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§ Oo Introduction

In this paper we will give a formula to calculate generalized Thorn
polynomials defined by using Stiefel-Whitney or Ghern homology
classes of Morin singularities for mappings with only Morin ones.

Let N and P be smooth (resp. complex) manifolds of dimensions
n and p. Let z = max(l5 n—p+l) and Ir be the r sequence (i, 1,. . . ,

1). A geometric interpretation of Morin singularities S r ( f ) of a
smooth map f:N-*P is as follows (cf. [9, 14]). Let S l ( f } denote
the set of all points x of N such that rk(Ker dfx) is i. If £*'(/) is
a submanifold of N, then we define S i J ( f ) as the set S'(/|S*'(/))

similarly. We may continue to define S/r(/) as ^(/I^C/))

inductively. A point of S*'°(/) or $Ir(f)(r^2) is called a Morin
singularity of symbol (z, 0) or Ir respectively. By the elaborate

approach due to Boardman [2] S r ( f } becomes a submanifold for
generic smooth maps in the real case. Let f have only Morin singu-

larities. Let d be the codimension of S r ( f ) in N and sn-d^k9 the

(n— d—£)-th Stiefel-Whitney (resp. Ghern) homology class of S r ( f ) 0

Let i:Sr(f)->N be the inclusion. Then it will be natural to consider
the Poincare dual of i*(sn_d-k) in H*(N) and call it the k-ih Thorn
polynomial of the Morin singularity of symbol Ir for f. We denote
it by P(/r, £, jO- The 0-th Thorn polynomial is, of course, the well
known Thorn polynomial (see, [7, 14]).

As applications of the formula of Theorem 3. 2 we will calculate
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^5 /) f°r the case n=p or p+l and show several explicite
formulas in Section 1. Although the notion of higher Thorn polyno-
mials is definable for general maps, its calculation seems extremely
difficult. The known results concerning the calculation of Thorn
polynomials of higher order Thom-Boardman singularities of general
maps are not much such as the explicite polynomial for £*(/) due
to Porteous [10], the formula to calculate those of second order in a
finite process (Ronga [11]) and others of some third order singularities

(Damon [3]). In Gaffney [6] the Thorn polynomial of S™1 has
been calculated. We seems far from the complete calculation even

for the case I1"-1, although I. R. Porteous [10] has already shown
the recurrence relation calculating P(In 0, /) for n=p which looks
different from ours on the surface because of the Thorn polynomial

of 22 (see also Sergeraert [12]). This is the reason why we need
the above assumption on f. It seems very restrictive in general.
However in the problem of putting an immersion of an n manifold
into an n + 1 manifold with tangent line subbundle X in a general
position with respect to Jf, we only need to consider Morin singularities.
The result of this paper will be applied to this problem in the
forthcoming paper. It has also been shown in [1] that P(/r, 0, /)
is an important invariant in eliminating Morin singularities of symbol

Ir from/. We display three Thorn polynomials of S4(/) :

a) 6c4 + 9c3c1 + 2c2
2 + 6c2c

2+cl (Gaffney [6, Theorem 2.2])

b) P} (/) =6£4 + 86ft + 3ci + 6*2*1 + *i (Porteous [10])

c) P(/4, Q,f)=6c4+19c3cl-8c2 + 6czc
2+ci (see (1.2))

(a) is valid for maps having other singularities than Morin ones.

They are different by the Thorn polynomial, c\— c^ of I2.
In Section 2 we will review the definition of so called Boardman's

manifold in the infinite jet space J(N, P). In Section 3 we will lift

S r ( f ) up to a submanifold S r ( f ) of a certain flag bundle whose
normal bundle is extended to one over the whole space. The formula

of Theorem 3. 2 follows from projecting the dual class of j-n_rf_fe(5 / r(/))
by the Gysin homomorphism. This idea comes from the method for
r=l or 2 in [10] and [11].

The author has been indebted to Fukuda [5] in defining the
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higher Thorn polynomials and would like to thank Professor T.

Gaffney who answered to his question on the disagreement of the

formula of [6, Theorem 3.2] and that of [12].

§ 1. Formulas

By using the formula of Theorem 3. 2 together with Proposition
4. 1 and the result of [4] we can calculate P(Ir, k, /) in terms of
characteristic classes of N and P in a finite process. We will prove
the following in Section 4. Let c=l+Ci + c2 + . • • be the Stiefel-
Whitney (resp. Ghern) class and c=l+c1+c2 + . . .9 its formal inverse.

Let n=p. We formally write as c(N) =11(1 + 0,-) and /* (c (P) ) =
n m i=l
11(1+ i;) by variables a{ and b{ with degree 1 (resp0 2). Let x and
i=l

y be of degree 1 (resp. 2) . Let /i be the following polynomial;

and /2? the sum of all monomials of degree k (resp0 2k) of the
following ;

{ft (1 +a,) (1 +*,-*) (1 -bt+y) (1 +*,-*) -'(I -«,•

We write the product /i/2 as

Similarly let the product of two polynomials H(bi — x) and the sum
»=i n

of all monomials of degree A (resp, 2 A) of II [ (1 +0,-) (1 +#,. — #)

(1+^-A;)-1] be as S #(0,-, A,-) A;'.
s^O

(1. 1) If n=p, then

and

(1.2) Let £,- mean cj(TN—J*(TP')} and #„ the j-th symmetric
function of r—1 variables (2, 3, . . . , r) (n=p and r^2).
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P(In 0, /) =S( 'iT
j=0 s=0

If P=Rn in addition, then

s=0 j=0

+ ( 1 /2) r (r - 1 ) {S ( - 1 ) V, ( "f ' ( - 1) Vr-y-i) }
s=o y=o

+ (-l)-(2-r) (Z>A-A«).
s=0

These are examples of explicite forms calculated from (1. 1).

(1, 3) Let n=p+l. Let G'S be the s-ih symmetric function of

(3,4, . . . , r) with a's = 0 for s ̂  r — 1 and D (f , j) = <^y+1 — ci+lcs (r ̂  3) .

Then

r, 0, /)

CZ^Ca, r-s-u))}

s=0

and

Here we must refer to Sergeraert [12] and Gaffney [6]. The

first formula of (1.2) has been obtained in [12] (at least in the real

case) where any assumption on singularities of/ has not been stated.

However it turns out to contradict to the result of [6, Theorem 2. 2]

unless it is provided with some assumption. For instance ours will

be one of the most suitable assumptions. The formulas in this section

for r = 2 and k = 0 have already been given in [11],

§ 2. Morin Singularities

Let J(N, P) denote the infinite jet space. In [2] J. M. Boardman

has defined so called Boardman submanifolds ^(N, P) in J(N, P)

such that if jf'N-*J(N, P) is transverse to Boardman submanifolds,

then 5Jr(/) = (jf)~l(^r(N, P)). In this section we review the higher

total intrinsic derivatives dt of [2, Definition 7. 12]) and some

properties of IX(N, P) for (i, 0) and Ir.
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Let KN and KP be the projections of J(N, P) onto N and P mapping

a jet onto its source and target respectively. Let D denote the total

tangent bundle over J(N, P) isomorphic to Ortf)*(T7V) ([2, Definition

1.9])e Then we have the homomorphism

</!-. D - >7rJ(7T) over J(N, P).

We write its restriction over a jet £ as dliZ: Dz->x'p(TP)z (Later we

use the similar notation). Then 2l(N, P) is defined as the set of all

jets z such that rk(Ker dliZ) is i. Let KI and P! be the kernel bundle

Ker(Wi) and the cokernel bundle Gok(dl) over Il(N, P) respectively0

Next we have the homomorphism

d2: Ki - >Hom(K^ Px) over ^(N, P).

Define SiJ(N, P) as the set of all jets z of S£W ^) such that
rk(Ker 4,) is j. If j = l, we put #2 = Ker(rf2) over J'^C/V, P). Then
Gok(rf2) is isomorphic to Hom(^2? Px) over £l'l(N, P). The definition

of 2r(N, P) for r^3 proceeds by induction on r. There exists the
homomorphism (^2)

dt+l: K2 - >Hom(®K2, PJ over ^(N, P)

and £If+l(N, P) is defined as the set of all jets z of SZt(N, P) such

that dt+liZ is a null homomorphism. We remark that I *' (N, P) =

ITt(N, P)\SIt+l(N, P). Furthermore it follows from [2, Lemma
70 13] that dt+i is extended to the homomorphism of the tangent

bundle of ^^(N, P) restricted to ^(N, P) onto Hom(^l3 Px) in
*

the case ^ = 1 or Hom(®^"2? Px) in the case t^2 and that its kernel

is the tangent bundle of 2*(N, P). This yields that the normal
bundle of 2l(N, P) in J(N, P) is isomorphic to Hom(^b Pj) and one

of S**(N9 P) in S1'-1^, P) isomorphic to Hom((g)^23 Px) for ^2.
See also the definition of ^(N,P) and ^'(N, P) and the intrinsic

derivatives dt in [8], [10] and [11],

§3o Lifting of Singularities S/r(/)

For an n dimensional vector space (simply n vector space) F? let

Giin-i(V) be the grassmann manifold of all i subspaces of V, Let
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n:E-*M be a vector bundle of rank n (simply n vector bundle) over
a space M and Em9 a fibre over a point m of M0 Let T^: Gitn-i(E)
->M be its associated grassmann bundle whose total space consists of
all pairs (m, a) with m^M and a^Giin-i(Em). Then we have the
canonical i vector bundle, Ei-*Giin-i(E) . Any element of EI is
written as (m, a, v) for a vector z; of a. Similarly we can consider
7T2: Giij_i(£1i)->GitM_j(£l) and the line vector bundle, E2-^Giii-i(E1) ,

We write an element of Giti-i(Ei) as (m, <z, 6) for b^Giti-l(a), For
another /? vector bundle n' ': F-^M we consider Gn-it p-n+i (F). Then
we write the fibre product of Giti-i(Ei) and Gn-itp-n+i(F) over Af as
G(E, F) whose element is written as (m, a, 6, s) for c&Gn-.itp-n+i(Fm).

Let Q=np(TP). By applying these notations for the total tangent
bundle D and Q, with projections n and TT' respectively we obtain
vector bundles, Dl->GitH.i(D) 9 D^G^DJ and di^Gn_iip.n
and the following commutative diagram with given notations,,

GU-X ( A ) - , .

Let 10=^0* ( = ̂ o^2o^). We put D =

A=(«i)*A and 41 = **̂ !.

We lift the Boardman submanifold JJr(A^, P) of /(JV, P) up to

that of G,.iB_,.(D) or G(D, Q) as follows. Let 1? denote the image
of the smooth section of ^ over 2*(N, P) defined by mapping

ZGS'(N9 P) onto fe Ker(4,)) eG,...^/)). For r^2 let 1^ denote

the image of the smooth section of p over Sr(N, P) defined by

mapping z^r(N9 P) onto (z, Ker(rf l iJr), Ker(rf2.,), Im(4,))B Then
we have the following

Lemma 3. 1. The normal bundles of Sl in Giin^ (Z)) , 1/2 in (7r2°*i) "x (^0

a/zrf I1' iw S**-l(t^3) are isomorphic to Horn (A, ^*d) I A Horn (^/ A,

d/di)©Hom(A(g)A, (2/di) |I?8fl»rfHom(®A, d/di) ^'respectively.

Proof. We define the following smooth sections as follows.
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- »Hom(A, *i*Q)

>Hom(0/A, &/&i)0Hom(A, Horn (A, &/&))

>Hom(A, Horn (® A,

For an element (*, a) eG^-.-CD), let ^(s, a) = dlijr |a. Since rflp, Induces
a homomorphism d{tZ: Dz/Ker(rf1>2)->Q^2/Im(rfliZ) we define s2 by

Let

j,U, Ker(4,)3

It follows from the definition of J? * that the inverse image of the

zero section of st is I t (J^l). Therefore it Is enough for the lemma
to show that dt is transverse to the zero section. It follows from
Porteous [10, Section 1] in the case t = l. The case t = 2 is also
proved by the similar arguments in Ronga [11, Proposition 2.1]
(Another definition of dz in Levine [6] will be helpful) . The case

t^.3 follows from Boardman [23 Lemma 7, 13] since 2 t Is diffeomor-

phic to 2 * by the projection. Q. E0 De

Let Q(N, P) be the subspace of J(N, P) consisting of all jets
which is of maximal rank or belongs to S{-Q(N, P) U ̂ (N, P). Then
Q(N^ P) becomes an open set. A smooth map /: N->P has only
Morin singularities if and only if jf Is a map of N Into Q(N, P).
So we may assume that / is transverse to every Boardman submanifold
in the sequel. We write E and F for TN and/*(7P) In the follow-
ing diagram with given notations.

-^ G(D,Q,)\Q(N,P)~
,, I

-U Gi.n.i(D)\Q(N,P)
if

It follows

from the transversality of jf that <S'(/) is mapped onto S ' ( f )
diffeomorphically by the projection. For simplicity we use the following
notation in the sequel (r5:2).
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©Hom(©((g)F2),
t=3

Theorem 3. 2. Let f have only Morin singularities. Then the k-th

Thorn polynomial of S r ( f ) is as follows.

a) P (4 k, /) = (TTJ) ! [Wk (^©Hom (Fl5 xfE/EJ
-Hom(Fb 7r1*F))%Hom(£l3 7r*F)}

b) P(/r, *,/)=^!{W^(£©Hom(JSl,£/A)©Hom(/i, F/FJ
-Hr(E, F»xHr(£, F)} (r^2).

F=f*(TP).

Proof. We give a proof of (b) ((a) is proved similarly). We
may assume that jf is transverse to every Boardman submanifold.
Then it follows from Lemma 3. 1 that the normal bundles of

in G,n_,.CE), S l 2 ( f ) in (O^C/)) and ^(/) in
are Hom(Eb *?F) |^(/), Hom(£/£1? /y/i)©Hom

5/2(/) and Hom((g)E23 F/FJ |5/f(/) respectively. By this fact
together with the proof of Lemma 3. 1 their dual classes are given
by the Euler classes (denoted by %) of the corresponding normal
bundles coming from the cohomology group of G(E, F) (cf. [11]).

That is, the dual class of the fundamental class of S r ( f ) is given
by %(Hr(£,F)). The Poincare dual of the (n-d-k)-\h Stiefel

Whitney homology class 5ra_,_, of S*r(f) is W k ( § I r ( f ) ) and the

tangent bundle of 5/r(/) is given by (T(G(E, F)/Hr(£9 F)) |5/r(/).
Hence the Poincare dual of j*(sn_d_k) is equal to

Wk(T(G(E, F)/Hr(£, F»x(Hr(£, F))

where j: S r(f)-*G(E, F) is the inclusion. It is easy to see that
T(G(E, F)) is given by F©Hom(Fl5 E/EJ ©Horn ( Fb F/Fj. Since

5/r(/) is diffeomorphic to 5 r(/) by the projection, $n..d-k is mapped
onto sn-d_.k of Section 1. Therefore Theorem 3.2 follows from the
definition of the Gysin homomorphism. Q. E. D0
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§48 Calculation of Thorn Polynomials

In the rest of the paper c = l +£1 + £2 + - • • denotes the Stiefel
Whitney class in the real case or the Ghern class in the complex case.

The coefficient group of (co)homology group is Z/2Z (resp. Z) in
the real (resp. complex) case. For an ra-vector bundle TT: £—»M, we

put X=Ci(E) for the line bundle Ei~*Giin-i(E). Then we have the

following well known proposition (see, for example, [10, Proposition

0.3] and [13].

Proposition 401. a) The kernel of the H* (M) -homomorphism

0: H*(M)[x] ->//*(&!.„_!(£)) defined by #(«*') =*? (a) JP is the ideal
generated by

j=0

b) (^!(^+0 = (-l)

In this section we assume n=p. Then we have Giifl_i(£) =Glp,-_1(£1)
and El = E2. We represent the characteristic classes by using given
variables of degree 1 (resp. 2) as follows.

Since HomC^, E{) and Hom(F/JFl, F/F^ are trivial line bundles,

we have

c (Horn (£j, E/EJ ) = c (Horn (E,, E) ) = ft ( 1 - * + fl;)
i=l

c(Hom(F1, F/F1)-)=c(Hom(F, F/F^ =11(1 -

c(Hom((g)£2, P/Pj) =c(Hom(®El, F/ FJ) =\-

c(Hom(E/El, F/F^ =c(Hom(E, F/Fl))c(Hom(El,

From these formulas we have that
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ck(E@Hom(E1, 4/4) ©Horn (Fb F/FJ-Hr(E, F))

is the sum of all monomials of degree k (resp. 2k) of the following
polynomial.

t=2

Furthermore we have

i=l 1=0 j=0

Now we prove the formulas of Section 1 by beginning with (13 1)8

We define ASit(di9 b{) similarly as ASit(ah b{) in Section 1. Then it
follows from Theorem 3. 2 that

Hence Proposition 4. 1 yields the following.

— ^ ( _ J ) s +

The calculation of P(/i, k, /) is similar.
Next we prove (1. 2) and (1. 3). Let i: P-+Rp+m be an embedding

and v, an open disk normal bundle C/(P) of P in Rp+m. For f:N-*P
we consider the induced bundle /*C/(P) with the diagram

It follows from the geometrical interpretation of Morin singularities

that 5(J'(/) = (pr)-1(iS|r'(/)). Therefore we have (pr)*(P(In 0, /))
= ±P(/n 0,/). This means z*(P(/r, 0,/)) = ±P(/n 0,/) for the
inclusion i:N-+f*U(P). So we may suppose that E=TN@f*v and
F=f*(TP@v) (=f*(TRp+m)} in the calculation. Since F is a trivial
bundle, we have /o!(j;y)=0 for j^n + m— 1. By replacing ?z, ̂  and
cy(£) by 72 + m, 0 and Cj(TN—f*TP) (simply denoted by <ry), we have
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0, /) - (P[) {(-*)-+"" if'C "l^C- I)'*,*-*"-'-'-1)/
l=Q j=Q

xzc-nx*1/-1-)}
s=0

{Z( - 1 ) 'a, ( " If1 ( - 1 ) V+"+r-'- V*"'1}
s=o y=o

2(-i)vI(1:1c/r^)
s=o y=o

The second formula of (1. 2) will be shown similarly,,

For the calculation of P(/r, k, f) for ?z>/?? the argument in a

proof of (1. 2) and [4, Corollary 2] will be helpful Let E'2 be the

canonical line bundle over GI, „+„_!(/?) with projection /0r.Glitt+m.-i(.E)

->JVa Then we canonically identify Giii(E1) with Giin+m-2(pi E / E'z)
and with the Flag bundle F2tl(E) consisting of all pairs of 2 subspaces

and their 1 subspaces in every fibre of E. We use the given notation

of the following commutative diagrame

— -> N

Then we can compute p!(x(#r)) by passing through (pi°p2)l. In

the calculation every induced bundle h*L of a bundle L by a map h

will be denoted by the same letter L for simplicity,, The coefficient

of y+™-i of x(//r) is given as follows.

(*) £2 (£f ) n+m {""z"1 ( - 1 ) 'c. (E/EJ ar.a (Cl (E2) ) '-
a =2

+ "if1 ( - 1 ) re
c = l

+ " if '( -\Yc
a=Q

Then it follows from Proposition 4. 1 that

P((2, !,...,!), 0,/)=p!
coefficient of y^-1 of %(// r)).

This is calculated as followsB
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(pi0p2^{c2(E*Y+m'1

= (-l) r(ft°ft)!{<
a

s\ \ ' * (•
s=0

= ( — i y ( p i ° p 2 ) ] ' { c i ( E .

X [II (- \Y~scs(E) <
s=0 «=0

a=2

a=2 s=0

c=2 s=0

a=0 5=0 w=0

By the similar calculation it is shown that the second and the third

terms of (*) are mapped onto

«, r-s-ii)
c=0 s=0 w=0

+ £>(« + !, r-j-n-1)))}}

and

«=0

respectively. Since E = TN@f*(v), we have Cj(K) =cj(TN-f*(TP}}.
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