\approx S^1$) or a curve in L_3 which joins a point of M_3 and a point of N_3 , and

(iii) $L_3^{H,0}$ and $L_3^{H,2}$ are empty for any subgroup H of G. Thus L_3 is a G-cobordism between M_3 and N_3 such that $\chi(A) = \chi(A \cap M_3) = \chi(A \cap N_3)$ for any component A of $L_3^{H,r}$, r=0, 1, 2.

(4) For a positive integer k consider the following assertion:

$$P(k)$$
. There exists a compact G-manifold L_k such that

(i)
$$\partial L_k = M_k + N_k,$$

 $M_k = M + \sum_{(H,V)} \alpha_{(H,V)} G \times_H S(V \oplus R^{n-\dim V+1}),$
 $N_k = N + \sum_{(H,V)} \beta_{(H,V)} G \times_H S(V \oplus R^{n-\dim V+1}),$

where $\alpha_{(H,V)}$ and $\beta_{(H,V)}$ are nonnegative integers, and

(ii) for any subgroup H of G and any component A of $L_{k}^{H,r}$ (r < k),

$$\chi(A) = \chi(A \cap M_k) = \chi(A \cap N_k).$$

If $k \leq 3$, the assertion P(k) is already proved by the above arguments. We prove below that P(k) implies P(k+1) for $k \geq 3$. Since Lemma 2. 2 is equivalent to P(n+2), the lemma is inductively obtained.

For a pair (H, V) suppose that dim $L_k^{(H,V)} = k$. It is no loss of generality to suppose that $L_k^{(H,V)}$ is connected, since if it is not, we may make it connected by G-surgery of type (H, V, k, 1). Moreover, as noted in §1 this G-surgery does not affect $L_k^{K,r}$ for any subgroup $K \leq G$ and any r < k. Since $M_k^{(H,V)}$ and $N_k^{(H,V)}$ are cobordant with a cobordism $L_k^{(H,V)}$, then $\chi(M_k^{(H,V)}) - \chi(N_k^{(H,V)})$ is even. The assertion (ii) of P(k) implies $\chi((M_k^{(H,V)})^K) = \chi((N_k^{(H,V)})^K)$ for any subgroup K with $H \leq K \leq G_{(H,V)}$. From this we see that $\chi(M_k^{(H,V)}) - \chi(N_k^{(H,V)})$ is

a multiple of $\chi(G_{(H,V)}/H)$, since H is the principal isotropy subgroup of the $G_{(H,V)}$ -manifolds $M_k^{(H,V)}$ and $N_k^{(H,V)}$. Thus we may put

$$\chi(M_{k}^{(H,V)}) - \chi(N_{k}^{(H,V)}) = 2m\chi(G_{(H,V)}/H)$$

for some integer m.

(5) Suppose that $k = \dim L_{k}^{(H,V)}$ is odd. It then follows that

$$\chi(L_{k}^{(H,V)}) = \frac{1}{2} \chi(\partial L_{k}^{(H,V)})$$
$$= \frac{1}{2} (\chi(M_{k}^{(H,V)}) + \chi(N_{k}^{(H,V)}))$$
$$= \chi(M_{k}^{(H,V)}) - m\chi(G_{(H,V)}/H)$$
$$= \chi(N_{k}^{(H,V)}) + m\chi(G_{(H,V)}/H).$$

Take |m| points $x_1, x_2, \ldots, x_{|m|}$ of Int $L_k^{(H,V)}$ whose isotropy subgroups are all H and for which $gx_i \neq x_j$ if $g \in G_{(H,V)}$ and $i \neq j$. Consider a small disc $D_i(V \oplus R^k)$ with x_i as its center, and let

$$L'_{k} = L_{k} - \bigcup_{i=1}^{|m|} G \times_{H} \mathring{D}_{i}(V \oplus \mathbb{R}^{k}).$$

We then see that

$$\partial L'_{k} = M_{k} + N_{k} + |m| G \times_{H} S(V \oplus R^{k}).$$

If $m \ge 0$, then let

$$\begin{split} &M_k' \!=\! M_k, \quad \text{and} \\ &N_k' \!=\! N_k \!+ |m| G \!\times_{\!\scriptscriptstyle H}\! S(V \!\oplus\! R^k). \end{split}$$

If m < 0, then let

$$M'_{k} = M_{k} + |m|G \times_{H} S(V \oplus R^{k}), \text{ and}$$

 $N'_{k} = N_{k}.$

 $L_{k}^{\prime(H,V)}$ is then connected and satisfies $\chi(L_{k}^{\prime(H,V)}) = \chi(M_{k}^{\prime(H,V)}) = \chi(N_{k}^{\prime(H,V)})$. Thus, performing the same as above for all (H, V) with dim $L_{k}^{(H,V)} = k$, we obtain a compact G-manifold L_{k+1} as in P(k+1).

(6) Suppose that $k = \dim L_k^{(H,V)}$ is even. Since $\chi(M_k^{(H,V)}) = 0$ and $\chi(N_k^{(H,V)}) = 0$, we must then make the Euler characteristic of $L_k^{(H,V)}$ zero (keeping the connectedness of $L_k^{(H,V)}$). The assertion (ii) of P(k) implies $\chi((L_k^{(H,V)})^K) = 0$ for any subgroup K with $H \leq K \leq G_{(H,V)}$. From this we see that $\chi(L_k^{(H,V)})$ is a multiple of $\chi(G_{(H,V)}/H)$. Thus let $\chi(L_k^{(H,V)}) = m\chi(G_{(H,V)}/H)$, m an integer. We may suppose that m is nonnegative, since if it is not, we may make $\chi(L_k^{(H,V)})$ nonnegative

by the argument (3) in §1. Take *m* points x_1, x_2, \ldots, x_m of $\operatorname{Int} L_k^{(H,V)}$ whose isotropy subgroups are all *H* and for which $gx_i \neq x_j$ if $g \in G_{(H,V)}$ and $i \neq j$. Consider a small disc $D_i(V \oplus R^k)$ with x_i as its center, and let

$$L'_{k} = L_{k} - \bigcup_{i=1}^{m} G \times_{H} \mathring{D}_{i}(V \oplus \mathbb{R}^{k}).$$

We then see that

$$\partial L'_{\mathbf{k}} = M_{\mathbf{k}} + N_{\mathbf{k}} + mG \times_{H} S(V \oplus R^{\mathbf{k}}).$$

Letting $M'_{k} = M_{k}$ and $N'_{k} = N_{k} + mG \times_{H} S(V \bigoplus \mathbb{R}^{k})$, we see that $L'_{k}^{(H,V)}$ is connected and $\chi(L'_{k}^{(H,V)}) = \chi(M'_{k}^{(H,V)}) = \chi(N'_{k}^{(H,V)}) = 0$. Thus, performing the same as above for all (H, V) with dim $L^{(H,V)}_{k} = k$, we obtain a compact G-manifold L_{k+1} as in P(k+1).

Let $I_n^R[G]$ be the subgroup of $N_n^R[G]$ generated by *G*-manifolds of the form $G \times_H S(V)$ where *H* is any subgroup of *G*, and *V* is any representation of *H* with dim V=n+1. Let $\bar{N}_n[G]$ and $\bar{N}_n^R[G]$ be the subgroups of $N_n[G]$ and $N_n^R[G]$, respectively, generated by *G*manifolds *M* with $M^{H,1}=\phi$ for any subgroup *H* of *G*. Let $\bar{I}_n^R[G]$ $=I_n^R[G] \cap \bar{N}_n^R[G]$. If a representation *V* of an odd order group contains no direct summand of trivial representation, *V* has a complex structure, and hence its (real) dimension is even. This implies that the dimensions of *M* and its fixed point sets are congruent modulo 2. Thus if dim *M* is even, $M^{H,1}$ is always empty. If *G* is abelian, the normal bundle of $M^{H,1}$ in *M* are Reinhart *G*-cobordant to zero as *G*-vector bundle (see the author [4; Lemma 5. 1]). Thus if *n* is even or if *G* is abelian, then we see that $N_n[G] = \bar{N}_n[G]$, $N_n^R[G] = \bar{N}_n^R[G]$ and $I_n^R[G] = \bar{I}_n^R[G]$.

Theorem 2.4. There is a short exact sequence

$$0 \longrightarrow \bar{I}_n^R[G] \xrightarrow{i} \bar{N}_n^R[G] \xrightarrow{j} \bar{N}_n[G] \longrightarrow 0$$

where i is the canonical inclusion, and j is the obvious homomorphism, i. e., the homomorphism sending a Reinhart G-cobordism class [M] to a G-cobordism class [M].

Proof. It is easy that i is monic, j is epic and $j \circ i = 0$. Ker $j \subset \text{Im}$ i follows from Proposition 2.3.

KATSUHIRO KOMIYA

Proposition 2.5. If n is odd, then $I_n^R[G] = 0$.

Proof. It is sufficient to prove that $[G \times_H S(U)] = 0$ in $I_n^R[G]$ if U is a representation of H with dim U=n+1 even. Note that dim U^K is even for any subgroup K of H. Let $RP(U \oplus R)$ be the quotient space $S(U \oplus R)$ by the antipodal involution. It inherits a stucture of an n-dimensional H-manifold. In $RP(U \oplus R)$ take a small disc D(U) with the point RP(R) as its center, and let

$$L = G \times_{H} RP(U \oplus R) - G \times_{H} \check{D}(U).$$

We then see that $\partial L = G \times_H S(U)$ and that for any subgroup K of G any component A of L^K is diffeomorphic to $RP(U' \oplus R) - \mathring{D}(U')$ (where U' is an even dimensional subspace of U) and A satisfies $\chi(A) = \chi(\partial A) = 0$. By Lemma 2.1 L admits a nonzero G-vector field which is inward normal on ∂L . Thus $[G \times_H S(U)] = 0$.

Note that any element of the Grothendieck group of a semigroup S is of the form s-s' where $s, s' \in S$.

Proposition 2.6. Suppose that [M] - [N] is an element of $I_n^R[G]$. Then [M] - [N] = 0 in $I_n^R[G]$ if and only if $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$ for any pair (H, V).

Proof. [M] - [N] = 0 implies $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$ by Lemma 2.1. If *n* is odd, [M] - [N] = 0 is clear by the preceding proposition. Suppose that *n* is even and that $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$ for any (H, V). Note that in this case the dimensions of fixed point sets are all even. It is sufficient to prove that [M] - [N] = 0 when

$$M = \sum_{(H,V) \in T(G)} \alpha_{(H,V)} G \times_H S(V \bigoplus R^{n-\dim V+1}), \text{ and}$$
$$N = \sum_{(H,V) \in T(G)} \beta_{(H,V)} G \times_H S(V \bigoplus R^{n-\dim V+1}).$$

Here $\alpha_{(H,V)}$ and $\beta_{(H,V)}$ are nonnegative integers, and T(G) is a finite set of pairs (H, V) such that if $(H, V) \neq (K, U)$ in T(G), then $G \times_H S(V \oplus \mathbb{R}^{n-\dim V+1})$ and $G \times_K S(U \oplus \mathbb{R}^{n-\dim U+1})$ are not G-diffeomorphic. Order the pairs in

 $T(G) = \{ (H_1, V_1), (H_2, V_2), \ldots, (H_a, V_a) \}$

in such a way that if H_i is conjugate to a subgroup of H_j , then $j \leq i$.

It follows that

$$(G \times_{H_j} S(V_j \bigoplus R^{n-\dim V_j+1}))^{(H_i, V_i)} = \begin{cases} G_{(H_i, V_i)}/H_i \times S(R^{n-\dim V_i+1}) & \text{if } i=j \\ \phi & \text{if } i < j. \end{cases}$$

Thus we see that $\chi(M^{(H_i,V_i)}) = \sum_{j=1}^{i} \varepsilon_j \alpha_{(H_j,V_j)}$ and $\chi(N^{(H_i,V_i)}) = \sum_{j=1}^{i} \varepsilon_j \beta_{(H_j,V_j)}$, where ε_j is an integer, especially $\varepsilon_i = 2\chi(G_{(H_i,V_i)}/H_i) \neq 0$. Since $\chi(M^{(H_i,V_i)}) = \chi(N^{(H_i,V_i)})$, then $\alpha_{(H_i,V_i)} = \beta_{(H_i,V_i)}$ if $\alpha_{(H_j,V_j)} = \beta_{(H_j,V_j)}$ for any j < i. Thus, by induction we see that $\alpha_{(H,V)} = \beta_{(H,V)}$ for any $(H, V) \in T(G)$, or that [M] = [N] in $I_n^R[G]$.

Corollary 2.7 (cf. [4]). Suppose that M and N are G-cobordant closed G-manifolds with $M^{H,1} = \phi$ and $N^{H,1} = \phi$ for any subgroup H of G. Then there exists a Reinhart G-cobordism between M and N, if and only if $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$ for any pair (H, V).

Proof. The "only if" part follows from Lemma 2.1. If $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$ for any (H, V), then [M] - [N] = 0 in $\bar{I}_n^R[G]$ by Theorem 2.4 and Proposition 2.6. This implies that there exists a Reinhart G-cobordism between M and N.

§ 3. Controllable Cutting and Pasting

As in §1 and §2 of Heithecker [2] we obtain the following Proposition 3.1, Lemma 3.2 and Lemma 3.3:

Proposition 3.1. If [M] = [N] in $SKK_n[G]$, then

- (i) [M] = [N] in $N_n[G]$, and
- (ii) $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$ for any pair (H, V).

Lemma 3.2. If N is obtained from M by G-surgery of type (H, V, p, q), then in $SKK_n[G]$,

 $[M] + [G \times_{H} S(V \oplus R^{p+q})] = [N] + [G \times_{H} S(V \oplus R^{p+1}) \times S(R^{q})],$ where $p+q=n-\dim V+1$.

Lemma 3. 3. In $SKK_n[G]$,

KATSUHIRO KOMIYA

$$[G \times_{H} S(V \oplus R^{p+1}) \times S(R^{q})] = \begin{cases} 2[G \times_{H} S(V \oplus R^{p+q})] & \text{if } q \text{ is odd,} \\ 0 & \text{if } q \text{ is even,} \end{cases}$$

where $p+q=n-\dim V+1$.

The following proposition follows from the preceding two lemmas.

Proposition 3.4. If N is obtained by performing a finite series of G-sugeries on M of type (H_i, V_i, p_i, q_i) , i=1, 2, ..., s, then in $SKK_n[G]$,

 $[N] = [M] + \sum_{i=1}^{s} (-1)^{q_i} [G \times_{H_i} S(V_i \oplus R^{n - \dim V_i + 1})].$

Let $I_n[G]$ be the subgroup of $SKK_n[G]$ generated by *G*-manifolds of the form $G \times_H S(V)$. From Proposition 3.4 and Lemma 1.1, if *M* and $N \in \mathcal{M}_n[G]$ are *G*-cobordant, then we see that $[M] - [N] \in I_n[G]$. Thus we obtain

Theorem 3.5. There is a short exact sequence $0 \longrightarrow I_n[G] \xrightarrow{i} SKK_n[G] \xrightarrow{j} N_n[G] \longrightarrow 0$

where i and j are the obvious homomorphisms.

Proposition 3.6. If [M] = [N] in $N_n^R[G]$, then [M] = [N] in $SKK_n[G]$.

Proof. From the hypothesis there is a Reinhart G-cobordism L between M and N, and by Lemma 2. 1 L satisfies $\chi(L^{(H,V)}) = \chi(M^{(H,V)})$ $= \chi(N^{(H,V)})$ for any pair (H, V). By Lemma 1. 1, N is obtained from M by performing a finite series of G-surgeries of type $(H_i, V_i,$ $p_i, q_i), i=1, 2, \ldots, s$, with trace L. Here we may take the subgroups H_1, H_2, \ldots, H_s so that $H_i = H_j$ if H_i and H_j are conjugate. Moreover, we may take the representations V_1, V_2, \ldots, V_s so that $V_i = V_j$ if $H = H_i = H_j$, and if $G \times_H V_i$ and $G \times_H V_j$ are isomorphic as G-vector bundles over G/H. By Proposition 3. 4 in $SKK_n[G]$,

$$[N] = [M] + \sum_{i=1}^{s} (-1)^{q_i} [G \times_{H_i} S(V_i \oplus R^{n - \dim V_i + 1})].$$

Divide the set $I = \{1, 2, ..., s\}$ into the disjoint union of subsets, $I = I_1 \cup I_2 \cup ... \cup I_a$, such that for any b $(1 \le b \le a)$, $i, j \in I_b$ if and only if $H_i = H_j$ and $V_i = V_j$. Let $H = H_1$ be a maximal subgroup in

 $\{H_1, H_2, \ldots, H_s\}$. Also let $V = V_1$ and $1 \in I_1$. Note then that $H = H_i$ and $V = V_i$ for all $i \in I_1$. Note also that $N^{(H,V)}$ is obtained from $M^{(H,V)}$ by performing a finite series of (nonequivariant) surgeries of type ({1}, {0}, p_i, q_i), $i \in I_1$, in which each type repeats $\chi(G_{(H,V)}/H)$ times. Since $L^{(H,V)}$ is the trace of this series of surgeries, we see

$$\chi(L^{(H,V)}) = \chi(M^{(H,V)}) + \chi(G_{(H,V)}/H) \sum_{i \in I_1} (-1)^{q_i}.$$

Since $\chi(L^{(H,V)}) = \chi(M^{(H,V)})$, then $\sum_{i \in I_1} (-1)^{q_i} = 0$. Considering inductively the same as above we see that $\sum_{i \in I_b} (-1)^{q_i} = 0$ for any b $(1 \le b \le a)$. This implies [M] = [N] in $SKK_n[G]$.

Consider the following commutative diagram

$$0 \longrightarrow \overline{I}_{n}^{R}[G] \xrightarrow{i} \overline{N}_{n}^{R}[G] \xrightarrow{j} \overline{N}_{n}[G] \longrightarrow 0$$
$$\downarrow^{\varphi_{1}} \qquad \qquad \downarrow^{\varphi_{2}} \qquad \qquad \downarrow^{\varphi_{3}}$$
$$0 \longrightarrow \overline{I}_{n}[G] \xrightarrow{i} SKK_{n}[G] \xrightarrow{j} N_{n}[G] \longrightarrow 0$$

where φ_1 , φ_2 and φ_3 are the obvious homomorphisms. Note that φ_1 and φ_2 are well-defined by the preceding proposition.

Proposition 3.7. $\varphi_2: \bar{N}_n^R[G] \to SKK_n[G]$ is injective.

Proof. In the above diagram the two rows are exact and φ_3 is injective. Thus it suffices to prove the injectivity of φ_1 . Suppose that $[M] - [N] \in \overline{I}_n^R[G]$ and [M] - [N] = 0 in $I_n[G]$. Proposition 3.1 shows that $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$ for any (H, V). By Corollary 2.7 this shows that [M] - [N] = 0 in $\overline{I}_n^R[G]$. Thus φ_1 is injective.

Corollary 2.7, Proposition 3.6 and Proposition 3.7 are now summarized as the following theorem.

Theorem 3.8. Let M and $N \in \mathcal{M}_n[G]$ be such that $M^{H,1} = \phi$ and $N^{H,1} = \phi$ for any subgroup H of G. Then the following (i), (ii) and (iii) are equivalent:

- (i) [M] = [N] in $N_n^R[G]$,
- (ii) [M] = [N] in $SKK_n[G]$,
- (iii) [M] = [N] in $N_n[G]$, and $\chi(M^{(H,V)}) = \chi(N^{(H,V)})$

for any (H, V).

Notes. (1) The restriction $M^{H,1} = \phi$ is caused by the following fact. Given a bounded compact manifold $N \neq \phi$ of dimension 2n-1>2, then there exists a 2n-dimensional compact connected manifold L which bounds N and has a prescribed Euler characteristic. If n=1, however $\chi(L)$ is at most 1.

(2) If *n* is even or if *G* is abelian, from what we noted above Theorem 2.4, the restrictions $M^{H,1} = \phi$ and $N^{H,1} = \phi$ in Theorem 3.8 are not needed.

(3) In the case where G is of even order some different matters happen. For example, gluing by antipodal involution yields new fixed points, and the dimensions of fixed point sets are not congruent modulo [2].

References

- Field, M. J., Handlebody decompositions for G-manifolds, Bull. Austral. Math. Soc., 25 (1982), 29-36.
- [2] Heithecker, J., Äquivariantes kontrolliertes Schneiden und Kleben, Math. Ann., 217 (1975), 17-28.
- [3] ____, Äquivarianter Bordismus mit Vektorfeld, Math. Ann., 234 (1978), 1-8.
- [4] Komiya, K., Equivariant cobordism, vector fields and the Euler characteristic, J. Math. Soc. Japan, 38 (1986), 9-18.
- [5] Prevot, K., Modifications of controllable cutting and pasting, Houston J. Math., 6 (1980), 565-575.
- [6] —, Cutting and pasting Z_p-manifolds, Canad. Math. Bull., 25 (1982), 13-28.
- [7] —, Cutting and pasting involutions, Rocky Mountain J. Math., 12 (1982), 233-240.
- [8] Reinhart, B. L., Cobordism and the Euler number, Topology, 2 (1963), 173-177.
- [9] Wilczyński, D., Fixed point free equivariant homotopy classes, Fund. Math., 123(1984), 47-60.