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The 2-Microlocal Canonical Form for a Class
of Microdifferential Equations and
Propagation of Singularities

By

Nobuyuki TOSE*

8 0. Introduction

We study a class of microdifferential equations with involutory
double characteristics.

In [8], the author dealt with a class of equation whose microlocal
model is

0.1) Pu= (D,D;+ (lower))u=0

defined in a neighborhood of (0,dz;) €T*C". He employed the
theory of 2-microlocalization developed by M. Kashiwara and Y.
Laurent (See for example [2] and [6].) and showed that (0.1) is
equivalent to Dju=0 or D=0 or u=0 as a 2-microdifferential equation.

In this paper, we generalize the result of [8] mentioned above to
a class of microdifferential equation of which microlocal canonical
form is

0.2) Pyu= (D;*D;*+ (lower))u=0
defined in a neighborhood of (0, dz;) eT*C". We assume that
0. 3) P, has Regular Singularities along

A= {(z,ldz) €T*C" {;=(,=0}

in the sense of Kashiwara-Oshima [3].

We prove that (0. 2) is equivalent to
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D1u1 =0 Dzul =0
. or : or u=0
Dlu,,,1 =0 Dzu,,,2 =0

as a 2-microdifferential equation.

In hyperbolic case, we study the propagation of microlocal singu-
larities of the solutions of the equation whose model is (0. 2).

Now we give the plan of this paper.

In §1 we prepare some notation about microlocal analysis and 2-
microlocal analysis.

In §2 we announce the main theorem.

In §3 we give the proof of the main theorem. In the course of
the proof, we give the 2-microlocal canonical form of the equation
0.2).

The author would like to express his gratitude to Prof. H. Komatsu
for guidance and encouragement.

§1. Preliminaries and Notation

1.1. Let X be an open subset of C"and let T*X be its cotangent
bundle. We identify the zero section of 7*X with X. Let z=
(23, -«+5 Z2,) be a coordinate system of X. Then (g, {+dz) denotes a
point of T*X with f&C" T*X is endowed with the sheaf & x [resp.
&%) of microdifferential -operators of finite order [resp. of infinite
order] constructed in [S. K. K.].

Throughout section 1, 4 denotes the following homogeneous regular

involutory submanifold of T#X (=T*X\X).
(1. 1 A={(z,0) ET*X, {=1++=0,=0} (1<d<n).

We prepare some notation concerning the second microlocalization
or 2-microlocalization developed by Y. Laurent [6].

X can be identified with the diagonal set of XX X. Thus we
obtain a canonical injection T*XZT((XXX)—->T*(XxX) which
defines an injection 4—4AXA. ~We remark that 4AXA4 is endowed
with a canonical foliation. By definition, 4 denotes the union of
bicharacteristics of 4x 4 which pass through 4. 7%/ has the canonical
coordinate (z,{'dz", 2’*dz’) with 2€X, 2’= (21, +++»,22), 2 *= (&, .., 25)
eC% Z'=(Zas1y 52, and = (Cpypp...,L) EC*%  Here (z, &)
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denotes a point of 4. We identify the zero section of T%A with A.

Y. Laurent [6] defined the sheaf &%~ on T*A called the sheaf of
2-microdifferential operators of infinite order. &% is constructed
using the coordinates (z, £, 2'*) as follows.

Definition 1.1 (Y. Laurent [6]). Let U be an open set of T%A.
A formal sum Y. P;;(z, {’, 2’*) belongs to I'(U, &%) if and

G.hez?
only if the following conditions (A), (B) are satisfied.

(A) P;;(z, £, 2’*) is holomorphic on U and homogeneous of
order j with respect to (", z’*) and homogeneous of order i with
respect to z"*.

(B) For any compact subset K of U, there exists a positive number
Cx and for any positive number ¢ and any compact subset K of U,
there exists a positive number C; x such that the following estimates
(B) ~ (B, are satisfied.

itk
(B)  sup|Piis | SCoryppy Gy £20).

A — | >
(B st}z{plp,-,,-”lécs-_f;{ez%); 2=<%>.
(=) ;
(B) suplP e k?' (é%)

By S%PIPi.i+kl§C;{i_k(—i)! (=h)! @, k<0).

&%~ is a ring extension of #7'&%|, where = is the canonical
projection T%4—A. In fact, we have

(1.2) Exa——D%"=E%" |4

Here (1.2) is injective.
Here we give the sheaf &%, which is a subring of &%~

Definition 1.2. For (i) €42 and r(r>1)€QU {0}, P=3P;
(€ é%™) belongs to &%V [iy,Jjo] if and only if
(1.3) SP) ={@G,j—1i) €2? P;=0}
C{Gj—i) €2% i+ (j—i) SLio+ o=,
i+ (G —i) <io+ (Jo—to) } -
We define &£%"Y by
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(1. 4) éﬂZ/.l(r,l)z U éaz;j(r.l)[i’ ]]

G,)ez?

Definition 1.3. If P=3P;; is a section of &%"V[i,j,] and is not
a section of &£%“P[i,j] which is strictly smaller than &%“V[4, jol,
then we put

(1.5) a§P (P) =P,

0 fo’

which is called the principal symbol for P along 4 of type (r,1).

For details about 2-microdifferential operators, see Y. Laurent [6].

1.2. We prepare some notation about 2-microfunctions developed by
M. Kashiwara-Y. Laurent.

Let M be an open subset of R* and X be a complexification of
M in C" M [resp. X] is equipped with a coordinate system
x= (%1, ..., %,) [resp. 2=(23,..., z)]. Then (x, V—1 &-dx) denotes a
point of V—1T*M (=T%X) with é=(&,..., §)ER. V—1T*M is
endowed with the sheaf %, constructed in Sato-Kawai-Kashiwara [7].

Throughout section 1, A% is the following homogeneous regular

involutory submanifold in V—1 T*M(=V=1 T*M\M).
(1.6) A= {(x, V=1 &dx) 16,= -+ =£,=0} (1=d<n).
Then 4 is a complexification of A% in 7*X. A is a regular involutory

submanifold of 7*X, thus 4 has a canonical foliation. A® denotes the
union of bicharacteristics of 4 passing through 4%,
A® is equipped with the sheaf % ,r of microfunctions with holo-

morphic parameters (23, ...,24).

T #A® has a canonical coordinate system (x,V —1 &dx", V—1 x"*dx")
with xEM, x'=(xy, ..., %), xF=(f, ..., 2} ER%, x"=(Xgp1y e+, Xp)
and &= (§4415...,&,) ER™. Here (x, V—1£&dx") denotes a point of
AR, We remark that 7%/ is a natural complexification of T’;R/IR.

We define several sheaves.

1.7 A 2= x| n
(1. 8) B* r=H" (% ;) (the sheaf of 2-hyperfunction).
(1.9) %Zn—_—fi* e (n"lgzg)“ (the sheaf of 2-microfunctions).

4R
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Here = is the comonoidal transformation
x: (AB\A%) U ™ pAR—— AR
and a is the antipodal map a: TZR/IRQT:R/IR (if & is a sheaf on
T"/‘IR[TR, Z“ denotes the inverse image of & by a).
We remark that %ZAR is an €%~ module.

We have the following fundamental exact sequences for €2 p.

(1. 10) 0l g B g u (€20 | T A®) —0.
(1. 11) (I —
Here

7 s T AR (= T* g AR\MF) — A7,

For details about the 2-microfunctions, see M. Kashiwara-Y.
Laurent [2].

§2. Announcement of the Main Theorem

We consider the following microdifferential equation defined on a
neighborhood of p&V—1 T*R"
@1 Pu= (P,""P,"*+Q)u=0.
Here we assume that
(2.2) ord P;=k; (1=1,2)
and that Q is of strictly lower order than P, P,”2. We put
2.3) o (P;) =p; (the principal symbol of P;).

We assume the following conditions (2.4), (2.5), (2.6), (2.7) and
(2.8).

2.4 p1(B) =p(h) =0.

(2.5) b1, p; are real.
(2.6) dpy, dp, and V—1 i‘, §;dx; are linearly independent at ﬁ
i=1
2.7 p72(0) Np72(0) NV—1 T*R" is involutory.
(2. 8) P has Regular Singularities along 4A=p;*(0) Np;1(0) in

the sense of Kashiwara-Oshima [3].
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In order to state the main theorem, we define the following regular

involutory submanifold A in Y—1 T*R~,
(2.9) AR=p*(0) Npz*(0) NV —T1 T*R~.

The bicharacteristic of 4® passing through f is denoted by 3.
Now we announce

Theorem 2.1. Let u be a section of € gn defined on a neighborhood
of p that satisfies the equation (2.1). Then, there exist a neighborhood
U of pin \—1 T*R" and a family (b} rer, of integral curves on 3 of Hy
and a family (b3} er, of integral curves on 3 of H,, such that 3. Csuppu

NU is the union of U b} and U b% and some of connecied components of
teTy teTy

EZnOH\(U iU U 8.
tETl teTz

Remark 2. 2. T. Kobayashi ([5] and [4]) deals with the similar
but more general class of differential equations with analytic coefficients.
But his results are restricted to the case of differential equations and
the method employed there is completely different from that in this

paper.
Moreover the result in this paper about propagation of microlocal

singularities is sharper.
By Kashiwara-Kawai [9], it is possible to prove that
(2.10) if uis a microfunction solution to (2.1) in Theorem 2. 1 and if

suppuN =N (ZF\{f) = 0
then [;$ supp u. Here

3¢ = {exp (suHy,) oexp (2Hy) (B) 5 51, 520}
where exp(s;f,) (¢) is the flow of H,, issued from g.

As a corollary to Theorem 2.1, we can prove

Theorem 2.4. Let u be a microfunction solution to (2.1) in Theorem
2.1. If supp unUNINTUT?) =g, then pe&supp u. Here
Ii={exp(s;H,) () : >0 (=1,2).
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§3. Proof of the Main Theorem
—2-microlocal Canonical Form

By Grigis-Lascar [1], it is sufficient to study the equation of the
form

3.1 Pu= (D|*D;?+Q(x, D))u=0

when one wants to prove Theorem 2. 1. Here we assume that P is
a microdifferential operator defined in a neighborhood of

go= (0, V—1dxy) eV—1 T*R"
and that
3.2) ord Q(x, D,) <my+m,—1.
Moreover we assume that

3.3) P has Regular Singularities along
A= {(z,8dz) eT*C™; ;=5 =0}
in the sense of Kashiwara-Oshima [3].

We remark that the structure of the microdifferential equation
(3.1) is well known outside 4 after Sato-Kawai-Kashiwara [7].

We put for convenience
(3.4) Ar=ANV—1T*R"

={(x,V—1 &dx) €V —1 T*R";£,=£,=0}.

We study the equation (3.1) 2-microlocally along 4 and give the
canonical form for (3.1) as a 2-microdifferential equation defined
in a neighborhood of ¢,= (0; Y —1 dxs; Y —1dx,) that is a point of T;R/INR,

We write Q(x, D,) in the form

(3.5) Qx, Do) =21Q,(x, Do)

where 0 ;(z, {) is the j-th order symbol of Q(x, D,). Next we develop
Q ;(z,0) by partial Taylor series with respect to ¢; and {; as

(3.6) 0,(z,0) = F2(2, EN L

al,aZEZ+

with "= (,...,L,). Then the symbol series of Q(x, D,) is {Q;;(z, ¢
z2*)} as a 2-microdifferential operator. Here

El
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” ay, e v
0:z,0,2%= X . Q12 C’)Zl*alzékaz-

a1+a2=:
The assumption (3.3) implies that

3.7 {0 Qu=0t {(j,0; 120, j=m+m,—1, i12j}.

i A

my+mp—1 p----= - :

'

:

S H
NI L
my+my,—1 J

Figuse 3.1

The right side of (3.7) is in Figure 3. 1.
Because D, is invertible in £%“? in a neighborhood of ¢, the
equation (3.1) is 2-microlocally equivalent to

(3.8) (D{*+R(x, D,))u=0.
Here
3.9 R(x, D,) € €4 [m—1, my—1].

Hereafter we put m=m;.
By Weierstrass type division theorem for £%“? (see Laurent [6],
Théoréme 2.7.4), we may assume (3.8) is in the form

(3.10) (D +By(x, D) Dy ' oo e+ B, (x, D") )u=0

with D’=(D,, ..., D,) and B,(x, D") € €% [s, s].
Next we consider the equation (3.10) in the matrix form

3.11) D\U=M(x, D)U.

Here M(x, D,) is a mXm matrix of 2-microdifferential operators and
has a form
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01

01

(3.12) M(x,D") =

01
01
~Bm—1 cooe Bo/°

Theorem 3.1. In a neighborhood of qu= (0;V—1dxs;V—1dxy), there
exists R(x, D) € €45~QREnd(C™) such that

(3.13) (DyI oy —M (2, D)) R(x, D") =R (x, D) (Dl ()
and that
(3. 14) R(x, D) is invertible.
Here 1, denotes an identity matrix of degree m.
Thus
(3.15) EY~/ 5P~ (EY~/ E4~Dy)™.

Proof. We put

Dy~
(3.16) C= °
D,
1
which is invertible in &%,
We put
3.17) F(x,D") =D\l (y —C (D iy — M (x, D)) CT?
(0 D, A
"0 D,
( B,_.D;™**++ B, D;'B,

and
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0 D,

0 D,
(8.18) N= .

We remark that

N LD ] for 1Zi<m—1
(3.19) { e ¢4iP[L1]  (for 1=I=m—1)
N'=0 (for I=m).
We define Fy(x, D) by
(8. 20) F(x, D"y =Fy(x, D") +N.

Because B,D;*e £%“Y[0, 0] (s=0,1,...,m—1),
we have by (8. 18)
(8.21) Fx®,x, D) +sssF(x{m,x’, D) € §%P[m—1, m—1]
with %"= (%3, ..., x,).

We construct R(x, D’) € £%°@End(C™) which satisfies
(3.22) (D (my—F(x, D)) R(x, D") =R (%, D") (DI (y) .

To obtain R(x, D), we define {R®(x, D’)} 50 recursively by

R (x, D"y =1 )

(8.23) P

X1

R®(x, D) =F(x, D’)R%®(x,D") (I=1,2,...).

In an explicit form, R®(x, D’) is expressed as
R

*1
(3.24) RO (s, D) = 'FG, 5, D) PG00, 5 Do

0

@
.. -So F@®, x', D")dty- » +dy.
By (3.21),
(3.25) FG®, ', D"+« +FG®, x", D)
€ &YV (k—ms) +s(m—1), (k—ms) +s(m—1)]

where s is the largest integer satisfying ms=k.
We put formally

(3.26) R(x,D") =z§) R®(x,D")

and prove R(x, D’) defines a section of &%~. Then it is sufficient
to show that X, R™(x, D) is convergent in &%~. To see it we define
120
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Definition 3.2 (Formal Norm). Let V be an open set of T%A4.
For a compact set K of V and P&Il'(V, £3“V[l,1]) we define a
Formal Norm of P on K by

(3.27) NUA(P,s, 1)

=y 2@@+D)7 (D!
(=" + laD! (=" + 18D!

HCI‘C a= (0(’; a’/) = (al s g3 A3y, an), 18= (AB,; ﬁ”) = (181’ 182; ‘83a °cy 1871) €
dNa/ d N2/ 3\ /[ 3\
2 n—2 B —(_~_ - _ . ..
22 X 75 and P2 <3z{"> (azz*> (aU) (&z) Py

Remark 3.3. For P, &%V, 11(V) (s=1,2), we have an
inequality

(3.28) Nt

-Zi’+la’|+[ﬂ’lt—Zi’+|a”]+lB”l

Sl}{P | P& e |s

Hlp, 1 +1,]

(PyPy, 5, 8) KNP (Pyy s, ) NP (Pyy s, 8).

(Continue to the proof of Theorem 3.1.)
We define formally

(3.29) > R™(x,D") =% Si;(x, D)
where S;; is the symbol of order [7, j]. Then it is easy to see
(8.30) Sy= 2 Ri(}"l)-

I Dz

Here R denotes the symbol of R™ with order [i, j].
We take a compact neighborhood of ¢, and put

(8.31) sup |z l=h.
Ka(zl,-)
We have the estimates

(3.32) sup |R{
K

< _— 7 "t 4 t

észit2k<<2 (ns—l- 2) >m_1 Nig=1tm=13(G, s 1) )l R ((m —(21)—'2'— !

where we put
Gi=F@t™,x', D"+ Ft®, x', D).

We define a positive number C, by

m—1
(3.33) 02=(2(—”:@> Np=2m=1(Gy s, ).
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Then by (3.32) we have

(3.34) s%p|Si".+k|§ 3 Céh’((m_l)l_i__k)!_

Im=Dith (mi)!
We define ¢ (i, £) by the right side of (3.34).
Estimates of ¢ (i, k) in case 1<<0, £<0.

(3.35) ¢GH
p{m=1)1—i—k)!

=5l )1
= ((m=DD!  ((m—=DI—i—k)! .

éZ Céhl3(m'1)l"i_k(—i)!(—/C)!
120
=303CR (—)1(—k)! X (3™ Coh)
iz0
By the estimates (3.35) above, if we take % small enough and fix

(s,2) in (3.33) so that Ny*~tm~1(Gy,s,t) is convergent, then we have
a positive number Cx such that

(3. 36) S‘IJ%P [Sii2 | S (=) (—K)! CE~
Estimates of ¢ (i, k) in case 1=0, £<0.

First we make a remark which appeared in Theorem 5.2.1 in
Chapter 2 of Sato-Kawai-Kashiwara [7].

Remark 3. 4. If we take a positive number C; small enough, then
for any positive number 7 there exists a positive number C, such that

((m—=11—=p)! 7Cy ¢
@.370 X )] LS i (Jz0).

If we take a positive number C; small enough, there exists a
positive number C, such that
((m—=1)I—p! L = ( )1 ;
(3.38) gﬂ ] G=Cr7(=n!  (<0).
In case that i+%£=0, by (3. 37), for any positive number 7 there

exists a positive number C, such that

+k

(3.39) ¢@@gwwq01@!

; il (=m!
S iy s yromy sy Rl R

itk
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S 1T \7* —k)!

g G

Thus, if we take £ in (3.33) small enough and fix (s,¢) in

(3.33) so that Nx(Gi, s, £) is convergent, then for any positive
number ¢ there exists a positive number C. x such that

(3.40)  suplSiplSeCak PN Gk20).

When i+£<0, we have a positive C, such that

(3.41) @G, k) SSFHCTP (k) —i)!

2% 2k —im —k) —i)li! —k)!
<gpnn (B =DUL (B

< s (B!

(NG

Because we can take C, as large as we like, there exists a positive
number C. x for any positive number ¢ such that

(3. 42) sup [ <cone TRL i<,

After all, we have proved that R(x, D’) in (3. 26) defines a section
of £%> in a neighborhood of ¢;, which satisfies (3.21).
Next we have to prove that R(x, D) is invertible,

But we can prove it by applying the same argument of Theorem
5.2.1 in Chapter 2 of Sato-Kawai-Kashiwara [7]. Q. E. D.

As a corollary to Theorem 3.1, we obtain a theorem about the
propagation of 2-microlocal singularities for the solutions to (3. 1).

We take a coordinate system of TjR/INR as (x, V—1 &, V—=1(xf, x}))

with §'=(&,...,&,) and define ) and 2, subsets of T%z4* by
Y= { V=1 &,V =1(xf, x8)); x¥=0}  (i=1,2).
Theoerm 3.5. Let u be a section of %2 r defined in a neighborhood of

g1= (0; V=1 dx3; V—1 dxy) [resp. go=(0; V—1 dxg V—1dx,) ] which satisfies
(8.1). Then the support of u in contained in 3, [resp. 2,]1. Moreover,
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the support of u is the union of integral curves of 0/dx, [resp. 9/0x,].

Proof. By Theorem 3.1, it is sufficient to show that the assertion
holds for ue%?g, ¢, [resp. uE%? g, q] satisfying 9/0x;-u=0 [resp.

0/0xz»u=0]. But it is an easy consequence of de Rham’s lemma for % g.

(See Appendix.)
From Theorem 3.5 above, we obtain

Theorem 3.6. Let u be a microfunction defined in a neighborhood 2
of qo=(0,V—1dx;) that satisfies (3.1) and 3 be a bicharacteristic of

A% that pass through go= (0,V—1dxs). Then there exists a family of
integral curves on 3, {bP},er, of 9/0x; and (b} ,er, of 0/0x, such that

supp uN2 is a union oftL% b, tUT b® and some of connected components
& k)

of (@N2D\(UHPU ULP).
t t

Proof. We remark that there exists a canonical spectral map

Sphw: 7T By —— € (m: Thpdt——d")

by Kashiwara-Laurent [2]. We put

(3.43) r=St*r ) N (T AR\AF).

Because yC2,U 2, 7 is divided into two parts as

(3.44) r=GN3)UGFNniy).

Moreover, yC 23, [resp. yC2,] is a union of integral curves of 0/0x;

[resp. 0/0x,] on 2X[resp. 2,]. Thus, when we put [;=z(r)N
Y (i=1,2), I'; is written as

(8.45) I'i=Ub? (1=1,2)
teT,

by families of integral curves on 2: {6{°},cr, for 9/0x and {6{}eq, for
0/ 0xs.

By the fundamental exact sequences (1.10) and (1.11), we find
that
(8. 46) Iurl,csuppm) N
and that on 3\ (I;UI;) u has holomorphic parameters (z;,2;) and
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thus has unique continuation property. (See Lemma 2. 2. 6 of Chapter
3 of Sato-Kawai-Kashiwara [7].) After all, we have proved the
assertion of Theorem 3. 6. Q.E.D.

We have proved Theorem 2.1 by Theorem 3.6 above.

Appendix. De Rham’s Lemma for 2-Microfunctions

We follow the notation prepared in the subsection §1.2 under
the assumption d=2.

Let 4 be the coherent 2y module associated with
(A. 1) 0/0x; cu=0 (1=ZiZk<d).

We put Xo=XN{y=---=2=0} and M;=MNX, and define
projections p: X——X, and p: M——>M, naturally. Then we have
(A.2) R Homa (M, 0 ) =p70 5,

We set N=XN{Imz=---=Im z,=0} and Ny=X,NN. We define

a canonical projection @: N X T?\‘,OXO——>T}'C,0X0. We identify NXT7 Xo
Ny No

with the submanifold of 75X and microlocalize (A.2) along N. Then

we can derive an isomorphism

(A.3) R éﬁm,:x(-//zs (gA—R) :@—lgzzg

by Lemma 2.2.3 of Chapter 1 of Sato-Kawai-Kashiwara [7]. Here

A is the associated & x module for # and ¥ L denotes the sheaf on
/R‘:T}’\‘,OXO of microfunctions with holomorphic parameters (Zz1 o -,
z). We set AF= VgXoN T3yX, and define a canonical projection
é: AR Z<RT;§/I§—>T3§/T§. We also identify /% TRT;gg/fé‘ with the
subma;ifold of TZR/INR. Microlocalize (A. 3) alongo/l", then we can

deduce an isomorphism
A Bifom, | (&, 6 ) =47

with m: T%A—/A. Here ?ZA g is the sheaf on 77 A% of 2-microfunctions
0 0

along Af. The above isomorphism is nothing but de Rham’s lemma
for 2-microfunctions.
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