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On the Ranks of Homotopy Groups of a Space
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Kouyemon IRIYE

For a simply connected space X of finite type and a prime p we
define two power series

P, (X} = Z (dim 7rn (X) ®ZP} • *"

and

Let RJC(X) and RH(X) (or simply /?* and /?#) be the radiuses of
convergence of P*(X) and PH(X) respectively. Henn [2] proved

Theorem 1. Let X be a simply connected space of finite type and p
be a prime. Then R^mm{RHy Q,}3 where Cp is a constant depending
only on p and l^C2^l/2, 1 ̂ C^3-1/(2^3) for an odd prime p,

and conjectured

Conjecture,, If X is a simply connected finite complex then

In this paper we give a following partial answer to the above.

Theorem 20 minf l , Rn] ^RH for all simply connected spaces of finite
type.

Thus Theorems 1 and 2 imply

Corollarjo Let X be a simply connected space of finite type and p be
a prime. If RH(X) ^Cp, then RK(X) =RH(X).
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Remark. (1) Let RX^-ZJ be the radius of convergence of the

power series ]T(dim(7rM(Z; Zj)(g)Zj)) *tn. Using the short exact
sequence

for /z^4, we see that R^(X) = Rit^(X',zp^ So his statement ([2], Theorem

I) is equivalent to us.
(2) In [2] he proved only that (7*^1/2, but it is not difficult

to get the above estimate for an odd prime.

Example. Consider the suspension space of a connected space of
finite type. By the Bott-Samelson theorem [1] H*(Q2X;ZP) =
T(H*(X',ZP)), where T is the tensor algebra functor. If dim
S*(X',ZP)>1, then by Theorem 2 R,(ZX) ^RH(ZX)<1. This result
implies the existence of an infinite family of integers [q^ and C>1

such that dim
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Proof of Theorem 2.

From now on we deal with only the case that p = 2. Because for
an odd prime the following arguments work quite similarly. So H* (X)

stands for H#(X',Z2).
For a space X of finite type we define a power series

PW=S(dim #.(*))•*•.

For a power series / we denote by r(/) its radius of convergence.

Thus PH(X) = P(OX) and Ra(X) =r(P(OJQ). Theorem 2 is deduced
from the following theorem.

Theorem 3. Let X be a simple space of finite type. Then

{l, r(P,(-Y))}^r(P(*)).

Now we prove Theorem 3. Let X be a simple space of finite
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type. {Xn} denotes the Postonikov decomposition of X. In particular

(fti(X) for i^n

H) for i^>n,

and there is a fibration

(4) K(x.(X), n^X^X^.

Notice that, since X is simple, the local coefficient system over Xn-i

associated with the Serre fibration (4) is trivial. Then the Serre

spectral sequence associated with (4) induces the following relation

among the three power series:

where the sign ^ signifies that each coefficient of the first power

series is equal to or larger than the corresponding coefficient to the

second. Since XQ = * and P(Xn)=P(X) mod(£n+1), the above inequa-

tions for n ̂  1 induce the inequation

(5) n

For 'a finitely generated abelian group TT, P(K(n,n)) is well
known by Serre.

Theorem 6. ([3]) For m^l and q^Q,

P(*(Z2m,? + l))=/^^

Put

m (q) = dim Kq (X) (X)Z2

a(n, q) =%{h^ - - - ̂ A?^0;

fl(w)=S^o a(n, q)

and

Then by (5) and Theorem 6 we have

77 /"I *n\ -&(») _ 77 /I /n\ -a(n-l,«)M(«+l)/ / 1 ~ — " ~
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h, hn

~z *

that is,

(7) 77^(1 -r)-*

Let0^r<l. If S^W*" converges for |J|^r, then 77^(1 -r)6^
converges and its limit is nonzero. Thus 77^(1 —£w)~S ( n ) converges.

On the other hand we have that log 77^(1 -^)"JO>) = S»^ («) frM +
• • •} ̂ lUii («)*"• Therefore r(P(JT)) ̂ r (77^(1 -f)-i(n)) =min{l,

r)}. So it is sufficient to prove that

(8)

This is proved by means of the following lemmas. Lemma 9 is
directly proved by definition. Lemma 10 is proved by induction on
n with Lemma 9, (2) and (3).

Lemma 9. (1) a(n,q)=Q for n
(2) a(2n + l, q) =a(2n, q-l) and a(2n + l} =a(2n).
(3) a(2n, q) =a(2n-2, q-T) +a(n, q) and a(2n) =a(2n-2) +a(ri) for

Lemma 10. If we take a real number C (C7>1) and an integer N

such that CN^CN-2+l, then a(n) ^2N-Cn for all n^O.

Now we prove the inequation (8). If we take C and N as in
Lemma 10, then

N • CnM(n)tn)

(n)«»)/C
l, ^m(n)tn}/

= min{l,rP,(-Y)}/C.

Thus

{min {1, rP,(Jf)}/C;
= min {1, r
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which completes the proof of (8) and of Theorem 30

Remark, Of course Theorem 3 is valid for odd primes0 In this
case we can use [4] instead of [3] to prove it.
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