On the Ranks of Homotopy Groups of a Space

By

Kouyemon IRIYE

For a simply connected space X of finite type and a prime p we define two power series

$$P_{\pi}(X) = \sum (\dim \pi_n(X) \otimes Z_p) \cdot t^n$$

and

$$P_H(X) = \sum (\dim H_n(\Omega X; Z_p)) \cdot t^n$$

Let $R_{\pi}(X)$ and $R_{H}(X)$ (or simply R_{π} and R_{H}) be the radiuses of convergence of $P_{\pi}(X)$ and $P_{H}(X)$ respectively. Henn [2] proved

Theorem 1. Let X be a simply connected space of finite type and p be a prime. Then $R_{\pi} \ge \min\{R_H, C_p\}$, where C_p is a constant depending only on p and $1 \ge C_2 \ge 1/2$, $1 \ge C_p \ge 3^{-1/(2p-3)}$ for an odd prime p.

and conjectured

Conjecture. If X is a simply connected finite complex then $R_{\pi}(X) = R_H(X)$.

In this paper we give a following partial answer to the above.

Theorem 2. min $\{1, R_{\pi}\} \leq R_H$ for all simply connected spaces of finite type.

Thus Theorems 1 and 2 imply

Corollary. Let X be a simply connected space of finite type and p be a prime. If $R_H(X) \leq C_p$, then $R_{\pi}(X) = R_H(X)$.

^{*}This research was partially supported by the Alexander von Humboldt Foundation. Communicated by N. Shimada, August 25, 1986.

Department of Mathematics, Kyoto University, Kyoto 606, Japan.

KOUYEMON IRIYE

Remark. (1) Let $R_{\pi_*(X;Z_p)}$ be the radius of convergence of the power series $\sum (\dim(\pi_n(X;Z_p)\otimes Z_p)) \cdot t^n$. Using the short exact sequence

$$0 \to \pi_n(X) \otimes Z_p \to \pi_n(X; Z_p) \to \pi_{n-1}(X) * Z_p \to 0$$

for $n \ge 4$, we see that $R_{\pi}(X) = R_{\pi_*(X;Z_p)}$. So his statement ([2], Theorem 1) is equivalent to us.

(2) In [2] he proved only that $C_p \ge 1/2$, but it is not difficult to get the above estimate for an odd prime.

Example. Consider the suspension space of a connected space of finite type. By the Bott-Samelson theorem [1] $H_*(\Omega \Sigma X; Z_p) \cong T(H_*(X; Z_p))$, where T is the tensor algebra functor. If dim $\tilde{H}_*(X; Z_p) > 1$, then by Theorem 2 $R_{\pi}(\Sigma X) \leq R_H(\Sigma X) < 1$. This result implies the existence of an infinite family of integers $\{q_i\}$ and C > 1 such that dim $\pi_{q_i}(\Sigma X) \otimes Z_p \geq C^{q_i}$.

The author is grateful to the hospitality of the Mathematisches Institut der Universität Heidelberg, at which this research was done. He also would like to thank R. Schön and H. -W. Henn for helpful conversation.

Proof of Theorem 2.

From now on we deal with only the case that p=2. Because for an odd prime the following arguments work quite similarly. So $H_*(X)$ stands for $H_*(X; \mathbb{Z}_2)$.

For a space X of finite type we define a power series

$$P(X) = \sum (\dim H_n(X)) \cdot t^n.$$

For a power series f we denote by r(f) its radius of convergence. Thus $P_H(X) = P(\Omega X)$ and $R_H(X) = r(P(\Omega X))$. Theorem 2 is deduced from the following theorem.

Theorem 3. Let X be a simple space of finite type. Then $\min\{1, r(P_{\pi}(X))\} \leq r(P(X)).$

Now we prove Theorem 3. Let X be a simple space of finite

210

type. $\{X_n\}$ denotes the Postonikov decomposition of X. In particular

$$\pi_i(X_n) = \begin{cases} \pi_i(X) & \text{for } i \leq n \\ 0 & \text{for } i > n, \end{cases}$$

and there is a fibration

(4)
$$K(\pi_n(X), n) \to X_n \to X_{n-1}.$$

Notice that, since X is simple, the local coefficient system over X_{n-1} associated with the Serre fibration (4) is trivial. Then the Serre spectral sequence associated with (4) induces the following relation among the three power series:

$$P(X_{n-1}) \cdot P(K(\pi_n(X), n)) \ge P(X_n),$$

where the sign \geq signifies that each coefficient of the first power series is equal to or larger than the corresponding coefficient to the second. Since $X_0 = *$ and $P(X_n) \equiv P(X) \mod(t^{n+1})$, the above inequations for $n \geq 1$ induce the inequation

(5)
$$\Pi_{n\geq 1} P(K(\pi_n(X), n)) \geq P(X).$$

For a finitely generated abelian group π , $P(K(\pi, n))$ is well-known by Serre.

Theorem 6. ([3]) For
$$m \ge 1$$
 and $q \ge 0$,
 $P(K(Z_{2^m}, q+1)) = \prod_{h_1 \ge \dots \ge h_q \ge 0} (1 - t^{2^{h_1} + \dots + 2^{h_q} + 1})^{-1} \ge P(K(Z, q+1)).$

Put

$$m(q) = \dim \pi_q(X) \otimes Z_2$$

$$M(q) = \max \{m(1), \dots, m(q)\},$$

$$a(n, q) = \# \{h_1 \ge \dots \ge h_q \ge 0; 2^{h_1} + \dots + 2^{h_q} = n\},$$

$$a(n) = \sum_{q \ge 0} a(n, q)$$

and

 $b(n) = \sum_{q \ge 0} a(n-1,q) M(q+1)$.

Then by (5) and Theorem 6 we have

$$\Pi_{n\geq 1}(1-t^n)^{-b(n)} = \Pi_{q\geq 0, n\geq 1}(1-t^n)^{-a(n-1,q)M(q+1)}$$
$$\geq \Pi_{q\geq 0, n\geq 1}(1-t^n)^{-a(n-1,q)M(q+1)}$$

$$= \prod_{q \ge 0} \prod_{h_1 \ge \dots \ge h_q \ge 0} (1 - t^{2^{h_1} + \dots + 2^{h_q} + 1})^{-m(q+1)}$$

$$\geq P(X),$$

that is,

(7)
$$\Pi_{n \ge 1} (1 - t^n)^{-b(n)} \ge P(X).$$

Let $0 \leq r < 1$. If $\sum_{n\geq 1} b(n) t^n$ converges for $|t| \leq r$, then $\prod_{n\geq 1} (1-t^n)^{b(n)}$ converges and its limit is nonzero. Thus $\prod_{n\geq 1} (1-t^n)^{-b(n)}$ converges. On the other hand we have that $\log \prod_{n\geq 1} (1-t^n)^{-b(n)} = \sum_{n\geq 1} b(n) \{t^n + \cdots\} \geq \sum_{n\geq 1} b(n) t^n$. Therefore $r(P(X)) \geq r(\prod_{n\geq 1} (1-t^n)^{-b(n)}) = \min\{1, r(\sum b(n)t^n)\}$. So it is sufficient to prove that

(8)
$$\mathbf{r}\left(\sum b(n)t^{n}\right) \geq \min\left\{1, \mathbf{r}P_{\pi}(X)\right\}.$$

This is proved by means of the following lemmas. Lemma 9 is directly proved by definition. Lemma 10 is proved by induction on n with Lemma 9, (2) and (3).

Lemma 9. (1) a(n,q) = 0 for n < q. (2) a(2n+1, q) = a(2n, q-1) and a(2n+1) = a(2n). (3) a(2n, q) = a(2n-2, q-2) + a(n, q) and a(2n) = a(2n-2) + a(n) for $n \ge 2$.

Lemma 10. If we take a real number C (C>1) and an integer N such that $C^N \ge C^{N-2}+1$, then $a(n) \le 2^N \cdot C^n$ for all $n \ge 0$.

Now we prove the inequation (8). If we take C and N as in Lemma 10, then

$$r\left(\sum b(n)t^{n}\right) \ge r\left(\sum a(n-1)M(n)t^{n}\right)$$
$$\ge r\left(\sum 2^{N} \cdot C^{n}M(n)t^{n}\right)$$
$$= r\left(\sum M(n)t^{n}\right)/C$$
$$= \min\left\{1, \ \sum m(n)t^{n}\right\}/C$$
$$= \min\left\{1, \ rP_{\pi}(X)\right\}/C.$$

Thus

$$r(\sum b(n)t^{n}) \ge \sup \{\min \{1, rP_{\pi}(X)\}/C; C > 1\} \\= \min \{1, rP_{\pi}(X)\},\$$

which completes the proof of (8) and of Theorem 3.

Remark. Of course Theorem 3 is valid for odd primes. In this case we can use [4] instead of [3] to prove it.

References

- Bott, R. and Samelson, H., On the Pontrjagin product in spaces of paths, Comm. Math. Helv. 27 (1953), 320-337.
- [2] Henn, H. -W., On the growth of homotopy groups, Manuscripta Math. 56 (1986), 235-245.
- [3] Serre, J. -P., Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv. 27 (1953), 198-232.
- [4] Umeda, Y., A remark on a theorem of J. -P. Serre, Proc. of Japan Academy, 35 (1959), 563-566.